Added ambient pass to make game less dark

This commit is contained in:
Robert Beckebans 2015-12-24 16:43:02 +01:00
parent 85532b9622
commit bd8dedca16
4 changed files with 303 additions and 7 deletions

View file

@ -0,0 +1,97 @@
/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2013-2015 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "renderprogs/global.inc"
uniform sampler2D samp0 : register(s0); // texture 1 is the per-surface bump map
uniform sampler2D samp1 : register(s1); // texture 2 is the light falloff texture
uniform sampler2D samp2 : register(s2); // texture 3 is the light projection texture
uniform sampler2D samp3 : register(s3); // texture 4 is the per-surface diffuse map
uniform sampler2D samp4 : register(s4); // texture 5 is the per-surface specular map
struct PS_IN {
half4 position : VPOS;
half4 texcoord0 : TEXCOORD0_centroid;
half4 texcoord1 : TEXCOORD1_centroid;
// half4 texcoord2 : TEXCOORD2_centroid;
// half4 texcoord3 : TEXCOORD3_centroid;
half4 texcoord4 : TEXCOORD4_centroid;
half4 texcoord5 : TEXCOORD5_centroid;
half4 texcoord6 : TEXCOORD6_centroid;
half4 color : COLOR0;
};
struct PS_OUT {
half4 color : COLOR;
};
void main( PS_IN fragment, out PS_OUT result ) {
half4 bumpMap = tex2D( samp0, fragment.texcoord1.xy );
// half4 lightFalloff = idtex2Dproj( samp1, fragment.texcoord2 );
// half4 lightProj = idtex2Dproj( samp2, fragment.texcoord3 );
half4 YCoCG = tex2D( samp3, fragment.texcoord4.xy );
half4 specMap = tex2D( samp4, fragment.texcoord5.xy );
half3 lightVector = normalize( fragment.texcoord0.xyz );
half3 diffuseMap = ConvertYCoCgToRGB( YCoCG );
half3 localNormal;
#if defined(USE_NORMAL_FMT_RGB8)
localNormal.xy = bumpMap.rg - 0.5;
#else
localNormal.xy = bumpMap.wy - 0.5;
#endif
localNormal.z = sqrt( abs( dot( localNormal.xy, localNormal.xy ) - 0.25 ) );
localNormal = normalize( localNormal );
const half specularPower = 10.0f;
half hDotN = dot3( normalize( fragment.texcoord6.xyz ), localNormal );
// RB: added abs
half3 specularContribution = _half3( pow( abs( hDotN ), specularPower ) );
half3 diffuseColor = diffuseMap * rpDiffuseModifier.xyz * 1.5f;
half3 specularColor = specMap.xyz * specularContribution * rpSpecularModifier.xyz;
// RB: http://developer.valvesoftware.com/wiki/Half_Lambert
float halfLdotN = dot3( localNormal, lightVector ) * 0.5 + 0.5;
halfLdotN *= halfLdotN;
// traditional very dark Lambert light model used in Doom 3
float ldotN = dot3( localNormal, lightVector );
half3 lightColor = rpAmbientColor.rgb;
half rim = 1.0f - saturate( hDotN );
half rimPower = 8.0;
half3 rimColor = half3( 0.125 ) * 1.2 * lightColor * pow( rim, rimPower );
//result.color.rgb = localNormal.xyz * 0.5 + 0.5;
result.color.xyz = ( diffuseColor + specularColor ) * halfLdotN * lightColor + rimColor;
result.color.w = 1.0;
}

View file

@ -0,0 +1,199 @@
/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2013-2015 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "renderprogs/global.inc"
#if defined( USE_GPU_SKINNING )
uniform matrices_ubo { float4 matrices[408]; };
#endif
struct VS_IN {
float4 position : POSITION;
float2 texcoord : TEXCOORD0;
float4 normal : NORMAL;
float4 tangent : TANGENT;
float4 color : COLOR0;
float4 color2 : COLOR1;
};
struct VS_OUT {
float4 position : POSITION;
float4 texcoord0 : TEXCOORD0;
float4 texcoord1 : TEXCOORD1;
// float4 texcoord2 : TEXCOORD2;
// float4 texcoord3 : TEXCOORD3;
float4 texcoord4 : TEXCOORD4;
float4 texcoord5 : TEXCOORD5;
float4 texcoord6 : TEXCOORD6;
float4 color : COLOR0;
};
void main( VS_IN vertex, out VS_OUT result ) {
float4 vNormal = vertex.normal * 2.0 - 1.0;
float4 vTangent = vertex.tangent * 2.0 - 1.0;
float3 vBitangent = cross( vNormal.xyz, vTangent.xyz ) * vTangent.w;
#if defined( USE_GPU_SKINNING )
//--------------------------------------------------------------
// GPU transformation of the normal / tangent / bitangent
//
// multiplying with 255.1 give us the same result and is faster than floor( w * 255 + 0.5 )
//--------------------------------------------------------------
const float w0 = vertex.color2.x;
const float w1 = vertex.color2.y;
const float w2 = vertex.color2.z;
const float w3 = vertex.color2.w;
float4 matX, matY, matZ; // must be float4 for vec4
int joint = int(vertex.color.x * 255.1 * 3.0);
matX = matrices[int(joint+0)] * w0;
matY = matrices[int(joint+1)] * w0;
matZ = matrices[int(joint+2)] * w0;
joint = int(vertex.color.y * 255.1 * 3.0);
matX += matrices[int(joint+0)] * w1;
matY += matrices[int(joint+1)] * w1;
matZ += matrices[int(joint+2)] * w1;
joint = int(vertex.color.z * 255.1 * 3.0);
matX += matrices[int(joint+0)] * w2;
matY += matrices[int(joint+1)] * w2;
matZ += matrices[int(joint+2)] * w2;
joint = int(vertex.color.w * 255.1 * 3.0);
matX += matrices[int(joint+0)] * w3;
matY += matrices[int(joint+1)] * w3;
matZ += matrices[int(joint+2)] * w3;
float3 normal;
normal.x = dot3( matX, vNormal );
normal.y = dot3( matY, vNormal );
normal.z = dot3( matZ, vNormal );
normal = normalize( normal );
float3 tangent;
tangent.x = dot3( matX, vTangent );
tangent.y = dot3( matY, vTangent );
tangent.z = dot3( matZ, vTangent );
tangent = normalize( tangent );
float3 bitangent;
bitangent.x = dot3( matX, vBitangent );
bitangent.y = dot3( matY, vBitangent );
bitangent.z = dot3( matZ, vBitangent );
bitangent = normalize( bitangent );
float4 modelPosition;
modelPosition.x = dot4( matX, vertex.position );
modelPosition.y = dot4( matY, vertex.position );
modelPosition.z = dot4( matZ, vertex.position );
modelPosition.w = 1.0;
#else
float4 modelPosition = vertex.position;
float3 normal = vNormal.xyz;
float3 tangent = vTangent.xyz;
float3 bitangent = vBitangent.xyz;
#endif
result.position.x = dot4( modelPosition, rpMVPmatrixX );
result.position.y = dot4( modelPosition, rpMVPmatrixY );
result.position.z = dot4( modelPosition, rpMVPmatrixZ );
result.position.w = dot4( modelPosition, rpMVPmatrixW );
float4 defaultTexCoord = float4( 0.0f, 0.5f, 0.0f, 1.0f );
//calculate vector to light
//float4 toLight = rpLocalLightOrigin;
float4 toLight = normalize( float4( 0.0f, 0.5f, 1.0f, 1.0f ) );
//--------------------------------------------------------------
//result.texcoord0 is the direction to the light in tangent space
result.texcoord0.x = dot3( tangent, toLight );
result.texcoord0.y = dot3( bitangent, toLight );
result.texcoord0.z = dot3( normal, toLight );
result.texcoord0.w = 1.0f;
//textures 1 takes the base coordinates by the texture matrix
result.texcoord1 = defaultTexCoord;
result.texcoord1.x = dot4( vertex.texcoord.xy, rpBumpMatrixS );
result.texcoord1.y = dot4( vertex.texcoord.xy, rpBumpMatrixT );
//# texture 2 has one texgen
//result.texcoord2 = defaultTexCoord;
//result.texcoord2.x = dot4( vertex.position, rpLightFalloffS );
//# texture 3 has three texgens
//result.texcoord3.x = dot4( vertex.position, rpLightProjectionS );
//result.texcoord3.y = dot4( vertex.position, rpLightProjectionT );
//result.texcoord3.z = 0.0f;
//result.texcoord3.w = dot4( vertex.position, rpLightProjectionQ );
//# textures 4 takes the base coordinates by the texture matrix
result.texcoord4 = defaultTexCoord;
result.texcoord4.x = dot4( vertex.texcoord.xy, rpDiffuseMatrixS );
result.texcoord4.y = dot4( vertex.texcoord.xy, rpDiffuseMatrixT );
//# textures 5 takes the base coordinates by the texture matrix
result.texcoord5 = defaultTexCoord;
result.texcoord5.x = dot4( vertex.texcoord.xy, rpSpecularMatrixS );
result.texcoord5.y = dot4( vertex.texcoord.xy, rpSpecularMatrixT );
//# texture 6's texcoords will be the halfangle in texture space
//# calculate normalized vector to light in R0
toLight = normalize( toLight );
//# calculate normalized vector to viewer in R1
float4 toView = normalize( rpLocalViewOrigin - modelPosition );
//# add together to become the half angle vector in object space (non-normalized)
float4 halfAngleVector = toLight + toView;
//# put into texture space
result.texcoord6.x = dot3( tangent, halfAngleVector );
result.texcoord6.y = dot3( bitangent, halfAngleVector );
result.texcoord6.z = dot3( normal, halfAngleVector );
result.texcoord6.w = 1.0f;
#if defined( USE_GPU_SKINNING )
// for joint transformation of the tangent space, we use color and
// color2 for weighting information, so hopefully there aren't any
// effects that need vertex color...
result.color = float4( 1.0f, 1.0f, 1.0f, 1.0f );
#else
//# generate the vertex color, which can be 1.0, color, or 1.0 - color
//# for 1.0 : env[16] = 0, env[17] = 1
//# for color : env[16] = 1, env[17] = 0
//# for 1.0-color : env[16] = -1, env[17] = 1
result.color = ( swizzleColor( vertex.color ) * rpVertexColorModulate ) + rpVertexColorAdd;
#endif
}

View file

@ -5836,7 +5836,7 @@ void idRenderBackend::PostProcess( const void* data )
/*
* The shader has three passes, chained together as follows:
*
* |input|------------------·
* |input|------------------<EFBFBD>
* v |
* [ SMAA*EdgeDetection ] |
* v |
@ -5846,7 +5846,7 @@ void idRenderBackend::PostProcess( const void* data )
* v |
* |blendTex| |
* v |
* [ SMAANeighborhoodBlending ] <------·
* [ SMAANeighborhoodBlending ] <------<EFBFBD>
* v
* |output|
*/

View file

@ -396,7 +396,7 @@ static const cgShaderDef_t cg_renderprogs[] =
" *\n"
" * The shader has three passes, chained together as follows:\n"
" *\n"
" * |input|------------------·\n"
" * |input|------------------<EFBFBD>\n"
" * v |\n"
" * [ SMAA*EdgeDetection ] |\n"
" * v |\n"
@ -406,7 +406,7 @@ static const cgShaderDef_t cg_renderprogs[] =
" * v |\n"
" * |blendTex| |\n"
" * v |\n"
" * [ SMAANeighborhoodBlending ] <------·\n"
" * [ SMAANeighborhoodBlending ] <------<EFBFBD>\n"
" * v\n"
" * |output|\n"
" *\n"
@ -1794,7 +1794,7 @@ static const cgShaderDef_t cg_renderprogs[] =
"}\n"
"\n"
"// Fresnel term F( v, h )\n"
"// Fnone( v, h ) = F(0°) = specularColor\n"
"// Fnone( v, h ) = F(0<EFBFBD>) = specularColor\n"
"half3 Fresnel_Schlick( half3 specularColor, half vdotH )\n"
"{\n"
" return specularColor + ( 1.0 - specularColor ) * pow( 1.0 - vdotH, 5.0 );\n"
@ -8279,7 +8279,7 @@ static const cgShaderDef_t cg_renderprogs[] =
" const half roughness = specMapSRGB.r;\n"
" const half glossiness = 1.0 - roughness;\n"
"\n"
" // the vast majority of real-world materials (anything not metal or gems) have F(0°)\n"
" // the vast majority of real-world materials (anything not metal or gems) have F(0<EFBFBD>)\n"
" // values in a very narrow range (~0.02 - 0.08)\n"
" \n"
" // approximate non-metals with linear RGB 0.04 which is 0.08 * 0.5 (default in UE4)\n"
@ -9364,7 +9364,7 @@ static const cgShaderDef_t cg_renderprogs[] =
" const half roughness = specMapSRGB.r;\n"
" const half glossiness = 1.0 - roughness;\n"
"\n"
" // the vast majority of real-world materials (anything not metal or gems) have F(0°)\n"
" // the vast majority of real-world materials (anything not metal or gems) have F(0<EFBFBD>)\n"
" // values in a very narrow range (~0.02 - 0.08)\n"
" \n"
" // approximate non-metals with linear RGB 0.04 which is 0.08 * 0.5 (default in UE4)\n"