doom3-bfg/neo/idlib/math/Lcp.cpp

2950 lines
84 KiB
C++
Raw Normal View History

2012-11-26 18:58:24 +00:00
/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "../precompiled.h"
// this file is full of intentional case fall throughs
//lint -e616
// the code is correct, it can't be a NULL pointer
//lint -e613
static idCVar lcp_showFailures( "lcp_showFailures", "0", CVAR_BOOL, "show LCP solver failures" );
const float LCP_BOUND_EPSILON = 1e-5f;
const float LCP_ACCEL_EPSILON = 1e-5f;
const float LCP_DELTA_ACCEL_EPSILON = 1e-9f;
const float LCP_DELTA_FORCE_EPSILON = 1e-9f;
#define IGNORE_UNSATISFIABLE_VARIABLES
ALIGN16( const __m128 SIMD_SP_zero ) = { 0.0f, 0.0f, 0.0f, 0.0f };
ALIGN16( const __m128 SIMD_SP_one ) = { 1.0f, 1.0f, 1.0f, 1.0f };
ALIGN16( const __m128 SIMD_SP_two ) = { 2.0f, 2.0f, 2.0f, 2.0f };
ALIGN16( const __m128 SIMD_SP_tiny ) = { 1e-10f, 1e-10f, 1e-10f, 1e-10f };
ALIGN16( const __m128 SIMD_SP_infinity ) = { idMath::INFINITY, idMath::INFINITY, idMath::INFINITY, idMath::INFINITY };
ALIGN16( const __m128 SIMD_SP_LCP_DELTA_ACCEL_EPSILON ) = { LCP_DELTA_ACCEL_EPSILON, LCP_DELTA_ACCEL_EPSILON, LCP_DELTA_ACCEL_EPSILON, LCP_DELTA_ACCEL_EPSILON };
ALIGN16( const __m128 SIMD_SP_LCP_DELTA_FORCE_EPSILON ) = { LCP_DELTA_FORCE_EPSILON, LCP_DELTA_FORCE_EPSILON, LCP_DELTA_FORCE_EPSILON, LCP_DELTA_FORCE_EPSILON };
ALIGN16( const __m128 SIMD_SP_LCP_BOUND_EPSILON ) = { LCP_BOUND_EPSILON, LCP_BOUND_EPSILON, LCP_BOUND_EPSILON, LCP_BOUND_EPSILON };
ALIGN16( const __m128 SIMD_SP_neg_LCP_BOUND_EPSILON ) = { -LCP_BOUND_EPSILON, -LCP_BOUND_EPSILON, -LCP_BOUND_EPSILON, -LCP_BOUND_EPSILON };
ALIGN16( const unsigned int SIMD_SP_signBit[4] ) = { IEEE_FLT_SIGN_MASK, IEEE_FLT_SIGN_MASK, IEEE_FLT_SIGN_MASK, IEEE_FLT_SIGN_MASK };
ALIGN16( const unsigned int SIMD_SP_absMask[4] ) = { ~IEEE_FLT_SIGN_MASK, ~IEEE_FLT_SIGN_MASK, ~IEEE_FLT_SIGN_MASK, ~IEEE_FLT_SIGN_MASK };
ALIGN16( const unsigned int SIMD_SP_indexedStartMask[4][4] ) = { { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }, { 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }, { 0, 0, 0xFFFFFFFF, 0xFFFFFFFF }, { 0, 0, 0, 0xFFFFFFFF } };
ALIGN16( const unsigned int SIMD_SP_indexedEndMask[4][4] ) = { { 0, 0, 0, 0 }, { 0xFFFFFFFF, 0, 0, 0 }, { 0xFFFFFFFF, 0xFFFFFFFF, 0, 0 }, { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0 } };
ALIGN16( const unsigned int SIMD_SP_clearLast1[4] ) = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0 };
ALIGN16( const unsigned int SIMD_SP_clearLast2[4] ) = { 0xFFFFFFFF, 0xFFFFFFFF, 0, 0 };
ALIGN16( const unsigned int SIMD_SP_clearLast3[4] ) = { 0xFFFFFFFF, 0, 0, 0 };
ALIGN16( const unsigned int SIMD_DW_zero[4] ) = { 0, 0, 0, 0 };
ALIGN16( const unsigned int SIMD_DW_one[4] ) = { 1, 1, 1, 1 };
ALIGN16( const unsigned int SIMD_DW_four[4] ) = { 4, 4, 4, 4 };
ALIGN16( const unsigned int SIMD_DW_index[4] ) = { 0, 1, 2, 3 };
ALIGN16( const int SIMD_DW_not3[4] ) = { ~3, ~3, ~3, ~3 };
/*
========================
Multiply_SIMD
dst[i] = src0[i] * src1[i];
Assumes the source and destination have the same memory alignment.
========================
*/
static void Multiply_SIMD( float * dst, const float * src0, const float * src1, const int count ) {
int i = 0;
for ( ; ( (unsigned int)dst & 0xF ) != 0 && i < count; i++ ) {
dst[i] = src0[i] * src1[i];
}
for ( ; i + 4 <= count; i += 4 ) {
assert_16_byte_aligned( &dst[i] );
assert_16_byte_aligned( &src0[i] );
assert_16_byte_aligned( &src1[i] );
__m128 s0 = _mm_load_ps( src0 + i );
__m128 s1 = _mm_load_ps( src1 + i );
s0 = _mm_mul_ps( s0, s1 );
_mm_store_ps( dst + i, s0 );
}
for ( ; i < count; i++ ) {
dst[i] = src0[i] * src1[i];
}
}
/*
========================
MultiplyAdd_SIMD
dst[i] += constant * src[i];
Assumes the source and destination have the same memory alignment.
========================
*/
static void MultiplyAdd_SIMD( float * dst, const float constant, const float * src, const int count ) {
int i = 0;
for ( ; ( (unsigned int)dst & 0xF ) != 0 && i < count; i++ ) {
dst[i] += constant * src[i];
}
__m128 c = _mm_load1_ps( & constant );
for ( ; i + 4 <= count; i += 4 ) {
assert_16_byte_aligned( &dst[i] );
assert_16_byte_aligned( &src[i] );
__m128 s = _mm_load_ps( src + i );
__m128 d = _mm_load_ps( dst + i );
s = _mm_add_ps( _mm_mul_ps( s, c ), d );
_mm_store_ps( dst + i, s );
}
for ( ; i < count; i++ ) {
dst[i] += constant * src[i];
}
}
/*
========================
DotProduct_SIMD
dot = src0[0] * src1[0] + src0[1] * src1[1] + src0[2] * src1[2] + ...
========================
*/
static float DotProduct_SIMD( const float * src0, const float * src1, const int count ) {
assert_16_byte_aligned( src0 );
assert_16_byte_aligned( src1 );
#ifndef _lint
__m128 sum = (__m128 &) SIMD_SP_zero;
int i = 0;
for ( ; i < count - 3; i += 4 ) {
__m128 s0 = _mm_load_ps( src0 + i );
__m128 s1 = _mm_load_ps( src1 + i );
sum = _mm_add_ps( _mm_mul_ps( s0, s1 ), sum );
}
__m128 mask = _mm_load_ps( (float *) &SIMD_SP_indexedEndMask[count & 3] );
__m128 s0 = _mm_and_ps( _mm_load_ps( src0 + i ), mask );
__m128 s1 = _mm_and_ps( _mm_load_ps( src1 + i ), mask );
sum = _mm_add_ps( _mm_mul_ps( s0, s1 ), sum );
sum = _mm_add_ps( sum, _mm_shuffle_ps( sum, sum, _MM_SHUFFLE( 1, 0, 3, 2 ) ) );
sum = _mm_add_ps( sum, _mm_shuffle_ps( sum, sum, _MM_SHUFFLE( 2, 3, 0, 1 ) ) );
float dot;
_mm_store_ss( & dot, sum );
return dot;
#else
float s0 = 0.0f;
float s1 = 0.0f;
float s2 = 0.0f;
float s3 = 0.0f;
int i = 0;
for ( ; i < count - 3; i += 4 ) {
s0 += src0[i+4] * src1[i+4];
s1 += src0[i+5] * src1[i+5];
s2 += src0[i+6] * src1[i+6];
s3 += src0[i+7] * src1[i+7];
}
switch( count - i ) {
NODEFAULT;
case 3: s0 += src0[i+2] * src1[i+2];
case 2: s1 += src0[i+1] * src1[i+1];
case 1: s2 += src0[i+0] * src1[i+0];
case 0:
break;
}
return s0 + s1 + s2 + s3;
#endif
}
/*
========================
LowerTriangularSolve_SIMD
Solves x in Lx = b for the n * n sub-matrix of L.
* if skip > 0 the first skip elements of x are assumed to be valid already
* L has to be a lower triangular matrix with (implicit) ones on the diagonal
* x == b is allowed
========================
*/
static void LowerTriangularSolve_SIMD( const idMatX & L, float * x, const float * b, const int n, int skip ) {
if ( skip >= n ) {
return;
}
const float *lptr = L.ToFloatPtr();
int nc = L.GetNumColumns();
assert( ( nc & 3 ) == 0 );
// unrolled cases for n < 8
if ( n < 8 ) {
#define NSKIP( n, s ) ((n<<3)|(s&7))
switch( NSKIP( n, skip ) ) {
case NSKIP( 1, 0 ): x[0] = b[0];
return;
case NSKIP( 2, 0 ): x[0] = b[0];
case NSKIP( 2, 1 ): x[1] = b[1] - lptr[1*nc+0] * x[0];
return;
case NSKIP( 3, 0 ): x[0] = b[0];
case NSKIP( 3, 1 ): x[1] = b[1] - lptr[1*nc+0] * x[0];
case NSKIP( 3, 2 ): x[2] = b[2] - lptr[2*nc+0] * x[0] - lptr[2*nc+1] * x[1];
return;
case NSKIP( 4, 0 ): x[0] = b[0];
case NSKIP( 4, 1 ): x[1] = b[1] - lptr[1*nc+0] * x[0];
case NSKIP( 4, 2 ): x[2] = b[2] - lptr[2*nc+0] * x[0] - lptr[2*nc+1] * x[1];
case NSKIP( 4, 3 ): x[3] = b[3] - lptr[3*nc+0] * x[0] - lptr[3*nc+1] * x[1] - lptr[3*nc+2] * x[2];
return;
case NSKIP( 5, 0 ): x[0] = b[0];
case NSKIP( 5, 1 ): x[1] = b[1] - lptr[1*nc+0] * x[0];
case NSKIP( 5, 2 ): x[2] = b[2] - lptr[2*nc+0] * x[0] - lptr[2*nc+1] * x[1];
case NSKIP( 5, 3 ): x[3] = b[3] - lptr[3*nc+0] * x[0] - lptr[3*nc+1] * x[1] - lptr[3*nc+2] * x[2];
case NSKIP( 5, 4 ): x[4] = b[4] - lptr[4*nc+0] * x[0] - lptr[4*nc+1] * x[1] - lptr[4*nc+2] * x[2] - lptr[4*nc+3] * x[3];
return;
case NSKIP( 6, 0 ): x[0] = b[0];
case NSKIP( 6, 1 ): x[1] = b[1] - lptr[1*nc+0] * x[0];
case NSKIP( 6, 2 ): x[2] = b[2] - lptr[2*nc+0] * x[0] - lptr[2*nc+1] * x[1];
case NSKIP( 6, 3 ): x[3] = b[3] - lptr[3*nc+0] * x[0] - lptr[3*nc+1] * x[1] - lptr[3*nc+2] * x[2];
case NSKIP( 6, 4 ): x[4] = b[4] - lptr[4*nc+0] * x[0] - lptr[4*nc+1] * x[1] - lptr[4*nc+2] * x[2] - lptr[4*nc+3] * x[3];
case NSKIP( 6, 5 ): x[5] = b[5] - lptr[5*nc+0] * x[0] - lptr[5*nc+1] * x[1] - lptr[5*nc+2] * x[2] - lptr[5*nc+3] * x[3] - lptr[5*nc+4] * x[4];
return;
case NSKIP( 7, 0 ): x[0] = b[0];
case NSKIP( 7, 1 ): x[1] = b[1] - lptr[1*nc+0] * x[0];
case NSKIP( 7, 2 ): x[2] = b[2] - lptr[2*nc+0] * x[0] - lptr[2*nc+1] * x[1];
case NSKIP( 7, 3 ): x[3] = b[3] - lptr[3*nc+0] * x[0] - lptr[3*nc+1] * x[1] - lptr[3*nc+2] * x[2];
case NSKIP( 7, 4 ): x[4] = b[4] - lptr[4*nc+0] * x[0] - lptr[4*nc+1] * x[1] - lptr[4*nc+2] * x[2] - lptr[4*nc+3] * x[3];
case NSKIP( 7, 5 ): x[5] = b[5] - lptr[5*nc+0] * x[0] - lptr[5*nc+1] * x[1] - lptr[5*nc+2] * x[2] - lptr[5*nc+3] * x[3] - lptr[5*nc+4] * x[4];
case NSKIP( 7, 6 ): x[6] = b[6] - lptr[6*nc+0] * x[0] - lptr[6*nc+1] * x[1] - lptr[6*nc+2] * x[2] - lptr[6*nc+3] * x[3] - lptr[6*nc+4] * x[4] - lptr[6*nc+5] * x[5];
return;
}
#undef NSKIP
return;
}
// process first 4 rows
switch( skip ) {
case 0: x[0] = b[0];
case 1: x[1] = b[1] - lptr[1*nc+0] * x[0];
case 2: x[2] = b[2] - lptr[2*nc+0] * x[0] - lptr[2*nc+1] * x[1];
case 3: x[3] = b[3] - lptr[3*nc+0] * x[0] - lptr[3*nc+1] * x[1] - lptr[3*nc+2] * x[2];
skip = 4;
}
lptr = L[skip];
int i = skip;
#ifndef _lint
// work up to a multiple of 4 rows
for ( ; ( i & 3 ) != 0 && i < n; i++ ) {
__m128 sum = _mm_load_ss( & b[i] );
int j = 0;
for ( ; j < i - 3; j += 4 ) {
__m128 s0 = _mm_load_ps( lptr + j );
__m128 s1 = _mm_load_ps( x + j );
sum = _mm_sub_ps( sum, _mm_mul_ps( s0, s1 ) );
}
__m128 mask = _mm_load_ps( (float *) & SIMD_SP_indexedEndMask[i & 3] );
__m128 s0 = _mm_and_ps( _mm_load_ps( lptr + j ), mask );
__m128 s1 = _mm_and_ps( _mm_load_ps( x + j ), mask );
sum = _mm_sub_ps( sum, _mm_mul_ps( s0, s1 ) );
sum = _mm_add_ps( sum, _mm_shuffle_ps( sum, sum, _MM_SHUFFLE( 1, 0, 3, 2 ) ) );
sum = _mm_add_ps( sum, _mm_shuffle_ps( sum, sum, _MM_SHUFFLE( 2, 3, 0, 1 ) ) );
_mm_store_ss( & x[i], sum );
lptr += nc;
}
for ( ; i + 3 < n; i += 4 ) {
const float * lptr0 = &lptr[0*nc];
const float * lptr1 = &lptr[1*nc];
const float * lptr2 = &lptr[2*nc];
const float * lptr3 = &lptr[3*nc];
assert_16_byte_aligned( lptr0 );
assert_16_byte_aligned( lptr1 );
assert_16_byte_aligned( lptr2 );
assert_16_byte_aligned( lptr3 );
__m128 va = _mm_load_ss( & b[i+0] );
__m128 vb = _mm_load_ss( & b[i+1] );
__m128 vc = _mm_load_ss( & b[i+2] );
__m128 vd = _mm_load_ss( & b[i+3] );
__m128 x0 = _mm_load_ps( & x[0] );
va = _mm_sub_ps( va, _mm_mul_ps( x0, _mm_load_ps( lptr0 + 0 ) ) );
vb = _mm_sub_ps( vb, _mm_mul_ps( x0, _mm_load_ps( lptr1 + 0 ) ) );
vc = _mm_sub_ps( vc, _mm_mul_ps( x0, _mm_load_ps( lptr2 + 0 ) ) );
vd = _mm_sub_ps( vd, _mm_mul_ps( x0, _mm_load_ps( lptr3 + 0 ) ) );
for ( int j = 4; j < i; j += 4 ) {
__m128 xj = _mm_load_ps( &x[j] );
va = _mm_sub_ps( va, _mm_mul_ps( xj, _mm_load_ps( lptr0 + j ) ) );
vb = _mm_sub_ps( vb, _mm_mul_ps( xj, _mm_load_ps( lptr1 + j ) ) );
vc = _mm_sub_ps( vc, _mm_mul_ps( xj, _mm_load_ps( lptr2 + j ) ) );
vd = _mm_sub_ps( vd, _mm_mul_ps( xj, _mm_load_ps( lptr3 + j ) ) );
}
vb = _mm_sub_ps( vb, _mm_mul_ps( va, _mm_load1_ps( lptr1 + i + 0 ) ) );
vc = _mm_sub_ps( vc, _mm_mul_ps( va, _mm_load1_ps( lptr2 + i + 0 ) ) );
vc = _mm_sub_ps( vc, _mm_mul_ps( vb, _mm_load1_ps( lptr2 + i + 1 ) ) );
vd = _mm_sub_ps( vd, _mm_mul_ps( va, _mm_load1_ps( lptr3 + i + 0 ) ) );
vd = _mm_sub_ps( vd, _mm_mul_ps( vb, _mm_load1_ps( lptr3 + i + 1 ) ) );
vd = _mm_sub_ps( vd, _mm_mul_ps( vc, _mm_load1_ps( lptr3 + i + 2 ) ) );
__m128 ta = _mm_unpacklo_ps( va, vc ); // x0, z0, x1, z1
__m128 tb = _mm_unpackhi_ps( va, vc ); // x2, z2, x3, z3
__m128 tc = _mm_unpacklo_ps( vb, vd ); // y0, w0, y1, w1
__m128 td = _mm_unpackhi_ps( vb, vd ); // y2, w2, y3, w3
va = _mm_unpacklo_ps( ta, tc ); // x0, y0, z0, w0
vb = _mm_unpackhi_ps( ta, tc ); // x1, y1, z1, w1
vc = _mm_unpacklo_ps( tb, td ); // x2, y2, z2, w2
vd = _mm_unpackhi_ps( tb, td ); // x3, y3, z3, w3
va = _mm_add_ps( va, vb );
vc = _mm_add_ps( vc, vd );
va = _mm_add_ps( va, vc );
_mm_store_ps( & x[i], va );
lptr += 4 * nc;
}
// go through any remaining rows
for ( ; i < n; i++ ) {
__m128 sum = _mm_load_ss( & b[i] );
int j = 0;
for ( ; j < i - 3; j += 4 ) {
__m128 s0 = _mm_load_ps( lptr + j );
__m128 s1 = _mm_load_ps( x + j );
sum = _mm_sub_ps( sum, _mm_mul_ps( s0, s1 ) );
}
__m128 mask = _mm_load_ps( (float *) & SIMD_SP_indexedEndMask[i & 3] );
__m128 s0 = _mm_and_ps( _mm_load_ps( lptr + j ), mask );
__m128 s1 = _mm_and_ps( _mm_load_ps( x + j ), mask );
sum = _mm_sub_ps( sum, _mm_mul_ps( s0, s1 ) );
sum = _mm_add_ps( sum, _mm_shuffle_ps( sum, sum, _MM_SHUFFLE( 1, 0, 3, 2 ) ) );
sum = _mm_add_ps( sum, _mm_shuffle_ps( sum, sum, _MM_SHUFFLE( 2, 3, 0, 1 ) ) );
_mm_store_ss( & x[i], sum );
lptr += nc;
}
#else
// work up to a multiple of 4 rows
for ( ; ( i & 3 ) != 0 && i < n; i++ ) {
float sum = b[i];
for ( int j = 0; j < i; j++ ) {
sum -= lptr[j] * x[j];
}
x[i] = sum;
lptr += nc;
}
assert_16_byte_aligned( x );
for ( ; i + 3 < n; i += 4 ) {
const float * lptr0 = &lptr[0*nc];
const float * lptr1 = &lptr[1*nc];
const float * lptr2 = &lptr[2*nc];
const float * lptr3 = &lptr[3*nc];
assert_16_byte_aligned( lptr0 );
assert_16_byte_aligned( lptr1 );
assert_16_byte_aligned( lptr2 );
assert_16_byte_aligned( lptr3 );
float a0 = - lptr0[0] * x[0] + b[i+0];
float a1 = - lptr0[1] * x[1];
float a2 = - lptr0[2] * x[2];
float a3 = - lptr0[3] * x[3];
float b0 = - lptr1[0] * x[0] + b[i+1];
float b1 = - lptr1[1] * x[1];
float b2 = - lptr1[2] * x[2];
float b3 = - lptr1[3] * x[3];
float c0 = - lptr2[0] * x[0] + b[i+2];
float c1 = - lptr2[1] * x[1];
float c2 = - lptr2[2] * x[2];
float c3 = - lptr2[3] * x[3];
float d0 = - lptr3[0] * x[0] + b[i+3];
float d1 = - lptr3[1] * x[1];
float d2 = - lptr3[2] * x[2];
float d3 = - lptr3[3] * x[3];
for ( int j = 4; j < i; j += 4 ) {
a0 -= lptr0[j+0] * x[j+0];
a1 -= lptr0[j+1] * x[j+1];
a2 -= lptr0[j+2] * x[j+2];
a3 -= lptr0[j+3] * x[j+3];
b0 -= lptr1[j+0] * x[j+0];
b1 -= lptr1[j+1] * x[j+1];
b2 -= lptr1[j+2] * x[j+2];
b3 -= lptr1[j+3] * x[j+3];
c0 -= lptr2[j+0] * x[j+0];
c1 -= lptr2[j+1] * x[j+1];
c2 -= lptr2[j+2] * x[j+2];
c3 -= lptr2[j+3] * x[j+3];
d0 -= lptr3[j+0] * x[j+0];
d1 -= lptr3[j+1] * x[j+1];
d2 -= lptr3[j+2] * x[j+2];
d3 -= lptr3[j+3] * x[j+3];
}
b0 -= lptr1[i+0] * a0;
b1 -= lptr1[i+0] * a1;
b2 -= lptr1[i+0] * a2;
b3 -= lptr1[i+0] * a3;
c0 -= lptr2[i+0] * a0;
c1 -= lptr2[i+0] * a1;
c2 -= lptr2[i+0] * a2;
c3 -= lptr2[i+0] * a3;
c0 -= lptr2[i+1] * b0;
c1 -= lptr2[i+1] * b1;
c2 -= lptr2[i+1] * b2;
c3 -= lptr2[i+1] * b3;
d0 -= lptr3[i+0] * a0;
d1 -= lptr3[i+0] * a1;
d2 -= lptr3[i+0] * a2;
d3 -= lptr3[i+0] * a3;
d0 -= lptr3[i+1] * b0;
d1 -= lptr3[i+1] * b1;
d2 -= lptr3[i+1] * b2;
d3 -= lptr3[i+1] * b3;
d0 -= lptr3[i+2] * c0;
d1 -= lptr3[i+2] * c1;
d2 -= lptr3[i+2] * c2;
d3 -= lptr3[i+2] * c3;
x[i+0] = a0 + a1 + a2 + a3;
x[i+1] = b0 + b1 + b2 + b3;
x[i+2] = c0 + c1 + c2 + c3;
x[i+3] = d0 + d1 + d2 + d3;
lptr += 4 * nc;
}
// go through any remaining rows
for ( ; i < n; i++ ) {
float sum = b[i];
for ( int j = 0; j < i; j++ ) {
sum -= lptr[j] * x[j];
}
x[i] = sum;
lptr += nc;
}
#endif
}
/*
========================
LowerTriangularSolveTranspose_SIMD
Solves x in L'x = b for the n * n sub-matrix of L.
* L has to be a lower triangular matrix with (implicit) ones on the diagonal
* x == b is allowed
========================
*/
static void LowerTriangularSolveTranspose_SIMD( const idMatX & L, float * x, const float * b, const int n ) {
int nc = L.GetNumColumns();
assert( ( nc & 3 ) == 0 );
int m = n;
int r = n & 3;
if ( ( m & 3 ) != 0 ) {
const float * lptr = L.ToFloatPtr() + m * nc + m;
if ( ( m & 3 ) == 1 ) {
x[m-1] = b[m-1];
m -= 1;
} else if ( ( m & 3 ) == 2 ) {
x[m-1] = b[m-1];
x[m-2] = b[m-2] - lptr[-1*nc-2] * x[m-1];
m -= 2;
} else {
x[m-1] = b[m-1];
x[m-2] = b[m-2] - lptr[-1*nc-2] * x[m-1];
x[m-3] = b[m-3] - lptr[-1*nc-3] * x[m-1] - lptr[-2*nc-3] * x[m-2];
m -= 3;
}
}
const float * lptr = L.ToFloatPtr() + m * nc + m - 4;
float * xptr = x + m;
#ifndef _lint
// process 4 rows at a time
for ( int i = m; i >= 4; i -= 4 ) {
assert_16_byte_aligned( b );
assert_16_byte_aligned( xptr );
assert_16_byte_aligned( lptr );
__m128 s0 = _mm_load_ps( &b[i-4] );
__m128 s1 = (__m128 &)SIMD_SP_zero;
__m128 s2 = (__m128 &)SIMD_SP_zero;
__m128 s3 = (__m128 &)SIMD_SP_zero;
// process 4x4 blocks
const float * xptr2 = xptr; // x + i;
const float * lptr2 = lptr; // ptr = L[i] + i - 4;
for ( int j = i; j < m; j += 4 ) {
__m128 xj = _mm_load_ps( xptr2 );
s0 = _mm_sub_ps( s0, _mm_mul_ps( _mm_splat_ps( xj, 0 ), _mm_load_ps( lptr2 + 0 * nc ) ) );
s1 = _mm_sub_ps( s1, _mm_mul_ps( _mm_splat_ps( xj, 1 ), _mm_load_ps( lptr2 + 1 * nc ) ) );
s2 = _mm_sub_ps( s2, _mm_mul_ps( _mm_splat_ps( xj, 2 ), _mm_load_ps( lptr2 + 2 * nc ) ) );
s3 = _mm_sub_ps( s3, _mm_mul_ps( _mm_splat_ps( xj, 3 ), _mm_load_ps( lptr2 + 3 * nc ) ) );
lptr2 += 4 * nc;
xptr2 += 4;
}
for ( int j = 0; j < r; j++ ) {
s0 = _mm_sub_ps( s0, _mm_mul_ps( _mm_load_ps( lptr2 ), _mm_load1_ps( &xptr2[j] ) ) );
lptr2 += nc;
}
s0 = _mm_add_ps( s0, s1 );
s2 = _mm_add_ps( s2, s3 );
s0 = _mm_add_ps( s0, s2 );
// process left over of the 4 rows
lptr -= 4 * nc;
__m128 t0 = _mm_and_ps( _mm_load_ps( lptr + 3 * nc ), (__m128 &)SIMD_SP_clearLast1 );
__m128 t1 = _mm_and_ps( _mm_load_ps( lptr + 2 * nc ), (__m128 &)SIMD_SP_clearLast2 );
__m128 t2 = _mm_load_ss( lptr + 1 * nc );
s0 = _mm_sub_ps( s0, _mm_mul_ps( t0, _mm_splat_ps( s0, 3 ) ) );
s0 = _mm_sub_ps( s0, _mm_mul_ps( t1, _mm_splat_ps( s0, 2 ) ) );
s0 = _mm_sub_ps( s0, _mm_mul_ps( t2, _mm_splat_ps( s0, 1 ) ) );
// store result
_mm_store_ps( &xptr[-4], s0 );
// update pointers for next four rows
lptr -= 4;
xptr -= 4;
}
#else
// process 4 rows at a time
for ( int i = m; i >= 4; i -= 4 ) {
assert_16_byte_aligned( b );
assert_16_byte_aligned( xptr );
assert_16_byte_aligned( lptr );
float s0 = b[i-4];
float s1 = b[i-3];
float s2 = b[i-2];
float s3 = b[i-1];
// process 4x4 blocks
const float * xptr2 = xptr; // x + i;
const float * lptr2 = lptr; // ptr = L[i] + i - 4;
for ( int j = i; j < m; j += 4 ) {
float t0 = xptr2[0];
s0 -= lptr2[0] * t0;
s1 -= lptr2[1] * t0;
s2 -= lptr2[2] * t0;
s3 -= lptr2[3] * t0;
lptr2 += nc;
float t1 = xptr2[1];
s0 -= lptr2[0] * t1;
s1 -= lptr2[1] * t1;
s2 -= lptr2[2] * t1;
s3 -= lptr2[3] * t1;
lptr2 += nc;
float t2 = xptr2[2];
s0 -= lptr2[0] * t2;
s1 -= lptr2[1] * t2;
s2 -= lptr2[2] * t2;
s3 -= lptr2[3] * t2;
lptr2 += nc;
float t3 = xptr2[3];
s0 -= lptr2[0] * t3;
s1 -= lptr2[1] * t3;
s2 -= lptr2[2] * t3;
s3 -= lptr2[3] * t3;
lptr2 += nc;
xptr2 += 4;
}
for ( int j = 0; j < r; j++ ) {
float t = xptr2[j];
s0 -= lptr2[0] * t;
s1 -= lptr2[1] * t;
s2 -= lptr2[2] * t;
s3 -= lptr2[3] * t;
lptr2 += nc;
}
// process left over of the 4 rows
lptr -= nc;
s0 -= lptr[0] * s3;
s1 -= lptr[1] * s3;
s2 -= lptr[2] * s3;
lptr -= nc;
s0 -= lptr[0] * s2;
s1 -= lptr[1] * s2;
lptr -= nc;
s0 -= lptr[0] * s1;
lptr -= nc;
// store result
xptr[-4] = s0;
xptr[-3] = s1;
xptr[-2] = s2;
xptr[-1] = s3;
// update pointers for next four rows
lptr -= 4;
xptr -= 4;
}
#endif
}
/*
========================
UpperTriangularSolve_SIMD
Solves x in Ux = b for the n * n sub-matrix of U.
* U has to be a upper triangular matrix
* invDiag is the reciprical of the diagonal of the upper triangular matrix.
* x == b is allowed
========================
*/
static void UpperTriangularSolve_SIMD( const idMatX & U, const float * invDiag, float * x, const float * b, const int n ) {
for ( int i = n - 1; i >= 0; i-- ) {
float sum = b[i];
const float * uptr = U[i];
for ( int j = i + 1; j < n; j++ ) {
sum -= uptr[j] * x[j];
}
x[i] = sum * invDiag[i];
}
}
/*
========================
LU_Factor_SIMD
In-place factorization LU of the n * n sub-matrix of mat. The reciprocal of the diagonal
elements of U are stored in invDiag. No pivoting is used.
========================
*/
static bool LU_Factor_SIMD( idMatX & mat, idVecX & invDiag, const int n ) {
for ( int i = 0; i < n; i++ ) {
float d1 = mat[i][i];
if ( fabs( d1 ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
return false;
}
invDiag[i] = d1 = 1.0f / d1;
float * ptr1 = mat[i];
for ( int j = i + 1; j < n; j++ ) {
float * ptr2 = mat[j];
float d2 = ptr2[i] * d1;
ptr2[i] = d2;
int k;
for ( k = n - 1; k > i + 15; k -= 16 ) {
ptr2[k-0] -= d2 * ptr1[k-0];
ptr2[k-1] -= d2 * ptr1[k-1];
ptr2[k-2] -= d2 * ptr1[k-2];
ptr2[k-3] -= d2 * ptr1[k-3];
ptr2[k-4] -= d2 * ptr1[k-4];
ptr2[k-5] -= d2 * ptr1[k-5];
ptr2[k-6] -= d2 * ptr1[k-6];
ptr2[k-7] -= d2 * ptr1[k-7];
ptr2[k-8] -= d2 * ptr1[k-8];
ptr2[k-9] -= d2 * ptr1[k-9];
ptr2[k-10] -= d2 * ptr1[k-10];
ptr2[k-11] -= d2 * ptr1[k-11];
ptr2[k-12] -= d2 * ptr1[k-12];
ptr2[k-13] -= d2 * ptr1[k-13];
ptr2[k-14] -= d2 * ptr1[k-14];
ptr2[k-15] -= d2 * ptr1[k-15];
}
switch( k - i ) {
NODEFAULT;
case 15: ptr2[k-14] -= d2 * ptr1[k-14];
case 14: ptr2[k-13] -= d2 * ptr1[k-13];
case 13: ptr2[k-12] -= d2 * ptr1[k-12];
case 12: ptr2[k-11] -= d2 * ptr1[k-11];
case 11: ptr2[k-10] -= d2 * ptr1[k-10];
case 10: ptr2[k-9] -= d2 * ptr1[k-9];
case 9: ptr2[k-8] -= d2 * ptr1[k-8];
case 8: ptr2[k-7] -= d2 * ptr1[k-7];
case 7: ptr2[k-6] -= d2 * ptr1[k-6];
case 6: ptr2[k-5] -= d2 * ptr1[k-5];
case 5: ptr2[k-4] -= d2 * ptr1[k-4];
case 4: ptr2[k-3] -= d2 * ptr1[k-3];
case 3: ptr2[k-2] -= d2 * ptr1[k-2];
case 2: ptr2[k-1] -= d2 * ptr1[k-1];
case 1: ptr2[k-0] -= d2 * ptr1[k-0];
case 0: break;
}
}
}
return true;
}
/*
========================
LDLT_Factor_SIMD
In-place factorization LDL' of the n * n sub-matrix of mat. The reciprocal of the diagonal
elements are stored in invDiag.
NOTE: The number of columns of mat must be a multiple of 4.
========================
*/
static bool LDLT_Factor_SIMD( idMatX & mat, idVecX & invDiag, const int n ) {
float s0, s1, s2, d;
float * v = (float *) _alloca16( ( ( n + 3 ) & ~3 ) * sizeof( float ) );
float * diag = (float *) _alloca16( ( ( n + 3 ) & ~3 ) * sizeof( float ) );
float * invDiagPtr = invDiag.ToFloatPtr();
int nc = mat.GetNumColumns();
assert( ( nc & 3 ) == 0 );
if ( n <= 0 ) {
return true;
}
float * mptr = mat[0];
float sum = mptr[0];
if ( fabs( sum ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
return false;
}
diag[0] = sum;
invDiagPtr[0] = d = 1.0f / sum;
if ( n <= 1 ) {
return true;
}
mptr = mat[0];
for ( int j = 1; j < n; j++ ) {
mptr[j*nc+0] = ( mptr[j*nc+0] ) * d;
}
mptr = mat[1];
v[0] = diag[0] * mptr[0]; s0 = v[0] * mptr[0];
sum = mptr[1] - s0;
if ( fabs( sum ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
return false;
}
mat[1][1] = sum;
diag[1] = sum;
invDiagPtr[1] = d = 1.0f / sum;
if ( n <= 2 ) {
return true;
}
mptr = mat[0];
for ( int j = 2; j < n; j++ ) {
mptr[j*nc+1] = ( mptr[j*nc+1] - v[0] * mptr[j*nc+0] ) * d;
}
mptr = mat[2];
v[0] = diag[0] * mptr[0]; s0 = v[0] * mptr[0];
v[1] = diag[1] * mptr[1]; s1 = v[1] * mptr[1];
sum = mptr[2] - s0 - s1;
if ( fabs( sum ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
return false;
}
mat[2][2] = sum;
diag[2] = sum;
invDiagPtr[2] = d = 1.0f / sum;
if ( n <= 3 ) {
return true;
}
mptr = mat[0];
for ( int j = 3; j < n; j++ ) {
mptr[j*nc+2] = ( mptr[j*nc+2] - v[0] * mptr[j*nc+0] - v[1] * mptr[j*nc+1] ) * d;
}
mptr = mat[3];
v[0] = diag[0] * mptr[0]; s0 = v[0] * mptr[0];
v[1] = diag[1] * mptr[1]; s1 = v[1] * mptr[1];
v[2] = diag[2] * mptr[2]; s2 = v[2] * mptr[2];
sum = mptr[3] - s0 - s1 - s2;
if ( fabs( sum ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
return false;
}
mat[3][3] = sum;
diag[3] = sum;
invDiagPtr[3] = d = 1.0f / sum;
if ( n <= 4 ) {
return true;
}
mptr = mat[0];
for ( int j = 4; j < n; j++ ) {
mptr[j*nc+3] = ( mptr[j*nc+3] - v[0] * mptr[j*nc+0] - v[1] * mptr[j*nc+1] - v[2] * mptr[j*nc+2] ) * d;
}
#ifndef _lint
__m128 vzero = _mm_setzero_ps();
for ( int i = 4; i < n; i += 4 ) {
_mm_store_ps( diag + i, vzero );
}
for ( int i = 4; i < n; i++ ) {
mptr = mat[i];
assert_16_byte_aligned( v );
assert_16_byte_aligned( mptr );
assert_16_byte_aligned( diag );
__m128 m0 = _mm_load_ps( mptr + 0 );
__m128 d0 = _mm_load_ps( diag + 0 );
__m128 v0 = _mm_mul_ps( d0, m0 );
__m128 t0 = _mm_load_ss( mptr + i );
t0 = _mm_sub_ps( t0, _mm_mul_ps( m0, v0 ) );
_mm_store_ps( v + 0, v0 );
int k = 4;
for ( ; k < i - 3; k += 4 ) {
m0 = _mm_load_ps( mptr + k );
d0 = _mm_load_ps( diag + k );
v0 = _mm_mul_ps( d0, m0 );
t0 = _mm_sub_ps( t0, _mm_mul_ps( m0, v0 ) );
_mm_store_ps( v + k, v0 );
}
__m128 mask = (__m128 &) SIMD_SP_indexedEndMask[i & 3];
m0 = _mm_and_ps( _mm_load_ps( mptr + k ), mask );
d0 = _mm_load_ps( diag + k );
v0 = _mm_mul_ps( d0, m0 );
t0 = _mm_sub_ps( t0, _mm_mul_ps( m0, v0 ) );
_mm_store_ps( v + k, v0 );
t0 = _mm_add_ps( t0, _mm_shuffle_ps( t0, t0, _MM_SHUFFLE( 1, 0, 3, 2 ) ) );
t0 = _mm_add_ps( t0, _mm_shuffle_ps( t0, t0, _MM_SHUFFLE( 2, 3, 0, 1 ) ) );
__m128 tiny = _mm_and_ps( _mm_cmpeq_ps( t0, SIMD_SP_zero ), SIMD_SP_tiny );
t0 = _mm_or_ps( t0, tiny );
_mm_store_ss( mptr + i, t0 );
_mm_store_ss( diag + i, t0 );
__m128 d = _mm_rcp32_ps( t0 );
_mm_store_ss( invDiagPtr + i, d );
if ( i + 1 >= n ) {
return true;
}
int j = i + 1;
for ( ; j < n - 3; j += 4 ) {
float * ra = mat[j+0];
float * rb = mat[j+1];
float * rc = mat[j+2];
float * rd = mat[j+3];
assert_16_byte_aligned( v );
assert_16_byte_aligned( ra );
assert_16_byte_aligned( rb );
assert_16_byte_aligned( rc );
assert_16_byte_aligned( rd );
__m128 va = _mm_load_ss( ra + i );
__m128 vb = _mm_load_ss( rb + i );
__m128 vc = _mm_load_ss( rc + i );
__m128 vd = _mm_load_ss( rd + i );
__m128 v0 = _mm_load_ps( v + 0 );
va = _mm_sub_ps( va, _mm_mul_ps( _mm_load_ps( ra + 0 ), v0 ) );
vb = _mm_sub_ps( vb, _mm_mul_ps( _mm_load_ps( rb + 0 ), v0 ) );
vc = _mm_sub_ps( vc, _mm_mul_ps( _mm_load_ps( rc + 0 ), v0 ) );
vd = _mm_sub_ps( vd, _mm_mul_ps( _mm_load_ps( rd + 0 ), v0 ) );
int k = 4;
for ( ; k < i - 3; k += 4 ) {
v0 = _mm_load_ps( v + k );
va = _mm_sub_ps( va, _mm_mul_ps( _mm_load_ps( ra + k ), v0 ) );
vb = _mm_sub_ps( vb, _mm_mul_ps( _mm_load_ps( rb + k ), v0 ) );
vc = _mm_sub_ps( vc, _mm_mul_ps( _mm_load_ps( rc + k ), v0 ) );
vd = _mm_sub_ps( vd, _mm_mul_ps( _mm_load_ps( rd + k ), v0 ) );
}
v0 = _mm_load_ps( v + k );
va = _mm_sub_ps( va, _mm_mul_ps( _mm_and_ps( _mm_load_ps( ra + k ), mask ), v0 ) );
vb = _mm_sub_ps( vb, _mm_mul_ps( _mm_and_ps( _mm_load_ps( rb + k ), mask ), v0 ) );
vc = _mm_sub_ps( vc, _mm_mul_ps( _mm_and_ps( _mm_load_ps( rc + k ), mask ), v0 ) );
vd = _mm_sub_ps( vd, _mm_mul_ps( _mm_and_ps( _mm_load_ps( rd + k ), mask ), v0 ) );
__m128 ta = _mm_unpacklo_ps( va, vc ); // x0, z0, x1, z1
__m128 tb = _mm_unpackhi_ps( va, vc ); // x2, z2, x3, z3
__m128 tc = _mm_unpacklo_ps( vb, vd ); // y0, w0, y1, w1
__m128 td = _mm_unpackhi_ps( vb, vd ); // y2, w2, y3, w3
va = _mm_unpacklo_ps( ta, tc ); // x0, y0, z0, w0
vb = _mm_unpackhi_ps( ta, tc ); // x1, y1, z1, w1
vc = _mm_unpacklo_ps( tb, td ); // x2, y2, z2, w2
vd = _mm_unpackhi_ps( tb, td ); // x3, y3, z3, w3
va = _mm_add_ps( va, vb );
vc = _mm_add_ps( vc, vd );
va = _mm_add_ps( va, vc );
va = _mm_mul_ps( va, d );
_mm_store_ss( ra + i, _mm_splat_ps( va, 0 ) );
_mm_store_ss( rb + i, _mm_splat_ps( va, 1 ) );
_mm_store_ss( rc + i, _mm_splat_ps( va, 2 ) );
_mm_store_ss( rd + i, _mm_splat_ps( va, 3 ) );
}
for ( ; j < n; j++ ) {
float * mptr = mat[j];
assert_16_byte_aligned( v );
assert_16_byte_aligned( mptr );
__m128 va = _mm_load_ss( mptr + i );
__m128 v0 = _mm_load_ps( v + 0 );
va = _mm_sub_ps( va, _mm_mul_ps( _mm_load_ps( mptr + 0 ), v0 ) );
int k = 4;
for ( ; k < i - 3; k += 4 ) {
v0 = _mm_load_ps( v + k );
va = _mm_sub_ps( va, _mm_mul_ps( _mm_load_ps( mptr + k ), v0 ) );
}
v0 = _mm_load_ps( v + k );
va = _mm_sub_ps( va, _mm_mul_ps( _mm_and_ps( _mm_load_ps( mptr + k ), mask ), v0 ) );
va = _mm_add_ps( va, _mm_shuffle_ps( va, va, _MM_SHUFFLE( 1, 0, 3, 2 ) ) );
va = _mm_add_ps( va, _mm_shuffle_ps( va, va, _MM_SHUFFLE( 2, 3, 0, 1 ) ) );
va = _mm_mul_ps( va, d );
_mm_store_ss( mptr + i, va );
}
}
return true;
#else
for ( int i = 4; i < n; i += 4 ) {
diag[i+0] = 0.0f;
diag[i+1] = 0.0f;
diag[i+2] = 0.0f;
diag[i+3] = 0.0f;
}
for ( int i = 4; i < n; i++ ) {
mptr = mat[i];
assert_16_byte_aligned( v );
assert_16_byte_aligned( mptr );
assert_16_byte_aligned( diag );
v[0] = diag[0] * mptr[0];
v[1] = diag[1] * mptr[1];
v[2] = diag[2] * mptr[2];
v[3] = diag[3] * mptr[3];
float t0 = - mptr[0] * v[0] + mptr[i];
float t1 = - mptr[1] * v[1];
float t2 = - mptr[2] * v[2];
float t3 = - mptr[3] * v[3];
int k = 4;
for ( ; k < i - 3; k += 4 ) {
v[k+0] = diag[k+0] * mptr[k+0];
v[k+1] = diag[k+1] * mptr[k+1];
v[k+2] = diag[k+2] * mptr[k+2];
v[k+3] = diag[k+3] * mptr[k+3];
t0 -= mptr[k+0] * v[k+0];
t1 -= mptr[k+1] * v[k+1];
t2 -= mptr[k+2] * v[k+2];
t3 -= mptr[k+3] * v[k+3];
}
float m0 = ( i - k > 0 ) ? mptr[k+0] : 0.0f;
float m1 = ( i - k > 1 ) ? mptr[k+1] : 0.0f;
float m2 = ( i - k > 2 ) ? mptr[k+2] : 0.0f;
float m3 = ( i - k > 3 ) ? mptr[k+3] : 0.0f;
v[k+0] = diag[k+0] * m0;
v[k+1] = diag[k+1] * m1;
v[k+2] = diag[k+2] * m2;
v[k+3] = diag[k+3] * m3;
t0 -= m0 * v[k+0];
t1 -= m1 * v[k+1];
t2 -= m2 * v[k+2];
t3 -= m3 * v[k+3];
sum = t0 + t1 + t2 + t3;
if ( fabs( sum ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
return false;
}
mat[i][i] = sum;
diag[i] = sum;
invDiagPtr[i] = d = 1.0f / sum;
if ( i + 1 >= n ) {
return true;
}
int j = i + 1;
for ( ; j < n - 3; j += 4 ) {
float * ra = mat[j+0];
float * rb = mat[j+1];
float * rc = mat[j+2];
float * rd = mat[j+3];
assert_16_byte_aligned( v );
assert_16_byte_aligned( ra );
assert_16_byte_aligned( rb );
assert_16_byte_aligned( rc );
assert_16_byte_aligned( rd );
float a0 = - ra[0] * v[0] + ra[i];
float a1 = - ra[1] * v[1];
float a2 = - ra[2] * v[2];
float a3 = - ra[3] * v[3];
float b0 = - rb[0] * v[0] + rb[i];
float b1 = - rb[1] * v[1];
float b2 = - rb[2] * v[2];
float b3 = - rb[3] * v[3];
float c0 = - rc[0] * v[0] + rc[i];
float c1 = - rc[1] * v[1];
float c2 = - rc[2] * v[2];
float c3 = - rc[3] * v[3];
float d0 = - rd[0] * v[0] + rd[i];
float d1 = - rd[1] * v[1];
float d2 = - rd[2] * v[2];
float d3 = - rd[3] * v[3];
int k = 4;
for ( ; k < i - 3; k += 4 ) {
a0 -= ra[k+0] * v[k+0];
a1 -= ra[k+1] * v[k+1];
a2 -= ra[k+2] * v[k+2];
a3 -= ra[k+3] * v[k+3];
b0 -= rb[k+0] * v[k+0];
b1 -= rb[k+1] * v[k+1];
b2 -= rb[k+2] * v[k+2];
b3 -= rb[k+3] * v[k+3];
c0 -= rc[k+0] * v[k+0];
c1 -= rc[k+1] * v[k+1];
c2 -= rc[k+2] * v[k+2];
c3 -= rc[k+3] * v[k+3];
d0 -= rd[k+0] * v[k+0];
d1 -= rd[k+1] * v[k+1];
d2 -= rd[k+2] * v[k+2];
d3 -= rd[k+3] * v[k+3];
}
float ra0 = ( i - k > 0 ) ? ra[k+0] : 0.0f;
float ra1 = ( i - k > 1 ) ? ra[k+1] : 0.0f;
float ra2 = ( i - k > 2 ) ? ra[k+2] : 0.0f;
float ra3 = ( i - k > 3 ) ? ra[k+3] : 0.0f;
float rb0 = ( i - k > 0 ) ? rb[k+0] : 0.0f;
float rb1 = ( i - k > 1 ) ? rb[k+1] : 0.0f;
float rb2 = ( i - k > 2 ) ? rb[k+2] : 0.0f;
float rb3 = ( i - k > 3 ) ? rb[k+3] : 0.0f;
float rc0 = ( i - k > 0 ) ? rc[k+0] : 0.0f;
float rc1 = ( i - k > 1 ) ? rc[k+1] : 0.0f;
float rc2 = ( i - k > 2 ) ? rc[k+2] : 0.0f;
float rc3 = ( i - k > 3 ) ? rc[k+3] : 0.0f;
float rd0 = ( i - k > 0 ) ? rd[k+0] : 0.0f;
float rd1 = ( i - k > 1 ) ? rd[k+1] : 0.0f;
float rd2 = ( i - k > 2 ) ? rd[k+2] : 0.0f;
float rd3 = ( i - k > 3 ) ? rd[k+3] : 0.0f;
a0 -= ra0 * v[k+0];
a1 -= ra1 * v[k+1];
a2 -= ra2 * v[k+2];
a3 -= ra3 * v[k+3];
b0 -= rb0 * v[k+0];
b1 -= rb1 * v[k+1];
b2 -= rb2 * v[k+2];
b3 -= rb3 * v[k+3];
c0 -= rc0 * v[k+0];
c1 -= rc1 * v[k+1];
c2 -= rc2 * v[k+2];
c3 -= rc3 * v[k+3];
d0 -= rd0 * v[k+0];
d1 -= rd1 * v[k+1];
d2 -= rd2 * v[k+2];
d3 -= rd3 * v[k+3];
ra[i] = ( a0 + a1 + a2 + a3 ) * d;
rb[i] = ( b0 + b1 + b2 + b3 ) * d;
rc[i] = ( c0 + c1 + c2 + c3 ) * d;
rd[i] = ( d0 + d1 + d2 + d3 ) * d;
}
for ( ; j < n; j++ ) {
mptr = mat[j];
assert_16_byte_aligned( v );
assert_16_byte_aligned( mptr );
float a0 = - mptr[0] * v[0] + mptr[i];
float a1 = - mptr[1] * v[1];
float a2 = - mptr[2] * v[2];
float a3 = - mptr[3] * v[3];
int k = 4;
for ( ; k < i - 3; k += 4 ) {
a0 -= mptr[k+0] * v[k+0];
a1 -= mptr[k+1] * v[k+1];
a2 -= mptr[k+2] * v[k+2];
a3 -= mptr[k+3] * v[k+3];
}
float m0 = ( i - k > 0 ) ? mptr[k+0] : 0.0f;
float m1 = ( i - k > 1 ) ? mptr[k+1] : 0.0f;
float m2 = ( i - k > 2 ) ? mptr[k+2] : 0.0f;
float m3 = ( i - k > 3 ) ? mptr[k+3] : 0.0f;
a0 -= m0 * v[k+0];
a1 -= m1 * v[k+1];
a2 -= m2 * v[k+2];
a3 -= m3 * v[k+3];
mptr[i] = ( a0 + a1 + a2 + a3 ) * d;
}
}
return true;
#endif
}
/*
========================
GetMaxStep_SIMD
========================
*/
static void GetMaxStep_SIMD( const float * f, const float * a, const float * delta_f, const float * delta_a,
const float * lo, const float * hi, const int * side, int numUnbounded, int numClamped,
int d, float dir, float & maxStep, int & limit, int & limitSide ) {
__m128 vMaxStep;
__m128i vLimit;
__m128i vLimitSide;
// default to a full step for the current variable
{
__m128 vNegAccel = _mm_xor_ps( _mm_load1_ps( a + d ), (__m128 &) SIMD_SP_signBit );
__m128 vDeltaAccel = _mm_load1_ps( delta_a + d );
__m128 vM0 = _mm_cmpgt_ps( _mm_and_ps( vDeltaAccel, (__m128 &) SIMD_SP_absMask ), SIMD_SP_LCP_DELTA_ACCEL_EPSILON );
__m128 vStep = _mm_div32_ps( vNegAccel, _mm_sel_ps( SIMD_SP_one, vDeltaAccel, vM0 ) );
vMaxStep = _mm_sel_ps( SIMD_SP_zero, vStep, vM0 );
vLimit = _mm_shuffle_epi32( _mm_cvtsi32_si128( d ), 0 );
vLimitSide = (__m128i &) SIMD_DW_zero;
}
// test the current variable
{
__m128 vDeltaForce = _mm_load1_ps( & dir );
__m128 vSign = _mm_cmplt_ps( vDeltaForce, SIMD_SP_zero );
__m128 vForceLimit = _mm_sel_ps( _mm_load1_ps( hi + d ), _mm_load1_ps( lo + d ), vSign );
__m128 vStep = _mm_div32_ps( _mm_sub_ps( vForceLimit, _mm_load1_ps( f + d ) ), vDeltaForce );
__m128i vSetSide = _mm_or_si128( __m128c( vSign ), (__m128i &) SIMD_DW_one );
__m128 vM0 = _mm_cmpgt_ps( _mm_and_ps( vDeltaForce, (__m128 &) SIMD_SP_absMask ), SIMD_SP_LCP_DELTA_FORCE_EPSILON );
__m128 vM1 = _mm_cmpneq_ps( _mm_and_ps( vForceLimit, (__m128 &) SIMD_SP_absMask ), SIMD_SP_infinity );
__m128 vM2 = _mm_cmplt_ps( vStep, vMaxStep );
__m128 vM3 = _mm_and_ps( _mm_and_ps( vM0, vM1 ), vM2 );
vMaxStep = _mm_sel_ps( vMaxStep, vStep, vM3 );
vLimitSide = _mm_sel_si128( vLimitSide, vSetSide, __m128c( vM3 ) );
}
// test the clamped bounded variables
{
__m128 mask = (__m128 &) SIMD_SP_indexedStartMask[numUnbounded & 3];
__m128i index = _mm_add_epi32( _mm_and_si128( _mm_shuffle_epi32( _mm_cvtsi32_si128( numUnbounded ), 0 ), (__m128i &) SIMD_DW_not3 ), (__m128i &) SIMD_DW_index );
int i = numUnbounded & ~3;
for ( ; i < numClamped - 3; i += 4 ) {
__m128 vDeltaForce = _mm_and_ps( _mm_load_ps( delta_f + i ), mask );
__m128 vSign = _mm_cmplt_ps( vDeltaForce, SIMD_SP_zero );
__m128 vForceLimit = _mm_sel_ps( _mm_load_ps( hi + i ), _mm_load_ps( lo + i ), vSign );
__m128 vM0 = _mm_cmpgt_ps( _mm_and_ps( vDeltaForce, (__m128 &) SIMD_SP_absMask ), SIMD_SP_LCP_DELTA_FORCE_EPSILON );
__m128 vStep = _mm_div32_ps( _mm_sub_ps( vForceLimit, _mm_load_ps( f + i ) ), _mm_sel_ps( SIMD_SP_one, vDeltaForce, vM0 ) );
__m128i vSetSide = _mm_or_si128( __m128c( vSign ), (__m128i &) SIMD_DW_one );
__m128 vM1 = _mm_cmpneq_ps( _mm_and_ps( vForceLimit, (__m128 &) SIMD_SP_absMask ), SIMD_SP_infinity );
__m128 vM2 = _mm_cmplt_ps( vStep, vMaxStep );
__m128 vM3 = _mm_and_ps( _mm_and_ps( vM0, vM1 ), vM2 );
vMaxStep = _mm_sel_ps( vMaxStep, vStep, vM3 );
vLimit = _mm_sel_si128( vLimit, index, vM3 );
vLimitSide = _mm_sel_si128( vLimitSide, vSetSide, __m128c( vM3 ) );
mask = (__m128 &) SIMD_SP_indexedStartMask[0];
index = _mm_add_epi32( index, (__m128i &) SIMD_DW_four );
}
__m128 vDeltaForce = _mm_and_ps( _mm_load_ps( delta_f + i ), _mm_and_ps( mask, (__m128 &) SIMD_SP_indexedEndMask[numClamped & 3] ) );
__m128 vSign = _mm_cmplt_ps( vDeltaForce, SIMD_SP_zero );
__m128 vForceLimit = _mm_sel_ps( _mm_load_ps( hi + i ), _mm_load_ps( lo + i ), vSign );
__m128 vM0 = _mm_cmpgt_ps( _mm_and_ps( vDeltaForce, (__m128 &) SIMD_SP_absMask ), SIMD_SP_LCP_DELTA_FORCE_EPSILON );
__m128 vStep = _mm_div32_ps( _mm_sub_ps( vForceLimit, _mm_load_ps( f + i ) ), _mm_sel_ps( SIMD_SP_one, vDeltaForce, vM0 ) );
__m128i vSetSide = _mm_or_si128( __m128c( vSign ), (__m128i &) SIMD_DW_one );
__m128 vM1 = _mm_cmpneq_ps( _mm_and_ps( vForceLimit, (__m128 &) SIMD_SP_absMask ), SIMD_SP_infinity );
__m128 vM2 = _mm_cmplt_ps( vStep, vMaxStep );
__m128 vM3 = _mm_and_ps( _mm_and_ps( vM0, vM1 ), vM2 );
vMaxStep = _mm_sel_ps( vMaxStep, vStep, vM3 );
vLimit = _mm_sel_si128( vLimit, index, vM3 );
vLimitSide = _mm_sel_si128( vLimitSide, vSetSide, __m128c( vM3 ) );
}
// test the not clamped bounded variables
{
__m128 mask = (__m128 &) SIMD_SP_indexedStartMask[numClamped & 3];
__m128i index = _mm_add_epi32( _mm_and_si128( _mm_shuffle_epi32( _mm_cvtsi32_si128( numClamped ), 0 ), (__m128i &) SIMD_DW_not3 ), (__m128i &) SIMD_DW_index );
int i = numClamped & ~3;
for ( ; i < d - 3; i += 4 ) {
__m128 vNegAccel = _mm_xor_ps( _mm_load_ps( a + i ), (__m128 &) SIMD_SP_signBit );
__m128 vDeltaAccel = _mm_and_ps( _mm_load_ps( delta_a + i ), mask );
__m128 vSide = _mm_cvtepi32_ps( _mm_load_si128( (__m128i *) ( side + i ) ) );
__m128 vM0 = _mm_cmpgt_ps( _mm_mul_ps( vSide, vDeltaAccel ), SIMD_SP_LCP_DELTA_ACCEL_EPSILON );
__m128 vStep = _mm_div32_ps( vNegAccel, _mm_sel_ps( SIMD_SP_one, vDeltaAccel, vM0 ) );
__m128 vM1 = _mm_or_ps( _mm_cmplt_ps( _mm_load_ps( lo + i ), SIMD_SP_neg_LCP_BOUND_EPSILON ), _mm_cmpgt_ps( _mm_load_ps( hi + i ), SIMD_SP_LCP_BOUND_EPSILON ) );
__m128 vM2 = _mm_cmplt_ps( vStep, vMaxStep );
__m128 vM3 = _mm_and_ps( _mm_and_ps( vM0, vM1 ), vM2 );
vMaxStep = _mm_sel_ps( vMaxStep, vStep, vM3 );
vLimit = _mm_sel_si128( vLimit, index, vM3 );
vLimitSide = _mm_sel_si128( vLimitSide, (__m128i &) SIMD_DW_zero, __m128c( vM3 ) );
mask = (__m128 &) SIMD_SP_indexedStartMask[0];
index = _mm_add_epi32( index, (__m128i &) SIMD_DW_four );
}
__m128 vNegAccel = _mm_xor_ps( _mm_load_ps( a + i ), (__m128 &) SIMD_SP_signBit );
__m128 vDeltaAccel = _mm_and_ps( _mm_load_ps( delta_a + i ), _mm_and_ps( mask, (__m128 &) SIMD_SP_indexedEndMask[d & 3] ) );
__m128 vSide = _mm_cvtepi32_ps( _mm_load_si128( (__m128i *) ( side + i ) ) );
__m128 vM0 = _mm_cmpgt_ps( _mm_mul_ps( vSide, vDeltaAccel ), SIMD_SP_LCP_DELTA_ACCEL_EPSILON );
__m128 vStep = _mm_div32_ps( vNegAccel, _mm_sel_ps( SIMD_SP_one, vDeltaAccel, vM0 ) );
__m128 vM1 = _mm_or_ps( _mm_cmplt_ps( _mm_load_ps( lo + i ), SIMD_SP_neg_LCP_BOUND_EPSILON ), _mm_cmpgt_ps( _mm_load_ps( hi + i ), SIMD_SP_LCP_BOUND_EPSILON ) );
__m128 vM2 = _mm_cmplt_ps( vStep, vMaxStep );
__m128 vM3 = _mm_and_ps( _mm_and_ps( vM0, vM1 ), vM2 );
vMaxStep = _mm_sel_ps( vMaxStep, vStep, vM3 );
vLimit = _mm_sel_si128( vLimit, index, vM3 );
vLimitSide = _mm_sel_si128( vLimitSide, (__m128i &) SIMD_DW_zero, __m128c( vM3 ) );
}
{
__m128 tMaxStep = _mm_shuffle_ps( vMaxStep, vMaxStep, _MM_SHUFFLE( 1, 0, 3, 2 ) );
__m128i tLimit = _mm_shuffle_epi32( vLimit, _MM_SHUFFLE( 1, 0, 3, 2 ) );
__m128i tLimitSide = _mm_shuffle_epi32( vLimitSide, _MM_SHUFFLE( 1, 0, 3, 2 ) );
__m128c mask = _mm_cmplt_ps( tMaxStep, vMaxStep );
vMaxStep = _mm_min_ps( vMaxStep, tMaxStep );
vLimit = _mm_sel_si128( vLimit, tLimit, mask );
vLimitSide = _mm_sel_si128( vLimitSide, tLimitSide, mask );
}
{
__m128 tMaxStep = _mm_shuffle_ps( vMaxStep, vMaxStep, _MM_SHUFFLE( 2, 3, 0, 1 ) );
__m128i tLimit = _mm_shuffle_epi32( vLimit, _MM_SHUFFLE( 2, 3, 0, 1 ) );
__m128i tLimitSide = _mm_shuffle_epi32( vLimitSide, _MM_SHUFFLE( 2, 3, 0, 1 ) );
__m128c mask = _mm_cmplt_ps( tMaxStep, vMaxStep );
vMaxStep = _mm_min_ps( vMaxStep, tMaxStep );
vLimit = _mm_sel_si128( vLimit, tLimit, mask );
vLimitSide = _mm_sel_si128( vLimitSide, tLimitSide, mask );
}
_mm_store_ss( & maxStep, vMaxStep );
limit = _mm_cvtsi128_si32( vLimit );
limitSide = _mm_cvtsi128_si32( vLimitSide );
}
/*
================================================================================================
SIMD test code
================================================================================================
*/
//#define ENABLE_TEST_CODE
#ifdef ENABLE_TEST_CODE
#define TEST_TRIANGULAR_SOLVE_SIMD_EPSILON 0.1f
#define TEST_TRIANGULAR_SOLVE_SIZE 50
#define TEST_FACTOR_SIMD_EPSILON 0.1f
#define TEST_FACTOR_SOLVE_SIZE 50
#define NUM_TESTS 50
/*
========================
PrintClocks
========================
*/
static void PrintClocks( const char * string, int dataCount, int64 clocks, int64 otherClocks = 0 ) {
idLib::Printf( string );
for ( int i = idStr::LengthWithoutColors(string); i < 48; i++ ) {
idLib::Printf(" ");
}
if ( clocks && otherClocks ) {
int p = 0;
if ( clocks <= otherClocks ) {
p = idMath::Ftoi( (float) ( otherClocks - clocks ) * 100.0f / (float) otherClocks );
} else {
p = - idMath::Ftoi( (float) ( clocks - otherClocks ) * 100.0f / (float) clocks );
}
idLib::Printf( "c = %4d, clcks = %5lld, %d%%\n", dataCount, clocks, p );
} else {
idLib::Printf( "c = %4d, clcks = %5lld\n", dataCount, clocks );
}
}
/*
========================
DotProduct_Test
========================
*/
static void DotProduct_Test() {
ALIGN16( float fsrc0[TEST_TRIANGULAR_SOLVE_SIZE + 1]; )
ALIGN16( float fsrc1[TEST_TRIANGULAR_SOLVE_SIZE + 1]; )
idRandom srnd( 13 );
for ( int i = 0; i < TEST_TRIANGULAR_SOLVE_SIZE; i++ ) {
fsrc0[i] = srnd.CRandomFloat() * 10.0f;
fsrc1[i] = srnd.CRandomFloat() * 10.0f;
}
idTimer timer;
for ( int i = 0; i < TEST_TRIANGULAR_SOLVE_SIZE; i++ ) {
float dot1 = DotProduct_Generic( fsrc0, fsrc1, i );
int64 clocksGeneric = 0xFFFFFFFFFFFF;
for ( int j = 0; j < NUM_TESTS; j++ ) {
fsrc1[TEST_TRIANGULAR_SOLVE_SIZE] = j;
timer.Clear();
timer.Start();
dot1 = DotProduct_Generic( fsrc0, fsrc1, i );
timer.Stop();
clocksGeneric = Min( clocksGeneric, timer.ClockTicks() );
}
PrintClocks( va( "DotProduct_Generic %d", i ), 1, clocksGeneric );
float dot2 = DotProduct_SIMD( fsrc0, fsrc1, i );
int64 clocksSIMD = 0xFFFFFFFFFFFF;
for ( int j = 0; j < NUM_TESTS; j++ ) {
fsrc1[TEST_TRIANGULAR_SOLVE_SIZE] = j;
timer.Clear();
timer.Start();
dot2 = DotProduct_SIMD( fsrc0, fsrc1, i );
timer.Stop();
clocksSIMD = Min( clocksSIMD, timer.ClockTicks() );
}
const char * result = idMath::Fabs( dot1 - dot2 ) < 1e-4f ? "ok" : S_COLOR_RED"X";
PrintClocks( va( "DotProduct_SIMD %d %s", i, result ), 1, clocksSIMD, clocksGeneric );
}
}
/*
========================
LowerTriangularSolve_Test
========================
*/
static void LowerTriangularSolve_Test() {
idMatX L;
idVecX x, b, tst;
int paddedSize = ( TEST_TRIANGULAR_SOLVE_SIZE + 3 ) & ~3;
L.Random( paddedSize, paddedSize, 0, -1.0f, 1.0f );
x.SetSize( paddedSize );
b.Random( paddedSize, 0, -1.0f, 1.0f );
idTimer timer;
const int skip = 0;
for ( int i = 1; i < TEST_TRIANGULAR_SOLVE_SIZE; i++ ) {
x.Zero( i );
LowerTriangularSolve_Generic( L, x.ToFloatPtr(), b.ToFloatPtr(), i, skip );
int64 clocksGeneric = 0xFFFFFFFFFFFF;
for ( int j = 0; j < NUM_TESTS; j++ ) {
timer.Clear();
timer.Start();
LowerTriangularSolve_Generic( L, x.ToFloatPtr(), b.ToFloatPtr(), i, skip );
timer.Stop();
clocksGeneric = Min( clocksGeneric, timer.ClockTicks() );
}
tst = x;
x.Zero();
PrintClocks( va( "LowerTriangularSolve_Generic %dx%d", i, i ), 1, clocksGeneric );
LowerTriangularSolve_SIMD( L, x.ToFloatPtr(), b.ToFloatPtr(), i, skip );
int64 clocksSIMD = 0xFFFFFFFFFFFF;
for ( int j = 0; j < NUM_TESTS; j++ ) {
timer.Clear();
timer.Start();
LowerTriangularSolve_SIMD( L, x.ToFloatPtr(), b.ToFloatPtr(), i, skip );
timer.Stop();
clocksSIMD = Min( clocksSIMD, timer.ClockTicks() );
}
const char * result = x.Compare( tst, TEST_TRIANGULAR_SOLVE_SIMD_EPSILON ) ? "ok" : S_COLOR_RED"X";
PrintClocks( va( "LowerTriangularSolve_SIMD %dx%d %s", i, i, result ), 1, clocksSIMD, clocksGeneric );
}
}
/*
========================
LowerTriangularSolveTranspose_Test
========================
*/
static void LowerTriangularSolveTranspose_Test() {
idMatX L;
idVecX x, b, tst;
int paddedSize = ( TEST_TRIANGULAR_SOLVE_SIZE + 3 ) & ~3;
L.Random( paddedSize, paddedSize, 0, -1.0f, 1.0f );
x.SetSize( paddedSize );
b.Random( paddedSize, 0, -1.0f, 1.0f );
idTimer timer;
for ( int i = 1; i < TEST_TRIANGULAR_SOLVE_SIZE; i++ ) {
x.Zero( i );
LowerTriangularSolveTranspose_Generic( L, x.ToFloatPtr(), b.ToFloatPtr(), i );
int64 clocksGeneric = 0xFFFFFFFFFFFF;
for ( int j = 0; j < NUM_TESTS; j++ ) {
timer.Clear();
timer.Start();
LowerTriangularSolveTranspose_Generic( L, x.ToFloatPtr(), b.ToFloatPtr(), i );
timer.Stop();
clocksGeneric = Min( clocksGeneric, timer.ClockTicks() );
}
tst = x;
x.Zero();
PrintClocks( va( "LowerTriangularSolveTranspose_Generic %dx%d", i, i ), 1, clocksGeneric );
LowerTriangularSolveTranspose_SIMD( L, x.ToFloatPtr(), b.ToFloatPtr(), i );
int64 clocksSIMD = 0xFFFFFFFFFFFF;
for ( int j = 0; j < NUM_TESTS; j++ ) {
timer.Clear();
timer.Start();
LowerTriangularSolveTranspose_SIMD( L, x.ToFloatPtr(), b.ToFloatPtr(), i );
timer.Stop();
clocksSIMD = Min( clocksSIMD, timer.ClockTicks() );
}
const char * result = x.Compare( tst, TEST_TRIANGULAR_SOLVE_SIMD_EPSILON ) ? "ok" : S_COLOR_RED"X";
PrintClocks( va( "LowerTriangularSolveTranspose_SIMD %dx%d %s", i, i, result ), 1, clocksSIMD, clocksGeneric );
}
}
/*
========================
LDLT_Factor_Test
========================
*/
static void LDLT_Factor_Test() {
idMatX src, original, mat1, mat2;
idVecX invDiag1, invDiag2;
int paddedSize = ( TEST_FACTOR_SOLVE_SIZE + 3 ) & ~3;
original.SetSize( paddedSize, paddedSize );
src.Random( paddedSize, paddedSize, 0, -1.0f, 1.0f );
src.TransposeMultiply( original, src );
idTimer timer;
for ( int i = 1; i < TEST_FACTOR_SOLVE_SIZE; i++ ) {
int64 clocksGeneric = 0xFFFFFFFFFFFF;
for ( int j = 0; j < NUM_TESTS; j++ ) {
mat1 = original;
invDiag1.Zero( TEST_FACTOR_SOLVE_SIZE );
timer.Clear();
timer.Start();
LDLT_Factor_Generic( mat1, invDiag1, i );
timer.Stop();
clocksGeneric = Min( clocksGeneric, timer.ClockTicks() );
}
PrintClocks( va( "LDLT_Factor_Generic %dx%d", i, i ), 1, clocksGeneric );
int64 clocksSIMD = 0xFFFFFFFFFFFF;
for ( int j = 0; j < NUM_TESTS; j++ ) {
mat2 = original;
invDiag2.Zero( TEST_FACTOR_SOLVE_SIZE );
timer.Clear();
timer.Start();
LDLT_Factor_SIMD( mat2, invDiag2, i );
timer.Stop();
clocksSIMD = Min( clocksSIMD, timer.ClockTicks() );
}
const char * result = mat1.Compare( mat2, TEST_FACTOR_SIMD_EPSILON ) && invDiag1.Compare( invDiag2, TEST_FACTOR_SIMD_EPSILON ) ? "ok" : S_COLOR_RED"X";
PrintClocks( va( "LDLT_Factor_SIMD %dx%d %s", i, i, result ), 1, clocksSIMD, clocksGeneric );
}
}
#endif
#define Multiply Multiply_SIMD
#define MultiplyAdd MultiplyAdd_SIMD
#define BigDotProduct DotProduct_SIMD
#define LowerTriangularSolve LowerTriangularSolve_SIMD
#define LowerTriangularSolveTranspose LowerTriangularSolveTranspose_SIMD
#define UpperTriangularSolve UpperTriangularSolve_SIMD
#define LU_Factor LU_Factor_SIMD
#define LDLT_Factor LDLT_Factor_SIMD
#define GetMaxStep GetMaxStep_SIMD
/*
================================================================================================
idLCP_Square
================================================================================================
*/
/*
================================================
idLCP_Square
================================================
*/
class idLCP_Square : public idLCP {
public:
virtual bool Solve( const idMatX &o_m, idVecX &o_x, const idVecX &o_b, const idVecX &o_lo, const idVecX &o_hi, const int *o_boxIndex );
private:
idMatX m; // original matrix
idVecX b; // right hand side
idVecX lo, hi; // low and high bounds
idVecX f, a; // force and acceleration
idVecX delta_f, delta_a; // delta force and delta acceleration
idMatX clamped; // LU factored sub matrix for clamped variables
idVecX diagonal; // reciprocal of diagonal of U of the LU factored sub matrix for clamped variables
int numUnbounded; // number of unbounded variables
int numClamped; // number of clamped variables
float ** rowPtrs; // pointers to the rows of m
int * boxIndex; // box index
int * side; // tells if a variable is at the low boundary = -1, high boundary = 1 or inbetween = 0
int * permuted; // index to keep track of the permutation
bool padded; // set to true if the rows of the initial matrix are 16 byte padded
bool FactorClamped();
void SolveClamped( idVecX & x, const float * b );
void Swap( int i, int j );
void AddClamped( int r );
void RemoveClamped( int r );
void CalcForceDelta( int d, float dir );
void CalcAccelDelta( int d );
void ChangeForce( int d, float step );
void ChangeAccel( int d, float step );
};
/*
========================
idLCP_Square::FactorClamped
========================
*/
bool idLCP_Square::FactorClamped() {
for ( int i = 0; i < numClamped; i++ ) {
memcpy( clamped[i], rowPtrs[i], numClamped * sizeof( float ) );
}
return LU_Factor( clamped, diagonal, numClamped );
}
/*
========================
idLCP_Square::SolveClamped
========================
*/
void idLCP_Square::SolveClamped( idVecX & x, const float * b ) {
// solve L
LowerTriangularSolve( clamped, x.ToFloatPtr(), b, numClamped, 0 );
// solve U
UpperTriangularSolve( clamped, diagonal.ToFloatPtr(), x.ToFloatPtr(), x.ToFloatPtr(), numClamped );
}
/*
========================
idLCP_Square::Swap
========================
*/
void idLCP_Square::Swap( int i, int j ) {
if ( i == j ) {
return;
}
SwapValues( rowPtrs[i], rowPtrs[j] );
m.SwapColumns( i, j );
b.SwapElements( i, j );
lo.SwapElements( i, j );
hi.SwapElements( i, j );
a.SwapElements( i, j );
f.SwapElements( i, j );
if ( boxIndex != NULL ) {
SwapValues( boxIndex[i], boxIndex[j] );
}
SwapValues( side[i], side[j] );
SwapValues( permuted[i], permuted[j] );
}
/*
========================
idLCP_Square::AddClamped
========================
*/
void idLCP_Square::AddClamped( int r ) {
assert( r >= numClamped );
// add a row at the bottom and a column at the right of the factored
// matrix for the clamped variables
Swap( numClamped, r );
// add row to L
for ( int i = 0; i < numClamped; i++ ) {
float sum = rowPtrs[numClamped][i];
for ( int j = 0; j < i; j++ ) {
sum -= clamped[numClamped][j] * clamped[j][i];
}
clamped[numClamped][i] = sum * diagonal[i];
}
// add column to U
for ( int i = 0; i <= numClamped; i++ ) {
float sum = rowPtrs[i][numClamped];
for ( int j = 0; j < i; j++ ) {
sum -= clamped[i][j] * clamped[j][numClamped];
}
clamped[i][numClamped] = sum;
}
diagonal[numClamped] = 1.0f / clamped[numClamped][numClamped];
numClamped++;
}
/*
========================
idLCP_Square::RemoveClamped
========================
*/
void idLCP_Square::RemoveClamped( int r ) {
if ( !verify( r < numClamped ) ) {
// complete fail, most likely due to exceptional floating point values
return;
}
numClamped--;
// no need to swap and update the factored matrix when the last row and column are removed
if ( r == numClamped ) {
return;
}
float * y0 = (float *) _alloca16( numClamped * sizeof( float ) );
float * z0 = (float *) _alloca16( numClamped * sizeof( float ) );
float * y1 = (float *) _alloca16( numClamped * sizeof( float ) );
float * z1 = (float *) _alloca16( numClamped * sizeof( float ) );
// the row/column need to be subtracted from the factorization
for ( int i = 0; i < numClamped; i++ ) {
y0[i] = -rowPtrs[i][r];
}
memset( y1, 0, numClamped * sizeof( float ) );
y1[r] = 1.0f;
memset( z0, 0, numClamped * sizeof( float ) );
z0[r] = 1.0f;
for ( int i = 0; i < numClamped; i++ ) {
z1[i] = -rowPtrs[r][i];
}
// swap the to be removed row/column with the last row/column
Swap( r, numClamped );
// the swapped last row/column need to be added to the factorization
for ( int i = 0; i < numClamped; i++ ) {
y0[i] += rowPtrs[i][r];
}
for ( int i = 0; i < numClamped; i++ ) {
z1[i] += rowPtrs[r][i];
}
z1[r] = 0.0f;
// update the beginning of the to be updated row and column
for ( int i = 0; i < r; i++ ) {
float p0 = y0[i];
float beta1 = z1[i] * diagonal[i];
clamped[i][r] += p0;
for ( int j = i+1; j < numClamped; j++ ) {
z1[j] -= beta1 * clamped[i][j];
}
for ( int j = i+1; j < numClamped; j++ ) {
y0[j] -= p0 * clamped[j][i];
}
clamped[r][i] += beta1;
}
// update the lower right corner starting at r,r
for ( int i = r; i < numClamped; i++ ) {
float diag = clamped[i][i];
float p0 = y0[i];
float p1 = z0[i];
diag += p0 * p1;
if ( fabs( diag ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
idLib::Printf( "idLCP_Square::RemoveClamped: updating factorization failed\n" );
diag = idMath::FLT_SMALLEST_NON_DENORMAL;
}
float beta0 = p1 / diag;
float q0 = y1[i];
float q1 = z1[i];
diag += q0 * q1;
if ( fabs( diag ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
idLib::Printf( "idLCP_Square::RemoveClamped: updating factorization failed\n" );
diag = idMath::FLT_SMALLEST_NON_DENORMAL;
}
float d = 1.0f / diag;
float beta1 = q1 * d;
clamped[i][i] = diag;
diagonal[i] = d;
for ( int j = i+1; j < numClamped; j++ ) {
d = clamped[i][j];
d += p0 * z0[j];
z0[j] -= beta0 * d;
d += q0 * z1[j];
z1[j] -= beta1 * d;
clamped[i][j] = d;
}
for ( int j = i+1; j < numClamped; j++ ) {
d = clamped[j][i];
y0[j] -= p0 * d;
d += beta0 * y0[j];
y1[j] -= q0 * d;
d += beta1 * y1[j];
clamped[j][i] = d;
}
}
return;
}
/*
========================
idLCP_Square::CalcForceDelta
Modifies this->delta_f.
========================
*/
void idLCP_Square::CalcForceDelta( int d, float dir ) {
delta_f[d] = dir;
if ( numClamped <= 0 ) {
return;
}
// get column d of matrix
float * ptr = (float *) _alloca16( numClamped * sizeof( float ) );
for ( int i = 0; i < numClamped; i++ ) {
ptr[i] = rowPtrs[i][d];
}
// solve force delta
SolveClamped( delta_f, ptr );
// flip force delta based on direction
if ( dir > 0.0f ) {
ptr = delta_f.ToFloatPtr();
for ( int i = 0; i < numClamped; i++ ) {
ptr[i] = - ptr[i];
}
}
}
/*
========================
idLCP_Square::CalcAccelDelta
Modifies this->delta_a and uses this->delta_f.
========================
*/
ID_INLINE void idLCP_Square::CalcAccelDelta( int d ) {
// only the not clamped variables, including the current variable, can have a change in acceleration
for ( int j = numClamped; j <= d; j++ ) {
// only the clamped variables and the current variable have a force delta unequal zero
float dot = BigDotProduct( rowPtrs[j], delta_f.ToFloatPtr(), numClamped );
delta_a[j] = dot + rowPtrs[j][d] * delta_f[d];
}
}
/*
========================
idLCP_Square::ChangeForce
Modifies this->f and uses this->delta_f.
========================
*/
ID_INLINE void idLCP_Square::ChangeForce( int d, float step ) {
// only the clamped variables and current variable have a force delta unequal zero
MultiplyAdd( f.ToFloatPtr(), step, delta_f.ToFloatPtr(), numClamped );
f[d] += step * delta_f[d];
}
/*
========================
idLCP_Square::ChangeAccel
Modifies this->a and uses this->delta_a.
========================
*/
ID_INLINE void idLCP_Square::ChangeAccel( int d, float step ) {
// only the not clamped variables, including the current variable, can have an acceleration unequal zero
MultiplyAdd( a.ToFloatPtr() + numClamped, step, delta_a.ToFloatPtr() + numClamped, d - numClamped + 1 );
}
/*
========================
idLCP_Square::Solve
========================
*/
bool idLCP_Square::Solve( const idMatX &o_m, idVecX &o_x, const idVecX &o_b, const idVecX &o_lo, const idVecX &o_hi, const int *o_boxIndex ) {
// true when the matrix rows are 16 byte padded
padded = ((o_m.GetNumRows()+3)&~3) == o_m.GetNumColumns();
assert( padded || o_m.GetNumRows() == o_m.GetNumColumns() );
assert( o_x.GetSize() == o_m.GetNumRows() );
assert( o_b.GetSize() == o_m.GetNumRows() );
assert( o_lo.GetSize() == o_m.GetNumRows() );
assert( o_hi.GetSize() == o_m.GetNumRows() );
// allocate memory for permuted input
f.SetData( o_m.GetNumRows(), VECX_ALLOCA( o_m.GetNumRows() ) );
a.SetData( o_b.GetSize(), VECX_ALLOCA( o_b.GetSize() ) );
b.SetData( o_b.GetSize(), VECX_ALLOCA( o_b.GetSize() ) );
lo.SetData( o_lo.GetSize(), VECX_ALLOCA( o_lo.GetSize() ) );
hi.SetData( o_hi.GetSize(), VECX_ALLOCA( o_hi.GetSize() ) );
if ( o_boxIndex != NULL ) {
boxIndex = (int *)_alloca16( o_x.GetSize() * sizeof( int ) );
memcpy( boxIndex, o_boxIndex, o_x.GetSize() * sizeof( int ) );
} else {
boxIndex = NULL;
}
// we override the const on o_m here but on exit the matrix is unchanged
m.SetData( o_m.GetNumRows(), o_m.GetNumColumns(), const_cast<float *>(o_m[0]) );
f.Zero();
a.Zero();
b = o_b;
lo = o_lo;
hi = o_hi;
// pointers to the rows of m
rowPtrs = (float **) _alloca16( m.GetNumRows() * sizeof( float * ) );
for ( int i = 0; i < m.GetNumRows(); i++ ) {
rowPtrs[i] = m[i];
}
// tells if a variable is at the low boundary, high boundary or inbetween
side = (int *) _alloca16( m.GetNumRows() * sizeof( int ) );
// index to keep track of the permutation
permuted = (int *) _alloca16( m.GetNumRows() * sizeof( int ) );
for ( int i = 0; i < m.GetNumRows(); i++ ) {
permuted[i] = i;
}
// permute input so all unbounded variables come first
numUnbounded = 0;
for ( int i = 0; i < m.GetNumRows(); i++ ) {
if ( lo[i] == -idMath::INFINITY && hi[i] == idMath::INFINITY ) {
if ( numUnbounded != i ) {
Swap( numUnbounded, i );
}
numUnbounded++;
}
}
// permute input so all variables using the boxIndex come last
int boxStartIndex = m.GetNumRows();
if ( boxIndex ) {
for ( int i = m.GetNumRows() - 1; i >= numUnbounded; i-- ) {
if ( boxIndex[i] >= 0 ) {
boxStartIndex--;
if ( boxStartIndex != i ) {
Swap( boxStartIndex, i );
}
}
}
}
// sub matrix for factorization
clamped.SetData( m.GetNumRows(), m.GetNumColumns(), MATX_ALLOCA( m.GetNumRows() * m.GetNumColumns() ) );
diagonal.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) );
// all unbounded variables are clamped
numClamped = numUnbounded;
// if there are unbounded variables
if ( numUnbounded ) {
// factor and solve for unbounded variables
if ( !FactorClamped() ) {
idLib::Printf( "idLCP_Square::Solve: unbounded factorization failed\n" );
return false;
}
SolveClamped( f, b.ToFloatPtr() );
// if there are no bounded variables we are done
if ( numUnbounded == m.GetNumRows() ) {
o_x = f; // the vector is not permuted
return true;
}
}
int numIgnored = 0;
// allocate for delta force and delta acceleration
delta_f.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) );
delta_a.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) );
// solve for bounded variables
idStr failed;
for ( int i = numUnbounded; i < m.GetNumRows(); i++ ) {
// once we hit the box start index we can initialize the low and high boundaries of the variables using the box index
if ( i == boxStartIndex ) {
for ( int j = 0; j < boxStartIndex; j++ ) {
o_x[permuted[j]] = f[j];
}
for ( int j = boxStartIndex; j < m.GetNumRows(); j++ ) {
float s = o_x[boxIndex[j]];
if ( lo[j] != -idMath::INFINITY ) {
lo[j] = - idMath::Fabs( lo[j] * s );
}
if ( hi[j] != idMath::INFINITY ) {
hi[j] = idMath::Fabs( hi[j] * s );
}
}
}
// calculate acceleration for current variable
float dot = BigDotProduct( rowPtrs[i], f.ToFloatPtr(), i );
a[i] = dot - b[i];
// if already at the low boundary
if ( lo[i] >= -LCP_BOUND_EPSILON && a[i] >= -LCP_ACCEL_EPSILON ) {
side[i] = -1;
continue;
}
// if already at the high boundary
if ( hi[i] <= LCP_BOUND_EPSILON && a[i] <= LCP_ACCEL_EPSILON ) {
side[i] = 1;
continue;
}
// if inside the clamped region
if ( idMath::Fabs( a[i] ) <= LCP_ACCEL_EPSILON ) {
side[i] = 0;
AddClamped( i );
continue;
}
// drive the current variable into a valid region
int n = 0;
for ( ; n < maxIterations; n++ ) {
// direction to move
float dir = ( a[i] <= 0.0f ) ? 1.0f : -1.0f;
// calculate force delta
CalcForceDelta( i, dir );
// calculate acceleration delta: delta_a = m * delta_f;
CalcAccelDelta( i );
float maxStep;
int limit;
int limitSide;
// maximum step we can take
GetMaxStep( f.ToFloatPtr(), a.ToFloatPtr(), delta_f.ToFloatPtr(), delta_a.ToFloatPtr(),
lo.ToFloatPtr(), hi.ToFloatPtr(), side, numUnbounded, numClamped,
i, dir, maxStep, limit, limitSide );
if ( maxStep <= 0.0f ) {
#ifdef IGNORE_UNSATISFIABLE_VARIABLES
// ignore the current variable completely
lo[i] = hi[i] = 0.0f;
f[i] = 0.0f;
side[i] = -1;
numIgnored++;
#else
failed.Format( "invalid step size %.4f", maxStep );
for ( int j = i; j < m.GetNumRows(); j++ ) {
f[j] = 0.0f;
}
numIgnored = m.GetNumRows() - i;
#endif
break;
}
// change force
ChangeForce( i, maxStep );
// change acceleration
ChangeAccel( i, maxStep );
// clamp/unclamp the variable that limited this step
side[limit] = limitSide;
if ( limitSide == 0 ) {
a[limit] = 0.0f;
AddClamped( limit );
} else if ( limitSide == -1 ) {
f[limit] = lo[limit];
if ( limit != i ) {
RemoveClamped( limit );
}
} else if ( limitSide == 1 ) {
f[limit] = hi[limit];
if ( limit != i ) {
RemoveClamped( limit );
}
}
// if the current variable limited the step we can continue with the next variable
if ( limit == i ) {
break;
}
}
if ( n >= maxIterations ) {
failed.Format( "max iterations %d", maxIterations );
break;
}
if ( failed.Length() ) {
break;
}
}
#ifdef IGNORE_UNSATISFIABLE_VARIABLES
if ( numIgnored ) {
if ( lcp_showFailures.GetBool() ) {
idLib::Printf( "idLCP_Square::Solve: %d of %d bounded variables ignored\n", numIgnored, m.GetNumRows() - numUnbounded );
}
}
#endif
// if failed clear remaining forces
if ( failed.Length() ) {
if ( lcp_showFailures.GetBool() ) {
idLib::Printf( "idLCP_Square::Solve: %s (%d of %d bounded variables ignored)\n", failed.c_str(), numIgnored, m.GetNumRows() - numUnbounded );
}
}
#if defined(_DEBUG) && 0
if ( failed.Length() ) {
// test whether or not the solution satisfies the complementarity conditions
for ( int i = 0; i < m.GetNumRows(); i++ ) {
a[i] = -b[i];
for ( int j = 0; j < m.GetNumRows(); j++ ) {
a[i] += rowPtrs[i][j] * f[j];
}
if ( f[i] == lo[i] ) {
if ( lo[i] != hi[i] && a[i] < -LCP_ACCEL_EPSILON ) {
int bah1 = 1;
}
} else if ( f[i] == hi[i] ) {
if ( lo[i] != hi[i] && a[i] > LCP_ACCEL_EPSILON ) {
int bah2 = 1;
}
} else if ( f[i] < lo[i] || f[i] > hi[i] || idMath::Fabs( a[i] ) > 1.0f ) {
int bah3 = 1;
}
}
}
#endif
// unpermute result
for ( int i = 0; i < f.GetSize(); i++ ) {
o_x[permuted[i]] = f[i];
}
return true;
}
/*
================================================================================================
idLCP_Symmetric
================================================================================================
*/
/*
================================================
idLCP_Symmetric
================================================
*/
class idLCP_Symmetric : public idLCP {
public:
virtual bool Solve( const idMatX &o_m, idVecX &o_x, const idVecX &o_b, const idVecX &o_lo, const idVecX &o_hi, const int *o_boxIndex );
private:
idMatX m; // original matrix
idVecX b; // right hand side
idVecX lo, hi; // low and high bounds
idVecX f, a; // force and acceleration
idVecX delta_f, delta_a; // delta force and delta acceleration
idMatX clamped; // LDLt factored sub matrix for clamped variables
idVecX diagonal; // reciprocal of diagonal of LDLt factored sub matrix for clamped variables
idVecX solveCache1; // intermediate result cached in SolveClamped
idVecX solveCache2; // "
int numUnbounded; // number of unbounded variables
int numClamped; // number of clamped variables
int clampedChangeStart; // lowest row/column changed in the clamped matrix during an iteration
float ** rowPtrs; // pointers to the rows of m
int * boxIndex; // box index
int * side; // tells if a variable is at the low boundary = -1, high boundary = 1 or inbetween = 0
int * permuted; // index to keep track of the permutation
bool padded; // set to true if the rows of the initial matrix are 16 byte padded
bool FactorClamped();
void SolveClamped( idVecX &x, const float *b );
void Swap( int i, int j );
void AddClamped( int r, bool useSolveCache );
void RemoveClamped( int r );
void CalcForceDelta( int d, float dir );
void CalcAccelDelta( int d );
void ChangeForce( int d, float step );
void ChangeAccel( int d, float step );
};
/*
========================
idLCP_Symmetric::FactorClamped
========================
*/
bool idLCP_Symmetric::FactorClamped() {
clampedChangeStart = 0;
for ( int i = 0; i < numClamped; i++ ) {
memcpy( clamped[i], rowPtrs[i], numClamped * sizeof( float ) );
}
return LDLT_Factor( clamped, diagonal, numClamped );
}
/*
========================
idLCP_Symmetric::SolveClamped
========================
*/
void idLCP_Symmetric::SolveClamped( idVecX &x, const float *b ) {
// solve L
LowerTriangularSolve( clamped, solveCache1.ToFloatPtr(), b, numClamped, clampedChangeStart );
// scale with D
Multiply( solveCache2.ToFloatPtr(), solveCache1.ToFloatPtr(), diagonal.ToFloatPtr(), numClamped );
// solve Lt
LowerTriangularSolveTranspose( clamped, x.ToFloatPtr(), solveCache2.ToFloatPtr(), numClamped );
clampedChangeStart = numClamped;
}
/*
========================
idLCP_Symmetric::Swap
========================
*/
void idLCP_Symmetric::Swap( int i, int j ) {
if ( i == j ) {
return;
}
SwapValues( rowPtrs[i], rowPtrs[j] );
m.SwapColumns( i, j );
b.SwapElements( i, j );
lo.SwapElements( i, j );
hi.SwapElements( i, j );
a.SwapElements( i, j );
f.SwapElements( i, j );
if ( boxIndex != NULL ) {
SwapValues( boxIndex[i], boxIndex[j] );
}
SwapValues( side[i], side[j] );
SwapValues( permuted[i], permuted[j] );
}
/*
========================
idLCP_Symmetric::AddClamped
========================
*/
void idLCP_Symmetric::AddClamped( int r, bool useSolveCache ) {
assert( r >= numClamped );
if ( numClamped < clampedChangeStart ) {
clampedChangeStart = numClamped;
}
// add a row at the bottom and a column at the right of the factored
// matrix for the clamped variables
Swap( numClamped, r );
// solve for v in L * v = rowPtr[numClamped]
float dot;
if ( useSolveCache ) {
// the lower triangular solve was cached in SolveClamped called by CalcForceDelta
memcpy( clamped[numClamped], solveCache2.ToFloatPtr(), numClamped * sizeof( float ) );
// calculate row dot product
dot = BigDotProduct( solveCache2.ToFloatPtr(), solveCache1.ToFloatPtr(), numClamped );
} else {
float *v = (float *) _alloca16( numClamped * sizeof( float ) );
LowerTriangularSolve( clamped, v, rowPtrs[numClamped], numClamped, 0 );
// add bottom row to L
Multiply( clamped[numClamped], v, diagonal.ToFloatPtr(), numClamped );
// calculate row dot product
dot = BigDotProduct( clamped[numClamped], v, numClamped );
}
// update diagonal[numClamped]
float d = rowPtrs[numClamped][numClamped] - dot;
if ( fabs( d ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
idLib::Printf( "idLCP_Symmetric::AddClamped: updating factorization failed\n" );
d = idMath::FLT_SMALLEST_NON_DENORMAL;
}
clamped[numClamped][numClamped] = d;
diagonal[numClamped] = 1.0f / d;
numClamped++;
}
/*
========================
idLCP_Symmetric::RemoveClamped
========================
*/
void idLCP_Symmetric::RemoveClamped( int r ) {
if ( !verify( r < numClamped ) ) {
// complete fail, most likely due to exceptional floating point values
return;
}
if ( r < clampedChangeStart ) {
clampedChangeStart = r;
}
numClamped--;
// no need to swap and update the factored matrix when the last row and column are removed
if ( r == numClamped ) {
return;
}
// swap the to be removed row/column with the last row/column
Swap( r, numClamped );
// update the factored matrix
float * addSub = (float *) _alloca16( numClamped * sizeof( float ) );
if ( r == 0 ) {
if ( numClamped == 1 ) {
float diag = rowPtrs[0][0];
if ( fabs( diag ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
idLib::Printf( "idLCP_Symmetric::RemoveClamped: updating factorization failed\n" );
diag = idMath::FLT_SMALLEST_NON_DENORMAL;
}
clamped[0][0] = diag;
diagonal[0] = 1.0f / diag;
return;
}
// calculate the row/column to be added to the lower right sub matrix starting at (r, r)
float * original = rowPtrs[numClamped];
float * ptr = rowPtrs[r];
addSub[0] = ptr[0] - original[numClamped];
for ( int i = 1; i < numClamped; i++ ) {
addSub[i] = ptr[i] - original[i];
}
} else {
float * v = (float *) _alloca16( numClamped * sizeof( float ) );
// solve for v in L * v = rowPtr[r]
LowerTriangularSolve( clamped, v, rowPtrs[r], r, 0 );
// update removed row
Multiply( clamped[r], v, diagonal.ToFloatPtr(), r );
// if the last row/column of the matrix is updated
if ( r == numClamped - 1 ) {
// only calculate new diagonal
float dot = BigDotProduct( clamped[r], v, r );
float diag = rowPtrs[r][r] - dot;
if ( fabs( diag ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
idLib::Printf( "idLCP_Symmetric::RemoveClamped: updating factorization failed\n" );
diag = idMath::FLT_SMALLEST_NON_DENORMAL;
}
clamped[r][r] = diag;
diagonal[r] = 1.0f / diag;
return;
}
// calculate the row/column to be added to the lower right sub matrix starting at (r, r)
for ( int i = 0; i < r; i++ ) {
v[i] = clamped[r][i] * clamped[i][i];
}
for ( int i = r; i < numClamped; i++ ) {
float sum;
if ( i == r ) {
sum = clamped[r][r];
} else {
sum = clamped[r][r] * clamped[i][r];
}
float * ptr = clamped[i];
for ( int j = 0; j < r; j++ ) {
sum += ptr[j] * v[j];
}
addSub[i] = rowPtrs[r][i] - sum;
}
}
// add row/column to the lower right sub matrix starting at (r, r)
float * v1 = (float *) _alloca16( numClamped * sizeof( float ) );
float * v2 = (float *) _alloca16( numClamped * sizeof( float ) );
float diag = idMath::SQRT_1OVER2;
v1[r] = ( 0.5f * addSub[r] + 1.0f ) * diag;
v2[r] = ( 0.5f * addSub[r] - 1.0f ) * diag;
for ( int i = r+1; i < numClamped; i++ ) {
v1[i] = v2[i] = addSub[i] * diag;
}
float alpha1 = 1.0f;
float alpha2 = -1.0f;
// simultaneous update/downdate of the sub matrix starting at (r, r)
int n = clamped.GetNumColumns();
for ( int i = r; i < numClamped; i++ ) {
diag = clamped[i][i];
float p1 = v1[i];
float newDiag = diag + alpha1 * p1 * p1;
if ( fabs( newDiag ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
idLib::Printf( "idLCP_Symmetric::RemoveClamped: updating factorization failed\n" );
newDiag = idMath::FLT_SMALLEST_NON_DENORMAL;
}
alpha1 /= newDiag;
float beta1 = p1 * alpha1;
alpha1 *= diag;
diag = newDiag;
float p2 = v2[i];
newDiag = diag + alpha2 * p2 * p2;
if ( fabs( newDiag ) < idMath::FLT_SMALLEST_NON_DENORMAL ) {
idLib::Printf( "idLCP_Symmetric::RemoveClamped: updating factorization failed\n" );
newDiag = idMath::FLT_SMALLEST_NON_DENORMAL;
}
clamped[i][i] = newDiag;
float invNewDiag = 1.0f / newDiag;
diagonal[i] = invNewDiag;
alpha2 *= invNewDiag;
float beta2 = p2 * alpha2;
alpha2 *= diag;
// update column below diagonal (i,i)
float * ptr = clamped.ToFloatPtr() + i;
int j;
for ( j = i+1; j < numClamped - 1; j += 2 ) {
float sum0 = ptr[(j+0)*n];
float sum1 = ptr[(j+1)*n];
v1[j+0] -= p1 * sum0;
v1[j+1] -= p1 * sum1;
sum0 += beta1 * v1[j+0];
sum1 += beta1 * v1[j+1];
v2[j+0] -= p2 * sum0;
v2[j+1] -= p2 * sum1;
sum0 += beta2 * v2[j+0];
sum1 += beta2 * v2[j+1];
ptr[(j+0)*n] = sum0;
ptr[(j+1)*n] = sum1;
}
for ( ; j < numClamped; j++ ) {
float sum = ptr[j*n];
v1[j] -= p1 * sum;
sum += beta1 * v1[j];
v2[j] -= p2 * sum;
sum += beta2 * v2[j];
ptr[j*n] = sum;
}
}
}
/*
========================
idLCP_Symmetric::CalcForceDelta
Modifies this->delta_f.
========================
*/
ID_INLINE void idLCP_Symmetric::CalcForceDelta( int d, float dir ) {
delta_f[d] = dir;
if ( numClamped == 0 ) {
return;
}
// solve force delta
SolveClamped( delta_f, rowPtrs[d] );
// flip force delta based on direction
if ( dir > 0.0f ) {
float * ptr = delta_f.ToFloatPtr();
for ( int i = 0; i < numClamped; i++ ) {
ptr[i] = - ptr[i];
}
}
}
/*
========================
idLCP_Symmetric::CalcAccelDelta
Modifies this->delta_a and uses this->delta_f.
========================
*/
ID_INLINE void idLCP_Symmetric::CalcAccelDelta( int d ) {
// only the not clamped variables, including the current variable, can have a change in acceleration
for ( int j = numClamped; j <= d; j++ ) {
// only the clamped variables and the current variable have a force delta unequal zero
float dot = BigDotProduct( rowPtrs[j], delta_f.ToFloatPtr(), numClamped );
delta_a[j] = dot + rowPtrs[j][d] * delta_f[d];
}
}
/*
========================
idLCP_Symmetric::ChangeForce
Modifies this->f and uses this->delta_f.
========================
*/
ID_INLINE void idLCP_Symmetric::ChangeForce( int d, float step ) {
// only the clamped variables and current variable have a force delta unequal zero
MultiplyAdd( f.ToFloatPtr(), step, delta_f.ToFloatPtr(), numClamped );
f[d] += step * delta_f[d];
}
/*
========================
idLCP_Symmetric::ChangeAccel
Modifies this->a and uses this->delta_a.
========================
*/
ID_INLINE void idLCP_Symmetric::ChangeAccel( int d, float step ) {
// only the not clamped variables, including the current variable, can have an acceleration unequal zero
MultiplyAdd( a.ToFloatPtr() + numClamped, step, delta_a.ToFloatPtr() + numClamped, d - numClamped + 1 );
}
/*
========================
idLCP_Symmetric::Solve
========================
*/
bool idLCP_Symmetric::Solve( const idMatX &o_m, idVecX &o_x, const idVecX &o_b, const idVecX &o_lo, const idVecX &o_hi, const int *o_boxIndex ) {
// true when the matrix rows are 16 byte padded
padded = ((o_m.GetNumRows()+3)&~3) == o_m.GetNumColumns();
assert( padded || o_m.GetNumRows() == o_m.GetNumColumns() );
assert( o_x.GetSize() == o_m.GetNumRows() );
assert( o_b.GetSize() == o_m.GetNumRows() );
assert( o_lo.GetSize() == o_m.GetNumRows() );
assert( o_hi.GetSize() == o_m.GetNumRows() );
// allocate memory for permuted input
f.SetData( o_m.GetNumRows(), VECX_ALLOCA( o_m.GetNumRows() ) );
a.SetData( o_b.GetSize(), VECX_ALLOCA( o_b.GetSize() ) );
b.SetData( o_b.GetSize(), VECX_ALLOCA( o_b.GetSize() ) );
lo.SetData( o_lo.GetSize(), VECX_ALLOCA( o_lo.GetSize() ) );
hi.SetData( o_hi.GetSize(), VECX_ALLOCA( o_hi.GetSize() ) );
if ( o_boxIndex != NULL ) {
boxIndex = (int *)_alloca16( o_x.GetSize() * sizeof( int ) );
memcpy( boxIndex, o_boxIndex, o_x.GetSize() * sizeof( int ) );
} else {
boxIndex = NULL;
}
// we override the const on o_m here but on exit the matrix is unchanged
m.SetData( o_m.GetNumRows(), o_m.GetNumColumns(), const_cast< float * >( o_m[0] ) );
f.Zero();
a.Zero();
b = o_b;
lo = o_lo;
hi = o_hi;
// pointers to the rows of m
rowPtrs = (float **) _alloca16( m.GetNumRows() * sizeof( float * ) );
for ( int i = 0; i < m.GetNumRows(); i++ ) {
rowPtrs[i] = m[i];
}
// tells if a variable is at the low boundary, high boundary or inbetween
side = (int *) _alloca16( m.GetNumRows() * sizeof( int ) );
// index to keep track of the permutation
permuted = (int *) _alloca16( m.GetNumRows() * sizeof( int ) );
for ( int i = 0; i < m.GetNumRows(); i++ ) {
permuted[i] = i;
}
// permute input so all unbounded variables come first
numUnbounded = 0;
for ( int i = 0; i < m.GetNumRows(); i++ ) {
if ( lo[i] == -idMath::INFINITY && hi[i] == idMath::INFINITY ) {
if ( numUnbounded != i ) {
Swap( numUnbounded, i );
}
numUnbounded++;
}
}
// permute input so all variables using the boxIndex come last
int boxStartIndex = m.GetNumRows();
if ( boxIndex != NULL ) {
for ( int i = m.GetNumRows() - 1; i >= numUnbounded; i-- ) {
if ( boxIndex[i] >= 0 ) {
boxStartIndex--;
if ( boxStartIndex != i ) {
Swap( boxStartIndex, i );
}
}
}
}
// sub matrix for factorization
clamped.SetDataCacheLines( m.GetNumRows(), m.GetNumColumns(), MATX_ALLOCA_CACHE_LINES( m.GetNumRows() * m.GetNumColumns() ), true );
diagonal.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) );
solveCache1.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) );
solveCache2.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) );
// all unbounded variables are clamped
numClamped = numUnbounded;
// if there are unbounded variables
if ( numUnbounded ) {
// factor and solve for unbounded variables
if ( !FactorClamped() ) {
idLib::Printf( "idLCP_Symmetric::Solve: unbounded factorization failed\n" );
return false;
}
SolveClamped( f, b.ToFloatPtr() );
// if there are no bounded variables we are done
if ( numUnbounded == m.GetNumRows() ) {
o_x = f; // the vector is not permuted
return true;
}
}
int numIgnored = 0;
// allocate for delta force and delta acceleration
delta_f.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) );
delta_a.SetData( m.GetNumRows(), VECX_ALLOCA( m.GetNumRows() ) );
// solve for bounded variables
idStr failed;
for ( int i = numUnbounded; i < m.GetNumRows(); i++ ) {
clampedChangeStart = 0;
// once we hit the box start index we can initialize the low and high boundaries of the variables using the box index
if ( i == boxStartIndex ) {
for ( int j = 0; j < boxStartIndex; j++ ) {
o_x[permuted[j]] = f[j];
}
for ( int j = boxStartIndex; j < m.GetNumRows(); j++ ) {
float s = o_x[boxIndex[j]];
if ( lo[j] != -idMath::INFINITY ) {
lo[j] = - idMath::Fabs( lo[j] * s );
}
if ( hi[j] != idMath::INFINITY ) {
hi[j] = idMath::Fabs( hi[j] * s );
}
}
}
// calculate acceleration for current variable
float dot = BigDotProduct( rowPtrs[i], f.ToFloatPtr(), i );
a[i] = dot - b[i];
// if already at the low boundary
if ( lo[i] >= -LCP_BOUND_EPSILON && a[i] >= -LCP_ACCEL_EPSILON ) {
side[i] = -1;
continue;
}
// if already at the high boundary
if ( hi[i] <= LCP_BOUND_EPSILON && a[i] <= LCP_ACCEL_EPSILON ) {
side[i] = 1;
continue;
}
// if inside the clamped region
if ( idMath::Fabs( a[i] ) <= LCP_ACCEL_EPSILON ) {
side[i] = 0;
AddClamped( i, false );
continue;
}
// drive the current variable into a valid region
int n = 0;
for ( ; n < maxIterations; n++ ) {
// direction to move
float dir = ( a[i] <= 0.0f ) ? 1.0f : -1.0f;
// calculate force delta
CalcForceDelta( i, dir );
// calculate acceleration delta: delta_a = m * delta_f;
CalcAccelDelta( i );
float maxStep;
int limit;
int limitSide;
// maximum step we can take
GetMaxStep( f.ToFloatPtr(), a.ToFloatPtr(), delta_f.ToFloatPtr(), delta_a.ToFloatPtr(),
lo.ToFloatPtr(), hi.ToFloatPtr(), side, numUnbounded, numClamped,
i, dir, maxStep, limit, limitSide );
if ( maxStep <= 0.0f ) {
#ifdef IGNORE_UNSATISFIABLE_VARIABLES
// ignore the current variable completely
lo[i] = hi[i] = 0.0f;
f[i] = 0.0f;
side[i] = -1;
numIgnored++;
#else
failed.Format( "invalid step size %.4f", maxStep );
for ( int j = i; j < m.GetNumRows(); j++ ) {
f[j] = 0.0f;
}
numIgnored = m.GetNumRows() - i;
#endif
break;
}
// change force
ChangeForce( i, maxStep );
// change acceleration
ChangeAccel( i, maxStep );
// clamp/unclamp the variable that limited this step
side[limit] = limitSide;
if ( limitSide == 0 ) {
a[limit] = 0.0f;
AddClamped( limit, ( limit == i ) );
} else if ( limitSide == -1 ) {
f[limit] = lo[limit];
if ( limit != i ) {
RemoveClamped( limit );
}
} else if ( limitSide == 1 ) {
f[limit] = hi[limit];
if ( limit != i ) {
RemoveClamped( limit );
}
}
// if the current variable limited the step we can continue with the next variable
if ( limit == i ) {
break;
}
}
if ( n >= maxIterations ) {
failed.Format( "max iterations %d", maxIterations );
break;
}
if ( failed.Length() ) {
break;
}
}
#ifdef IGNORE_UNSATISFIABLE_VARIABLES
if ( numIgnored ) {
if ( lcp_showFailures.GetBool() ) {
idLib::Printf( "idLCP_Symmetric::Solve: %d of %d bounded variables ignored\n", numIgnored, m.GetNumRows() - numUnbounded );
}
}
#endif
// if failed clear remaining forces
if ( failed.Length() ) {
if ( lcp_showFailures.GetBool() ) {
idLib::Printf( "idLCP_Symmetric::Solve: %s (%d of %d bounded variables ignored)\n", failed.c_str(), numIgnored, m.GetNumRows() - numUnbounded );
}
}
#if defined(_DEBUG) && 0
if ( failed.Length() ) {
// test whether or not the solution satisfies the complementarity conditions
for ( int i = 0; i < m.GetNumRows(); i++ ) {
a[i] = -b[i];
for ( j = 0; j < m.GetNumRows(); j++ ) {
a[i] += rowPtrs[i][j] * f[j];
}
if ( f[i] == lo[i] ) {
if ( lo[i] != hi[i] && a[i] < -LCP_ACCEL_EPSILON ) {
int bah1 = 1;
}
} else if ( f[i] == hi[i] ) {
if ( lo[i] != hi[i] && a[i] > LCP_ACCEL_EPSILON ) {
int bah2 = 1;
}
} else if ( f[i] < lo[i] || f[i] > hi[i] || idMath::Fabs( a[i] ) > 1.0f ) {
int bah3 = 1;
}
}
}
#endif
// unpermute result
for ( int i = 0; i < f.GetSize(); i++ ) {
o_x[permuted[i]] = f[i];
}
return true;
}
/*
================================================================================================
idLCP
================================================================================================
*/
/*
========================
idLCP::AllocSquare
========================
*/
idLCP *idLCP::AllocSquare() {
idLCP *lcp = new idLCP_Square;
lcp->SetMaxIterations( 32 );
return lcp;
}
/*
========================
idLCP::AllocSymmetric
========================
*/
idLCP *idLCP::AllocSymmetric() {
idLCP *lcp = new idLCP_Symmetric;
lcp->SetMaxIterations( 32 );
return lcp;
}
/*
========================
idLCP::~idLCP
========================
*/
idLCP::~idLCP() {
}
/*
========================
idLCP::SetMaxIterations
========================
*/
void idLCP::SetMaxIterations( int max ) {
maxIterations = max;
}
/*
========================
idLCP::GetMaxIterations
========================
*/
int idLCP::GetMaxIterations() {
return maxIterations;
}
/*
========================
idLCP::Test_f
========================
*/
void idLCP::Test_f( const idCmdArgs &args ) {
#ifdef ENABLE_TEST_CODE
DotProduct_Test();
LowerTriangularSolve_Test();
LowerTriangularSolveTranspose_Test();
LDLT_Factor_Test();
#endif
}