doom3-bfg/neo/renderer/RenderWorld_envprobes.cpp

1009 lines
26 KiB
C++
Raw Normal View History

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2020 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "precompiled.h"
#include "RenderCommon.h"
/*
=============
R_SetEnvprobeDefViewEnvprobe
If the envprobeDef is not already on the viewEnvprobe list, create
a viewEnvprobe and add it to the list with an empty scissor rect.
=============
*/
viewEnvprobe_t* R_SetEnvprobeDefViewEnvprobe( RenderEnvprobeLocal* probe )
{
if( probe->viewCount == tr.viewCount )
{
// already set up for this frame
return probe->viewEnvprobe;
}
probe->viewCount = tr.viewCount;
// add to the view light chain
viewEnvprobe_t* vProbe = ( viewEnvprobe_t* )R_ClearedFrameAlloc( sizeof( *vProbe ), FRAME_ALLOC_VIEW_LIGHT );
vProbe->envprobeDef = probe;
// the scissorRect will be expanded as the envprobe bounds is accepted into visible portal chains
// and the scissor will be reduced in R_AddSingleEnvprobe based on the screen space projection
vProbe->scissorRect.Clear();
2020-05-17 11:29:18 +00:00
// copy data used by backend
// RB: this would normaly go into R_AddSingleEnvprobe
vProbe->globalOrigin = probe->parms.origin;
vProbe->inverseBaseLightProject = probe->inverseBaseLightProject;
//if( probe->irradianceImage->IsLoaded() )
{
vProbe->irradianceImage = probe->irradianceImage;
}
//else
//{
// vProbe->irradianceImage = globalImages->defaultUACIrradianceCube;
//}
//if( probe->radianceImage->IsLoaded() )
{
vProbe->radianceImage = probe->radianceImage;
}
//else
//{
// vProbe->radianceImage = globalImages->defaultUACRadianceCube;
//}
// link the view light
vProbe->next = tr.viewDef->viewEnvprobes;
tr.viewDef->viewEnvprobes = vProbe;
probe->viewEnvprobe = vProbe;
return vProbe;
}
/*
================
CullEnvprobeByPortals
Return true if the light frustum does not intersect the current portal chain.
================
*/
bool idRenderWorldLocal::CullEnvprobeByPortals( const RenderEnvprobeLocal* probe, const portalStack_t* ps )
{
if( r_useLightPortalCulling.GetInteger() == 1 )
{
ALIGNTYPE16 frustumCorners_t corners;
idRenderMatrix::GetFrustumCorners( corners, probe->inverseBaseLightProject, bounds_zeroOneCube );
for( int i = 0; i < ps->numPortalPlanes; i++ )
{
if( idRenderMatrix::CullFrustumCornersToPlane( corners, ps->portalPlanes[i] ) == FRUSTUM_CULL_FRONT )
{
return true;
}
}
}
else if( r_useLightPortalCulling.GetInteger() >= 2 )
{
idPlane frustumPlanes[6];
idRenderMatrix::GetFrustumPlanes( frustumPlanes, probe->baseLightProject, true, true );
// exact clip of light faces against all planes
for( int i = 0; i < 6; i++ )
{
// the light frustum planes face inward, so the planes that have the
// view origin on the positive side will be the "back" faces of the light,
// which must have some fragment inside the the portal stack planes to be visible
if( frustumPlanes[i].Distance( tr.viewDef->renderView.vieworg ) <= 0.0f )
{
continue;
}
// calculate a winding for this frustum side
idFixedWinding w;
w.BaseForPlane( frustumPlanes[i] );
for( int j = 0; j < 6; j++ )
{
if( j == i )
{
continue;
}
if( !w.ClipInPlace( frustumPlanes[j], ON_EPSILON ) )
{
break;
}
}
if( w.GetNumPoints() <= 2 )
{
continue;
}
assert( ps->numPortalPlanes <= MAX_PORTAL_PLANES );
assert( w.GetNumPoints() + ps->numPortalPlanes < MAX_POINTS_ON_WINDING );
// now clip the winding against each of the portalStack planes
// skip the last plane which is the last portal itself
for( int j = 0; j < ps->numPortalPlanes - 1; j++ )
{
if( !w.ClipInPlace( -ps->portalPlanes[j], ON_EPSILON ) )
{
break;
}
}
if( w.GetNumPoints() > 2 )
{
// part of the winding is visible through the portalStack,
// so the light is not culled
return false;
}
}
// nothing was visible
return true;
}
return false;
}
/*
===================
AddAreaViewEnvprobes
This is the only point where lights get added to the viewLights list.
Any lights that are visible through the current portalStack will have their scissor rect updated.
===================
*/
void idRenderWorldLocal::AddAreaViewEnvprobes( int areaNum, const portalStack_t* ps )
{
portalArea_t* area = &portalAreas[ areaNum ];
for( areaReference_t* lref = area->envprobeRefs.areaNext; lref != &area->envprobeRefs; lref = lref->areaNext )
{
RenderEnvprobeLocal* probe = lref->envprobe;
// debug tool to allow viewing of only one light at a time
if( r_singleEnvprobe.GetInteger() >= 0 && r_singleEnvprobe.GetInteger() != probe->index )
{
continue;
}
#if 0
// check for being closed off behind a door
// a light that doesn't cast shadows will still light even if it is behind a door
if( r_useLightAreaCulling.GetBool() //&& !envprobe->LightCastsShadows()
&& probe->areaNum != -1 && !tr.viewDef->connectedAreas[ probe->areaNum ] )
{
continue;
}
// cull frustum
if( CullEnvprobeByPortals( probe, ps ) )
{
// we are culled out through this portal chain, but it might
// still be visible through others
continue;
}
#endif
viewEnvprobe_t* vProbe = R_SetEnvprobeDefViewEnvprobe( probe );
// expand the scissor rect
vProbe->scissorRect.Union( ps->rect );
}
}
/*
==================
R_SampleCubeMap
==================
*/
static idMat3 cubeAxis[6];
static const char* envDirection[6] = { "_px", "_nx", "_py", "_ny", "_pz", "_nz" };
void R_SampleCubeMap( const idVec3& dir, int size, byte* buffers[6], byte result[4] )
{
float adir[3];
int axis, x, y;
adir[0] = fabs( dir[0] );
adir[1] = fabs( dir[1] );
adir[2] = fabs( dir[2] );
if( dir[0] >= adir[1] && dir[0] >= adir[2] )
{
axis = 0;
}
else if( -dir[0] >= adir[1] && -dir[0] >= adir[2] )
{
axis = 1;
}
else if( dir[1] >= adir[0] && dir[1] >= adir[2] )
{
axis = 2;
}
else if( -dir[1] >= adir[0] && -dir[1] >= adir[2] )
{
axis = 3;
}
else if( dir[2] >= adir[1] && dir[2] >= adir[2] )
{
axis = 4;
}
else
{
axis = 5;
}
float fx = ( dir * cubeAxis[axis][1] ) / ( dir * cubeAxis[axis][0] );
float fy = ( dir * cubeAxis[axis][2] ) / ( dir * cubeAxis[axis][0] );
fx = -fx;
fy = -fy;
x = size * 0.5 * ( fx + 1 );
y = size * 0.5 * ( fy + 1 );
if( x < 0 )
{
x = 0;
}
else if( x >= size )
{
x = size - 1;
}
if( y < 0 )
{
y = 0;
}
else if( y >= size )
{
y = size - 1;
}
result[0] = buffers[axis][( y * size + x ) * 4 + 0];
result[1] = buffers[axis][( y * size + x ) * 4 + 1];
result[2] = buffers[axis][( y * size + x ) * 4 + 2];
result[3] = buffers[axis][( y * size + x ) * 4 + 3];
}
class CommandlineProgressBar
{
private:
size_t tics = 0;
size_t nextTicCount = 0;
int count = 0;
int expectedCount = 0;
public:
CommandlineProgressBar( int _expectedCount )
{
expectedCount = _expectedCount;
common->Printf( "0%% 10 20 30 40 50 60 70 80 90 100%%\n" );
common->Printf( "|----|----|----|----|----|----|----|----|----|----|\n" );
common->UpdateScreen( false );
}
void Increment()
{
if( ( count + 1 ) >= nextTicCount )
{
size_t ticsNeeded = ( size_t )( ( ( double )( count + 1 ) / expectedCount ) * 50.0 );
do
{
common->Printf( "*" );
}
while( ++tics < ticsNeeded );
nextTicCount = ( size_t )( ( tics / 50.0 ) * expectedCount );
if( count == ( expectedCount - 1 ) )
{
if( tics < 51 )
{
common->Printf( "*" );
}
common->Printf( "\n" );
}
common->UpdateScreen( false );
}
count++;
}
};
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
// To implement the Hammersley point set we only need an efficent way to implement the Van der Corput radical inverse phi2(i).
// Since it is in base 2 we can use some basic bit operations to achieve this.
// The brilliant book Hacker's Delight [warren01] provides us a a simple way to reverse the bits in a given 32bit integer. Using this, the following code then implements phi2(i)
/*
GLSL version
float radicalInverse_VdC( uint bits )
{
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
*/
// RB: radical inverse implementation from the Mitsuba PBR system
// Van der Corput radical inverse in base 2 with single precision
inline float RadicalInverse_VdC( uint32_t n, uint32_t scramble = 0U )
{
/* Efficiently reverse the bits in 'n' using binary operations */
#if (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2))) || defined(__clang__)
n = __builtin_bswap32( n );
#else
n = ( n << 16 ) | ( n >> 16 );
n = ( ( n & 0x00ff00ff ) << 8 ) | ( ( n & 0xff00ff00 ) >> 8 );
#endif
n = ( ( n & 0x0f0f0f0f ) << 4 ) | ( ( n & 0xf0f0f0f0 ) >> 4 );
n = ( ( n & 0x33333333 ) << 2 ) | ( ( n & 0xcccccccc ) >> 2 );
n = ( ( n & 0x55555555 ) << 1 ) | ( ( n & 0xaaaaaaaa ) >> 1 );
// Account for the available precision and scramble
n = ( n >> ( 32 - 24 ) ) ^ ( scramble & ~ -( 1 << 24 ) );
return ( float ) n / ( float )( 1U << 24 );
}
// The ith point xi is then computed by
inline idVec2 Hammersley2D( uint i, uint N )
{
return idVec2( float( i ) / float( N ), RadicalInverse_VdC( i ) );
}
idVec3 ImportanceSampleGGX( const idVec2& Xi, const idVec3& N, float roughness )
{
float a = roughness * roughness;
// cosinus distributed direction (Z-up or tangent space) from the hammersley point xi
float Phi = 2 * idMath::PI * Xi.x;
float cosTheta = idMath::Sqrt( ( 1 - Xi.y ) / ( 1 + ( a * a - 1 ) * Xi.y ) );
float sinTheta = idMath::Sqrt( 1 - cosTheta * cosTheta );
idVec3 H;
H.x = sinTheta * idMath::Cos( Phi );
H.y = sinTheta * idMath::Sin( Phi );
H.z = cosTheta;
// rotate from tangent space to world space along N
idVec3 upVector = abs( N.z ) < 0.999f ? idVec3( 0, 0, 1 ) : idVec3( 1, 0, 0 );
idVec3 tangentX = upVector.Cross( N );
tangentX.Normalize();
idVec3 tangentY = N.Cross( tangentX );
idVec3 sampleVec = tangentX * H.x + tangentY * H.y + N * H.z;
sampleVec.Normalize();
return sampleVec;
}
float Geometry_SchlickGGX( float NdotV, float roughness )
{
// note that we use a different k for IBL
float a = roughness;
float k = ( a * a ) / 2.0;
float nom = NdotV;
float denom = NdotV * ( 1.0 - k ) + k;
return nom / denom;
}
float Geometry_Smith( idVec3 N, idVec3 V, idVec3 L, float roughness )
{
float NdotV = Max( ( N * V ), 0.0f );
float NdotL = Max( ( N * L ), 0.0f );
float ggx2 = Geometry_SchlickGGX( NdotV, roughness );
float ggx1 = Geometry_SchlickGGX( NdotL, roughness );
return ggx1 * ggx2;
}
idVec2 IntegrateBRDF( float NdotV, float roughness, int sampleCount )
{
idVec3 V;
V.x = sqrt( 1.0 - NdotV * NdotV );
V.y = 0.0;
V.z = NdotV;
float A = 0.0;
float B = 0.0;
idVec3 N( 0.0f, 0.0f, 1.0f );
for( int i = 0; i < sampleCount; ++i )
{
// generates a sample vector that's biased towards the
// preferred alignment direction (importance sampling).
idVec2 Xi = Hammersley2D( i, sampleCount );
idVec3 H = ImportanceSampleGGX( Xi, N, roughness );
idVec3 L = ( 2.0 * ( V * H ) * H - V );
L.Normalize();
float NdotL = Max( L.z, 0.0f );
float NdotH = Max( H.z, 0.0f );
float VdotH = Max( ( V * H ), 0.0f );
if( NdotL > 0.0 )
{
float G = Geometry_Smith( N, V, L, roughness );
float G_Vis = ( G * VdotH ) / ( NdotH * NdotV );
float Fc = idMath::Pow( 1.0 - VdotH, 5.0 );
A += ( 1.0 - Fc ) * G_Vis;
B += Fc * G_Vis;
}
}
A /= float( sampleCount );
B /= float( sampleCount );
return idVec2( A, B );
}
//void R_MakeBrdfLut_f( const idCmdArgs& args )
CONSOLE_COMMAND( makeBrdfLUT, "make a GGX BRDF lookup table", NULL )
{
int outSize = 256;
int width = 0, height = 0;
//if( args.Argc() != 2 )
//{
// common->Printf( "USAGE: makeBrdfLut [size]\n" );
// return;
//}
//if( args.Argc() == 2 )
//{
// outSize = atoi( args.Argv( 1 ) );
//}
bool pacifier = true;
// resample with hemispherical blending
int samples = 1024;
int ldrBufferSize = outSize * outSize * 4;
byte* ldrBuffer = ( byte* )Mem_Alloc( ldrBufferSize, TAG_TEMP );
int hdrBufferSize = outSize * outSize * 2 * sizeof( halfFloat_t );
halfFloat_t* hdrBuffer = ( halfFloat_t* )Mem_Alloc( hdrBufferSize, TAG_TEMP );
CommandlineProgressBar progressBar( outSize * outSize );
int start = Sys_Milliseconds();
for( int x = 0 ; x < outSize ; x++ )
{
float NdotV = ( x + 0.5f ) / outSize;
for( int y = 0 ; y < outSize ; y++ )
{
float roughness = ( y + 0.5f ) / outSize;
idVec2 output = IntegrateBRDF( NdotV, roughness, samples );
ldrBuffer[( y * outSize + x ) * 4 + 0] = byte( output.x * 255 );
ldrBuffer[( y * outSize + x ) * 4 + 1] = byte( output.y * 255 );
ldrBuffer[( y * outSize + x ) * 4 + 2] = 0;
ldrBuffer[( y * outSize + x ) * 4 + 3] = 255;
halfFloat_t half1 = F32toF16( output.x );
halfFloat_t half2 = F32toF16( output.y );
hdrBuffer[( y * outSize + x ) * 2 + 0] = half1;
hdrBuffer[( y * outSize + x ) * 2 + 1] = half2;
//hdrBuffer[( y * outSize + x ) * 4 + 2] = 0;
//hdrBuffer[( y * outSize + x ) * 4 + 3] = 1;
progressBar.Increment();
}
}
idStr fullname = "env/_brdfLut.png";
idLib::Printf( "writing %s\n", fullname.c_str() );
R_WritePNG( fullname, ldrBuffer, 4, outSize, outSize, true, "fs_basepath" );
//R_WriteEXR( "env/_brdfLut.exr", hdrBuffer, 4, outSize, outSize, "fs_basepath" );
idFileLocal headerFile( fileSystem->OpenFileWrite( "env/Image_brdfLut.h", "fs_basepath" ) );
static const char* intro = R"(
#ifndef BRDFLUT_TEX_H
#define BRDFLUT_TEX_H
#define BRDFLUT_TEX_WIDTH 256
#define BRDFLUT_TEX_HEIGHT 256
#define BRDFLUT_TEX_PITCH (BRDFLUT_TEX_WIDTH * 2)
#define BRDFLUT_TEX_SIZE (BRDFLUT_TEX_WIDTH * BRDFLUT_TEX_PITCH)
// Stored in R16G16F format
static const unsigned char brfLutTexBytes[] =
{
)";
headerFile->Printf( "%s\n", intro );
const byte* hdrBytes = (const byte* ) hdrBuffer;
for( int i = 0; i < hdrBufferSize; i++ )
{
byte b = hdrBytes[i];
if( i < ( hdrBufferSize - 1 ) )
{
headerFile->Printf( "0x%02hhx, ", b );
}
else
{
headerFile->Printf( "0x%02hhx", b );
}
if( i % 12 == 0 )
{
headerFile->Printf( "\n" );
}
}
headerFile->Printf( "\n};\n#endif\n" );
int end = Sys_Milliseconds();
common->Printf( "%s integrated in %5.1f seconds\n\n", fullname.c_str(), ( end - start ) * 0.001f );
Mem_Free( ldrBuffer );
Mem_Free( hdrBuffer );
}
// Compute normalized oct coord, mapping top left of top left pixel to (-1,-1)
idVec2 NormalizedOctCoord( int x, int y, const int probeSideLength )
{
const int margin = 0;
int probeWithBorderSide = probeSideLength + margin;
idVec2 octFragCoord = idVec2( ( x - margin ) % probeWithBorderSide, ( y - margin ) % probeWithBorderSide );
// Add back the half pixel to get pixel center normalized coordinates
return ( idVec2( octFragCoord ) + idVec2( 0.5f, 0.5f ) ) * ( 2.0f / float( probeSideLength ) ) - idVec2( 1.0f, 1.0f );
}
/*
==================
R_MakeAmbientMap_f
R_MakeAmbientMap_f <basename> [size]
Saves out env/<basename>_amb_ft.tga, etc
==================
*/
void R_MakeAmbientMap( const char* baseName, const char* suffix, int outSize, float roughness )
{
idStr fullname;
renderView_t ref;
viewDef_t primary;
byte* buffers[6];
int width = 0, height = 0;
memset( &cubeAxis, 0, sizeof( cubeAxis ) );
cubeAxis[0][0][0] = 1;
cubeAxis[0][1][2] = 1;
cubeAxis[0][2][1] = 1;
cubeAxis[1][0][0] = -1;
cubeAxis[1][1][2] = -1;
cubeAxis[1][2][1] = 1;
cubeAxis[2][0][1] = 1;
cubeAxis[2][1][0] = -1;
cubeAxis[2][2][2] = -1;
cubeAxis[3][0][1] = -1;
cubeAxis[3][1][0] = -1;
cubeAxis[3][2][2] = 1;
cubeAxis[4][0][2] = 1;
cubeAxis[4][1][0] = -1;
cubeAxis[4][2][1] = 1;
cubeAxis[5][0][2] = -1;
cubeAxis[5][1][0] = 1;
cubeAxis[5][2][1] = 1;
// read all of the images
for( int i = 0 ; i < 6 ; i++ )
{
fullname.Format( "env/%s%s.png", baseName, envDirection[i] );
const bool captureToImage = false;
common->UpdateScreen( captureToImage );
R_LoadImage( fullname, &buffers[i], &width, &height, NULL, true, NULL );
if( !buffers[i] )
{
common->Printf( "loading %s failed.\n", fullname.c_str() );
for( i-- ; i >= 0 ; i-- )
{
Mem_Free( buffers[i] );
}
return;
}
}
bool pacifier = true;
// resample with hemispherical blending
int samples = 1000;
byte* outBuffer = ( byte* )_alloca( outSize * outSize * 4 );
#if 0
{
CommandlineProgressBar progressBar( outSize * outSize * 6 );
int start = Sys_Milliseconds();
for( int i = 0 ; i < 6 ; i++ )
{
for( int x = 0 ; x < outSize ; x++ )
{
for( int y = 0 ; y < outSize ; y++ )
{
idVec3 dir;
float total[3];
dir = cubeAxis[i][0] + -( -1 + 2.0 * x / ( outSize - 1 ) ) * cubeAxis[i][1] + -( -1 + 2.0 * y / ( outSize - 1 ) ) * cubeAxis[i][2];
dir.Normalize();
total[0] = total[1] = total[2] = 0;
//float roughness = map ? 0.1 : 0.95; // small for specular, almost hemisphere for ambient
for( int s = 0 ; s < samples ; s++ )
{
idVec2 Xi = Hammersley2D( s, samples );
idVec3 test = ImportanceSampleGGX( Xi, dir, roughness );
byte result[4];
//test = dir;
R_SampleCubeMap( test, width, buffers, result );
total[0] += result[0];
total[1] += result[1];
total[2] += result[2];
}
outBuffer[( y * outSize + x ) * 4 + 0] = total[0] / samples;
outBuffer[( y * outSize + x ) * 4 + 1] = total[1] / samples;
outBuffer[( y * outSize + x ) * 4 + 2] = total[2] / samples;
outBuffer[( y * outSize + x ) * 4 + 3] = 255;
progressBar.Increment();
}
}
fullname.Format( "env/%s%s%s.png", baseName, suffix, envDirection[i] );
//common->Printf( "writing %s\n", fullname.c_str() );
const bool captureToImage = false;
common->UpdateScreen( captureToImage );
//R_WriteTGA( fullname, outBuffer, outSize, outSize, false, "fs_basepath" );
R_WritePNG( fullname, outBuffer, 4, outSize, outSize, true, "fs_basepath" );
}
int end = Sys_Milliseconds();
common->Printf( "env/%s convolved in %5.1f seconds\n\n", baseName, ( end - start ) * 0.001f );
}
#else
{
// output an octahedron probe
CommandlineProgressBar progressBar( outSize * outSize );
int start = Sys_Milliseconds();
const float invDstSize = 1.0f / float( outSize );
for( int x = 0 ; x < outSize ; x++ )
{
for( int y = 0 ; y < outSize ; y++ )
{
idVec3 dir;
float total[3];
// convert UV coord from [0, 1] to [-1, 1] space
const float u = 2.0f * x * invDstSize - 1.0f;
const float v = 2.0f * y * invDstSize - 1.0f;
idVec2 octCoord = NormalizedOctCoord( x, y, outSize );
// convert UV coord to 3D direction
dir.FromOctahedral( octCoord );
total[0] = total[1] = total[2] = 0;
//float roughness = map ? 0.1 : 0.95; // small for specular, almost hemisphere for ambient
for( int s = 0 ; s < samples ; s++ )
{
idVec2 Xi = Hammersley2D( s, samples );
idVec3 test = ImportanceSampleGGX( Xi, dir, roughness );
byte result[4];
//test = dir;
R_SampleCubeMap( test, width, buffers, result );
total[0] += result[0];
total[1] += result[1];
total[2] += result[2];
}
#if 1
outBuffer[( y * outSize + x ) * 4 + 0] = total[0] / samples;
outBuffer[( y * outSize + x ) * 4 + 1] = total[1] / samples;
outBuffer[( y * outSize + x ) * 4 + 2] = total[2] / samples;
outBuffer[( y * outSize + x ) * 4 + 3] = 255;
#else
outBuffer[( y * outSize + x ) * 4 + 0] = byte( ( dir.x * 0.5f + 0.5f ) * 255 );
outBuffer[( y * outSize + x ) * 4 + 1] = byte( ( dir.y * 0.5f + 0.5f ) * 255 );
outBuffer[( y * outSize + x ) * 4 + 2] = byte( ( dir.z * 0.5f + 0.5f ) * 255 );
outBuffer[( y * outSize + x ) * 4 + 3] = 255;
#endif
progressBar.Increment();
}
}
fullname.Format( "env/%s%s.png", baseName, suffix );
//common->Printf( "writing %s\n", fullname.c_str() );
const bool captureToImage = false;
common->UpdateScreen( captureToImage );
//R_WriteTGA( fullname, outBuffer, outSize, outSize, false, "fs_basepath" );
R_WritePNG( fullname, outBuffer, 4, outSize, outSize, true, "fs_basepath" );
int end = Sys_Milliseconds();
common->Printf( "env/%s convolved in %5.1f seconds\n\n", baseName, ( end - start ) * 0.001f );
}
#endif
for( int i = 0 ; i < 6 ; i++ )
{
if( buffers[i] )
{
Mem_Free( buffers[i] );
}
}
}
/*
==================
R_MakeAmbientMap_f
R_MakeAmbientMap_f <basename> [size]
Saves out env/<basename>_amb_ft.tga, etc
==================
*/
//void R_MakeAmbientMap_f( const idCmdArgs& args )
CONSOLE_COMMAND( makeAmbientMap, "Saves out env/<basename>_amb_ft.tga, etc", NULL )
{
const char* baseName;
int outSize;
float roughness;
if( args.Argc() != 2 && args.Argc() != 3 && args.Argc() != 4 )
{
common->Printf( "USAGE: makeAmbientMap <basename> [size]\n" );
return;
}
baseName = args.Argv( 1 );
if( args.Argc() >= 3 )
{
outSize = atoi( args.Argv( 2 ) );
}
else
{
outSize = 32;
}
if( args.Argc() == 4 )
{
roughness = atof( args.Argv( 3 ) );
}
else
{
roughness = 0.95f;
}
if( roughness > 0.8f )
{
R_MakeAmbientMap( baseName, "_amb", outSize, roughness );
}
else
{
R_MakeAmbientMap( baseName, "_spec", outSize, roughness );
}
}
CONSOLE_COMMAND( generateEnvironmentProbes, "Generate environment probes", NULL )
{
idStr fullname;
idStr baseName;
idMat3 axis[6], oldAxis;
idVec3 oldPosition;
renderView_t ref;
int blends;
const char* extension;
int size;
int old_fov_x, old_fov_y;
static const char* envDirection[6] = { "_px", "_nx", "_py", "_ny", "_pz", "_nz" };
baseName = tr.primaryWorld->mapName;
baseName.StripFileExtension();
size = RADIANCE_CUBEMAP_SIZE;
blends = 1;
if( !tr.primaryView )
{
common->Printf( "No primary view.\n" );
return;
}
const viewDef_t primary = *tr.primaryView;
memset( &axis, 0, sizeof( axis ) );
// +X
axis[0][0][0] = 1;
axis[0][1][2] = 1;
axis[0][2][1] = 1;
// -X
axis[1][0][0] = -1;
axis[1][1][2] = -1;
axis[1][2][1] = 1;
// +Y
axis[2][0][1] = 1;
axis[2][1][0] = -1;
axis[2][2][2] = -1;
// -Y
axis[3][0][1] = -1;
axis[3][1][0] = -1;
axis[3][2][2] = 1;
// +Z
axis[4][0][2] = 1;
axis[4][1][0] = -1;
axis[4][2][1] = 1;
// -Z
axis[5][0][2] = -1;
axis[5][1][0] = 1;
axis[5][2][1] = 1;
//--------------------------------------------
// CAPTURE SCENE LIGHTING TO CUBEMAPS
//--------------------------------------------
// so we return to that axis and fov after the fact.
oldPosition = primary.renderView.vieworg;
oldAxis = primary.renderView.viewaxis;
old_fov_x = primary.renderView.fov_x;
old_fov_y = primary.renderView.fov_y;
for( int i = 0; i < tr.primaryWorld->envprobeDefs.Num(); i++ )
{
RenderEnvprobeLocal* def = tr.primaryWorld->envprobeDefs[i];
if( def == NULL )
{
continue;
}
for( int j = 0 ; j < 6 ; j++ )
{
ref = primary.renderView;
extension = envDirection[ j ];
ref.fov_x = ref.fov_y = 90;
ref.vieworg = def->parms.origin;
ref.viewaxis = axis[j];
fullname.Format( "env/%s/envprobe%i%s", baseName.c_str(), i, extension );
// TODO capture resolved HDR data without bloom aka _currentRender in 16bit float HDR RGB
tr.TakeScreenshot( size, size, fullname, blends, &ref, PNG );
//tr.CaptureRenderToFile( fullname, false );
}
}
// restore the original axis and fov
/*
ref.vieworg = oldPosition;
ref.viewaxis = oldAxis;
ref.fov_x = old_fov_x;
ref.fov_y = old_fov_y;
cvarSystem->SetCVarInteger( "r_windowWidth", res_w );
cvarSystem->SetCVarInteger( "r_windowHeight", res_h );
R_SetNewMode( false ); // the same as "vid_restart"
*/
2021-02-04 09:39:52 +00:00
common->Printf( "Wrote a env set with the name %s\n", baseName.c_str() );
//--------------------------------------------
// CONVOLVE CUBEMAPS
//--------------------------------------------
int start = Sys_Milliseconds();
for( int i = 0; i < tr.primaryWorld->envprobeDefs.Num(); i++ )
{
RenderEnvprobeLocal* def = tr.primaryWorld->envprobeDefs[i];
if( def == NULL )
{
continue;
}
fullname.Format( "%s/envprobe%i", baseName.c_str(), i );
R_MakeAmbientMap( fullname.c_str(), "_amb", IRRADIANCE_CUBEMAP_SIZE, 0.95f );
R_MakeAmbientMap( fullname.c_str(), "_spec", RADIANCE_CUBEMAP_SIZE, 0.1f );
}
int end = Sys_Milliseconds();
common->Printf( "convolved probes in %5.1f seconds\n\n", ( end - start ) * 0.001f );
}