doom3-bfg/neo/d3xp/physics/Physics_RigidBody.h

220 lines
8.2 KiB
C
Raw Normal View History

2012-11-26 18:58:24 +00:00
/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#ifndef __PHYSICS_RIGIDBODY_H__
#define __PHYSICS_RIGIDBODY_H__
/*
===================================================================================
Rigid body physics
Employs an impulse based dynamic simulation which is not very accurate but
relatively fast and still reliable due to the continuous collision detection.
===================================================================================
*/
extern const float RB_VELOCITY_MAX;
extern const int RB_VELOCITY_TOTAL_BITS;
extern const int RB_VELOCITY_EXPONENT_BITS;
extern const int RB_VELOCITY_MANTISSA_BITS;
typedef struct rididBodyIState_s {
idVec3 position; // position of trace model
idMat3 orientation; // orientation of trace model
idVec3 linearMomentum; // translational momentum relative to center of mass
idVec3 angularMomentum; // rotational momentum relative to center of mass
rididBodyIState_s() :
position( vec3_zero ),
orientation( mat3_identity ),
linearMomentum( vec3_zero ),
angularMomentum( vec3_zero ) {
}
} rigidBodyIState_t;
typedef struct rigidBodyPState_s {
int atRest; // set when simulation is suspended
float lastTimeStep; // length of last time step
idVec3 localOrigin; // origin relative to master
idMat3 localAxis; // axis relative to master
idVec6 pushVelocity; // push velocity
idVec3 externalForce; // external force relative to center of mass
idVec3 externalTorque; // external torque relative to center of mass
rigidBodyIState_t i; // state used for integration
rigidBodyPState_s() :
atRest( true ),
lastTimeStep( 0 ),
localOrigin( vec3_zero ),
localAxis( mat3_identity ),
pushVelocity( vec6_zero ),
externalForce( vec3_zero ),
externalTorque( vec3_zero ) {
}
} rigidBodyPState_t;
class idPhysics_RigidBody : public idPhysics_Base {
public:
CLASS_PROTOTYPE( idPhysics_RigidBody );
idPhysics_RigidBody();
~idPhysics_RigidBody();
void Save( idSaveGame *savefile ) const;
void Restore( idRestoreGame *savefile );
// initialisation
void SetFriction( const float linear, const float angular, const float contact );
void SetBouncyness( const float b );
// same as above but drop to the floor first
void DropToFloor();
// no contact determination and contact friction
void NoContact();
// enable/disable activation by impact
void EnableImpact();
void DisableImpact();
public: // common physics interface
void SetClipModel( idClipModel *model, float density, int id = 0, bool freeOld = true );
idClipModel * GetClipModel( int id = 0 ) const;
int GetNumClipModels() const;
void SetMass( float mass, int id = -1 );
float GetMass( int id = -1 ) const;
void SetContents( int contents, int id = -1 );
int GetContents( int id = -1 ) const;
const idBounds & GetBounds( int id = -1 ) const;
const idBounds & GetAbsBounds( int id = -1 ) const;
bool Evaluate( int timeStepMSec, int endTimeMSec );
bool Interpolate( const float fraction );
void ResetInterpolationState( const idVec3 & origin, const idMat3 & axis );
void UpdateTime( int endTimeMSec );
int GetTime() const;
void GetImpactInfo( const int id, const idVec3 &point, impactInfo_t *info ) const;
void ApplyImpulse( const int id, const idVec3 &point, const idVec3 &impulse );
void AddForce( const int id, const idVec3 &point, const idVec3 &force );
void Activate();
void PutToRest();
bool IsAtRest() const;
int GetRestStartTime() const;
bool IsPushable() const;
void SaveState();
void RestoreState();
void SetOrigin( const idVec3 &newOrigin, int id = -1 );
void SetAxis( const idMat3 &newAxis, int id = -1 );
void Translate( const idVec3 &translation, int id = -1 );
void Rotate( const idRotation &rotation, int id = -1 );
const idVec3 & GetOrigin( int id = 0 ) const;
const idMat3 & GetAxis( int id = 0 ) const;
void SetLinearVelocity( const idVec3 &newLinearVelocity, int id = 0 );
void SetAngularVelocity( const idVec3 &newAngularVelocity, int id = 0 );
const idVec3 & GetLinearVelocity( int id = 0 ) const;
const idVec3 & GetAngularVelocity( int id = 0 ) const;
void ClipTranslation( trace_t &results, const idVec3 &translation, const idClipModel *model ) const;
void ClipRotation( trace_t &results, const idRotation &rotation, const idClipModel *model ) const;
int ClipContents( const idClipModel *model ) const;
void DisableClip();
void EnableClip();
void UnlinkClip();
void LinkClip();
bool EvaluateContacts();
void SetPushed( int deltaTime );
const idVec3 & GetPushedLinearVelocity( const int id = 0 ) const;
const idVec3 & GetPushedAngularVelocity( const int id = 0 ) const;
void SetMaster( idEntity *master, const bool orientated );
void WriteToSnapshot( idBitMsg &msg ) const;
void ReadFromSnapshot( const idBitMsg &msg );
private:
// state of the rigid body
rigidBodyPState_t current;
rigidBodyPState_t saved;
// states for client interpolation
rigidBodyPState_t previous;
rigidBodyPState_t next;
// rigid body properties
float linearFriction; // translational friction
float angularFriction; // rotational friction
float contactFriction; // friction with contact surfaces
float bouncyness; // bouncyness
idClipModel * clipModel; // clip model used for collision detection
// derived properties
float mass; // mass of body
float inverseMass; // 1 / mass
idVec3 centerOfMass; // center of mass of trace model
idMat3 inertiaTensor; // mass distribution
idMat3 inverseInertiaTensor; // inverse inertia tensor
idODE * integrator; // integrator
bool dropToFloor; // true if dropping to the floor and putting to rest
bool testSolid; // true if testing for solid when dropping to the floor
bool noImpact; // if true do not activate when another object collides
bool noContact; // if true do not determine contacts and no contact friction
// master
bool hasMaster;
bool isOrientated;
private:
friend void RigidBodyDerivatives( const float t, const void *clientData, const float *state, float *derivatives );
void Integrate( const float deltaTime, rigidBodyPState_t &next );
bool CheckForCollisions( const float deltaTime, rigidBodyPState_t &next, trace_t &collision );
bool CollisionImpulse( const trace_t &collision, idVec3 &impulse );
void ContactFriction( float deltaTime );
void DropToFloorAndRest();
bool TestIfAtRest() const;
void Rest();
void DebugDraw();
};
#endif /* !__PHYSICS_RIGIDBODY_H__ */