mirror of
https://github.com/id-Software/DOOM-3-BFG.git
synced 2024-12-12 21:41:48 +00:00
241 lines
9.1 KiB
C++
241 lines
9.1 KiB
C++
|
/*
|
||
|
* jidctflt.c
|
||
|
*
|
||
|
* Copyright (C) 1994, Thomas G. Lane.
|
||
|
* This file is part of the Independent JPEG Group's software.
|
||
|
* For conditions of distribution and use, see the accompanying README file.
|
||
|
*
|
||
|
* This file contains a floating-point implementation of the
|
||
|
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||
|
* must also perform dequantization of the input coefficients.
|
||
|
*
|
||
|
* This implementation should be more accurate than either of the integer
|
||
|
* IDCT implementations. However, it may not give the same results on all
|
||
|
* machines because of differences in roundoff behavior. Speed will depend
|
||
|
* on the hardware's floating point capacity.
|
||
|
*
|
||
|
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||
|
* on each row (or vice versa, but it's more convenient to emit a row at
|
||
|
* a time). Direct algorithms are also available, but they are much more
|
||
|
* complex and seem not to be any faster when reduced to code.
|
||
|
*
|
||
|
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||
|
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||
|
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||
|
* JPEG textbook (see REFERENCES section in file README). The following code
|
||
|
* is based directly on figure 4-8 in P&M.
|
||
|
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||
|
* possible to arrange the computation so that many of the multiplies are
|
||
|
* simple scalings of the final outputs. These multiplies can then be
|
||
|
* folded into the multiplications or divisions by the JPEG quantization
|
||
|
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||
|
* to be done in the DCT itself.
|
||
|
* The primary disadvantage of this method is that with a fixed-point
|
||
|
* implementation, accuracy is lost due to imprecise representation of the
|
||
|
* scaled quantization values. However, that problem does not arise if
|
||
|
* we use floating point arithmetic.
|
||
|
*/
|
||
|
|
||
|
#define JPEG_INTERNALS
|
||
|
#include "jinclude.h"
|
||
|
#include "jpeglib.h"
|
||
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||
|
|
||
|
#ifdef DCT_FLOAT_SUPPORTED
|
||
|
|
||
|
|
||
|
/*
|
||
|
* This module is specialized to the case DCTSIZE = 8.
|
||
|
*/
|
||
|
|
||
|
#if DCTSIZE != 8
|
||
|
Sorry, this code only copes with 8 x8 DCTs. /* deliberate syntax err */
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||
|
* entry; produce a float result.
|
||
|
*/
|
||
|
|
||
|
#define DEQUANTIZE( coef, quantval ) ( ( (FAST_FLOAT) ( coef ) ) * ( quantval ) )
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Perform dequantization and inverse DCT on one block of coefficients.
|
||
|
*/
|
||
|
|
||
|
GLOBAL void
|
||
|
jpeg_idct_float( j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||
|
JCOEFPTR coef_block,
|
||
|
JSAMPARRAY output_buf, JDIMENSION output_col ) {
|
||
|
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||
|
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||
|
FAST_FLOAT z5, z10, z11, z12, z13;
|
||
|
JCOEFPTR inptr;
|
||
|
FLOAT_MULT_TYPE * quantptr;
|
||
|
FAST_FLOAT * wsptr;
|
||
|
JSAMPROW outptr;
|
||
|
JSAMPLE * range_limit = IDCT_range_limit( cinfo );
|
||
|
int ctr;
|
||
|
FAST_FLOAT workspace[DCTSIZE2];/* buffers data between passes */
|
||
|
SHIFT_TEMPS
|
||
|
|
||
|
/* Pass 1: process columns from input, store into work array. */
|
||
|
|
||
|
inptr = coef_block;
|
||
|
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||
|
wsptr = workspace;
|
||
|
for ( ctr = DCTSIZE; ctr > 0; ctr-- ) {
|
||
|
/* Due to quantization, we will usually find that many of the input
|
||
|
* coefficients are zero, especially the AC terms. We can exploit this
|
||
|
* by short-circuiting the IDCT calculation for any column in which all
|
||
|
* the AC terms are zero. In that case each output is equal to the
|
||
|
* DC coefficient (with scale factor as needed).
|
||
|
* With typical images and quantization tables, half or more of the
|
||
|
* column DCT calculations can be simplified this way.
|
||
|
*/
|
||
|
|
||
|
if ( ( inptr[DCTSIZE * 1] | inptr[DCTSIZE * 2] | inptr[DCTSIZE * 3] |
|
||
|
inptr[DCTSIZE * 4] | inptr[DCTSIZE * 5] | inptr[DCTSIZE * 6] |
|
||
|
inptr[DCTSIZE * 7] ) == 0 ) {
|
||
|
/* AC terms all zero */
|
||
|
FAST_FLOAT dcval = DEQUANTIZE( inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] );
|
||
|
|
||
|
wsptr[DCTSIZE * 0] = dcval;
|
||
|
wsptr[DCTSIZE * 1] = dcval;
|
||
|
wsptr[DCTSIZE * 2] = dcval;
|
||
|
wsptr[DCTSIZE * 3] = dcval;
|
||
|
wsptr[DCTSIZE * 4] = dcval;
|
||
|
wsptr[DCTSIZE * 5] = dcval;
|
||
|
wsptr[DCTSIZE * 6] = dcval;
|
||
|
wsptr[DCTSIZE * 7] = dcval;
|
||
|
|
||
|
inptr++; /* advance pointers to next column */
|
||
|
quantptr++;
|
||
|
wsptr++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Even part */
|
||
|
|
||
|
tmp0 = DEQUANTIZE( inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] );
|
||
|
tmp1 = DEQUANTIZE( inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] );
|
||
|
tmp2 = DEQUANTIZE( inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] );
|
||
|
tmp3 = DEQUANTIZE( inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] );
|
||
|
|
||
|
tmp10 = tmp0 + tmp2;/* phase 3 */
|
||
|
tmp11 = tmp0 - tmp2;
|
||
|
|
||
|
tmp13 = tmp1 + tmp3;/* phases 5-3 */
|
||
|
tmp12 = ( tmp1 - tmp3 ) * ( (FAST_FLOAT) 1.414213562 ) - tmp13;/* 2*c4 */
|
||
|
|
||
|
tmp0 = tmp10 + tmp13;/* phase 2 */
|
||
|
tmp3 = tmp10 - tmp13;
|
||
|
tmp1 = tmp11 + tmp12;
|
||
|
tmp2 = tmp11 - tmp12;
|
||
|
|
||
|
/* Odd part */
|
||
|
|
||
|
tmp4 = DEQUANTIZE( inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] );
|
||
|
tmp5 = DEQUANTIZE( inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] );
|
||
|
tmp6 = DEQUANTIZE( inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] );
|
||
|
tmp7 = DEQUANTIZE( inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] );
|
||
|
|
||
|
z13 = tmp6 + tmp5; /* phase 6 */
|
||
|
z10 = tmp6 - tmp5;
|
||
|
z11 = tmp4 + tmp7;
|
||
|
z12 = tmp4 - tmp7;
|
||
|
|
||
|
tmp7 = z11 + z13; /* phase 5 */
|
||
|
tmp11 = ( z11 - z13 ) * ( (FAST_FLOAT) 1.414213562 );/* 2*c4 */
|
||
|
|
||
|
z5 = ( z10 + z12 ) * ( (FAST_FLOAT) 1.847759065 );/* 2*c2 */
|
||
|
tmp10 = ( (FAST_FLOAT) 1.082392200 ) * z12 - z5;/* 2*(c2-c6) */
|
||
|
tmp12 = ( (FAST_FLOAT) -2.613125930 ) * z10 + z5;/* -2*(c2+c6) */
|
||
|
|
||
|
tmp6 = tmp12 - tmp7;/* phase 2 */
|
||
|
tmp5 = tmp11 - tmp6;
|
||
|
tmp4 = tmp10 + tmp5;
|
||
|
|
||
|
wsptr[DCTSIZE * 0] = tmp0 + tmp7;
|
||
|
wsptr[DCTSIZE * 7] = tmp0 - tmp7;
|
||
|
wsptr[DCTSIZE * 1] = tmp1 + tmp6;
|
||
|
wsptr[DCTSIZE * 6] = tmp1 - tmp6;
|
||
|
wsptr[DCTSIZE * 2] = tmp2 + tmp5;
|
||
|
wsptr[DCTSIZE * 5] = tmp2 - tmp5;
|
||
|
wsptr[DCTSIZE * 4] = tmp3 + tmp4;
|
||
|
wsptr[DCTSIZE * 3] = tmp3 - tmp4;
|
||
|
|
||
|
inptr++; /* advance pointers to next column */
|
||
|
quantptr++;
|
||
|
wsptr++;
|
||
|
}
|
||
|
|
||
|
/* Pass 2: process rows from work array, store into output array. */
|
||
|
/* Note that we must descale the results by a factor of 8 == 2**3. */
|
||
|
|
||
|
wsptr = workspace;
|
||
|
for ( ctr = 0; ctr < DCTSIZE; ctr++ ) {
|
||
|
outptr = output_buf[ctr] + output_col;
|
||
|
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||
|
* However, the column calculation has created many nonzero AC terms, so
|
||
|
* the simplification applies less often (typically 5% to 10% of the time).
|
||
|
* And testing floats for zero is relatively expensive, so we don't bother.
|
||
|
*/
|
||
|
|
||
|
/* Even part */
|
||
|
|
||
|
tmp10 = wsptr[0] + wsptr[4];
|
||
|
tmp11 = wsptr[0] - wsptr[4];
|
||
|
|
||
|
tmp13 = wsptr[2] + wsptr[6];
|
||
|
tmp12 = ( wsptr[2] - wsptr[6] ) * ( (FAST_FLOAT) 1.414213562 ) - tmp13;
|
||
|
|
||
|
tmp0 = tmp10 + tmp13;
|
||
|
tmp3 = tmp10 - tmp13;
|
||
|
tmp1 = tmp11 + tmp12;
|
||
|
tmp2 = tmp11 - tmp12;
|
||
|
|
||
|
/* Odd part */
|
||
|
|
||
|
z13 = wsptr[5] + wsptr[3];
|
||
|
z10 = wsptr[5] - wsptr[3];
|
||
|
z11 = wsptr[1] + wsptr[7];
|
||
|
z12 = wsptr[1] - wsptr[7];
|
||
|
|
||
|
tmp7 = z11 + z13;
|
||
|
tmp11 = ( z11 - z13 ) * ( (FAST_FLOAT) 1.414213562 );
|
||
|
|
||
|
z5 = ( z10 + z12 ) * ( (FAST_FLOAT) 1.847759065 );/* 2*c2 */
|
||
|
tmp10 = ( (FAST_FLOAT) 1.082392200 ) * z12 - z5;/* 2*(c2-c6) */
|
||
|
tmp12 = ( (FAST_FLOAT) -2.613125930 ) * z10 + z5;/* -2*(c2+c6) */
|
||
|
|
||
|
tmp6 = tmp12 - tmp7;
|
||
|
tmp5 = tmp11 - tmp6;
|
||
|
tmp4 = tmp10 + tmp5;
|
||
|
|
||
|
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||
|
|
||
|
outptr[0] = range_limit[(int) DESCALE( (INT32) ( tmp0 + tmp7 ), 3 )
|
||
|
& RANGE_MASK];
|
||
|
outptr[7] = range_limit[(int) DESCALE( (INT32) ( tmp0 - tmp7 ), 3 )
|
||
|
& RANGE_MASK];
|
||
|
outptr[1] = range_limit[(int) DESCALE( (INT32) ( tmp1 + tmp6 ), 3 )
|
||
|
& RANGE_MASK];
|
||
|
outptr[6] = range_limit[(int) DESCALE( (INT32) ( tmp1 - tmp6 ), 3 )
|
||
|
& RANGE_MASK];
|
||
|
outptr[2] = range_limit[(int) DESCALE( (INT32) ( tmp2 + tmp5 ), 3 )
|
||
|
& RANGE_MASK];
|
||
|
outptr[5] = range_limit[(int) DESCALE( (INT32) ( tmp2 - tmp5 ), 3 )
|
||
|
& RANGE_MASK];
|
||
|
outptr[4] = range_limit[(int) DESCALE( (INT32) ( tmp3 + tmp4 ), 3 )
|
||
|
& RANGE_MASK];
|
||
|
outptr[3] = range_limit[(int) DESCALE( (INT32) ( tmp3 - tmp4 ), 3 )
|
||
|
& RANGE_MASK];
|
||
|
|
||
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* DCT_FLOAT_SUPPORTED */
|