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Abstract 
 

A continuous collision detection algorithm is presented which detects collisions 
between arbitrary polyhedra in motion by evaluating trajectory parameterizations 
of polyhedral features. The presented algorithm strictly prevents interpenetration 
and does not report any collisions until polyhedra are in contact within a small 
floating-point epsilon. While using trajectory parameterization for collision 
detection between polyhedra is not new, a novel approach is presented for 
dealing with numerical error due to rounding in floating-point collision detection 
calculations. Furthermore, several optimizations are presented that significantly 
reduce the computational cost. The presented algorithm has been shown to be 
fast, robust and accurate and has been successfully implemented and employed 
in the computer game DOOM III. 

 
1. Introduction 
 
The problem of collision detection is encountered in many different fields like robotics, computer 
graphics, virtual reality environments and computer games. Different applications may have 
different requirements when it comes to the various aspects of a collision detection system, like 
accuracy and computational cost. Ideally a collision detection system is fast, accurate, robust and 
does not restrict the shape and geometric complexity of collision primitives. 
 
The computational cost of collision detection is always an important issue because in today's 
simulations many objects with a variety of geometric detail may be in motion at the same time 
requiring the detection of many collisions. Therefore many collision detection algorithms gain 
speed at the cost of loosing precision. Many approaches allow objects to interpenetrate or 
collisions are detected while objects are still significantly separated. Many collision detection 
algorithms also restrict the shapes of the objects that can be used, or complex objects are 
approximated with simple shapes like boxes, spheres, elipsoids and cylinders. However, with the 
ability to visualize simulations with high detail real-time lighting and shadowing on today’s 
computers, the accuracy of collision detection algorithms has become a more important issue in a 
variety of interactive applications. 
 
The collision detection algorithm described in this paper has been developed for the computer 
game DOOM III. In this computer game the real-time physically simulated objects are displayed 
with high detail real-time lighting and shadowing. Therefore the collision detection does not only 
have to be robust but also particularly accurate. Premature detection of collisions may keep 
objects visibly separated causing unrealistic lighting effects such as light passing through the 
spaces in between stacked objects. On the other hand, late detection of collisions may cause 
objects to interpenetrate or overlap which causes rendering artifacts such as Z-fighting where 
rendered pixels on screen rapidly change color as the view point changes gradually. Not only 
accuracy, but also performance is particularly important in DOOM III because a lot of computer 
resources are already dedicated to rendering at high frame rates. 
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1.1 Previous work 
 
Many algorithms for 3D collision detection have been proposed in literature. These algorithms 
can generally be grouped into four different approaches based on solving strategy [2]: space-time 
intersection tests, swept volume interference detection, multiple interference detection and 
trajectory parameterization. 
 
Approaches based on space-time intersection tests solve the collision detection problem in its 
most general form. These approaches use 4D extruded volumes of 3D objects in motion to 
calculate collisions [4, 7]. Such an extruded volume is the spatio-temporal set of points that 
represents the spatial occupancy of the object as it moves along its trajectory. For more general 
motions than translations the extruded volumes are bounded by complex hypersurfaces which 
makes it difficult to implement algorithms to calculate intersections between such volumes. 
 
Approaches based on swept volume interference detection use volumes that contain all the 
points occupied by a moving object during a time period [8, 9]. Such a swept volume is in 
essence a projection of a 4D extruded volume onto a lower dimensional subspace. If the swept 
volumes of two moving objects do not intersect there is no collision. However, when the swept 
volumes do intersect there is not necessarily a collision. Only for a single moving object colliding 
with one or more stationary objects, a swept volume intersection is both a sufficient and 
necessary condition for a collision to take place. 
 
Approaches based on multiple interference detection are most widely used to find collisions [10, 
12, 14, 18, 19, 30, 32, 33]. Objects are considered to be in a colliding state when they 
interpenetrate. The object trajectories are sampled in time and static interference tests are 
applied repeatedly. A too coarse sampling may cause collisions to be missed and a too fine 
sampling can be computationally expensive. Stepping back in time and recalculating interference 
may be required to find more accurate points of collision. In most cases, intersection tests 
between simple geometric entities are used for the interference detection. Some algorithms, like 
the ones based on GJK [10] require the collision primitives to be convex. Other algorithms only 
use simple mathematical shapes like boxes, spheres, and cylinders. 
 
Approaches based on trajectory parameterization determine collisions analytically by expressing 
the object trajectories as functions of the parameter time [39, 40]. The degrees of the polynomials 
used to describe complex motions can be arbitrarily high. Polynomials of order 5 and above 
cannot be solved analytically and the computation of collisions can be very expensive. Therefore 
the motion of an object between two positions along its trajectory is often replaced by an arbitrary 
motion which can be described with a low degree polynomial. 
 
The algorithm presented in this paper is based on trajectory parameterization. Similar 
formulations for the basic collision detection calculations were first introduced in [39] and later in 
[43]. This paper, however, presents a novel approach for dealing with numerical error in floating-
point collision detection calculations, and describes several optimizations that significantly reduce 
the computational cost. 
 
 
1.2 Layout 
 
Section 2 describes the basic collision detection calculations. In section 3 a method is presented 
for dealing with numerical error in collision detection calculations on computers. Section 4 
suggest several optimizations for the basic collision detection calculations. A broad phase for 
minimizing the exact collision detection calculations by first localizing possible collision regions is 
described in section 5. The results of implementing and using the described collision detection 
system in DOOM III are presented in section 6 and several conclusions are drawn in section 7. 
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2. Collision detection between arbitrary polyhedra 
 
During a simulation multiple polyhedra can usually move simultaneously. However, for the 
described algorithm the polyhedra are assumed to be moving separately, one by one, for short 
periods of time. Therefore the collision detection problem is reduced to a single moving 
polyhedron colliding with one or more stationary polyhedra. Moving polyhedra one by one may 
cause certain collisions to be missed when the polyhedra move over relatively large distances, 
but in many applications this is not a problem. Besides, the collision detection problem of two 
polyhedra in motion can always be reduced to one polyhedron in motion and one stationary 
polyhedron by transforming the motion of the one polyhedron into the motion space of the other. 
In other words, the polyhedron in motion is moving relative to the motion of the other polyhedron. 
 
The motion between two positions along the path of a polyhedron can be a simultaneous rotation 
and translation. However, in many simulations the exact motion is unknown or ill-defined. If a 
parameterized formulation of this motion does exist, it often involves polynomial equations of 
degree 3 or higher. Solving such polynomial equations on a computer is not only costly but also 
introduces considerable numerical error in the results, even if an explicit formulation of the roots 
exists. For this reason any motion between two positions along the path of a polyhedron is 
replaced with a separate translation and a separate rotation. For a translation and a rotation 
about an arbitrary axis, the polynomial equations to be solved have at most degree two. The 
exact motion between two positions along the path of a polyhedron is usually not described by 
this separate translation and rotation. However, when no collisions occur, the initial and final 
position of a polyhedron are still the same, and if the movement between the two positions is 
small there is usually little difference even if there are collisions. Most simulations are also 
visualized by rendering distinct frames where the visual representation of a polyhedron is only 
updated at certain positions along its path. Therefore using a more accurate parameterization of 
the motion of a polyhedron may be important for the accuracy of the simulation of discontinuities, 
but it is typically not particularly important for making a simulation look visually plausible. 
 
The continuous surfaces of a polyhedron consist of planar faces (polygons) with straight 
boundaries (edges). Each edge is defined by two points (vertices) that mark the start and end of 
an edge. Although the polyhedra can have any shape, the presented algorithm requires polygons 
to be convex. To find collisions between polyhedra, only the motion of a vertex and an edge need 
to be parameterized because only these features of one polyhedron can collide with the polygons 
or edges of another polyhedron. Collisions are classified as either vertex-polygon or edge-edge 
collisions. The degenerate cases, vertex-vertex and vertex-edge, are not considered and are 
always classified as vertex-polygon collisions. 
 
 
2.1  Plücker coordinates 
 
The presented algorithm is described in terms of Plücker coordinates [48, 49, 50, 51]. More 
general Grassman coordinates or Geometric Algebra could be used instead but, in the context of 
the described algorithm, Plücker coordinates provide a concise representation without the need 
for a more involved algebra. 
 
To find a parameterization of the motion of an edge, and to be able to easily verify boundaries for 
collisions, each edge of a polygon is described with a Plücker coordinate. Additionally, a vertex in 
combination with its direction of motion is represented by a Plücker coordinate. 
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Any ordered pair of distinct points in three-space, a = ( ax, ay, az ) and b = ( bx, by, bz ) defines a 
directed line in three dimensions. This line corresponds to a projective six-tuple p = (p0, p1, p2, p3, 
p4, p5 ) of which each component is the determinant of a 2x2 minor of the 2x4 matrix which has 
the homogenous coordinates of the points a and b as rows: 
 
ax ay az 1 

bx by bz 1 

 
This six-tuple, which relates to a point in Plücker space, is defined by: 
 
p0 = axby - bxay 
p1 = axbz - bxaz 
p2 = ax - bx 
p3 = aybz - byaz 
p4 = az - bz 
p5 = by - ay 

 
The six coordinates are not independent and they must satisfy the following equation whose 
solution constitutes the Plücker hypersurface or Grassman manifold. 
 
0 = p0p4 + p1p5 + p2p3 
 
If p = ( p0, p1, p2, p3, p4, p5 ) and q = ( q0, q1, q2, q3, q4, q5 ) are the Plücker coordinates for two 
directed lines a-b and c-d respectively, then the following permuted inner product describes a 
sidedness relation between these lines. 
 
s = p0q4 + p1q5 + p2q3 + p4q0 + p5q1 + p3q2 
 
This sidedness relation is equivalent to the determinant of the following 4x4 matrix: 
 
ax ay az 1 

bx by bz 1 
cx cy cz 1 

dx dy dz 1 

 
The absolute value of this determinant represents the volume of the tetrahedron whose vertices 
are: a, b, c and d. The sign of the determinant is positive if the lines a-b and c-d have the same 
orientation as the reference frame chosen in three-space. When the volume vanishes the 4 points 
are coplanar and therefore the two lines a-b and c-d intersect. In other words, the sidedness 
relation describes how the lines are oriented in space relative to each other as shown in Fig. 1. 
 

   
s < 0 s = 0 s > 0 

 
Fig. 1: sidedness relation between two lines in three dimensional space. 
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The position in combination with the direction of motion of a point in three-space can also be 
represented by a Plücker coordinate. The position a = (ax, ay, az) and the direction of motion v = 
(vx, vy, vz) of a point correspond to the following Plücker coordinate: 
 
p0 = axvy – vxay 
p1 = axvz – vxaz 
p2 = – vx 
p3 = ayvz – vyaz 
p4 = – vz 
p5 = vy 

 
The permuted inner product of this Plücker coordinate with the Plücker coordinate of a directed 
line can be used to determine at which side the point passes the line. 
 
The polygons of a polyhedron are planar faces. A polygon plane p = ( pa, pb, pc, pd ) is 
represented by the plane equation: 
 
pax + pby + pcz + pd = 0 

 
The normal vector of this plane represented by ( pa, pb, pc ) points towards the half-space at the 
front of the polygon plane, and towards the outside the polyhedron. Collisions are assumed to 
only take place with the front side of polygons. A polygon must be convex and the edges are 
stored counter clockwise when the polygon is viewed from the front. The Plücker coordinates for 
these edges also describe lines in a counter clockwise fashion. 
 
 
2.2 Translational vertex-polygon collisions 
 
During a translation a vertex of one polyhedron can collide with a polygon of another polyhedron. 
If a = ( ax, ay, az ) is the position of a vertex before translation and v = ( vx, vy, vz ) is the translation 

vector and p = ( pa, pb, pc, pd ) is the polygon plane, then  and  are defined as follows: 
 

 = paax+ pbay+ pcaz+ pd 

 = pavx+ pbvy+ pcvz 
 

When  = 0 the translation is parallel to the plane and there will be no collision. The fraction f of 
the translation completed before colliding with the polygon plane is given by: 
 

f =  /  
 

Only if f  [0, 1] there is a collisions during the translation along v. Furthermore, the vertex only 
collides with the polygon if the plane is hit between the polygon edges. To verify if the latter is true 
the position of the vertex in combination with the translation vector is represented by a Plücker 
coordinate as described in section 2.1. The polygon edges are also represented by Plücker 
coordinates which describe lines in a counter clockwise fashion. If the permuted inner product of 
the Plücker coordinate for the vertex translation with each Plücker coordinate for a polygon edge, 
results in a positive scalar, then the vertex collides with the front of the polygon between the 
edges. Using the inner product between Plücker coordinates to verify if a vertex collides with a 
polygon plane between the polygon edges works better than for instance commonly used inside 
triangle tests. For two adjacent polygons that share an edge the sidedness relation is exactly the 
same and there is no degenerate case at the shared edge due to numerical error. 
 
 
2.3 Translational edge-edge collisions 
 
During a translation an edge of one polyhedron can collide with an edge of another polyhedron. 
The two supporting lines of these edges lie in a plane when the permuted inner product of their 
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Plücker coordinates is zero. The collision with a stationary edge can be calculated by substituting 
a translation vector into the Plücker coordinate of a translating edge. The Plücker coordinate of 
the stationary edge is q = (q0, q1, q2, q3, q4, q5 ) and the translation is given by the vector v = ( vx, 
vy, vz ). If p = (p0, p1, p2, p3, p4, p5 ) is the Plücker coordinate for the translating edge through a = ( 
ax, ay, az ) and b = ( bx, by, bz ) then the translation p

t
 is defined by: 

 
p

t
0 = (ax+ vxf) (by+ vyf) – (bx+ vxf) (ay+ vyf) 

p
t
1 = (ax+ vxf) (bz+ vzf) – (bx+ vxf) (az+ vzf) 

p
t
2 = ax – bx 

p
t
3 = (ay+ vyf) (bz+ vzf) – (by+ vyf) (az+ vzf) 

p
t
4 = az – bz 

p
t
5 = by – ay 

 
Here f is the fraction of the translation completed. Substituting this Plücker coordinate into the 
permuted inner product with the Plücker coordinate of the stationary edge results in: 
 

 = p0q4 + p1q5 + p2q3 + p4q0 + p5q1 + p3q2 

 = q4 (– p2vy – p5vx ) + q5 ( – p2vz + p4vx ) + q2 ( p5vz + p4vy ) 
 

f =  /  
 

 is the permuted inner product of the Plücker coordinates for the lines. If  = 0 the lines are 

parallel and any collisions will be found as vertex-polygon collisions. Only if f  [0, 1] there is a 
collisions during the translation along the vector v. Edges are line segments and a collision 
between edges can only occur when the supporting lines of the edges collide, and the collision is 
between the bounds of the edges. To verify if two edges collide between the vertices that define 
their bounds these vertices in combination with the translation vector are represented by Plücker 
coordinates as described in section 2.1. If the permuted inner products between each of the two 
Plücker coordinates for the vertices of one edge and the Plücker coordinate of a second edge 
have a different sign, then the first edge collides with the supporting line of the second edge 
between its bounds. The same calculation can be used to verify if the supporting line of the first 
edge collides between the vertices of the second edge. Notice that these are the same sidedness 
calculations as used to verify if a vertex collides with a polygon plane between the polygon edges. 
 
 
2.4 Rotational vertex-polygon collisions 
 
During a rotation a vertex of one polyhedron can collide with a polygon of another polyhedron. 
Instead of rotating a vertex about an arbitrary axis, a vertex is rotated about the z-axis. A situation 
with a vertex rotating about an arbitrary axis can always easily be transformed such that the 
rotation axis becomes the z-axis. The polygon plane is p = ( pa, pb, pc, pd ) and the angle of 

rotation about the z-axis is . If a = ( ax, ay, az ) is the position of a vertex before rotation then the 
rotation of this point a

r
 is given by: 

 

a
r
x = axcos  + aysin  

a
r
y = aycos  – axsin  

a
r
z = az 

 

Here  is the angle of rotation. Substituting this point in the plane equation results in: 
 
v0 = pcaz + pd 
v1 = paay – pbax 
v2 = paax + pbay 

v2 cos  + v1 sin  + v0 = 0 
 
By substituting the following parametric formulation: 
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sin  = 2 r / ( 1 + r
2
 ),    cos  = ( 1 – r

2
 ) / ( 1 + r

2
 ),    r = tan(  / 2 )  for  0 <  <  

 
the equation becomes a quadratic equation: 
 
a r

2
 + 2 b r + c = 0 

a = v0 - v2,    b = v1,    c = v0 + v2 
 
with roots: 
 
r1 = ( –b + √( b

2
 – a c ) ) / a 

r2 = ( –b – √( b
2
 – a c ) ) / a 

 
The two fractions of rotation completed before a collision occurs are given by: 
 

f1 = 2 arctan( r1 ) /  

f2 = 2 arctan( r2 ) /  
 
As expected there are in general two angles at which the vertex collides with the polygon plane. If 

a = 0 and b  0 there is one collision at time –c / b and another at , which corresponds to a 

rotation angle  = . The degenerate case a = b = c = 0 occurs if the rotation axis is orthogonal to 
the plane. The smallest fraction in the range [0-1] gives the first collision with the polygon plane. 
To verify if a collision occurs between the polygon edges a similar procedure is used as for the 
translational case. The vertex is first rotated up to the point of collision. At that point the position 
of the vertex in combination with the direction of motion of the vertex is used to verify if the 
collision occurs between the polygon edges. 
 
 
2.5 Rotational edge-edge collisions 
 
During a rotation an edge of one polyhedron can collide with an edge of another polyhedron. Just 
like with the vertex-polygon collision calculations a stationary edge and a rotating edge are 
transformed such that the rotation axis becomes the z-axis. The collision with a stationary edge 
can be calculated by substituting a rotation into the Plücker coordinate of a rotating edge. The 
Plücker coordinate of the stationary edge is q = ( q0, q1, q2, q3, q4, q5 ) and the angle of rotation 

about the z-axis is . If p = ( p0, p1, p2, p3, p4, p5 ) is the Plücker coordinate for the rotating edge 
through a = ( ax, ay, az ) and b = ( bx, by, bz ), then the rotation p

r
 is defined by: 

 

p
r
0 = (axcos  + aysin ) (bycos  – bxsin ) – (bxcos  + bysin ) (aycos  – axsin ) 

p
r
1 = (axcos  + aysin ) bz – (bxcos  + bysin ) az 

p
r
2 = (axcos  + aysin ) – (bxcos  + bysin ) 

p
r
3 = (aycos  – axsin ) bz – (bycos  – bxsin ) az 

p
r
4 = az – bz 

p
r
5 = (bycos  – bxsin ) – (aycos  – axsin ) 

 

Here  is the angle of rotation. Substituting this Plücker coordinate into the permuted inner 
product with the Plücker coordinate of the stationary edge results in: 
 
v0 = q0p4 + q4p0 

v1 = q1p2 – q2p1 + q5p3 – q3p5 
v2 = q1p5 + q2p3 + q5p1 + q3p2 

v2 cos  + v1 sin  + v0 = 0 
 
By substituting the following parametric formulation: 
 

sin  = 2 r / ( 1 + r
2
 ),    cos  = ( 1 – r

2
 ) / ( 1 + r

2
 ),    r = tan(  / 2 )  for  0 <  <  
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the equation becomes a quadratic equation: 
 
a r

2
 + 2 b r + c = 0 

a = v0 - v2,    b = v1,    c = v0 + v2 
 
with roots: 
 
r1 = ( –b + √( b

2
 – a c ) ) / a 

r2 = ( –b – √( b
2
 – a c ) ) / a 

 
The two fractions of rotation completed before a collision occurs are given by: 
 

f1 = 2 arctan( r1 ) /  

f2 = 2 arctan( r2 ) /  
 
There are in general two angles for which the supporting lines of the edges intersect. If a = 0 and 

b  0 there is one collision at time –c / b and another at , which corresponds to a rotation angle 

 = . The degenerate case a = b = c = 0 occurs if both supporting lines intersect the rotation axis 
in the same point or if both are parallel to it or if both lie in the same plane perpendicular to the 
axis of rotation. In these cases there will be either no collision or the collision will be found as a 
vertex-polygon collision. The smallest fraction in the range [0-1] gives the first collision between 
the supporting lines of the edges. Edges are line segments and a collision between edges can 
only occur when the supporting lines of the edges collide, and the collision is between the bounds 
of the edges. To verify if a collision occurs between the edge bounds a similar procedure is used 
as for the translational case. However, the rotating line is first rotated up to the point of collision. 
At that point the direction of motion at the collision point is used in combination with the edge 
vertices to verify if the collision occurs between the edge bounds. 
 
2.6 Retrieving contact points 
 
If two triangles are considered for collision detection there will be 6 vertex-polygon and 9 edge-
edge translational and rotational collision detection calculations. Using the translational and 
rotational collision detection described above the first collision can be found by sorting the 
fractions or angles for which collisions occur between edges, vertices and polygons. For physics 
simulations it is often important to retrieve all the contact points between two objects in a colliding 
state. Retrieving these contact points is relatively easy. Instead of searching for the first collision, 
all the collisions between edges, vertices and polygons within a small distance from the moving 
object are listed. This small distance is the numerical tolerance within which objects are 
considered to be touching each other. The contacts can be gathered in an omni-directional 
fashion by translating the features of a polyhedron outwards along the polygon plane normals and 
edge normals. The contact point for vertex-polygon collisions is the position of the vertex at the 
moment of impact. For edge-edge collisions the contact point is the intersection of the supporting 
lines at the moment of impact. This intersection point can easily be calculated by constructing a 
plane through one of the lines and calculating the intersection of this plane with the other line. 
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3. Expel zone 
 
An issue often neglected in exact collision detection algorithms is dealing with rounding in 
calculations on computers. Scalars are typically stored as floating-point numbers which are 
represented by a limited number of bits, and as such are limited in precision and subject to 
rounding. As more calculations are performed with these numbers the rounding errors 
accumulate. The accumulated error is often relatively small, but with an algebraic approach to 
collision detection as described here, the accumulated error can pose an interesting problem. 
Once a collision has been detected a polyhedron is usually moved up to the point of collision. At 
this point the colliding polyhedra should be touching each other exactly. However, this might not 
be true because of rounding in the collision detection calculations. The polyhedra might be 
slightly separated or they may interpenetrate. Once the polyhedra intersect, no collisions will be 
found during a next query if the polyhedra still move towards each other because collisions are 
only calculated between the boundary representations of the polyhedra. When polyhedra are in a 
colliding state constraints can be introduced which allow the polyhedra to only move away from 
each other. However, the results are often poor because of algorithmic complexity. 
 
Instead, an expel zone is introduced which tightly fits around a polyhedron. The thickness of this 
expel zone is just larger than the maximum accumulated error which can be built up during 
collision detection calculations. A polyhedron will not collide with the exact representation of 
another polyhedron, but with the outer hull of the expel zone. Due to rounding a polyhedron can 
slightly poke into the expel zone of another polyhedron. However, the polyhedron will never 
intersect with the other polyhedron because the expel zone is larger than the maximum 
accumulated error in the collision detection calculations. Any polyhedral fragment which ends up 
in the expel zone of another polyhedron, may only move through the expel zone in a direction 
which leads the fragment away from the other polyhedron. Fortunately such an expel zone can be 
implemented with just a small amount of logic and few calculations. In general the expel zone 
does not slow down collision detection queries. 
 
The expel zone is assumed to have a thickness e. The error built up during collision detection 
calculations is assumed to be smaller than e at all times. The checks to verify if a collision occurs 
between polygon edges or between edge bounds are not affected by the expel zone and stay the 
same. 
 
 
3.1 Translational vertex-polygon 
 

When  and  are defined as in section 2.2, the expel zone for the translational vertex-polygon 
collision detection is implemented in pseudo code as follows. 
 
IF   0 THEN 
   f = 1 
ELSE 

   f = min( max( ( – e) / , 0 ), 1 ) 
ENDIF 

 
The above pseudo code implements the expel zone where a point is only allowed to move away 
from a stationary polyhedron once it ends up inside the expel zone. 
 
 
3.2 Translational edge-edge 
 
Implementing the expel zone for the translational edge-edge collision detection is no more 
complicated than for translational vertex-polygon collisions. When the planes of two polygons that 
share a stationary edge are expanded with e they intersect at a line. This line is used for the 
expel zone for translational edge-edge collision detection. First the fraction f1 of the translation 
completed before the translating edge collides with the stationary edges is calculated. If this 
fraction is negative the edges move away from each other and there will be no collision. Next the 
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fraction f2 of the translation completed before the translating edge collides with the line created by 
the expanded polygon planes is calculated. If this fraction f2 is larger than 1 or f1 is smaller than f2 
there is no collision. The expel zone for the translational edge-edge collision detection as 
described in section 2.3 is implemented in pseudo code as follows: 
 
IF f1 < 0 THEN 
   f = 1 
ELSE 

   IF f2  1  f1 < f2 THEN 
      f = 1 
   ELSE 
      f = max( f2, 0 ) 
   ENDIF 
ENDIF 

 
As can be easily verified, the above pseudo code implements the expel zone for the translational 
edge-edge collision detection where the translating edge is only allowed to move away from the 
stationary edge once it is in the expel zone. 
 
 
3.3 Rotational vertex-polygon 
 
Implementing the expel zone for rotational vertex-polygon collision detection is a little bit more 
complicated. During rotation a point in the expel zone can first move deeper into the expel zone 
and later move out of the expel zone, or the other way around. Three different rotations of a point 
in the expel zone are shown in Fig. 2-4. The hatched lines at the bottom represent a stationary 
polyhedron. The dashed line represents the outer hull of the expel zone. 

   
Fig. 2: Stop immediately. Fig. 3: Move up to top. Fig. 4: Move out and collide. 

 
The expel zone is implemented such that any rotating point in the expel zone can only move 
away from the stationary polyhedron at any time. In the situation shown in Fig. 2 the point is not 
allowed to rotate at all because the initial direction of motion leads the point deeper into the expel 
zone. The point in Fig. 3 is only allowed to rotate up to the point where it is furthest away from the 
stationary polyhedron. In the situation shown in Fig. 4 the point first moves out of the expel zone 
and then collides with the expel zone. In this case only the rotation up to the point of collision with 
the outer hull of the expel zone is allowed. 
 
To implement this expel zone the direction of motion at the initial position, and the fraction at 
which the point is furthest away from the polyhedron are required. The derivative of the 
parametric formulation for the rotation can be used to acquire both. The derivative of the 
parametric formulation given in section 2.4 is: 
 

v1 cos  – v2 sin  
 

The derivative at  = 0 (called s) gives the direction of motion at the initial position. The equation 
for the derivative can be set to zero to find the fraction of rotation for which the point is furthest 
away from the polygon plane. The same strategy as described in section 2.4 is used for solving 
this equation. If the point moves away from the polygon in the initial position then the smallest 
fraction larger than zero, which is calculated by setting the derivative to zero, is called d and is the 
position where the point is furthest away from the polygon. f1 and f2 are defined as in section 2.4, 
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however, they are calculated with the polygon plane expanded with e. The expel zone for the 
rotational vertex-polygon collision detection is implemented in pseudo code as follows: 
 
IF the vertex is in the expel zone THEN 
   IF s < 0 THEN 
      f = 0 
   ELSE 
      IF f1 and f2 are valid THEN 
         f = min( max( f1, f2, 0 ), 1 ) 
      ELSE 
         f = min( max( d, 0 ), 1 ) 
   ENDIF 
ELSE 
   IF f1 and f2 are valid THEN 
      f = min( max( f1, sign( - f1 ) ), max( f2, sign( - f2 ) ), 1 ) 
   ELSE 
      f = 1 
   ENDIF 
ENDIF 
 
To verify if the vertex starts inside the expel zone the distance of the initial vertex position to the 
polygon plane is used which is trivially calculated. The fractions f1 and f2 do not have to be valid at 
all times because the vertex might not collide with the expanded polygon at all during the rotation. 
The above pseudo code handles this situation checking if both fractions are valid. In case there is 
only a single collision with the expanded polygon plane both fractions are assumed to be the 
same. 
 
 
3.4 Rotational edge-edge 
 
The expel zone for rotational edge-edge collision detection works very similar to the expel zone 
for rotational vertex-polygon collisions. Just like with the translational edge-edge collision 
detection an additional line is used which is the intersection of two expanded polygons that share 
a stationary edge. For the rotating line to start in the expel zone it has to start between the 
stationary edge and intersection line of the expanded polygons. This can be verified by looking at 
the signs of the permuted inner products of the Plücker coordinates of the rotating edge with the 
stationary edge, and with the intersection line of the expanded polygons. Just like with the 
rotational vertex-polygon collision detection the derivative of the parametric formulation for the 
rotation of the edge is used to find the fraction of rotation for which the edges are furthest apart. 
Furthermore the pseudo code which implements the expel zone for the rotational edge-edge 
collision detection is the same as for the rotational vertex-polygon collisions. 
 
 
3.5 Expel zone in practice 
 
Whether or not a vertex or edge starts in the expel zone of another polyhedron needs to be 
calculated for the rotational collision detection. These calculations have numerical error 
themselves. However, these calculations are minor and the maximum numerical error of these 
calculations can be determined. This maximum error can be used as a tolerance to favor a vertex 
or edge to be in the expel zone. Assuming a vertex or edge is in the expel zone while it is still a 
tiny distance away, does not change the general behavior of the expel zone. 
 
For the expel zone for edge-edge collision detection the intersection line of two expanded planes 
is used. Such a line cannot be created for dangling edges because these edges are used by only 
a single polygon. However, in practice the dangling edge can be expanded in the polygon plane 
away from the polygon center. The supporting line of this expanded edge can be used instead. 
The expel zone for vertex-polygon collision detection covers for the discontinuity in the expel 
zone caused by the expansion of the edge in the polygon plane. Furthermore dangling edges can 
usually be avoided and in most applications objects only use continuous surfaces that completely 
enclose a volume. 
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When two polygons sharing a stationary edge meet at a very sharp angle the intersection line of 
the expanded polygon planes can be pushed out quite far from the stationary edge. As a result 
the expel zone can reach out relatively far at such sharp edges. The intersection line can 
however, be moved back towards the stationary edge such that the in between distance becomes 
smaller. There are no problems for the behavior of the expel zone due to the discontinuity in the 
expel zone caused by moving the intersection line. 
 
One might argue that objects can never “exactly” touch each other due to the expel zone. 
However, the expel zone is tiny because it only needs to be large enough to contain the error due 
to rounding in the calculations. Furthermore every object can be decreased in size with half the 
size of the expel zone before being used for collision detection, while keeping the visual 
representation of the objects the same. Objects can then “exactly” touch each other as far as the 
accumulated error of the collision detection calculations allows the positions of the objects to be 
accurate enough. 
 
 
4. Narrow phase optimizations 
 
In collision detection algorithms there is usually a distinction between a broad phase and a 
narrow phase. The collision detection calculations as described above are typically considered 
part of the narrow phase. In this phase the exact collisions are calculated. Although these 
calculations are straightforward and not very expensive in isolation, it can be quite expensive to 
test each pair of features of two polyhedra. These calculations can be minimized by first using a 
broad phase where possible collision regions are localized using bounding volume and spatial 
subdivision techniques. Before looking into this broad phase some optimizations are suggested 
for the narrow phase. 
 
The polyhedra used for collision detection are often continuous surfaces. As such a lot of edges 
and vertices are shared between multiple polygons. Using an appropriate data structure the 
collision detection calculations for shared edges and shared vertices only need to be performed 
once. 
 
Sidedness relations between three dimensional lines are used to verify if a vertex collides 
between the edges of a polygon, and to verify if two edges collide between their bounds. As 
mentioned earlier, a lot of the same sidedness calculations are used both to verify the boundaries 
for vertex-polygon and edge-edge collisions. When the memory is available to cache the results 
of these sidedness relations, there should be no reason to perform such computations more than 
once. Only the sign of the sidedness relation is used to verify the boundaries for collisions. 
Therefore the results of these relations can be efficiently stored in a bit cache, which keeps the 
memory requirements to a minimum. 
 
An arbitrary polyhedron which is not convex can have so called internal edges. Three such 
internal edges are shown as fat lines in Fig. 5. 
 

 
Fig. 5: Internal edges. 
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The two polygons that share an internal edge face towards each other. These internal edges can 
never collide with edges of another polyhedron and do not have to be considered for collision 
detection. If a vertex of a polyhedron is a boundary of only internal edges, the vertex can also 
never collide with polygons of another polyhedron. In Fig 5. the three internal edges meet at a 
vertex that does not have to be considered for collision detection. If the shape of a polyhedron 
used for collision detection does not change, the polyhedron can be preprocessed and the 
internal edges can be identified prior to any collision detection calculations. Although the internal 
edges do not have to be considered for collision detection, they are still required to verify if a 
vertex collides with a polygon plane between the polygon edges. 
 
Collisions are assumed to only occur with the front side of polygons. Therefore polygons that are 
facing away from the direction of motion do not have to be considered for collision detection. For 
the translational collision detection the direction of motion is constant and culling back facing 
polygons is trivial. For the rotational collision detection back face culling is somewhat more 
complicated. 
 
The computations for the rotational collision detection involve calculating the arc tangent of half 
the rotation angle. This is typically an expensive operation on a computer. Fortunately the tangent 

is a monotonic increasing function on the interval [-/2, /2]. Furthermore only collisions for 

rotations in the range [-, ] are considered. Therefore the first collision can be found by sorting 
the collisions based on the tangent of half the rotation angle, instead of sorting on the rotation 
angle itself. As a result there is no need to ever calculate the angle of rotation using an acr 
tangent calculation, because the sine and cosine for a specific rotation angle can be trivially 
derived from the tangent of half the rotation angle. The rotational collision detection also requires 
the calculation of square roots. There are very fast and relatively accurate algorithms available for 
square root calculations. Calculating the square root, represented by a 32 bit floating-point 
number, requires no more than two Newton-Rapson iterations [52]. 
 
 
5. Broad phase 
 
The exact collision detection calculations can the minimized by first localizing possible collision 
regions using bounding volume and spatial subdivision techniques. Bounding volumes can be 
used to easily determine if objects can possibly collide. Only when the bounding volumes of two 
objects or their motions overlap, there is a need to perform narrow phase collision detection. 
Commonly used bounding volumes are spheres, oriented bounding boxes (OBB), axis aligned 
bounding boxes (AABB), and discrete orientation polytopes (k-dops). Spheres are very easy to 
construct and overlap tests only require the computation of the distance between the center of the 
spheres. Overlaps between OBBs are rapidly determined by performing 15 simple axis projection 
tests. The intersection tests between AABBs are not orientation dependent and even faster. 
K-dops, can also be used which are bounding volumes that are convex polytopes whose facets 
are determined by halfspaces with outward normals coming from a small fixed set of k 
orientations. 
 
Hierarchies of bounding volumes can be used to easily and rapidly localize possible collision 
regions. Hierarchies of spheres or bounding boxes are commonly used in collision detection 
algorithms. General spatial subdivisions like regular grids, octrees and BSP-trees can also be 
used to easily determine which objects or parts of objects can possibly collide. 
 
Several approaches have been implemented and tested for the environments in the computer 
game DOOM III. A combination of axis aligned bounding boxes and an axial BSP-tree turned out 
to be the most efficient solution. The motion of an object between two positions along its path is 
contained in an AABB. Only when two such AABBs of two objects intersect, the objects can 
possibly collide. Furthermore for each polygon the smallest AABB is computed which contains the 
whole polygon. A large polyhedron also uses an axial BSP-tree which is created from the 
bounding planes of the polygon bounding boxes. This BSP-tree is used to quickly determine for 
which polygons narrow phase collision detection needs to be calculated. 
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6. Results 
 
In DOOM III the expel zone has a thickness of e = 0.25 units where 32 units is approximately one 
meter. This e is much larger than the maximum accumulated error due to rounding in collision 
detection calculations. However, this large e was chosen to be absolutely sure objects will never 
interpenetrate even when the initial positioning is somewhat sloppy. To get objects to exactly 
touch each other visually, some objects are decreased in size for collision detection while their 
visual representations stay the same. 
 
In DOOM III on the average more than 30% of all edges turned out to be internal in both indoor 
and outdoor environments. These internal edges do not have to be considered for collision 
detection as described in section 4. Some speed is gained by preprocessing the polyhedra to 
identify and flag the internal edges. 
 
Several physics simulations have been implemented in DOOM III among which one using an 
impulse based approach [53]. Rigid bodies never interpenetrate and the collision detection 
system can easily be used for an impulse based physics simulation of a brick wall being blown 
apart. Independent from the update frequency the bricks do not sink into each other and the 
simulation does not become unstable or "blow up". Fig. 6 shows a brick wall after being shot at 
several times. 
 

 
 

Fig. 6: Brick wall simulated with impulse based physics. 
 
A constraint force based physics simulation has been implemented as well, which allows for the 
simulation of complex articulated figures. A Lagrangian multiplier approach is used to calculate 
constraint forces in combination with the collision detection algorithm described in this paper to 
simulate complex articulated figures without interpenetration. 
 
In DOOM III the same collision detection is also used for player movement. Inaccuracies in the 
collision detection would be noticeable immediately, because a player receives very direct and 
accurate feedback from the game. The collision detection presented in this paper is very suitable 
for the simulation of player movement. 
 
Degenerate polyhedra like a single polygon and a single point are trivially handled by the 
presented algorithm. Single polygons can be used to simulate simple objects like, for instance, 
the debris from explosions or particles with minimal computational cost. The translational collision 
detection for a single point is very fast and can easily be used for general visibility tests that are 
very common in computer games. 
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7. Conclusion 
 
In a computer game like DOOM III an exact collision detection algorithm as described in this 
paper is very much preferred over, for instance, the more commonly used algorithms based on 
multiple interference detection. The physically simulated objects never interpenetrate and objects 
in contact are not visibly separated. Objects cannot pass through each other no matter how fast 
they move relative to each other. The algorithm also handles arbitrary polyhedra which allows the 
visual geometry to be used for collision detection. Furthermore, the algorithm uniformly handles 
degenerate polyhedra like single polygons and points which is useful for particle collisions and 
general visibility tests. The same collision detection algorithm can also be used to retrieve contact 
points between polyhedra in contact, and the algorithm can be used for robust and accurate 
simulation of the player movement through the game environment. 
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