libs-gui/Tools/gsnd/portaudio/pa_asio/pa_asio.cpp
fedor 81632bcf5b Initial revision
git-svn-id: svn+ssh://svn.gna.org/svn/gnustep/libs/gui/trunk@14212 72102866-910b-0410-8b05-ffd578937521
2002-07-30 17:01:47 +00:00

2998 lines
156 KiB
C++

/*
* $Id$
* Portable Audio I/O Library for ASIO Drivers
*
* Author: Stephane Letz
* Based on the Open Source API proposed by Ross Bencina
* Copyright (c) 2000-2001 Stephane Letz, Phil Burk
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* Any person wishing to distribute modifications to the Software is
* requested to send the modifications to the original developer so that
* they can be incorporated into the canonical version.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Modification History
08-03-01 First version : Stephane Letz
08-06-01 Tweaks for PC, use C++, buffer allocation, Float32 to Int32 conversion : Phil Burk
08-20-01 More conversion, PA_StreamTime, Pa_GetHostError : Stephane Letz
08-21-01 PaUInt8 bug correction, implementation of ASIOSTFloat32LSB and ASIOSTFloat32MSB native formats : Stephane Letz
08-24-01 MAX_INT32_FP hack, another Uint8 fix : Stephane and Phil
08-27-01 Implementation of hostBufferSize < userBufferSize case, better management of the ouput buffer when
the stream is stopped : Stephane Letz
08-28-01 Check the stream pointer for null in bufferSwitchTimeInfo, correct bug in bufferSwitchTimeInfo when
the stream is stopped : Stephane Letz
10-12-01 Correct the PaHost_CalcNumHostBuffers function: computes FramesPerHostBuffer to be the lowest that
respect requested FramesPerUserBuffer and userBuffersPerHostBuffer : Stephane Letz
10-26-01 Management of hostBufferSize and userBufferSize of any size : Stephane Letz
10-27-01 Improve calculus of hostBufferSize to be multiple or divisor of userBufferSize if possible : Stephane and Phil
10-29-01 Change MAX_INT32_FP to (2147483520.0f) to prevent roundup to 0x80000000 : Phil Burk
10-31-01 Clear the ouput buffer and user buffers in PaHost_StartOutput, correct bug in GetFirstMultiple : Stephane Letz
11-06-01 Rename functions : Stephane Letz
11-08-01 New Pa_ASIO_Adaptor_Init function to init Callback adpatation variables, cleanup of Pa_ASIO_Callback_Input: Stephane Letz
11-29-01 Break apart device loading to debug random failure in Pa_ASIO_QueryDeviceInfo ; Phil Burk
01-03-02 Desallocate all resources in PaHost_Term for cases where Pa_CloseStream is not called properly : Stephane Letz
02-01-02 Cleanup, test of multiple-stream opening : Stephane Letz
19-02-02 New Pa_ASIO_loadDriver that calls CoInitialize on each thread on Windows : Stephane Letz
09-04-02 Correct error code management in PaHost_Term, removes various compiler warning : Stephane Letz
12-04-02 Add Mac includes for <Devices.h> and <Timer.h> : Phil Burk
13-04-02 Removes another compiler warning : Stephane Letz
30-04-02 Pa_ASIO_QueryDeviceInfo bug correction, memory allocation checking, better error handling : D Viens, P Burk, S Letz
TO DO :
- Check Pa_StopSteam and Pa_AbortStream
- Optimization for Input only or Ouput only (really necessary ??)
*/
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include "portaudio.h"
#include "pa_host.h"
#include "pa_trace.h"
#include "asiosys.h"
#include "asio.h"
#include "asiodrivers.h"
#if MAC
#include <Devices.h>
#include <Timer.h>
#include <Math64.h>
#else
#include <math.h>
#include <windows.h>
#include <mmsystem.h>
#endif
enum {
// number of input and outputs supported by the host application
// you can change these to higher or lower values
kMaxInputChannels = 32,
kMaxOutputChannels = 32
};
/* ASIO specific device information. */
typedef struct internalPortAudioDevice
{
PaDeviceInfo pad_Info;
} internalPortAudioDevice;
/* ASIO driver internal data storage */
typedef struct PaHostSoundControl
{
// ASIOInit()
ASIODriverInfo pahsc_driverInfo;
// ASIOGetChannels()
int32 pahsc_NumInputChannels;
int32 pahsc_NumOutputChannels;
// ASIOGetBufferSize() - sizes in frames per buffer
int32 pahsc_minSize;
int32 pahsc_maxSize;
int32 pahsc_preferredSize;
int32 pahsc_granularity;
// ASIOGetSampleRate()
ASIOSampleRate pahsc_sampleRate;
// ASIOOutputReady()
bool pahsc_postOutput;
// ASIOGetLatencies ()
int32 pahsc_inputLatency;
int32 pahsc_outputLatency;
// ASIOCreateBuffers ()
ASIOBufferInfo bufferInfos[kMaxInputChannels + kMaxOutputChannels]; // buffer info's
// ASIOGetChannelInfo()
ASIOChannelInfo pahsc_channelInfos[kMaxInputChannels + kMaxOutputChannels]; // channel info's
// The above two arrays share the same indexing, as the data in them are linked together
// Information from ASIOGetSamplePosition()
// data is converted to double floats for easier use, however 64 bit integer can be used, too
double nanoSeconds;
double samples;
double tcSamples; // time code samples
// bufferSwitchTimeInfo()
ASIOTime tInfo; // time info state
unsigned long sysRefTime; // system reference time, when bufferSwitch() was called
// Signal the end of processing in this example
bool stopped;
ASIOCallbacks pahsc_asioCallbacks;
int32 pahsc_userInputBufferFrameOffset; // Position in Input user buffer
int32 pahsc_userOutputBufferFrameOffset; // Position in Output user buffer
int32 pahsc_hostOutputBufferFrameOffset; // Position in Output ASIO buffer
int32 past_FramesPerHostBuffer; // Number of frames in ASIO buffer
int32 pahsc_InputBufferOffset; // Number of null frames for input buffer alignement
int32 pahsc_OutputBufferOffset; // Number of null frames for ouput buffer alignement
#if MAC
UInt64 pahsc_EntryCount;
UInt64 pahsc_LastExitCount;
#elif WINDOWS
LARGE_INTEGER pahsc_EntryCount;
LARGE_INTEGER pahsc_LastExitCount;
#endif
PaTimestamp pahsc_NumFramesDone;
internalPortAudioStream *past;
} PaHostSoundControl;
//----------------------------------------------------------
#define PRINT(x) { printf x; fflush(stdout); }
#define ERR_RPT(x) PRINT(x)
#define DBUG(x) /* PRINT(x) */
#define DBUGX(x) /* PRINT(x) /**/
/* We are trying to be compatible with CARBON but this has not been thoroughly tested. */
#define CARBON_COMPATIBLE (0)
#define PA_MAX_DEVICE_INFO (32)
#define MIN_INT8 (-0x80)
#define MAX_INT8 (0x7F)
#define MIN_INT8_FP ((float)-0x80)
#define MAX_INT8_FP ((float)0x7F)
#define MIN_INT16_FP ((float)-0x8000)
#define MAX_INT16_FP ((float)0x7FFF)
#define MIN_INT16 (-0x8000)
#define MAX_INT16 (0x7FFF)
#define MAX_INT32_FP (2147483520.0f) /* 0x0x7FFFFF80 - seems safe */
/************************************************************************************/
/****************** Data ************************************************************/
/************************************************************************************/
static int sNumDevices = 0;
static internalPortAudioDevice sDevices[PA_MAX_DEVICE_INFO] = { 0 };
static int32 sPaHostError = 0;
static int sDefaultOutputDeviceID = 0;
static int sDefaultInputDeviceID = 0;
PaHostSoundControl asioDriverInfo = {0};
#ifdef MAC
static bool swap = true;
#elif WINDOWS
static bool swap = false;
#endif
// Prototypes
static void bufferSwitch(long index, ASIOBool processNow);
static ASIOTime *bufferSwitchTimeInfo(ASIOTime *timeInfo, long index, ASIOBool processNow);
static void sampleRateChanged(ASIOSampleRate sRate);
static long asioMessages(long selector, long value, void* message, double* opt);
static void Pa_StartUsageCalculation( internalPortAudioStream *past );
static void Pa_EndUsageCalculation( internalPortAudioStream *past );
static void Pa_ASIO_Convert_Inter_Input(
ASIOBufferInfo* nativeBuffer,
void* inputBuffer,
long NumInputChannels,
long NumOuputChannels,
long framePerBuffer,
long hostFrameOffset,
long userFrameOffset,
ASIOSampleType nativeFormat,
PaSampleFormat paFormat,
PaStreamFlags flags,
long index);
static void Pa_ASIO_Convert_Inter_Output(
ASIOBufferInfo* nativeBuffer,
void* outputBuffer,
long NumInputChannels,
long NumOuputChannels,
long framePerBuffer,
long hostFrameOffset,
long userFrameOffset,
ASIOSampleType nativeFormat,
PaSampleFormat paFormat,
PaStreamFlags flags,
long index);
static void Pa_ASIO_Clear_Output(ASIOBufferInfo* nativeBuffer,
ASIOSampleType nativeFormat,
long NumInputChannels,
long NumOuputChannels,
long index,
long hostFrameOffset,
long frames);
static void Pa_ASIO_Callback_Input(long index);
static void Pa_ASIO_Callback_Output(long index, long framePerBuffer);
static void Pa_ASIO_Callback_End();
static void Pa_ASIO_Clear_User_Buffers();
// Some external references
extern AsioDrivers* asioDrivers ;
bool loadAsioDriver(char *name);
unsigned long get_sys_reference_time();
/************************************************************************************/
/****************** Macro ************************************************************/
/************************************************************************************/
#define SwapLong(v) ((((v)>>24)&0xFF)|(((v)>>8)&0xFF00)|(((v)&0xFF00)<<8)|(((v)&0xFF)<<24)) ;
#define SwapShort(v) ((((v)>>8)&0xFF)|(((v)&0xFF)<<8)) ;
#define ClipShort(v) (((v)<MIN_INT16)?MIN_INT16:(((v)>MAX_INT16)?MAX_INT16:(v)))
#define ClipChar(v) (((v)<MIN_INT8)?MIN_INT8:(((v)>MAX_INT8)?MAX_INT8:(v)))
#define ClipFloat(v) (((v)<-1.0f)?-1.0f:(((v)>1.0f)?1.0f:(v)))
#ifndef min
#define min(a,b) ((a)<(b)?(a):(b))
#endif
#ifndef max
#define max(a,b) ((a)>=(b)?(a):(b))
#endif
static bool Pa_ASIO_loadAsioDriver(char *name)
{
#ifdef WINDOWS
CoInitialize(0);
#endif
return loadAsioDriver(name);
}
// Utilities for alignement buffer size computation
static int PGCD (int a, int b) {return (b == 0) ? a : PGCD (b,a%b);}
static int PPCM (int a, int b) {return (a*b) / PGCD (a,b);}
// Takes the size of host buffer and user buffer : returns the number of frames needed for buffer alignement
static int Pa_ASIO_CalcFrameShift (int M, int N)
{
int res = 0;
for (int i = M; i < PPCM (M,N) ; i+=M) { res = max (res, i%N); }
return res;
}
// We have the following relation :
// Pa_ASIO_CalcFrameShift (M,N) + M = Pa_ASIO_CalcFrameShift (N,M) + N
/* ASIO sample type to PortAudio sample type conversion */
static PaSampleFormat Pa_ASIO_Convert_SampleFormat(ASIOSampleType type)
{
switch (type) {
case ASIOSTInt16MSB:
case ASIOSTInt16LSB:
case ASIOSTInt32MSB16:
case ASIOSTInt32LSB16:
return paInt16;
case ASIOSTFloat32MSB:
case ASIOSTFloat32LSB:
case ASIOSTFloat64MSB:
case ASIOSTFloat64LSB:
return paFloat32;
case ASIOSTInt32MSB:
case ASIOSTInt32LSB:
case ASIOSTInt32MSB18:
case ASIOSTInt32MSB20:
case ASIOSTInt32MSB24:
case ASIOSTInt32LSB18:
case ASIOSTInt32LSB20:
case ASIOSTInt32LSB24:
return paInt32;
case ASIOSTInt24MSB:
case ASIOSTInt24LSB:
return paInt24;
default:
return paCustomFormat;
}
}
/* Allocate ASIO buffers, initialise channels */
static ASIOError Pa_ASIO_CreateBuffers (PaHostSoundControl *asioDriverInfo, long InputChannels,
long OutputChannels, long framesPerBuffer)
{
ASIOError err;
int i;
ASIOBufferInfo *info = asioDriverInfo->bufferInfos;
// Check parameters
if ((InputChannels > kMaxInputChannels) || (OutputChannels > kMaxInputChannels)) return ASE_InvalidParameter;
for(i = 0; i < InputChannels; i++, info++){
info->isInput = ASIOTrue;
info->channelNum = i;
info->buffers[0] = info->buffers[1] = 0;
}
for(i = 0; i < OutputChannels; i++, info++){
info->isInput = ASIOFalse;
info->channelNum = i;
info->buffers[0] = info->buffers[1] = 0;
}
// Set up the asioCallback structure and create the ASIO data buffer
asioDriverInfo->pahsc_asioCallbacks.bufferSwitch = &bufferSwitch;
asioDriverInfo->pahsc_asioCallbacks.sampleRateDidChange = &sampleRateChanged;
asioDriverInfo->pahsc_asioCallbacks.asioMessage = &asioMessages;
asioDriverInfo->pahsc_asioCallbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfo;
DBUG(("PortAudio : ASIOCreateBuffers with size = %ld \n", framesPerBuffer));
err = ASIOCreateBuffers( asioDriverInfo->bufferInfos, InputChannels+OutputChannels,
framesPerBuffer, &asioDriverInfo->pahsc_asioCallbacks);
if (err != ASE_OK) return err;
// Initialise buffers
for (i = 0; i < InputChannels + OutputChannels; i++)
{
asioDriverInfo->pahsc_channelInfos[i].channel = asioDriverInfo->bufferInfos[i].channelNum;
asioDriverInfo->pahsc_channelInfos[i].isInput = asioDriverInfo->bufferInfos[i].isInput;
err = ASIOGetChannelInfo(&asioDriverInfo->pahsc_channelInfos[i]);
if (err != ASE_OK) break;
}
err = ASIOGetLatencies(&asioDriverInfo->pahsc_inputLatency, &asioDriverInfo->pahsc_outputLatency);
DBUG(("PortAudio : InputLatency = %ld latency = %ld msec \n",
asioDriverInfo->pahsc_inputLatency,
(long)((asioDriverInfo->pahsc_inputLatency*1000)/ asioDriverInfo->past->past_SampleRate)));
DBUG(("PortAudio : OuputLatency = %ld latency = %ld msec \n",
asioDriverInfo->pahsc_outputLatency,
(long)((asioDriverInfo->pahsc_outputLatency*1000)/ asioDriverInfo->past->past_SampleRate)));
return err;
}
/*
Query ASIO driver info :
First we get all available ASIO drivers located in the ASIO folder,
then try to load each one. For each loaded driver, get all needed informations.
*/
static PaError Pa_ASIO_QueryDeviceInfo( internalPortAudioDevice * ipad )
{
#define NUM_STANDARDSAMPLINGRATES 3 /* 11.025, 22.05, 44.1 */
#define NUM_CUSTOMSAMPLINGRATES 9 /* must be the same number of elements as in the array below */
#define MAX_NUMSAMPLINGRATES (NUM_STANDARDSAMPLINGRATES+NUM_CUSTOMSAMPLINGRATES)
ASIOSampleRate possibleSampleRates[]
= {8000.0, 9600.0, 11025.0, 12000.0, 16000.0, 22050.0, 24000.0, 32000.0, 44100.0, 48000.0, 88200.0, 96000.0};
ASIOChannelInfo channelInfos;
long InputChannels,OutputChannels;
double *sampleRates;
char* names[PA_MAX_DEVICE_INFO] ;
PaDeviceInfo *dev;
int i;
int numDrivers;
ASIOError asioError;
/* Allocate names */
for (i = 0 ; i < PA_MAX_DEVICE_INFO ; i++) {
names[i] = (char*)PaHost_AllocateFastMemory(32);
/* check memory */
if(!names[i]) return paInsufficientMemory;
}
/* MUST BE CHECKED : to force fragments loading on Mac */
Pa_ASIO_loadAsioDriver("dummy");
/* Get names of all available ASIO drivers */
asioDrivers->getDriverNames(names,PA_MAX_DEVICE_INFO);
/* Check all available ASIO drivers */
#if MAC
numDrivers = asioDrivers->getNumFragments();
#elif WINDOWS
numDrivers = asioDrivers->asioGetNumDev();
#endif
DBUG(("PaASIO_QueryDeviceInfo: numDrivers = %d\n", numDrivers ));
for (int driver = 0 ; driver < numDrivers ; driver++)
{
#if WINDOWS
asioDriverInfo.pahsc_driverInfo.asioVersion = 2; // FIXME - is this right? PLB
asioDriverInfo.pahsc_driverInfo.sysRef = GetDesktopWindow(); // FIXME - is this right? PLB
#endif
/* If the driver can be loaded : */
if ( !Pa_ASIO_loadAsioDriver(names[driver]) )
{
DBUG(("PaASIO_QueryDeviceInfo could not loadAsioDriver %s\n", names[driver]));
}
else if( (asioError = ASIOInit(&asioDriverInfo.pahsc_driverInfo)) != ASE_OK )
{
DBUG(("PaASIO_QueryDeviceInfo: ASIOInit returned %d for %s\n", asioError, names[driver]));
}
else if( (ASIOGetChannels(&InputChannels, &OutputChannels) != ASE_OK))
{
DBUG(("PaASIO_QueryDeviceInfo could not ASIOGetChannels for %s\n", names[driver]));
}
else
{
/* Gets the name */
dev = &(ipad[sNumDevices].pad_Info);
dev->name = names[driver];
names[driver] = 0;
/* Gets Input and Output channels number */
dev->maxInputChannels = InputChannels;
dev->maxOutputChannels = OutputChannels;
DBUG(("PaASIO_QueryDeviceInfo: InputChannels = %d\n", InputChannels ));
DBUG(("PaASIO_QueryDeviceInfo: OutputChannels = %d\n", OutputChannels ));
/* Make room in case device supports all rates. */
sampleRates = (double*)PaHost_AllocateFastMemory(MAX_NUMSAMPLINGRATES * sizeof(double));
/* check memory */
if (!sampleRates) {
ASIOExit();
return paInsufficientMemory;
}
dev->sampleRates = sampleRates;
dev->numSampleRates = 0;
/* Loop through the possible sampling rates and check each to see if the device supports it. */
for (int index = 0; index < MAX_NUMSAMPLINGRATES; index++) {
if (ASIOCanSampleRate(possibleSampleRates[index]) != ASE_NoClock) {
DBUG(("PortAudio : possible sample rate = %d\n", (long)possibleSampleRates[index]));
dev->numSampleRates += 1;
*sampleRates = possibleSampleRates[index];
sampleRates++;
}
}
/* We assume that all channels have the same SampleType, so check the first */
channelInfos.channel = 0;
channelInfos.isInput = 1;
ASIOGetChannelInfo(&channelInfos);
dev->nativeSampleFormats = Pa_ASIO_Convert_SampleFormat(channelInfos.type);
/* unload the driver */
ASIOExit();
sNumDevices++;
}
}
/* free only unused names */
for (i = 0 ; i < PA_MAX_DEVICE_INFO ; i++) if (names[i]) PaHost_FreeFastMemory(names[i],32);
return paNoError;
}
//----------------------------------------------------------------------------------
// TAKEN FROM THE ASIO SDK:
static void sampleRateChanged(ASIOSampleRate sRate)
{
// do whatever you need to do if the sample rate changed
// usually this only happens during external sync.
// Audio processing is not stopped by the driver, actual sample rate
// might not have even changed, maybe only the sample rate status of an
// AES/EBU or S/PDIF digital input at the audio device.
// You might have to update time/sample related conversion routines, etc.
}
//----------------------------------------------------------------------------------
// TAKEN FROM THE ASIO SDK:
long asioMessages(long selector, long value, void* message, double* opt)
{
// currently the parameters "value", "message" and "opt" are not used.
long ret = 0;
switch(selector)
{
case kAsioSelectorSupported:
if(value == kAsioResetRequest
|| value == kAsioEngineVersion
|| value == kAsioResyncRequest
|| value == kAsioLatenciesChanged
// the following three were added for ASIO 2.0, you don't necessarily have to support them
|| value == kAsioSupportsTimeInfo
|| value == kAsioSupportsTimeCode
|| value == kAsioSupportsInputMonitor)
ret = 1L;
break;
case kAsioBufferSizeChange:
//printf("kAsioBufferSizeChange \n");
break;
case kAsioResetRequest:
// defer the task and perform the reset of the driver during the next "safe" situation
// You cannot reset the driver right now, as this code is called from the driver.
// Reset the driver is done by completely destruct is. I.e. ASIOStop(), ASIODisposeBuffers(), Destruction
// Afterwards you initialize the driver again.
asioDriverInfo.stopped; // In this sample the processing will just stop
ret = 1L;
break;
case kAsioResyncRequest:
// This informs the application, that the driver encountered some non fatal data loss.
// It is used for synchronization purposes of different media.
// Added mainly to work around the Win16Mutex problems in Windows 95/98 with the
// Windows Multimedia system, which could loose data because the Mutex was hold too long
// by another thread.
// However a driver can issue it in other situations, too.
ret = 1L;
break;
case kAsioLatenciesChanged:
// This will inform the host application that the drivers were latencies changed.
// Beware, it this does not mean that the buffer sizes have changed!
// You might need to update internal delay data.
ret = 1L;
//printf("kAsioLatenciesChanged \n");
break;
case kAsioEngineVersion:
// return the supported ASIO version of the host application
// If a host applications does not implement this selector, ASIO 1.0 is assumed
// by the driver
ret = 2L;
break;
case kAsioSupportsTimeInfo:
// informs the driver wether the asioCallbacks.bufferSwitchTimeInfo() callback
// is supported.
// For compatibility with ASIO 1.0 drivers the host application should always support
// the "old" bufferSwitch method, too.
ret = 1;
break;
case kAsioSupportsTimeCode:
// informs the driver wether application is interested in time code info.
// If an application does not need to know about time code, the driver has less work
// to do.
ret = 0;
break;
}
return ret;
}
//----------------------------------------------------------------------------------
// conversion from 64 bit ASIOSample/ASIOTimeStamp to double float
#if NATIVE_INT64
#define ASIO64toDouble(a) (a)
#else
const double twoRaisedTo32 = 4294967296.;
#define ASIO64toDouble(a) ((a).lo + (a).hi * twoRaisedTo32)
#endif
static ASIOTime *bufferSwitchTimeInfo(ASIOTime *timeInfo, long index, ASIOBool processNow)
{
// the actual processing callback.
// Beware that this is normally in a seperate thread, hence be sure that you take care
// about thread synchronization. This is omitted here for simplicity.
// static processedSamples = 0;
int result = 0;
// store the timeInfo for later use
asioDriverInfo.tInfo = *timeInfo;
// get the time stamp of the buffer, not necessary if no
// synchronization to other media is required
if (timeInfo->timeInfo.flags & kSystemTimeValid)
asioDriverInfo.nanoSeconds = ASIO64toDouble(timeInfo->timeInfo.systemTime);
else
asioDriverInfo.nanoSeconds = 0;
if (timeInfo->timeInfo.flags & kSamplePositionValid)
asioDriverInfo.samples = ASIO64toDouble(timeInfo->timeInfo.samplePosition);
else
asioDriverInfo.samples = 0;
if (timeInfo->timeCode.flags & kTcValid)
asioDriverInfo.tcSamples = ASIO64toDouble(timeInfo->timeCode.timeCodeSamples);
else
asioDriverInfo.tcSamples = 0;
// get the system reference time
asioDriverInfo.sysRefTime = get_sys_reference_time();
#if 0
// a few debug messages for the Windows device driver developer
// tells you the time when driver got its interrupt and the delay until the app receives
// the event notification.
static double last_samples = 0;
char tmp[128];
sprintf (tmp, "diff: %d / %d ms / %d ms / %d samples \n", asioDriverInfo.sysRefTime - (long)(asioDriverInfo.nanoSeconds / 1000000.0), asioDriverInfo.sysRefTime, (long)(asioDriverInfo.nanoSeconds / 1000000.0), (long)(asioDriverInfo.samples - last_samples));
OutputDebugString (tmp);
last_samples = asioDriverInfo.samples;
#endif
// To avoid the callback accessing a desallocated stream
if( asioDriverInfo.past == NULL) return 0L;
// Keep sample position
asioDriverInfo.pahsc_NumFramesDone = timeInfo->timeInfo.samplePosition.lo;
/* Has a user callback returned '1' to indicate finished at the last ASIO callback? */
if( asioDriverInfo.past->past_StopSoon ) {
Pa_ASIO_Clear_Output(asioDriverInfo.bufferInfos,
asioDriverInfo.pahsc_channelInfos[0].type,
asioDriverInfo.pahsc_NumInputChannels ,
asioDriverInfo.pahsc_NumOutputChannels,
index,
0,
asioDriverInfo.past_FramesPerHostBuffer);
asioDriverInfo.past->past_IsActive = 0;
// Finally if the driver supports the ASIOOutputReady() optimization, do it here, all data are in place
if (asioDriverInfo.pahsc_postOutput) ASIOOutputReady();
}else {
/* CPU usage */
Pa_StartUsageCalculation(asioDriverInfo.past);
Pa_ASIO_Callback_Input(index);
// Finally if the driver supports the ASIOOutputReady() optimization, do it here, all data are in place
if (asioDriverInfo.pahsc_postOutput) ASIOOutputReady();
Pa_ASIO_Callback_End();
/* CPU usage */
Pa_EndUsageCalculation(asioDriverInfo.past);
}
return 0L;
}
//----------------------------------------------------------------------------------
void bufferSwitch(long index, ASIOBool processNow)
{
// the actual processing callback.
// Beware that this is normally in a seperate thread, hence be sure that you take care
// about thread synchronization. This is omitted here for simplicity.
// as this is a "back door" into the bufferSwitchTimeInfo a timeInfo needs to be created
// though it will only set the timeInfo.samplePosition and timeInfo.systemTime fields and the according flags
ASIOTime timeInfo;
memset (&timeInfo, 0, sizeof (timeInfo));
// get the time stamp of the buffer, not necessary if no
// synchronization to other media is required
if(ASIOGetSamplePosition(&timeInfo.timeInfo.samplePosition, &timeInfo.timeInfo.systemTime) == ASE_OK)
timeInfo.timeInfo.flags = kSystemTimeValid | kSamplePositionValid;
// Call the real callback
bufferSwitchTimeInfo (&timeInfo, index, processNow);
}
//----------------------------------------------------------------------------------
unsigned long get_sys_reference_time()
{
// get the system reference time
#if WINDOWS
return timeGetTime();
#elif MAC
static const double twoRaisedTo32 = 4294967296.;
UnsignedWide ys;
Microseconds(&ys);
double r = ((double)ys.hi * twoRaisedTo32 + (double)ys.lo);
return (unsigned long)(r / 1000.);
#endif
}
/*************************************************************
** Calculate 2 LSB dither signal with a triangular distribution.
** Ranged properly for adding to a 32 bit integer prior to >>15.
*/
#define DITHER_BITS (15)
#define DITHER_SCALE (1.0f / ((1<<DITHER_BITS)-1))
inline static long Pa_TriangularDither( void )
{
static unsigned long previous = 0;
static unsigned long randSeed1 = 22222;
static unsigned long randSeed2 = 5555555;
long current, highPass;
/* Generate two random numbers. */
randSeed1 = (randSeed1 * 196314165) + 907633515;
randSeed2 = (randSeed2 * 196314165) + 907633515;
/* Generate triangular distribution about 0. */
current = (((long)randSeed1)>>(32-DITHER_BITS)) + (((long)randSeed2)>>(32-DITHER_BITS));
/* High pass filter to reduce audibility. */
highPass = current - previous;
previous = current;
return highPass;
}
// TO BE COMPLETED WITH ALL SUPPORTED PA SAMPLE TYPES
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int16_Float32 (ASIOBufferInfo* nativeBuffer, float *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for( j=0; j<NumInputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j].buffers[index])[hostFrameOffset];
float *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapShort(temp);
*userBufPtr = (1.0f / MAX_INT16_FP) * temp;
userBufPtr += NumInputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int32_Float32 (ASIOBufferInfo* nativeBuffer, float *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset,bool swap)
{
long temp;
int i,j;
for( j=0; j<NumInputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
float *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (1.0f / MAX_INT32_FP) * temp;
userBufPtr += NumInputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE TESTED
static void Input_Float32_Float32 (ASIOBufferInfo* nativeBuffer, float *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset,bool swap)
{
unsigned long temp;
int i,j;
for( j=0; j<NumInputChannels; j++ ) {
unsigned long *asioBufPtr = &((unsigned long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
float *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (float)temp;
userBufPtr += NumInputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int16_Int32 (ASIOBufferInfo* nativeBuffer, long *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset,bool swap)
{
long temp;
int i,j;
for( j=0; j<NumInputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j].buffers[index])[hostFrameOffset];
long *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapShort(temp);
*userBufPtr = temp<<16;
userBufPtr += NumInputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int32_Int32 (ASIOBufferInfo* nativeBuffer, long *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset,bool swap)
{
long temp;
int i,j;
for( j=0; j<NumInputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
long *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = temp;
userBufPtr += NumInputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE TESTED
static void Input_Float32_Int32 (ASIOBufferInfo* nativeBuffer, long *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset,bool swap)
{
unsigned long temp;
int i,j;
for( j=0; j<NumInputChannels; j++ ) {
unsigned long *asioBufPtr = &((unsigned long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
long *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (long)((float)temp * MAX_INT32_FP); // Is temp a value between -1.0 and 1.0 ??
userBufPtr += NumInputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int16_Int16 (ASIOBufferInfo* nativeBuffer, short *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset,bool swap)
{
long temp;
int i,j;
for( j=0; j<NumInputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j].buffers[index])[hostFrameOffset];
short *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapShort(temp);
*userBufPtr = (short)temp;
userBufPtr += NumInputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int32_Int16 (ASIOBufferInfo* nativeBuffer, short *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset, int userFrameOffset,uint32 flags,bool swap)
{
long temp;
int i,j;
if( flags & paDitherOff )
{
for( j=0; j<NumInputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
short *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (short)(temp>>16);
userBufPtr += NumInputChannels;
}
}
}
else
{
for( j=0; j<NumInputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
short *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
temp = (temp >> 1) + Pa_TriangularDither();
temp = temp >> 15;
temp = (short) ClipShort(temp);
*userBufPtr = (short)temp;
userBufPtr += NumInputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE TESTED
static void Input_Float32_Int16 (ASIOBufferInfo* nativeBuffer, short *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset,uint32 flags,bool swap)
{
unsigned long temp;
int i,j;
if( flags & paDitherOff )
{
for( j=0; j<NumInputChannels; j++ ) {
unsigned long *asioBufPtr = &((unsigned long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
short *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (short)((float)temp * MAX_INT16_FP); // Is temp a value between -1.0 and 1.0 ??
userBufPtr += NumInputChannels;
}
}
}
else
{
for( j=0; j<NumInputChannels; j++ ) {
unsigned long *asioBufPtr = &((unsigned long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
short *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
float dither = Pa_TriangularDither()*DITHER_SCALE;
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
temp = (short)(((float)temp * MAX_INT16_FP) + dither);
temp = ClipShort(temp);
*userBufPtr = (short)temp;
userBufPtr += NumInputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int16_Int8 (ASIOBufferInfo* nativeBuffer, char *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset, uint32 flags,bool swap)
{
long temp;
int i,j;
if( flags & paDitherOff )
{
for( j=0; j<NumInputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j].buffers[index])[hostFrameOffset];
char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapShort(temp);
*userBufPtr = (char)(temp>>8);
userBufPtr += NumInputChannels;
}
}
}
else
{
for( j=0; j<NumInputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j].buffers[index])[hostFrameOffset];
char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapShort(temp);
temp += Pa_TriangularDither() >> 8;
temp = ClipShort(temp);
*userBufPtr = (char)(temp>>8);
userBufPtr += NumInputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int32_Int8 (ASIOBufferInfo* nativeBuffer, char *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset, int userFrameOffset, uint32 flags,bool swap)
{
long temp;
int i,j;
if( flags & paDitherOff )
{
for( j=0; j<NumInputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (char)(temp>>24);
userBufPtr += NumInputChannels;
}
}
}
else
{
for( j=0; j<NumInputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
temp = temp>>16; // Shift to get a 16 bit value, then use the 16 bits to 8 bits code (MUST BE CHECHED)
temp += Pa_TriangularDither() >> 8;
temp = ClipShort(temp);
*userBufPtr = (char)(temp >> 8);
userBufPtr += NumInputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE TESTED
static void Input_Float32_Int8 (ASIOBufferInfo* nativeBuffer, char *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset, uint32 flags,bool swap)
{
unsigned long temp;
int i,j;
if( flags & paDitherOff )
{
for( j=0; j<NumInputChannels; j++ ) {
unsigned long *asioBufPtr = &((unsigned long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (char)((float)temp*MAX_INT8_FP); // Is temp a value between -1.0 and 1.0 ??
userBufPtr += NumInputChannels;
}
}
}
else
{
for( j=0; j<NumInputChannels; j++ ) {
unsigned long *asioBufPtr = &((unsigned long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
float dither = Pa_TriangularDither()*DITHER_SCALE;
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
temp = (char)(((float)temp * MAX_INT8_FP) + dither);
temp = ClipChar(temp);
*userBufPtr = (char)temp;
userBufPtr += NumInputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int16_IntU8 (ASIOBufferInfo* nativeBuffer, unsigned char *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset, uint32 flags,bool swap)
{
long temp;
int i,j;
if( flags & paDitherOff )
{
for( j=0; j<NumInputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapShort(temp);
*userBufPtr = (unsigned char)((temp>>8) + 0x80);
userBufPtr += NumInputChannels;
}
}
}
else
{
for( j=0; j<NumInputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapShort(temp);
temp += Pa_TriangularDither() >> 8;
temp = ClipShort(temp);
*userBufPtr = (unsigned char)((temp>>8) + 0x80);
userBufPtr += NumInputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Input_Int32_IntU8 (ASIOBufferInfo* nativeBuffer, unsigned char *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset, int userFrameOffset,uint32 flags,bool swap)
{
long temp;
int i,j;
if( flags & paDitherOff )
{
for( j=0; j<NumInputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (unsigned char)((temp>>24) + 0x80);
userBufPtr += NumInputChannels;
}
}
}
else
{
for( j=0; j<NumInputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
temp = temp>>16; // Shift to get a 16 bit value, then use the 16 bits to 8 bits code (MUST BE CHECHED)
temp += Pa_TriangularDither() >> 8;
temp = ClipShort(temp);
*userBufPtr = (unsigned char)((temp>>8) + 0x80);
userBufPtr += NumInputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE TESTED
static void Input_Float32_IntU8 (ASIOBufferInfo* nativeBuffer, unsigned char *inBufPtr, int framePerBuffer, int NumInputChannels, int index, int hostFrameOffset,int userFrameOffset, uint32 flags,bool swap)
{
unsigned long temp;
int i,j;
if( flags & paDitherOff )
{
for( j=0; j<NumInputChannels; j++ ) {
unsigned long *asioBufPtr = &((unsigned long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
*userBufPtr = (unsigned char)(((float)temp*MAX_INT8_FP) + 0x80);
userBufPtr += NumInputChannels;
}
}
}
else
{
for( j=0; j<NumInputChannels; j++ ) {
unsigned long *asioBufPtr = &((unsigned long*)nativeBuffer[j].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &inBufPtr[j+(userFrameOffset*NumInputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
float dither = Pa_TriangularDither()*DITHER_SCALE;
temp = asioBufPtr[i];
if (swap) temp = SwapLong(temp);
temp = (char)(((float)temp * MAX_INT8_FP) + dither);
temp = ClipChar(temp);
*userBufPtr = (unsigned char)(temp + 0x80);
userBufPtr += NumInputChannels;
}
}
}
}
// OUPUT
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_Float32_Int16 (ASIOBufferInfo* nativeBuffer, float *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset, int userFrameOffset,uint32 flags, bool swap)
{
long temp;
int i,j;
if( flags & paDitherOff )
{
if( flags & paClipOff ) /* NOTHING */
{
for( j=0; j<NumOuputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
float *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = (short) (*userBufPtr * MAX_INT16_FP);
if (swap) temp = SwapShort(temp);
asioBufPtr[i] = (short)temp;
userBufPtr += NumOuputChannels;
}
}
}
else /* CLIP */
{
for( j=0; j<NumOuputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
float *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
temp = (long) (*userBufPtr * MAX_INT16_FP);
temp = ClipShort(temp);
if (swap) temp = SwapShort(temp);
asioBufPtr[i] = (short)temp;
userBufPtr += NumOuputChannels;
}
}
}
}
else
{
/* If you dither then you have to clip because dithering could push the signal out of range! */
for( j=0; j<NumOuputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
float *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for (i= 0; i < framePerBuffer; i++)
{
float dither = Pa_TriangularDither()*DITHER_SCALE;
temp = (long) ((*userBufPtr * MAX_INT16_FP) + dither);
temp = ClipShort(temp);
if (swap) temp = SwapShort(temp);
asioBufPtr[i] = (short)temp;
userBufPtr += NumOuputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_Float32_Int32 (ASIOBufferInfo* nativeBuffer, float *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset, int userFrameOffset,uint32 flags,bool swap)
{
long temp;
int i,j;
if( flags & paClipOff )
{
for (j= 0; j < NumOuputChannels; j++)
{
long *asioBufPtr = &((long*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
float *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = (long) (*userBufPtr * MAX_INT32_FP);
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = temp;
userBufPtr += NumOuputChannels;
}
}
}
else // CLIP *
{
for (j= 0; j < NumOuputChannels; j++)
{
long *asioBufPtr = &((long*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
float *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
float temp1 = *userBufPtr;
temp1 = ClipFloat(temp1);
temp = (long) (temp1*MAX_INT32_FP);
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = temp;
userBufPtr += NumOuputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE TESTED
static void Output_Float32_Float32 (ASIOBufferInfo* nativeBuffer, float *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset, int userFrameOffset,uint32 flags,bool swap)
{
long temp;
int i,j;
if( flags & paClipOff )
{
for (j= 0; j < NumOuputChannels; j++)
{
float *asioBufPtr = &((float*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
float *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = (long) *userBufPtr;
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = (float)temp;
userBufPtr += NumOuputChannels;
}
}
}
else /* CLIP */
{
for (j= 0; j < NumOuputChannels; j++)
{
float *asioBufPtr = &((float*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
float *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
float temp1 = *userBufPtr;
temp1 = ClipFloat(temp1); // Is is necessary??
temp = (long) temp1;
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = (float)temp;
userBufPtr += NumOuputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_Int32_Int16(ASIOBufferInfo* nativeBuffer, long *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset,uint32 flags,bool swap)
{
long temp;
int i,j;
if( flags & paDitherOff )
{
for (j= 0; j < NumOuputChannels; j++)
{
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
long *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = (short) ((*userBufPtr) >> 16);
if (swap) temp = SwapShort(temp);
asioBufPtr[i] = (short)temp;
userBufPtr += NumOuputChannels;
}
}
}
else
{
for (j= 0; j < NumOuputChannels; j++)
{
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
long *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = (*userBufPtr >> 1) + Pa_TriangularDither();
temp = temp >> 15;
temp = (short) ClipShort(temp);
if (swap) temp = SwapShort(temp);
asioBufPtr[i] = (short)temp;
userBufPtr += NumOuputChannels;
}
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_Int32_Int32(ASIOBufferInfo* nativeBuffer, long *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset,uint32 flags,bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
long *asioBufPtr = &((long*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
long *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = *userBufPtr;
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = temp;
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE CHECKED
static void Output_Int32_Float32(ASIOBufferInfo* nativeBuffer, long *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset,uint32 flags,bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
float *asioBufPtr = &((float*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
long *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = *userBufPtr;
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = ((float)temp) * (1.0f / MAX_INT32_FP);
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_Int16_Int16(ASIOBufferInfo* nativeBuffer, short *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset, int userFrameOffset,bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
short *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = *userBufPtr;
if (swap) temp = SwapShort(temp);
asioBufPtr[i] = (short)temp;
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_Int16_Int32(ASIOBufferInfo* nativeBuffer, short *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
long *asioBufPtr = &((long*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
short *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = (*userBufPtr)<<16;
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = temp;
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE CHECKED
static void Output_Int16_Float32(ASIOBufferInfo* nativeBuffer, short *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
float *asioBufPtr = &((float*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
short *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = *userBufPtr;
asioBufPtr[i] = ((float)temp) * (1.0f / MAX_INT16_FP);
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_Int8_Int16(ASIOBufferInfo* nativeBuffer, char *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
char *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = (short)(*userBufPtr)<<8;
if (swap) temp = SwapShort(temp);
asioBufPtr[i] = (short)temp;
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_Int8_Int32(ASIOBufferInfo* nativeBuffer, char *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
long *asioBufPtr = &((long*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
char *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = (short)(*userBufPtr)<<24;
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = temp;
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE CHECKED
static void Output_Int8_Float32(ASIOBufferInfo* nativeBuffer, char *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
long *asioBufPtr = &((long*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
char *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = *userBufPtr;
asioBufPtr[i] = (long)(((float)temp) * (1.0f / MAX_INT8_FP));
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_IntU8_Int16(ASIOBufferInfo* nativeBuffer, unsigned char *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = ((short)((*userBufPtr) - 0x80)) << 8;
if (swap) temp = SwapShort(temp);
asioBufPtr[i] = (short)temp;
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Output_IntU8_Int32(ASIOBufferInfo* nativeBuffer, unsigned char *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
long *asioBufPtr = &((long*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = ((short)((*userBufPtr) - 0x80)) << 24;
if (swap) temp = SwapLong(temp);
asioBufPtr[i] = temp;
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// MUST BE CHECKED
static void Output_IntU8_Float32(ASIOBufferInfo* nativeBuffer, unsigned char *outBufPtr, int framePerBuffer, int NumInputChannels, int NumOuputChannels, int index, int hostFrameOffset,int userFrameOffset, bool swap)
{
long temp;
int i,j;
for (j= 0; j < NumOuputChannels; j++)
{
float *asioBufPtr = &((float*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
unsigned char *userBufPtr = &outBufPtr[j+(userFrameOffset*NumOuputChannels)];
for( i=0; i<framePerBuffer; i++ )
{
temp = ((short)((*userBufPtr) - 0x80)) << 24;
asioBufPtr[i] = ((float)temp) * (1.0f / MAX_INT32_FP);
userBufPtr += NumOuputChannels;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Pa_ASIO_Clear_Output_16 (ASIOBufferInfo* nativeBuffer, long frames, long NumInputChannels, long NumOuputChannels, long index, long hostFrameOffset)
{
int i,j;
for( j=0; j<NumOuputChannels; j++ ) {
short *asioBufPtr = &((short*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
for (i= 0; i < frames; i++) {asioBufPtr[i] = 0; }
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Pa_ASIO_Clear_Output_32 (ASIOBufferInfo* nativeBuffer, long frames, long NumInputChannels, long NumOuputChannels, long index, long hostFrameOffset)
{
int i,j;
for( j=0; j<NumOuputChannels; j++ ) {
long *asioBufPtr = &((long*)nativeBuffer[j+NumInputChannels].buffers[index])[hostFrameOffset];
for (i= 0; i < frames; i++) {asioBufPtr[i] = 0; }
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Pa_ASIO_Adaptor_Init()
{
if (asioDriverInfo.past->past_FramesPerUserBuffer <= asioDriverInfo.past_FramesPerHostBuffer) {
asioDriverInfo.pahsc_hostOutputBufferFrameOffset = asioDriverInfo.pahsc_OutputBufferOffset;
asioDriverInfo.pahsc_userInputBufferFrameOffset = 0; // empty
asioDriverInfo.pahsc_userOutputBufferFrameOffset = asioDriverInfo.past->past_FramesPerUserBuffer; // empty
}else {
asioDriverInfo.pahsc_hostOutputBufferFrameOffset = 0; // empty
asioDriverInfo.pahsc_userInputBufferFrameOffset = asioDriverInfo.pahsc_InputBufferOffset;
asioDriverInfo.pahsc_userOutputBufferFrameOffset = asioDriverInfo.past->past_FramesPerUserBuffer; // empty
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
// FIXME : optimization for Input only or output only modes (really necessary ??)
static void Pa_ASIO_Callback_Input( long index)
{
internalPortAudioStream *past = asioDriverInfo.past;
long framesInputHostBuffer = asioDriverInfo.past_FramesPerHostBuffer; // number of frames available into the host input buffer
long framesInputUserBuffer; // number of frames needed to complete the user input buffer
long framesOutputHostBuffer; // number of frames needed to complete the host output buffer
long framesOuputUserBuffer; // number of frames available into the user output buffer
long userResult;
long tmp;
/* Fill host ASIO output with remaining frames in user output */
framesOutputHostBuffer = asioDriverInfo.past_FramesPerHostBuffer;
framesOuputUserBuffer = asioDriverInfo.past->past_FramesPerUserBuffer - asioDriverInfo.pahsc_userOutputBufferFrameOffset;
tmp = min(framesOutputHostBuffer, framesOuputUserBuffer);
framesOutputHostBuffer -= tmp;
Pa_ASIO_Callback_Output(index,tmp);
/* Available frames in hostInputBuffer */
while (framesInputHostBuffer > 0) {
/* Number of frames needed to complete an user input buffer */
framesInputUserBuffer = asioDriverInfo.past->past_FramesPerUserBuffer - asioDriverInfo.pahsc_userInputBufferFrameOffset;
if (framesInputHostBuffer >= framesInputUserBuffer) {
/* Convert ASIO input to user input */
Pa_ASIO_Convert_Inter_Input (asioDriverInfo.bufferInfos,
past->past_InputBuffer,
asioDriverInfo.pahsc_NumInputChannels ,
asioDriverInfo.pahsc_NumOutputChannels,
framesInputUserBuffer,
asioDriverInfo.past_FramesPerHostBuffer - framesInputHostBuffer,
asioDriverInfo.pahsc_userInputBufferFrameOffset,
asioDriverInfo.pahsc_channelInfos[0].type,
past->past_InputSampleFormat,
past->past_Flags,
index);
/* Call PortAudio callback */
userResult = asioDriverInfo.past->past_Callback(past->past_InputBuffer, past->past_OutputBuffer,
past->past_FramesPerUserBuffer,past->past_FrameCount,past->past_UserData );
/* User callback has asked us to stop in the middle of the host buffer */
if( userResult != 0) {
/* Put 0 in the end of the output buffer */
Pa_ASIO_Clear_Output(asioDriverInfo.bufferInfos,
asioDriverInfo.pahsc_channelInfos[0].type,
asioDriverInfo.pahsc_NumInputChannels ,
asioDriverInfo.pahsc_NumOutputChannels,
index,
asioDriverInfo.pahsc_hostOutputBufferFrameOffset,
asioDriverInfo.past_FramesPerHostBuffer - asioDriverInfo.pahsc_hostOutputBufferFrameOffset);
past->past_StopSoon = 1;
return;
}
/* Full user ouput buffer : write offset */
asioDriverInfo.pahsc_userOutputBufferFrameOffset = 0;
/* Empty user input buffer : read offset */
asioDriverInfo.pahsc_userInputBufferFrameOffset = 0;
/* Fill host ASIO output */
tmp = min (past->past_FramesPerUserBuffer,framesOutputHostBuffer);
Pa_ASIO_Callback_Output(index,tmp);
framesOutputHostBuffer -= tmp;
framesInputHostBuffer -= framesInputUserBuffer;
}else {
/* Convert ASIO input to user input */
Pa_ASIO_Convert_Inter_Input (asioDriverInfo.bufferInfos,
past->past_InputBuffer,
asioDriverInfo.pahsc_NumInputChannels ,
asioDriverInfo.pahsc_NumOutputChannels,
framesInputHostBuffer,
asioDriverInfo.past_FramesPerHostBuffer - framesInputHostBuffer,
asioDriverInfo.pahsc_userInputBufferFrameOffset,
asioDriverInfo.pahsc_channelInfos[0].type,
past->past_InputSampleFormat,
past->past_Flags,
index);
/* Update pahsc_userInputBufferFrameOffset */
asioDriverInfo.pahsc_userInputBufferFrameOffset += framesInputHostBuffer;
/* Update framesInputHostBuffer */
framesInputHostBuffer = 0;
}
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Pa_ASIO_Callback_Output(long index, long framePerBuffer)
{
internalPortAudioStream *past = asioDriverInfo.past;
if (framePerBuffer > 0) {
/* Convert user output to ASIO ouput */
Pa_ASIO_Convert_Inter_Output (asioDriverInfo.bufferInfos,
past->past_OutputBuffer,
asioDriverInfo.pahsc_NumInputChannels,
asioDriverInfo.pahsc_NumOutputChannels,
framePerBuffer,
asioDriverInfo.pahsc_hostOutputBufferFrameOffset,
asioDriverInfo.pahsc_userOutputBufferFrameOffset,
asioDriverInfo.pahsc_channelInfos[0].type,
past->past_InputSampleFormat,
past->past_Flags,
index);
/* Update hostOuputFrameOffset */
asioDriverInfo.pahsc_hostOutputBufferFrameOffset += framePerBuffer;
/* Update userOutputFrameOffset */
asioDriverInfo.pahsc_userOutputBufferFrameOffset += framePerBuffer;
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Pa_ASIO_Callback_End()
{
/* Empty ASIO ouput : write offset */
asioDriverInfo.pahsc_hostOutputBufferFrameOffset = 0;
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Pa_ASIO_Clear_User_Buffers()
{
if( asioDriverInfo.past->past_InputBuffer != NULL )
{
memset( asioDriverInfo.past->past_InputBuffer, 0, asioDriverInfo.past->past_InputBufferSize );
}
if( asioDriverInfo.past->past_OutputBuffer != NULL )
{
memset( asioDriverInfo.past->past_OutputBuffer, 0, asioDriverInfo.past->past_OutputBufferSize );
}
}
//-------------------------------------------------------------------------------------------------------------------------------------------------------
static void Pa_ASIO_Clear_Output(ASIOBufferInfo* nativeBuffer,
ASIOSampleType nativeFormat,
long NumInputChannels,
long NumOuputChannels,
long index,
long hostFrameOffset,
long frames)
{
switch (nativeFormat) {
case ASIOSTInt16MSB:
case ASIOSTInt16LSB:
case ASIOSTInt32MSB16:
case ASIOSTInt32LSB16:
Pa_ASIO_Clear_Output_16(nativeBuffer, frames, NumInputChannels, NumOuputChannels, index, hostFrameOffset);
break;
case ASIOSTFloat64MSB:
case ASIOSTFloat64LSB:
break;
case ASIOSTFloat32MSB:
case ASIOSTFloat32LSB:
case ASIOSTInt32MSB:
case ASIOSTInt32LSB:
case ASIOSTInt32MSB18:
case ASIOSTInt32MSB20:
case ASIOSTInt32MSB24:
case ASIOSTInt32LSB18:
case ASIOSTInt32LSB20:
case ASIOSTInt32LSB24:
Pa_ASIO_Clear_Output_32(nativeBuffer, frames, NumInputChannels, NumOuputChannels, index, hostFrameOffset);
break;
case ASIOSTInt24MSB:
case ASIOSTInt24LSB:
break;
default:
break;
}
}
//---------------------------------------------------------------------------------------
static void Pa_ASIO_Convert_Inter_Input(
ASIOBufferInfo* nativeBuffer,
void* inputBuffer,
long NumInputChannels,
long NumOuputChannels,
long framePerBuffer,
long hostFrameOffset,
long userFrameOffset,
ASIOSampleType nativeFormat,
PaSampleFormat paFormat,
PaStreamFlags flags,
long index)
{
if((NumInputChannels > 0) && (nativeBuffer != NULL))
{
/* Convert from native format to PA format. */
switch(paFormat)
{
case paFloat32:
{
float *inBufPtr = (float *) inputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Input_Int16_Float32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset, userFrameOffset, swap);
break;
case ASIOSTInt16MSB:
Input_Int16_Float32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset, userFrameOffset,!swap);
break;
case ASIOSTInt32LSB:
Input_Int32_Float32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset, userFrameOffset,swap);
break;
case ASIOSTInt32MSB:
Input_Int32_Float32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset, userFrameOffset,!swap);
break;
case ASIOSTFloat32LSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_Float32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset, userFrameOffset,swap);
break;
case ASIOSTFloat32MSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_Float32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset, userFrameOffset,!swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
case paInt32:
{
long *inBufPtr = (long *)inputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Input_Int16_Int32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt16MSB:
Input_Int16_Int32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt32LSB:
Input_Int32_Int32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt32MSB:
Input_Int32_Int32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTFloat32LSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_Int32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTFloat32MSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_Int32(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
case paInt16:
{
short *inBufPtr = (short *) inputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Input_Int16_Int16(nativeBuffer, inBufPtr, framePerBuffer , NumInputChannels, index , hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt16MSB:
Input_Int16_Int16(nativeBuffer, inBufPtr, framePerBuffer , NumInputChannels, index , hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt32LSB:
Input_Int32_Int16(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,swap);
break;
case ASIOSTInt32MSB:
Input_Int32_Int16(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTFloat32LSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_Int16(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,swap);
break;
case ASIOSTFloat32MSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_Int16(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
case paInt8:
{
/* Convert 16 bit data to 8 bit chars */
char *inBufPtr = (char *) inputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Input_Int16_Int8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset,flags,swap);
break;
case ASIOSTInt16MSB:
Input_Int16_Int8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTInt32LSB:
Input_Int32_Int8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,swap);
break;
case ASIOSTInt32MSB:
Input_Int32_Int8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTFloat32LSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_Int8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,swap);
break;
case ASIOSTFloat32MSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_Int8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
case paUInt8:
{
/* Convert 16 bit data to 8 bit unsigned chars */
unsigned char *inBufPtr = (unsigned char *)inputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Input_Int16_IntU8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,swap);
break;
case ASIOSTInt16MSB:
Input_Int16_IntU8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTInt32LSB:
Input_Int32_IntU8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset,flags,swap);
break;
case ASIOSTInt32MSB:
Input_Int32_IntU8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTFloat32LSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_IntU8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset,flags,swap);
break;
case ASIOSTFloat32MSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
Input_Float32_IntU8(nativeBuffer, inBufPtr, framePerBuffer, NumInputChannels, index, hostFrameOffset,userFrameOffset,flags,!swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
default:
break;
}
}
}
//---------------------------------------------------------------------------------------
static void Pa_ASIO_Convert_Inter_Output(ASIOBufferInfo* nativeBuffer,
void* outputBuffer,
long NumInputChannels,
long NumOuputChannels,
long framePerBuffer,
long hostFrameOffset,
long userFrameOffset,
ASIOSampleType nativeFormat,
PaSampleFormat paFormat,
PaStreamFlags flags,
long index)
{
if((NumOuputChannels > 0) && (nativeBuffer != NULL))
{
/* Convert from PA format to native format */
switch(paFormat)
{
case paFloat32:
{
float *outBufPtr = (float *) outputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Output_Float32_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset, userFrameOffset, flags, swap);
break;
case ASIOSTInt16MSB:
Output_Float32_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset, userFrameOffset, flags,!swap);
break;
case ASIOSTInt32LSB:
Output_Float32_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset, userFrameOffset, flags,swap);
break;
case ASIOSTInt32MSB:
Output_Float32_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTFloat32LSB:
Output_Float32_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset,flags,swap);
break;
case ASIOSTFloat32MSB:
Output_Float32_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
case paInt32:
{
long *outBufPtr = (long *) outputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Output_Int32_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, flags,swap);
break;
case ASIOSTInt16MSB:
Output_Int32_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTInt32LSB:
Output_Int32_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, flags,swap);
break;
case ASIOSTInt32MSB:
Output_Int32_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTFloat32LSB:
Output_Int32_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, flags,swap);
break;
case ASIOSTFloat32MSB:
Output_Int32_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, flags,!swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
case paInt16:
{
short *outBufPtr = (short *) outputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Output_Int16_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt16MSB:
Output_Int16_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt32LSB:
Output_Int16_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt32MSB:
Output_Int16_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTFloat32LSB:
Output_Int16_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTFloat32MSB:
Output_Int16_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
case paInt8:
{
char *outBufPtr = (char *) outputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Output_Int8_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt16MSB:
Output_Int8_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt32LSB:
Output_Int8_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt32MSB:
Output_Int8_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTFloat32LSB:
Output_Int8_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTFloat32MSB:
Output_Int8_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
case paUInt8:
{
unsigned char *outBufPtr = (unsigned char *) outputBuffer;
switch (nativeFormat) {
case ASIOSTInt16LSB:
Output_IntU8_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt16MSB:
Output_IntU8_Int16(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt32LSB:
Output_IntU8_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTInt32MSB:
Output_IntU8_Int32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTFloat32LSB:
Output_IntU8_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, swap);
break;
case ASIOSTFloat32MSB:
Output_IntU8_Float32(nativeBuffer, outBufPtr, framePerBuffer, NumInputChannels, NumOuputChannels, index, hostFrameOffset,userFrameOffset, !swap);
break;
case ASIOSTInt24LSB: // used for 20 bits as well
case ASIOSTInt24MSB: // used for 20 bits as well
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
case ASIOSTInt32MSB16: // 32 bit data with 16 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
DBUG(("Not yet implemented : please report the problem\n"));
break;
}
break;
}
default:
break;
}
}
}
/* Load a ASIO driver corresponding to the required device */
static PaError Pa_ASIO_loadDevice (long device)
{
PaDeviceInfo * dev = &(sDevices[device].pad_Info);
if (!Pa_ASIO_loadAsioDriver((char *) dev->name)) return paHostError;
if (ASIOInit(&asioDriverInfo.pahsc_driverInfo) != ASE_OK) return paHostError;
if (ASIOGetChannels(&asioDriverInfo.pahsc_NumInputChannels, &asioDriverInfo.pahsc_NumOutputChannels) != ASE_OK) return paHostError;
if (ASIOGetBufferSize(&asioDriverInfo.pahsc_minSize, &asioDriverInfo.pahsc_maxSize, &asioDriverInfo.pahsc_preferredSize, &asioDriverInfo.pahsc_granularity) != ASE_OK) return paHostError;
if(ASIOOutputReady() == ASE_OK)
asioDriverInfo.pahsc_postOutput = true;
else
asioDriverInfo.pahsc_postOutput = false;
return paNoError;
}
//---------------------------------------------------
static int GetHighestBitPosition (unsigned long n)
{
int pos = -1;
while( n != 0 )
{
pos++;
n = n >> 1;
}
return pos;
}
//------------------------------------------------------------------------------------------
static int GetFirstMultiple(long min, long val ){ return ((min + val - 1) / val) * val; }
//------------------------------------------------------------------------------------------
static int GetFirstPossibleDivisor(long max, long val )
{
for (int i = 2; i < 20; i++) {if (((val%i) == 0) && ((val/i) <= max)) return (val/i); }
return val;
}
//------------------------------------------------------------------------
static int IsPowerOfTwo( unsigned long n ) { return ((n & (n-1)) == 0); }
/*******************************************************************
* Determine size of native ASIO audio buffer size
* Input parameters : FramesPerUserBuffer, NumUserBuffers
* Output values : FramesPerHostBuffer, OutputBufferOffset or InputtBufferOffset
*/
static PaError PaHost_CalcNumHostBuffers( internalPortAudioStream *past )
{
PaHostSoundControl *pahsc = (PaHostSoundControl *) past->past_DeviceData;
long requestedBufferSize;
long firstMultiple, firstDivisor;
// Compute requestedBufferSize
if( past->past_NumUserBuffers < 1 ){
requestedBufferSize = past->past_FramesPerUserBuffer;
}else{
requestedBufferSize = past->past_NumUserBuffers * past->past_FramesPerUserBuffer;
}
// Adjust FramesPerHostBuffer using requestedBufferSize, ASIO minSize and maxSize,
if (requestedBufferSize < asioDriverInfo.pahsc_minSize){
firstMultiple = GetFirstMultiple(asioDriverInfo.pahsc_minSize, requestedBufferSize);
if (firstMultiple <= asioDriverInfo.pahsc_maxSize)
asioDriverInfo.past_FramesPerHostBuffer = firstMultiple;
else
asioDriverInfo.past_FramesPerHostBuffer = asioDriverInfo.pahsc_minSize;
}else if (requestedBufferSize > asioDriverInfo.pahsc_maxSize){
firstDivisor = GetFirstPossibleDivisor(asioDriverInfo.pahsc_maxSize, requestedBufferSize);
if ((firstDivisor >= asioDriverInfo.pahsc_minSize) && (firstDivisor <= asioDriverInfo.pahsc_maxSize))
asioDriverInfo.past_FramesPerHostBuffer = firstDivisor;
else
asioDriverInfo.past_FramesPerHostBuffer = asioDriverInfo.pahsc_maxSize;
}else{
asioDriverInfo.past_FramesPerHostBuffer = requestedBufferSize;
}
// If ASIO buffer size needs to be a power of two
if( asioDriverInfo.pahsc_granularity < 0 ){
// Needs to be a power of two.
if( !IsPowerOfTwo( asioDriverInfo.past_FramesPerHostBuffer ) )
{
int highestBit = GetHighestBitPosition(asioDriverInfo.past_FramesPerHostBuffer);
asioDriverInfo.past_FramesPerHostBuffer = 1 << (highestBit + 1);
}
}
DBUG(("----------------------------------\n"));
DBUG(("PortAudio : minSize = %ld \n",asioDriverInfo.pahsc_minSize));
DBUG(("PortAudio : preferredSize = %ld \n",asioDriverInfo.pahsc_preferredSize));
DBUG(("PortAudio : maxSize = %ld \n",asioDriverInfo.pahsc_maxSize));
DBUG(("PortAudio : granularity = %ld \n",asioDriverInfo.pahsc_granularity));
DBUG(("PortAudio : User buffer size = %d\n", asioDriverInfo.past->past_FramesPerUserBuffer ));
DBUG(("PortAudio : ASIO buffer size = %d\n", asioDriverInfo.past_FramesPerHostBuffer ));
if (asioDriverInfo.past_FramesPerHostBuffer > past->past_FramesPerUserBuffer){
// Computes the MINIMUM value of null frames shift for the output buffer alignement
asioDriverInfo.pahsc_OutputBufferOffset = Pa_ASIO_CalcFrameShift (asioDriverInfo.past_FramesPerHostBuffer,past->past_FramesPerUserBuffer);
asioDriverInfo.pahsc_InputBufferOffset = 0;
DBUG(("PortAudio : Minimum BufferOffset for Output = %d\n", asioDriverInfo.pahsc_OutputBufferOffset));
}else{
//Computes the MINIMUM value of null frames shift for the input buffer alignement
asioDriverInfo.pahsc_InputBufferOffset = Pa_ASIO_CalcFrameShift (asioDriverInfo.past_FramesPerHostBuffer,past->past_FramesPerUserBuffer);
asioDriverInfo.pahsc_OutputBufferOffset = 0;
DBUG(("PortAudio : Minimum BufferOffset for Input = %d\n", asioDriverInfo.pahsc_InputBufferOffset));
}
return paNoError;
}
/***********************************************************************/
int Pa_CountDevices()
{
PaError err ;
if( sNumDevices <= 0 )
{
/* Force loading of ASIO drivers */
err = Pa_ASIO_QueryDeviceInfo(sDevices);
if( err != paNoError ) goto error;
}
return sNumDevices;
error:
PaHost_Term();
DBUG(("Pa_CountDevices: returns %d\n", err ));
return err;
}
/***********************************************************************/
PaError PaHost_Init( void )
{
/* Have we already initialized the device info? */
PaError err = (PaError) Pa_CountDevices();
return ( err < 0 ) ? err : paNoError;
}
/***********************************************************************/
PaError PaHost_Term( void )
{
int i;
PaDeviceInfo *dev;
double *rates;
PaError result = paNoError;
if (sNumDevices > 0) {
/* Free allocated sample rate arrays and names*/
for( i=0; i<sNumDevices; i++ ){
dev = &sDevices[i].pad_Info;
rates = (double *) dev->sampleRates;
if ((rates != NULL)) PaHost_FreeFastMemory(rates, MAX_NUMSAMPLINGRATES * sizeof(double));
dev->sampleRates = NULL;
if(dev->name != NULL) PaHost_FreeFastMemory((void *) dev->name, 32);
dev->name = NULL;
}
sNumDevices = 0;
/* Dispose : if not done by Pa_CloseStream */
if(ASIODisposeBuffers() != ASE_OK) result = paHostError;
if(ASIOExit() != ASE_OK) result = paHostError;
/* remove the loaded ASIO driver */
asioDrivers->removeCurrentDriver();
}
return result;
}
/***********************************************************************/
PaError PaHost_OpenStream( internalPortAudioStream *past )
{
PaError result = paNoError;
ASIOError err;
int32 device;
/* Check if a stream already runs */
if (asioDriverInfo.past != NULL) return paHostError;
/* Check the device number */
if ((past->past_InputDeviceID != paNoDevice)
&&(past->past_OutputDeviceID != paNoDevice)
&&(past->past_InputDeviceID != past->past_OutputDeviceID))
{
return paInvalidDeviceId;
}
/* Allocation */
memset(&asioDriverInfo, 0, sizeof(PaHostSoundControl));
past->past_DeviceData = (void*) &asioDriverInfo;
/* FIXME */
asioDriverInfo.past = past;
/* load the ASIO device */
device = (past->past_InputDeviceID < 0) ? past->past_OutputDeviceID : past->past_InputDeviceID;
result = Pa_ASIO_loadDevice(device);
if (result != paNoError) goto error;
/* Check ASIO parameters and input parameters */
if ((past->past_NumInputChannels > asioDriverInfo.pahsc_NumInputChannels)
|| (past->past_NumOutputChannels > asioDriverInfo.pahsc_NumOutputChannels)) {
result = paInvalidChannelCount;
goto error;
}
/* Set sample rate */
if (ASIOSetSampleRate(past->past_SampleRate) != ASE_OK) {
result = paInvalidSampleRate;
goto error;
}
/* if OK calc buffer size */
result = PaHost_CalcNumHostBuffers( past );
if (result != paNoError) goto error;
/*
Allocating input and output buffers number for the real past_NumInputChannels and past_NumOutputChannels
optimize the data transfer.
*/
asioDriverInfo.pahsc_NumInputChannels = past->past_NumInputChannels;
asioDriverInfo.pahsc_NumOutputChannels = past->past_NumOutputChannels;
/* Allocate ASIO buffers and callback*/
err = Pa_ASIO_CreateBuffers(&asioDriverInfo,
asioDriverInfo.pahsc_NumInputChannels,
asioDriverInfo.pahsc_NumOutputChannels,
asioDriverInfo.past_FramesPerHostBuffer);
if (err == ASE_OK)
return paNoError;
else if (err == ASE_NoMemory)
result = paInsufficientMemory;
else if (err == ASE_InvalidParameter)
result = paInvalidChannelCount;
else if (err == ASE_InvalidMode)
result = paBufferTooBig;
else
result = paHostError;
error:
ASIOExit();
return result;
}
/***********************************************************************/
PaError PaHost_CloseStream( internalPortAudioStream *past )
{
PaHostSoundControl *pahsc;
PaError result = paNoError;
if( past == NULL ) return paBadStreamPtr;
pahsc = (PaHostSoundControl *) past->past_DeviceData;
if( pahsc == NULL ) return paNoError;
#if PA_TRACE_START_STOP
AddTraceMessage( "PaHost_CloseStream: pahsc_HWaveOut ", (int) pahsc->pahsc_HWaveOut );
#endif
/* Dispose */
if(ASIODisposeBuffers() != ASE_OK) result = paHostError;
if(ASIOExit() != ASE_OK) result = paHostError;
/* Free data and device for output. */
past->past_DeviceData = NULL;
asioDriverInfo.past = NULL;
return result;
}
/***********************************************************************/
PaError PaHost_StartOutput( internalPortAudioStream *past )
{
/* Clear the index 0 host output buffer */
Pa_ASIO_Clear_Output(asioDriverInfo.bufferInfos,
asioDriverInfo.pahsc_channelInfos[0].type,
asioDriverInfo.pahsc_NumInputChannels,
asioDriverInfo.pahsc_NumOutputChannels,
0,
0,
asioDriverInfo.past_FramesPerHostBuffer);
/* Clear the index 1 host output buffer */
Pa_ASIO_Clear_Output(asioDriverInfo.bufferInfos,
asioDriverInfo.pahsc_channelInfos[0].type,
asioDriverInfo.pahsc_NumInputChannels,
asioDriverInfo.pahsc_NumOutputChannels,
1,
0,
asioDriverInfo.past_FramesPerHostBuffer);
Pa_ASIO_Clear_User_Buffers();
Pa_ASIO_Adaptor_Init();
return paNoError;
}
/***********************************************************************/
PaError PaHost_StopOutput( internalPortAudioStream *past, int abort )
{
/* Nothing to do ?? */
return paNoError;
}
/***********************************************************************/
PaError PaHost_StartInput( internalPortAudioStream *past )
{
/* Nothing to do ?? */
return paNoError;
}
/***********************************************************************/
PaError PaHost_StopInput( internalPortAudioStream *past, int abort )
{
/* Nothing to do */
return paNoError;
}
/***********************************************************************/
PaError PaHost_StartEngine( internalPortAudioStream *past )
{
// TO DO : count of samples
past->past_IsActive = 1;
return (ASIOStart() == ASE_OK) ? paNoError : paHostError;
}
/***********************************************************************/
PaError PaHost_StopEngine( internalPortAudioStream *past, int abort )
{
// TO DO : count of samples
past->past_IsActive = 0;
return (ASIOStop() == ASE_OK) ? paNoError : paHostError;
}
/***********************************************************************/
// TO BE CHECKED
PaError PaHost_StreamActive( internalPortAudioStream *past )
{
PaHostSoundControl *pahsc;
if( past == NULL ) return paBadStreamPtr;
pahsc = (PaHostSoundControl *) past->past_DeviceData;
if( pahsc == NULL ) return paInternalError;
return (PaError) past->past_IsActive;
}
/*************************************************************************/
PaTimestamp Pa_StreamTime( PortAudioStream *stream )
{
PaHostSoundControl *pahsc;
internalPortAudioStream *past = (internalPortAudioStream *) stream;
if( past == NULL ) return paBadStreamPtr;
pahsc = (PaHostSoundControl *) past->past_DeviceData;
return pahsc->pahsc_NumFramesDone;
}
/*************************************************************************
* Allocate memory that can be accessed in real-time.
* This may need to be held in physical memory so that it is not
* paged to virtual memory.
* This call MUST be balanced with a call to PaHost_FreeFastMemory().
*/
void *PaHost_AllocateFastMemory( long numBytes )
{
#if MAC
void *addr = NewPtrClear( numBytes );
if( (addr == NULL) || (MemError () != 0) ) return NULL;
#if (CARBON_COMPATIBLE == 0)
if( HoldMemory( addr, numBytes ) != noErr )
{
DisposePtr( (Ptr) addr );
return NULL;
}
#endif
return addr;
#elif WINDOWS
void *addr = malloc( numBytes ); /* FIXME - do we need physical memory? */
if( addr != NULL ) memset( addr, 0, numBytes );
return addr;
#endif
}
/*************************************************************************
* Free memory that could be accessed in real-time.
* This call MUST be balanced with a call to PaHost_AllocateFastMemory().
*/
void PaHost_FreeFastMemory( void *addr, long numBytes )
{
#if MAC
if( addr == NULL ) return;
#if CARBON_COMPATIBLE
(void) numBytes;
#else
UnholdMemory( addr, numBytes );
#endif
DisposePtr( (Ptr) addr );
#elif WINDOWS
if( addr != NULL ) free( addr );
#endif
}
/*************************************************************************/
void Pa_Sleep( long msec )
{
#if MAC
int32 sleepTime, endTime;
/* Convert to ticks. Round up so we sleep a MINIMUM of msec time. */
sleepTime = ((msec * 60) + 999) / 1000;
if( sleepTime < 1 ) sleepTime = 1;
endTime = TickCount() + sleepTime;
do{
DBUGX(("Sleep for %d ticks.\n", sleepTime ));
WaitNextEvent( 0, NULL, sleepTime, NULL ); /* Use this just to sleep without getting events. */
sleepTime = endTime - TickCount();
} while( sleepTime > 0 );
#elif WINDOWS
Sleep( msec );
#endif
}
/*************************************************************************/
const PaDeviceInfo* Pa_GetDeviceInfo( PaDeviceID id )
{
if( (id < 0) || ( id >= Pa_CountDevices()) ) return NULL;
return &sDevices[id].pad_Info;
}
/*************************************************************************/
PaDeviceID Pa_GetDefaultInputDeviceID( void )
{
return sDefaultInputDeviceID;
}
/*************************************************************************/
PaDeviceID Pa_GetDefaultOutputDeviceID( void )
{
return sDefaultOutputDeviceID;
}
/*************************************************************************/
int Pa_GetMinNumBuffers( int framesPerUserBuffer, double sampleRate )
{
// TO BE IMPLEMENTED : using the ASIOGetLatency call??
return 2;
}
/*************************************************************************/
int32 Pa_GetHostError( void )
{
int32 err = sPaHostError;
sPaHostError = 0;
return err;
}
#ifdef MAC
/**************************************************************************/
static void Pa_StartUsageCalculation( internalPortAudioStream *past )
{
PaHostSoundControl *pahsc = (PaHostSoundControl *) past->past_DeviceData;
UnsignedWide widePad;
if( pahsc == NULL ) return;
/* Query system timer for usage analysis and to prevent overuse of CPU. */
Microseconds( &widePad );
pahsc->pahsc_EntryCount = UnsignedWideToUInt64( widePad );
}
/**************************************************************************/
static void Pa_EndUsageCalculation( internalPortAudioStream *past )
{
UnsignedWide widePad;
UInt64 CurrentCount;
long InsideCount;
long TotalCount;
PaHostSoundControl *pahsc = (PaHostSoundControl *) past->past_DeviceData;
if( pahsc == NULL ) return;
/* Measure CPU utilization during this callback. Note that this calculation
** assumes that we had the processor the whole time.
*/
#define LOWPASS_COEFFICIENT_0 (0.9)
#define LOWPASS_COEFFICIENT_1 (0.99999 - LOWPASS_COEFFICIENT_0)
Microseconds( &widePad );
CurrentCount = UnsignedWideToUInt64( widePad );
if( past->past_IfLastExitValid )
{
InsideCount = (long) U64Subtract(CurrentCount, pahsc->pahsc_EntryCount);
TotalCount = (long) U64Subtract(CurrentCount, pahsc->pahsc_LastExitCount);
/* Low pass filter the result because sometimes we get called several times in a row.
* That can cause the TotalCount to be very low which can cause the usage to appear
* unnaturally high. So we must filter numerator and denominator separately!!!
*/
past->past_AverageInsideCount = (( LOWPASS_COEFFICIENT_0 * past->past_AverageInsideCount) +
(LOWPASS_COEFFICIENT_1 * InsideCount));
past->past_AverageTotalCount = (( LOWPASS_COEFFICIENT_0 * past->past_AverageTotalCount) +
(LOWPASS_COEFFICIENT_1 * TotalCount));
past->past_Usage = past->past_AverageInsideCount / past->past_AverageTotalCount;
}
pahsc->pahsc_LastExitCount = CurrentCount;
past->past_IfLastExitValid = 1;
}
#elif WINDOWS
/********************************* BEGIN CPU UTILIZATION MEASUREMENT ****/
static void Pa_StartUsageCalculation( internalPortAudioStream *past )
{
PaHostSoundControl *pahsc = (PaHostSoundControl *) past->past_DeviceData;
if( pahsc == NULL ) return;
/* Query system timer for usage analysis and to prevent overuse of CPU. */
QueryPerformanceCounter( &pahsc->pahsc_EntryCount );
}
static void Pa_EndUsageCalculation( internalPortAudioStream *past )
{
LARGE_INTEGER CurrentCount = { 0, 0 };
LONGLONG InsideCount;
LONGLONG TotalCount;
/*
** Measure CPU utilization during this callback. Note that this calculation
** assumes that we had the processor the whole time.
*/
#define LOWPASS_COEFFICIENT_0 (0.9)
#define LOWPASS_COEFFICIENT_1 (0.99999 - LOWPASS_COEFFICIENT_0)
PaHostSoundControl *pahsc = (PaHostSoundControl *) past->past_DeviceData;
if( pahsc == NULL ) return;
if( QueryPerformanceCounter( &CurrentCount ) )
{
if( past->past_IfLastExitValid )
{
InsideCount = CurrentCount.QuadPart - pahsc->pahsc_EntryCount.QuadPart;
TotalCount = CurrentCount.QuadPart - pahsc->pahsc_LastExitCount.QuadPart;
/* Low pass filter the result because sometimes we get called several times in a row.
* That can cause the TotalCount to be very low which can cause the usage to appear
* unnaturally high. So we must filter numerator and denominator separately!!!
*/
past->past_AverageInsideCount = (( LOWPASS_COEFFICIENT_0 * past->past_AverageInsideCount) +
(LOWPASS_COEFFICIENT_1 * InsideCount));
past->past_AverageTotalCount = (( LOWPASS_COEFFICIENT_0 * past->past_AverageTotalCount) +
(LOWPASS_COEFFICIENT_1 * TotalCount));
past->past_Usage = past->past_AverageInsideCount / past->past_AverageTotalCount;
}
pahsc->pahsc_LastExitCount = CurrentCount;
past->past_IfLastExitValid = 1;
}
}
#endif