
c-

rts
s

for
up-

ut
e -
io
sts
ck

io
t.
een
. If
d/or

n-
dio
Abstract
This paper describes a new open-source cross-platform ‘C’
library for audio input and output. It is designed to simplify
the porting of audio applications between various platforms,
and also to simplify the development of audio programs in
general by hiding the complexities of device interfacing. The
API was worked out through community discussions on the
music-dsp mailing list. A number of people have contributed
to the development of the API and are listed on the web-site.
Implementations of PortAudio for Windows MME and
DirectSound, the Macintosh Sound Manager, and Unix OSS
have been developed and are freely available on the web.
Support for other platforms is being planned. The paper
describes the use of PortAudio and discusses the issues
involved in its development including the design philosophy,
latency, callbacks versus blocking read/write calls, and effi-
ciency.

1. Introduction
Suppose you want to write a real-time audio application

and you want it to run on more than just one kind of com-
puter. That could mean that you have to learn how to use sev-
eral different audio APIs like DirectSound™ on Microsoft
Windows™, and the Macintosh™ Sound Manager, and OSS
on Linux. And then you would have to write interfaces
between your program and each of those host-specific APIs.
Wouldn't it be nice to just write one simple audio interface
for your program and to have it work on the majority of com-
puters. PortAudio is designed to help you do just that.

PortAudio is also useful if you are only writing for one
platform because PortAudio is often much simpler to use
than the native audio APIs. Thus PortAudio could be useful
for pedagogical purposes by allowing beginning students to
quickly obtain real-time audio input and output.

PortAudio provides a platform neutral interface to real-
time audio streaming services in the form of a 'C' language
API. PortAudio has been implemented for a number of plat-
forms by wrapping native audio services - these implementa-
tions are publicly available under a BSD style Open Source
license. PortAudio was selected as the audio component of a
larger initiative called PortMusic that combines audio, MIDI,
and audio file I/O.

2. The PortAudio Architecture
The PortAudio architecture includes two main abstra

tions: Audio Devices and Audio Streams.
Audio devices represent audio input and/or output po

on the host platform. The PortAudio API provides function
for enumerating available devices and querying them
properties such as available sampling rates, number of s
ported channels and supported sample formats.

Audio streams manage active audio input and outp
through at most one input device and one output devic
streams may be full duplex or half duplex. A PortAud
implementation manages buffers internally and reque
audio processing from the client application via a callba
that is associated with a stream when it is opened.

A variety of sample formats are supported by PortAud
including 16 and 32 bit integer and 32 bit floating poin
Where necessary PortAudio manages conversion betw
the requested buffer formats and those available natively
requested, PortAudio can clamp out of range samples an
dither samples to a native format.

3. API Overview
This section presents an informal overview of the C la

guage functions and structures that make up the PortAu

Ross Bencina, Phil Burk

email: rossb@audiomulch.com, philburk@softsynth.com

PortAudio – an Open Source Cross Platform Audio API

website: http://www.portaudio.com/

DX

‘C’ Application

PortAudio

WMME OSS

Audio Hardware

Figure 1, PortAudio generally uses existing
 audio APIs to access the audio hardware.

other
audio
APIs

to
pro-
sing

f
syn-

-
al
ing.
ir
, in

e

o

s
-
er

ed
ion,
on
ew
st
as
est
date

 A
e

en
e
nd
alls
ll-
ing
API. Developers interested in making use of the API are
advised to consult the portaudio.h header file, which con-
tains full documentation for the API. There is also a tutorial
on the PortAudio website.

A minimal PortAudio program that performs ring modu-
lation and mixing of a stereo input signal can be found at the
end of this paper. It does not do any error checking in order
to save space. It, hopefully, demonstrates the simplicity of
using PortAudio to obtain audio I/O on multiple platforms.

3.1. Initialisation and Device Enumeration
Before making use of the PortAudio library

Pa_Initialize() must be called to initialise the library.
When the library is no longer required Pa_Terminate()

should be called.
Pa_CountDevices() returns the number of available

audio devices. Pa_GetDeviceInfo(id) returns a pointer
to a PaDeviceInfo structure which contains information
about the requested device. It includes the device name,
maximum number of input and output channels, available
sample rates, and the supported data formats.

The Pa_GetDefaultInputDeviceID() and
Pa_GetDefaultOutputDeviceID() functions may be
used to retrieve the ids of the host's preferred input and out-
put devices.

3.2. Stream Management
PortAudio streams may be opened with either the

Pa_OpenStream() or Pa_OpenDefaultStream() func-
tions, both of which return an opaque handle to a PortAudi-
oStream object.

Pa_OpenStream() allows specification of: input and
output devices; sample format; number of channels and a
device specific information block for input and output; sam-
ple rate; number and size of i/o buffers; a set of implementa-
tion defined stream flags; the user callback function and a
user specified data pointer which is passed to the callback
function.

Pa_OpenDefaultStream() provides a simplified inter-
face for opening a stream using the default device(s)

The Pa_StartStream() and Pa_StopStream() func-
tions are used to begin and end processing on a stream.
Pa_AbortStream() may be used to immediately abort
playback on a stream rather than waiting for queued samples
to finish playing.

When the stream is started, audio I/O begins and the user
callback function is repeatedly called with a pointer to a full
input buffer that is to be read, and a pointer to an empty out-
put buffer that is to be filled. It is also passed a time-stamp
that is the number of sample frames generated so far. The
time-stamp of the currently playing sample can also be que-
ried which allows the audio output to be synchronized with
MIDI or video events.

The user defined callback function supplied to

Pa_OpenStream() and Pa_OpenDefaultStream() has
the following prototype:

typedef int (PortAudioCallback)(
 void *inputBuffer,
 void *outputBuffer,
 unsigned long framesPerBuffer,
 PaTimestamp outTime,
 void *userData);

The callback function may return a non-zero value
indicate that use of the stream has completed. The main
gram can determine whether a stream has completed u
the Pa_StreamActive() function.

Pa_StreamTime() returns the current playback time o
a stream. It is intended for use as a time reference when
chronising audio to MIDI.

Pa_GetCPULoad() returns a floating point value rang
ing from zero to one which indicates the fraction of tot
CPU time being consumed by the stream's audio process
This gives the programmer an opportunity to modify the
synthesis techniques, or to reduce the number of voices
order to prevent excessive loading of the CPU.

The Pa_CloseStream() function should be used to
close a stream when it is no longer needed.

3.3. Error Handling
Most PortAudio functions return an error code of typ

PaError. The Pa_GetErrorText(err) function may be
used to retrieve textual error information. PortAudio als
provides the Pa_GetHostError() function for retrieving
host specific error codes.

4. Existing Implementations
At the time of writing, stable PortAudio implementation

exist for Windows (WMME and DirectX), the Apple Macin
tosh Sound Manager, and for Unix using the OSS driv
model.

The functions common to all platforms are implement
in a shared module. These include error code interpretat
parameter checking, clipping, dithering, and conversi
between different data formats. Implementation for a n
platform, therefore, only involves the implementation of ho
specific functions. An implementation guide is provided
well as a programming tutorial. There is also a suite of t
programs and example programs that can be used to vali
a new implementation.

The Windows Multimedia API implementation utilises
a high priority worker thread to process sample buffers.
Win32 Event synchronization object is used to allow th
soundcard driver to efficiently wake the worker thread wh
an input buffer is full or an output buffer is empty. When th
worker thread wakes, it gathers the available buffers a
passess them to the user defined callback function. It c
waveOutWrite() to output the data generated by the ca
back function, and requeues used input buffers by call

ha-
no
pt

k
ds
 all
se
ion
all-
ns,

mic

ck
f a
on
nd
lat-
so
ve

ed
nd

ch-
he
gi-
er

 the
s

pli-
g
cy
to

ill
to
in-
m
by

ls
,
-
in-
io

st
I

waveInAddBuffer()

The DirectSound implementation was originally written
using a background thread that waited for notification events
from DirectSound. But using this technique resulted in high
latency so the implementation was changed to use a periodic
timer callback based on timeSetEvent() . The timer call-
back function determines the amount of space available in
the DirectSound ring buffers and fills them with data sup-
plied by the user's PortAudio callback function.

The Macintosh Sound Manager implementation was
originally written using the SndDoubleBufferPlay-

back() call. But that function is not supported in Mac OS
X. So it was rewritten using SndDoCommand() for output
and SPBRecord() for input, both of which work with Mac
OS 7,8,9 and Mac OS X under Carbon. If both input and out-
put are requested, then data collected from the
SPBRecord() callback is gathered and written to an atomic
ring buffer. The SndDoCommand() callback then reads the
input data from the ring buffer and passes it to the PortAudio
callback which generates the output data. This allows the
user to process input data and output the result using a single
callback function.

The Unix implementation spawns a thread that reads “/

dev/audio” , passes the data to the user callback, then
writes the returned data to “/dev/audio” . It uses OSS, or
the OSS subset of the ALSA API. (OSS)

5. Design Considerations
The PortAudio API arose from discussions on the music-

dsp mailing list during 1998. The following requirements
influenced the design of the API:

5.1. Requirements
• Implementation should be possible on all common com-

puter music platforms. In 1998 this included: Pre OS-X
Macintosh systems, 32 bit Microsoft Windows systems,
BeOS™ and various flavours of Unix™ including
Irix™ and Linux. Implementation in embedded systems,
and interfacing to proprietary APIs such as ASIO™,
EASI™ and Re-Wire was also considered.

• Efficient, and ideally optimal use of the audio services

on all target platforms should be possible.

• The API should be simple enough to be used by music

students with minimal experience in C programming.

• The API should seek to provide only low-level audio
services, and to only support those services directly
available on the host platform. Emulation features such
as sample rate conversion were considered to be beyond
the scope of the API.

5.2. Concurrency
A significant constraint imposed by the range of pro-

posed target platforms is the variety of concurrency mec
nisms supported. For example the Macintosh provides
way of implementing mutual exclusion between an interru
level audio processing callback and the main program.

An early version of the API provided Lock and Unloc
methods to implement mutual exclusion. These metho
were later removed, as they could not be implemented on
target platforms. It is recommended that applications u
atomic data structures such as FIFOs for communicat
between the main program and the audio processing c
back. This technique is used in JSyn, and other applicatio
and has proven to be both robust and portable. An ato
FIFO implementation in ‘C’ is supplied in a utility library.

5.3. Callbacks versus Blocking I/O
The programmer must supply a pointer to a user callba

function. We decided to use a callback function instead o
blocking read/write interface because a callback functi
provides a way to do audio synthesis in a backgrou
“thread”. This is important because there is no cross p
form mechanism for launching a thread in C , and al
because the Macintosh (prior to Mac OS X) does not ha
strong support for multi-tasking. It was also consider
likely that any large application would require a backgrou
thread for audio even if blocking I/O were available.

The authors believe that callbacks are the preferred te
nique for portable APIs. In order, however, to support t
development of extremely simple applications for pedago
cal purposes, we have provided a blocking I/O utility lay
on top of the PortAudio API.

5.4. Latency
PortAudio acts as a software layer that maps between

PortAudio API and the underlying host dependant API. A
such, it generally does not add any latency to what an ap
cation would have by interfacing directly to the underlyin
API. The programmer can determine the minimum laten
by passing the buffer size and the number of buffers
Pa_OpenStream() . Or it can simply specify a small buffer
size and pass zero for the number of buffers. PortAudio w
then use the minimum number of buffers determined
ensure reliable operation. On some platforms, such as W
dows and Linux, the user may specify the minimum syste
latency by setting an environment variable that is read
PortAudio.

6. Future Work
The proliferation of alternative APIs and driver mode

for real-time audio transport on some platforms (MME
Direct-X and ASIO all being popular on Windows for exam
ple) necessitates support for multiple driver models on a s
gle platform. It has been proposed that the PortAud
implementation should virtualize support for multiple ho
APIs. This is, however, unlikely to affect the PortAudio AP
itself.

We are also finishing up a Mac Core Audio implementa-
tion, and are planning implementations for various plugin
APIs such as VST.

We are also considering adding low-level support for
blocking I/O to support applications where the audio is gen-
erated in the foreground process.

7. References
1991, “Sound, Music, and Signal Processing on a NeXT Computer:

Concepts”, NeXT Computer, Inc. Addison Wesley Publishing
Company.

1993, “Digital Media Programming Guide: Audio, MIDI and Com-
pression”, Silicon Graphics Inc.

8. Links
Apple Macintosh Sound Manager,

http://developer.apple.com/audio/

Microsoft DirectX Audio API and Windows MultiMedia Exten-
sions (WMME),
http://msdn.microsoft.com/library/

The music-dsp mailing list,
shoko.calarts.edu/~glmrboy/musicdsp/

OSS - OpenSound API,
 http://www.opensound.com/

PortMusic Project,
http://www.cs.cmu.edu/~music/portmusic/
Listing 1, Minimal PortAudio Program to perform Ring Modulation and Mixing
#include "stdio.h"

#include "portaudio.h"
/* This will be called asynchronously by the PortAudio engine. */
static int myCallback (void *inputBuffer, void *outputBuffer,
 unsigned long framesPerBuffer, PaTimestamp outTime, void *userData)
{

float *out = (float *) outputBuffer;
float *in = (float *) inputBuffer;
float leftInput, rightInput;
unsigned int i;
if(inputBuffer == NULL) return 0;

/* Read input buffer, process data, and fill output buffer. */
for(i=0; i<framesPerBuffer; i++)
{

leftInput = *in++; /* Get interleaved samples from input buffer. */
rightInput = *in++;
*out++ = leftInput * rightInput; /* ring modulation */
*out++ = 0.5f * (leftInput + rightInput); /* mixing */

}
return 0;

}
/* Use a PortAudioStream to process audio data. */
int main (void)
{

PortAudioStream *stream;
Pa_Initialize();
Pa_OpenDefaultStream(

&stream,
2, 2, /* stereo input and output */
paFloat32, 44100.0,
64, 0, /* 64 frames per buffer, let PA determine numBuffers */
myCallback , NULL);

Pa_StartStream(stream);
Pa_Sleep(10000); /* Sleep for 10 seconds while processing. */
Pa_StopStream(stream);
Pa_CloseStream(stream);
Pa_Terminate();
return 0;

}

	1. Introduction
	2. The PortAudio Architecture
	3. API Overview
	3.1. Initialisation and Device Enumeration
	3.2. Stream Management
	3.3. Error Handling
	4. Existing Implementations
	5. Design Considerations

	5.1. Requirements
	5.2. Concurrency
	5.3. Callbacks versus Blocking I/O
	5.4. Latency
	6. Future Work
	7. References
	8. Links

