libs-base/Source/Additions/NSData+GNUstepBase.m
Richard Frith-MacDonald 0ff124d738 more missing includes
git-svn-id: svn+ssh://svn.gna.org/svn/gnustep/libs/base/trunk@29775 72102866-910b-0410-8b05-ffd578937521
2010-02-26 08:56:26 +00:00

709 lines
19 KiB
Objective-C

/* Implementation of extension methods to base additions
Copyright (C) 2010 Free Software Foundation, Inc.
Written by: Richard Frith-Macdonald <rfm@gnu.org>
This file is part of the GNUstep Base Library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02111 USA.
*/
#import "common.h"
#import "Foundation/NSAutoreleasePool.h"
#import "Foundation/NSByteOrder.h"
#import "Foundation/NSException.h"
#import "GNUstepBase/NSData+GNUstepBase.h"
#import "GNUstepBase/NSString+GNUstepBase.h"
#include <string.h>
#include <ctype.h>
/**
* Extension methods for the NSData class.
*/
@implementation NSData (GNUstepBase)
/**
* Returns an NSString object containing an ASCII hexadecimal representation
* of the receiver. This means that the returned object will contain
* exactly twice as many characters as there are bytes as the receiver,
* as each byte in the receiver is represented by two hexadecimal digits.<br />
* The high order four bits of each byte is encoded before the low
* order four bits. Capital letters 'A' to 'F' are used to represent
* values from 10 to 15.<br />
* If you need the hexadecimal representation as raw byte data, use code
* like -
* <example>
* hexData = [[sourceData hexadecimalRepresentation]
* dataUsingEncoding: NSASCIIStringEncoding];
* </example>
*/
- (NSString*) hexadecimalRepresentation
{
static const char *hexChars = "0123456789ABCDEF";
unsigned slen = [self length];
unsigned dlen = slen * 2;
const unsigned char *src = (const unsigned char *)[self bytes];
char *dst = (char*)NSZoneMalloc(NSDefaultMallocZone(), dlen);
unsigned spos = 0;
unsigned dpos = 0;
NSData *data;
NSString *string;
while (spos < slen)
{
unsigned char c = src[spos++];
dst[dpos++] = hexChars[(c >> 4) & 0x0f];
dst[dpos++] = hexChars[c & 0x0f];
}
data = [NSData allocWithZone: NSDefaultMallocZone()];
data = [data initWithBytesNoCopy: dst length: dlen];
string = [[NSString alloc] initWithData: data
encoding: NSASCIIStringEncoding];
RELEASE(data);
return AUTORELEASE(string);
}
/**
* Initialises the receiver with the supplied string data which contains
* a hexadecimal coding of the bytes. The parsing of the string is
* fairly tolerant, ignoring whitespace and permitting both upper and
* lower case hexadecimal digits (the -hexadecimalRepresentation method
* produces a string using only uppercase digits with no white space).<br />
* If the string does not contain one or more pairs of hexadecimal digits
* then an exception is raised.
*/
- (id) initWithHexadecimalRepresentation: (NSString*)string
{
CREATE_AUTORELEASE_POOL(arp);
NSData *d;
const char *src;
const char *end;
unsigned char *dst;
unsigned int pos = 0;
unsigned char byte = 0;
BOOL high = NO;
d = [string dataUsingEncoding: NSASCIIStringEncoding
allowLossyConversion: YES];
src = (const char*)[d bytes];
end = src + [d length];
dst = NSZoneMalloc(NSDefaultMallocZone(), [d length]/2 + 1);
while (src < end)
{
char c = *src++;
unsigned char v;
if (isspace(c))
{
continue;
}
if (c >= '0' && c <= '9')
{
v = c - '0';
}
else if (c >= 'A' && c <= 'F')
{
v = c - 'A' + 10;
}
else if (c >= 'a' && c <= 'f')
{
v = c - 'a' + 10;
}
else
{
pos = 0;
break;
}
if (high == NO)
{
byte = v << 4;
high = YES;
}
else
{
byte |= v;
high = NO;
dst[pos++] = byte;
}
}
if (pos > 0 && high == NO)
{
self = [self initWithBytes: dst length: pos];
}
else
{
DESTROY(self);
}
NSZoneFree(NSDefaultMallocZone(), dst);
RELEASE(arp);
if (self == nil)
{
[NSException raise: NSInvalidArgumentException
format: @"%@: invalid hexadeciaml string data",
NSStringFromSelector(_cmd)];
}
return self;
}
struct MD5Context
{
uint32_t buf[4];
uint32_t bits[2];
uint8_t in[64];
};
static void MD5Init (struct MD5Context *context);
static void MD5Update (struct MD5Context *context, unsigned char const *buf,
unsigned len);
static void MD5Final (unsigned char digest[16], struct MD5Context *context);
static void MD5Transform (uint32_t buf[4], uint32_t const in[16]);
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/*
* Ensure data is little-endian
*/
static void littleEndian (void *buf, unsigned words)
{
if (NSHostByteOrder() == NS_BigEndian)
{
while (words-- > 0)
{
union swap {
uint32_t num;
uint8_t byt[4];
} tmp;
uint8_t b0;
uint8_t b1;
tmp.num = ((uint32_t*)buf)[words];
b0 = tmp.byt[0];
b1 = tmp.byt[1];
tmp.byt[0] = tmp.byt[3];
tmp.byt[1] = tmp.byt[2];
tmp.byt[2] = b1;
tmp.byt[3] = b0;
((uint32_t*)buf)[words] = tmp.num;
}
}
}
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
static void MD5Init (struct MD5Context *ctx)
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
static void MD5Update (struct MD5Context *ctx, unsigned char const *buf,
unsigned len)
{
uint32_t t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if (t)
{
unsigned char *p = (unsigned char *) ctx->in + t;
t = 64 - t;
if (len < t)
{
memcpy (p, buf, len);
return;
}
memcpy (p, buf, t);
littleEndian (ctx->in, 16);
MD5Transform (ctx->buf, (uint32_t *) ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64)
{
memcpy (ctx->in, buf, 64);
littleEndian (ctx->in, 16);
MD5Transform (ctx->buf, (uint32_t *) ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy (ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
static void MD5Final (unsigned char digest[16], struct MD5Context *ctx)
{
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8)
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset (p, 0, count);
littleEndian (ctx->in, 16);
MD5Transform (ctx->buf, (uint32_t *) ctx->in);
/* Now fill the next block with 56 bytes */
memset (ctx->in, 0, 56);
}
else
{
/* Pad block to 56 bytes */
memset (p, 0, count - 8);
}
littleEndian (ctx->in, 14);
/* Append length in bits and transform */
((uint32_t *) ctx->in)[14] = ctx->bits[0];
((uint32_t *) ctx->in)[15] = ctx->bits[1];
MD5Transform (ctx->buf, (uint32_t *) ctx->in);
littleEndian ((unsigned char *) ctx->buf, 4);
memcpy (digest, ctx->buf, 16);
memset (ctx, 0, sizeof (ctx)); /* In case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
(w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x)
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 43bit words of new data. MD5Update blocks
* the data and converts bytes into 43bit words for this routine.
*/
static void MD5Transform (uint32_t buf[4], uint32_t const in[16])
{
register uint32_t a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP (F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP (F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP (F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP (F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP (F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP (F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP (F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP (F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP (F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP (F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP (F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP (F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP (F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP (F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP (F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP (F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP (F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP (F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP (F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP (F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP (F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP (F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP (F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP (F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP (F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP (F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP (F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP (F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP (F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/**
* Creates an MD5 digest of the information stored in the receiver and
* returns it as an autoreleased 16 byte NSData object.<br />
* If you need to produce a digest of string information, you need to
* decide what character encoding is to be used and convert your string
* to a data object of that encoding type first using the
* [NSString-dataUsingEncoding:] method -
* <example>
* myDigest = [[myString dataUsingEncoding: NSUTF8StringEncoding] md5Digest];
* </example>
* If you need to use the digest in a human readable form, you will
* probably want it to be seen as 32 hexadecimal digits, and can do that
* using the -hexadecimalRepresentation method.
*/
- (NSData*) md5Digest
{
struct MD5Context ctx;
unsigned char digest[16];
MD5Init(&ctx);
MD5Update(&ctx, [self bytes], [self length]);
MD5Final(digest, &ctx);
return [NSData dataWithBytes: digest length: 16];
}
/**
* Decodes the source data from uuencoded and return the result.<br />
* Returns the encoded file name in namePtr if it is not null.
* Returns the encoded file mode in modePtr if it is not null.
*/
- (BOOL) uudecodeInto: (NSMutableData*)decoded
name: (NSString**)namePtr
mode: (NSInteger*)modePtr
{
const unsigned char *bytes = (const unsigned char*)[self bytes];
unsigned length = [self length];
unsigned decLength = [decoded length];
unsigned pos = 0;
NSString *name = nil;
if (namePtr != 0)
{
*namePtr = nil;
}
if (modePtr != 0)
{
*modePtr = 0;
}
#define DEC(c) (((c) - ' ') & 077)
for (pos = 0; pos < length; pos++)
{
if (bytes[pos] == '\n')
{
if (name != nil)
{
unsigned i = 0;
int lineLength;
unsigned char *decPtr;
lineLength = DEC(bytes[i++]);
if (lineLength <= 0)
{
break; // Got line length zero or less.
}
[decoded setLength: decLength + lineLength];
decPtr = [decoded mutableBytes];
while (lineLength > 0)
{
unsigned char tmp[4];
int c;
/*
* In case the data is corrupt, we need to copy into
* a temporary buffer avoiding buffer overrun in the
* main buffer.
*/
tmp[0] = bytes[i++];
if (i < pos)
{
tmp[1] = bytes[i++];
if (i < pos)
{
tmp[2] = bytes[i++];
if (i < pos)
{
tmp[3] = bytes[i++];
}
else
{
tmp[3] = 0;
}
}
else
{
tmp[2] = 0;
tmp[3] = 0;
}
}
else
{
tmp[1] = 0;
tmp[2] = 0;
tmp[3] = 0;
}
if (lineLength >= 1)
{
c = DEC(tmp[0]) << 2 | DEC(tmp[1]) >> 4;
decPtr[decLength++] = (unsigned char)c;
}
if (lineLength >= 2)
{
c = DEC(tmp[1]) << 4 | DEC(tmp[2]) >> 2;
decPtr[decLength++] = (unsigned char)c;
}
if (lineLength >= 3)
{
c = DEC(tmp[2]) << 6 | DEC(tmp[3]);
decPtr[decLength++] = (unsigned char)c;
}
lineLength -= 3;
}
}
else if (pos > 6 && strncmp((const char*)bytes, "begin ", 6) == 0)
{
unsigned off = 6;
unsigned end = pos;
int mode = 0;
NSData *d;
if (end > off && bytes[end-1] == '\r')
{
end--;
}
while (off < end && bytes[off] >= '0' && bytes[off] <= '7')
{
mode *= 8;
mode += bytes[off] - '0';
off++;
}
if (modePtr != 0)
{
*modePtr = mode;
}
while (off < end && bytes[off] == ' ')
{
off++;
}
d = [NSData dataWithBytes: &bytes[off] length: end - off];
name = [[NSString alloc] initWithData: d
encoding: NSASCIIStringEncoding];
IF_NO_GC(AUTORELEASE(name);)
if (namePtr != 0)
{
*namePtr = name;
}
}
pos++;
bytes += pos;
length -= pos;
}
}
if (name == nil)
{
return NO;
}
return YES;
}
/**
* Encode the source data to uuencoded.<br />
* Uses the supplied name as the filename in the encoded data,
* and says that the file mode is as specified.<br />
* If no name is supplied, uses <code>untitled</code> as the name.
*/
- (BOOL) uuencodeInto: (NSMutableData*)encoded
name: (NSString*)name
mode: (NSInteger)mode
{
const unsigned char *bytes = (const unsigned char*)[self bytes];
int length = [self length];
unsigned char buf[64];
unsigned i;
name = [name stringByTrimmingSpaces];
if ([name length] == 0)
{
name = @"untitled";
}
/*
* The header is a line of the form 'begin mode filename'
*/
sprintf((char*)buf, "begin %03o ", (int)mode);
[encoded appendBytes: buf length: strlen((const char*)buf)];
[encoded appendData: [name dataUsingEncoding: NSASCIIStringEncoding]];
[encoded appendBytes: "\n" length: 1];
#define ENC(c) ((c) > 0 ? ((c) & 077) + ' ': '`')
while (length > 0)
{
int count;
unsigned pos;
/*
* We want up to 45 bytes in a line ... and we record the
* number of bytes as the initial output character.
*/
count = length;
if (count > 45)
{
count = 45;
}
i = 0;
buf[i++] = ENC(count);
/*
* Now we encode the actual data for the line.
*/
for (pos = 0; count > 0; count -= 3)
{
unsigned char tmp[3];
int c;
/*
* Copy data into a temporary buffer ensuring we don't
* overrun the end of the original buffer risking access
* violation.
*/
tmp[0] = bytes[pos++];
if (pos < length)
{
tmp[1] = bytes[pos++];
if (pos < length)
{
tmp[2] = bytes[pos++];
}
else
{
tmp[2] = 0;
}
}
else
{
tmp[1] = 0;
tmp[2] = 0;
}
c = tmp[0] >> 2;
buf[i++] = ENC(c);
c = ((tmp[0] << 4) & 060) | ((tmp[1] >> 4) & 017);
buf[i++] = ENC(c);
c = ((tmp[1] << 2) & 074) | ((tmp[2] >> 6) & 03);
buf[i++] = ENC(c);
c = tmp[2] & 077;
buf[i++] = ENC(c);
}
bytes += pos;
length -= pos;
buf[i++] = '\n';
[encoded appendBytes: buf length: i];
}
/*
* Encode a line of length zero followed by 'end' as the terminator.
*/
[encoded appendBytes: "`\nend\n" length: 6];
return YES;
}
@end