libs-base/Source/NSDebug.m
theraven ceba92a265 Lots of little fixes to make -base compile with -Werror (now builds without warnings).
Richard: I'm unsure about three of these, which were fixes in memset() calls in:
- NSConcreteMapTable.m
- NSConcreteHashTable.m
- Additions/NSData+GNUstepBase.m

Please can you check them?  I think they are intended to zero the entire object
(rather than the first word), but the lack of comments makes me unsure.

Most changes were just tweaks to variable types.  I've also removed some dead code from NSInvocation.  This was small group of things that were marked for internal use only, but not actually referenced in the code anywhere.

Other improvements:

- NSArray / NSDictionary fixed up to use the 10.7 (ARC-friendly) prototypes.
- getObjects:andKeys: implemented for NSDictionary (10.5 method)
- NSPointerArray and NSHashTable now properly support weak objects.
- Tests for weak objects in collections.



git-svn-id: svn+ssh://svn.gna.org/svn/gnustep/libs/base/trunk@33621 72102866-910b-0410-8b05-ffd578937521
2011-07-24 13:09:22 +00:00

1209 lines
34 KiB
Objective-C

/** Debugging utilities for GNUStep and OpenStep
Copyright (C) 1997,1999,2000,2001 Free Software Foundation, Inc.
Written by: Richard Frith-Macdonald <richard@brainstorm.co.uk>
Date: August 1997
Extended by: Nicola Pero <n.pero@mi.flashnet.it>
Date: December 2000, April 2001
This file is part of the GNUstep Base Library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02111 USA.
<title>NSDebug utilities reference</title>
$Date$ $Revision$
*/
#import "common.h"
#include <stdio.h>
#import "GSPrivate.h"
#import "GNUstepBase/GSLock.h"
#import "Foundation/NSArray.h"
#import "Foundation/NSData.h"
#import "Foundation/NSDictionary.h"
#import "Foundation/NSLock.h"
#import "Foundation/NSNotification.h"
#import "Foundation/NSNotificationQueue.h"
#import "Foundation/NSThread.h"
#import "Foundation/NSValue.h"
#if HAVE_EXECINFO_H
#include <execinfo.h>
#endif
typedef struct {
Class class;
/* The following are used for statistical info */
unsigned int count;
unsigned int lastc;
unsigned int total;
unsigned int peak;
/* The following are used to record actual objects */
BOOL is_recording;
id *recorded_objects;
id *recorded_tags;
unsigned int num_recorded_objects;
unsigned int stack_size;
} table_entry;
static unsigned int num_classes = 0;
static unsigned int table_size = 0;
static table_entry* the_table = 0;
static BOOL debug_allocation = NO;
static GSLazyRecursiveLock *uniqueLock = nil;
static const char* _GSDebugAllocationList(BOOL difference);
static const char* _GSDebugAllocationListAll(void);
static void _GSDebugAllocationAdd(Class c, id o);
static void _GSDebugAllocationRemove(Class c, id o);
static void (*_GSDebugAllocationAddFunc)(Class c, id o)
= _GSDebugAllocationAdd;
static void (*_GSDebugAllocationRemoveFunc)(Class c, id o)
= _GSDebugAllocationRemove;
@interface GSDebugAlloc : NSObject
+ (void) initialize;
@end
@implementation GSDebugAlloc
+ (void) initialize
{
uniqueLock = [GSLazyRecursiveLock new];
}
@end
/**
* This functions allows to set own function callbacks for debugging allocation
* of objects. Useful if you intend to write your own object allocation code.
*/
void
GSSetDebugAllocationFunctions(void (*newAddObjectFunc)(Class c, id o),
void (*newRemoveObjectFunc)(Class c, id o))
{
[uniqueLock lock];
if (newAddObjectFunc && newRemoveObjectFunc)
{
_GSDebugAllocationAddFunc = newAddObjectFunc;
_GSDebugAllocationRemoveFunc = newRemoveObjectFunc;
}
else
{
// Back to default
_GSDebugAllocationAddFunc = _GSDebugAllocationAdd;
_GSDebugAllocationRemoveFunc = _GSDebugAllocationRemove;
}
[uniqueLock unlock];
}
/**
* This function activates or deactivates object allocation debugging.<br />
* Returns the previous state.<br />
* You should call this function to activate
* allocation debugging before using any of the other allocation
* debugging functions such as GSDebugAllocationList() or
* GSDebugAllocationTotal().<br />
* Object allocation debugging
* should not affect performance too much, and is very useful
* as it allows you to monitor how many objects of each class
* your application has allocated.
*/
BOOL
GSDebugAllocationActive(BOOL active)
{
BOOL old = debug_allocation;
[GSDebugAlloc class]; /* Ensure thread support is working */
debug_allocation = active ? YES : NO;
return old;
}
/**
* This function activates tracking all allocated instances of
* the specified class c.<br />
* This tracking can slow your
* application down, so you should use it only when you are
* into serious debugging. Usually, you will monitor your
* application by using the functions GSDebugAllocationList()
* and similar, which do not slow things down much and return
* the number of allocated instances; when
* (if) by studying the reports generated by these functions
* you have found a leak of objects of a certain class, and
* if you can't figure out how to fix it by looking at the
* code, you can use this function to start tracking
* allocated instances of that class, and the following one
* can sometime allow you to list the leaked objects directly.
*/
void
GSDebugAllocationActiveRecordingObjects(Class c)
{
unsigned int i;
GSDebugAllocationActive(YES);
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
[uniqueLock lock];
the_table[i].is_recording = YES;
[uniqueLock unlock];
return;
}
}
[uniqueLock lock];
if (num_classes >= table_size)
{
int more = table_size + 128;
table_entry *tmp;
tmp = NSZoneMalloc(NSDefaultMallocZone(), more * sizeof(table_entry));
if (tmp == 0)
{
[uniqueLock unlock];
return;
}
if (the_table)
{
memcpy(tmp, the_table, num_classes * sizeof(table_entry));
NSZoneFree(NSDefaultMallocZone(), the_table);
}
the_table = tmp;
table_size = more;
}
the_table[num_classes].class = c;
the_table[num_classes].count = 0;
the_table[num_classes].lastc = 0;
the_table[num_classes].total = 0;
the_table[num_classes].peak = 0;
the_table[num_classes].is_recording = YES;
the_table[num_classes].recorded_objects = NULL;
the_table[num_classes].recorded_tags = NULL;
the_table[num_classes].num_recorded_objects = 0;
the_table[num_classes].stack_size = 0;
num_classes++;
[uniqueLock unlock];
}
void
GSDebugAllocationAdd(Class c, id o)
{
(*_GSDebugAllocationAddFunc)(c,o);
}
void
_GSDebugAllocationAdd(Class c, id o)
{
if (debug_allocation == YES)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
[uniqueLock lock];
the_table[i].count++;
the_table[i].total++;
if (the_table[i].count > the_table[i].peak)
{
the_table[i].peak = the_table[i].count;
}
if (the_table[i].is_recording == YES)
{
if (the_table[i].num_recorded_objects
>= the_table[i].stack_size)
{
int more = the_table[i].stack_size + 128;
id *tmp;
id *tmp1;
tmp = NSZoneMalloc(NSDefaultMallocZone(),
more * sizeof(id));
if (tmp == 0)
{
[uniqueLock unlock];
return;
}
tmp1 = NSZoneMalloc(NSDefaultMallocZone(),
more * sizeof(id));
if (tmp1 == 0)
{
NSZoneFree(NSDefaultMallocZone(), tmp);
[uniqueLock unlock];
return;
}
if (the_table[i].recorded_objects != NULL)
{
memcpy(tmp, the_table[i].recorded_objects,
the_table[i].num_recorded_objects
* sizeof(id));
NSZoneFree(NSDefaultMallocZone(),
the_table[i].recorded_objects);
memcpy(tmp1, the_table[i].recorded_tags,
the_table[i].num_recorded_objects
* sizeof(id));
NSZoneFree(NSDefaultMallocZone(),
the_table[i].recorded_tags);
}
the_table[i].recorded_objects = tmp;
the_table[i].recorded_tags = tmp1;
the_table[i].stack_size = more;
}
(the_table[i].recorded_objects)
[the_table[i].num_recorded_objects] = o;
(the_table[i].recorded_tags)
[the_table[i].num_recorded_objects] = nil;
the_table[i].num_recorded_objects++;
}
[uniqueLock unlock];
return;
}
}
[uniqueLock lock];
if (num_classes >= table_size)
{
unsigned int more = table_size + 128;
table_entry *tmp;
tmp = NSZoneMalloc(NSDefaultMallocZone(), more * sizeof(table_entry));
if (tmp == 0)
{
[uniqueLock unlock];
return; /* Argh */
}
if (the_table)
{
memcpy(tmp, the_table, num_classes * sizeof(table_entry));
NSZoneFree(NSDefaultMallocZone(), the_table);
}
the_table = tmp;
table_size = more;
}
the_table[num_classes].class = c;
the_table[num_classes].count = 1;
the_table[num_classes].lastc = 0;
the_table[num_classes].total = 1;
the_table[num_classes].peak = 1;
the_table[num_classes].is_recording = NO;
the_table[num_classes].recorded_objects = NULL;
the_table[num_classes].recorded_tags = NULL;
the_table[num_classes].num_recorded_objects = 0;
the_table[num_classes].stack_size = 0;
num_classes++;
[uniqueLock unlock];
}
}
/**
* <p>
* Returns the number
* of instances of the specified class which are currently
* allocated. This number is very important to detect memory
* leaks. If you notice that this number is constantly
* increasing without apparent reason, it is very likely a
* memory leak - you need to check that you are correctly
* releasing objects of this class, otherwise when your
* application runs for a long time, it will eventually
* allocate so many objects as to eat up all your system's
* memory ...
* </p>
* <p>
* This function, like the ones below, returns the number of
* objects allocated/released from the time when
* GSDebugAllocationActive() was first called. A negative
* number means that in total, there are less objects of this
* class allocated now than there were when you called
* GSDebugAllocationActive(); a positive one means there are
* more.
* </p>
*/
int
GSDebugAllocationCount(Class c)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
return the_table[i].count;
}
}
return 0;
}
/**
* Returns the total
* number of instances of the specified class c which have been
* allocated - basically the number of times you have
* allocated an object of this class. If this number is very
* high, it means you are creating a lot of objects of this
* class; even if you are releasing them correctly, you must
* not forget that allocating and deallocating objects is
* usually one of the slowest things you can do, so you might
* want to consider whether you can reduce the number of
* allocations and deallocations that you are doing - for
* example, by recycling objects of this class, uniquing
* them, and/or using some sort of flyweight pattern. It
* might also be possible that you are unnecessarily creating
* too many objects of this class. Well - of course some times
* there is nothing you can do about it.
*/
int
GSDebugAllocationTotal(Class c)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
return the_table[i].total;
}
}
return 0;
}
/**
* Returns the peak
* number of instances of the specified class which have been
* concurrently allocated. If this number is very high, it
* means at some point in time you had a situation with a
* huge number of objects of this class allocated - this is
* an indicator that probably at some point in time your
* application was using a lot of memory - so you might want
* to investigate whether you can prevent this problem by
* inserting autorelease pools in your application's
* processing loops.
*/
int
GSDebugAllocationPeak(Class c)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
return the_table[i].peak;
}
}
return 0;
}
/**
* This function returns a NULL
* terminated array listing all the classes for which
* statistical information has been collected. Usually, you
* call this function, and then loop on all the classes returned,
* and for each one you get current, peak and total count by
* using GSDebugAllocationCount(), GSDebugAllocationPeak() and
* GSDebugAllocationTotal().
*/
Class *
GSDebugAllocationClassList()
{
Class *ans;
size_t siz;
unsigned int i;
[uniqueLock lock];
siz = sizeof(Class) * (num_classes + 1);
ans = NSZoneMalloc(NSDefaultMallocZone(), siz);
for (i = 0; i < num_classes; i++)
{
ans[i] = the_table[i].class;
}
ans[num_classes] = NULL;
[uniqueLock unlock];
return ans;
}
/**
* This function returns a newline
* separated list of the classes which have instances
* allocated, and the instance counts. If the 'changeFlag'
* argument is YES then the list gives the number of
* instances allocated/deallocated since the function was
* last called. This function only returns the current count
* of instances (not the peak or total count), but its output
* is ready to be displayed or logged.
*/
const char*
GSDebugAllocationList(BOOL changeFlag)
{
const char *ans;
NSData *d;
if (debug_allocation == NO)
{
return "Debug allocation system is not active!\n";
}
[uniqueLock lock];
ans = _GSDebugAllocationList(changeFlag);
d = [NSData dataWithBytes: ans length: strlen(ans) + 1];
[uniqueLock unlock];
return (const char*)[d bytes];
}
static const char*
_GSDebugAllocationList(BOOL difference)
{
unsigned int pos = 0;
unsigned int i;
static unsigned int siz = 0;
static char *buf = 0;
for (i = 0; i < num_classes; i++)
{
int val = the_table[i].count;
if (difference)
{
val -= the_table[i].lastc;
}
if (val != 0)
{
pos += 22 + strlen(class_getName(the_table[i].class));
}
}
if (pos == 0)
{
if (difference)
{
return "There are NO newly allocated or deallocated object!\n";
}
else
{
return "I can find NO allocated object!\n";
}
}
pos++;
if (pos > siz)
{
if (pos & 0xff)
{
pos = ((pos >> 8) + 1) << 8;
}
siz = pos;
if (buf)
{
NSZoneFree(NSDefaultMallocZone(), buf);
}
buf = NSZoneMalloc(NSDefaultMallocZone(), siz);
}
if (buf)
{
pos = 0;
for (i = 0; i < num_classes; i++)
{
int val = the_table[i].count;
if (difference)
{
val -= the_table[i].lastc;
}
the_table[i].lastc = the_table[i].count;
if (val != 0)
{
snprintf(&buf[pos], siz - pos, "%d\t%s\n",
val, class_getName(the_table[i].class));
pos += strlen(&buf[pos]);
}
}
}
return buf;
}
/**
* This function returns a newline
* separated list of the classes which have had instances
* allocated at any point, and the total count of the number
* of instances allocated for each class. The difference with
* GSDebugAllocationList() is that this function returns also
* classes which have no objects allocated at the moment, but
* which had in the past.
*/
const char*
GSDebugAllocationListAll()
{
const char *ans;
NSData *d;
if (debug_allocation == NO)
{
return "Debug allocation system is not active!\n";
}
[uniqueLock lock];
ans = _GSDebugAllocationListAll();
d = [NSData dataWithBytes: ans length: strlen(ans)+1];
[uniqueLock unlock];
return (const char*)[d bytes];
}
static const char*
_GSDebugAllocationListAll(void)
{
unsigned int pos = 0;
unsigned int i;
static unsigned int siz = 0;
static char *buf = 0;
for (i = 0; i < num_classes; i++)
{
int val = the_table[i].total;
if (val != 0)
{
pos += 22 + strlen(class_getName(the_table[i].class));
}
}
if (pos == 0)
{
return "I can find NO allocated object!\n";
}
pos++;
if (pos > siz)
{
if (pos & 0xff)
{
pos = ((pos >> 8) + 1) << 8;
}
siz = pos;
if (buf)
{
NSZoneFree(NSDefaultMallocZone(), buf);
}
buf = NSZoneMalloc(NSDefaultMallocZone(), siz);
}
if (buf)
{
pos = 0;
for (i = 0; i < num_classes; i++)
{
int val = the_table[i].total;
if (val != 0)
{
snprintf(&buf[pos], siz - pos, "%d\t%s\n",
val, class_getName(the_table[i].class));
pos += strlen(&buf[pos]);
}
}
}
return buf;
}
void
GSDebugAllocationRemove(Class c, id o)
{
(*_GSDebugAllocationRemoveFunc)(c,o);
}
void
_GSDebugAllocationRemove(Class c, id o)
{
if (debug_allocation == YES)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
id tag = nil;
[uniqueLock lock];
the_table[i].count--;
if (the_table[i].is_recording)
{
unsigned j, k;
for (j = 0; j < the_table[i].num_recorded_objects; j++)
{
if ((the_table[i].recorded_objects)[j] == o)
{
tag = (the_table[i].recorded_tags)[j];
break;
}
}
if (j < the_table[i].num_recorded_objects)
{
for (k = j;
k + 1 < the_table[i].num_recorded_objects;
k++)
{
(the_table[i].recorded_objects)[k] =
(the_table[i].recorded_objects)[k + 1];
(the_table[i].recorded_tags)[k] =
(the_table[i].recorded_tags)[k + 1];
}
the_table[i].num_recorded_objects--;
}
else
{
/* Not found - no problem - this happens if the
object was allocated before we started
recording */
;
}
}
[uniqueLock unlock];
[tag release];
return;
}
}
}
}
/**
* This function associates the supplied tag with a recorded
* object and returns the tag which was previously associated
* with it (if any).<br />
* If the object was not recorded, the method returns nil<br />
* The tag is retained while it is associated with the object.
*/
id
GSDebugAllocationTagRecordedObject(id object, id tag)
{
Class c = [object class];
id o = nil;
int i;
int j;
if (debug_allocation == NO)
{
return nil;
}
[uniqueLock lock];
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
break;
}
}
if (i == num_classes
|| the_table[i].is_recording == NO
|| the_table[i].num_recorded_objects == 0)
{
[uniqueLock unlock];
return nil;
}
for (j = 0; j < the_table[i].num_recorded_objects; j++)
{
if (the_table[i].recorded_objects[j] == object)
{
o = the_table[i].recorded_tags[j];
the_table[i].recorded_tags[j] = RETAIN(tag);
break;
}
}
[uniqueLock unlock];
return AUTORELEASE(o);
}
/**
* This function returns an array
* containing all the allocated objects of a certain class
* which have been recorded ... to start the recording, you need
* to invoke GSDebugAllocationActiveRecordingObjects().
* Presumably, you will immediately call [NSObject-description] on them
* to find out the objects you are leaking. The objects are
* returned in an array, so until the array is autoreleased,
* the objects are not released.
*/
NSArray *
GSDebugAllocationListRecordedObjects(Class c)
{
NSArray *answer;
unsigned int i, k;
id *tmp;
if (debug_allocation == NO)
{
return nil;
}
[uniqueLock lock];
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
break;
}
}
if (i == num_classes)
{
[uniqueLock unlock];
return nil;
}
if (the_table[i].is_recording == NO)
{
[uniqueLock unlock];
return nil;
}
if (the_table[i].num_recorded_objects == 0)
{
[uniqueLock unlock];
return [NSArray array];
}
tmp = NSZoneMalloc(NSDefaultMallocZone(),
the_table[i].num_recorded_objects * sizeof(id));
if (tmp == 0)
{
[uniqueLock unlock];
return nil;
}
/* First, we copy the objects into a temporary buffer */
memcpy(tmp, the_table[i].recorded_objects,
the_table[i].num_recorded_objects * sizeof(id));
/* Retain all the objects - NB: if retaining one of the objects as a
side effect eleases another one of them , we are broken ... */
#if !GS_WITH_GC
for (k = 0; k < the_table[i].num_recorded_objects; k++)
{
[tmp[k] retain];
}
#endif
/* Then, we bravely unlock the lock */
[uniqueLock unlock];
/* Only then we create an array with them - this is now safe as we
have copied the objects out, unlocked, and retained them. */
answer = [NSArray arrayWithObjects: tmp
count: the_table[i].num_recorded_objects];
/* Now we release all the objects to balance the retain */
for (k = 0; k < the_table[i].num_recorded_objects; k++)
{
RELEASE (tmp[k]);
}
/* And free the space used by them */
NSZoneFree(NSDefaultMallocZone(), tmp);
return answer;
}
#if !defined(HAVE_BUILTIN_EXTRACT_RETURN_ADDRESS)
# define __builtin_extract_return_address(X) X
#endif
#define _NS_FRAME_HACK(a) \
case a: env->addr = __builtin_frame_address(a + 1); break;
#define _NS_RETURN_HACK(a) \
case a: env->addr = (__builtin_frame_address(a + 1) ? \
__builtin_extract_return_address(__builtin_return_address(a + 1)) : 0); break;
/*
* The following horrible signal handling code is a workaround for the fact
* that the __builtin_frame_address() and __builtin_return_address()
* functions are not reliable (at least not on my EM64T based system) and
* will sometimes walk off the stack and access illegal memory locations.
* In order to prevent such an occurrance from crashing the application,
* we use sigsetjmp() and siglongjmp() to ensure that we can recover, and
* we keep the jump buffer in thread-local memory to avoid possible thread
* safety issues.
* Of course this will fail horribly if an exception occurs in one of the
* few methods we use to manage the per-thread jump buffer.
*/
#include <signal.h>
#include <setjmp.h>
#if defined(__MINGW__)
#ifndef SIGBUS
#define SIGBUS SIGILL
#endif
#endif
/* sigsetjmp may be a function or a macro. The test for the function is
* done at configure time so we can tell here if either is available.
*/
#if !defined(HAVE_SIGSETJMP) && !defined(sigsetjmp)
#define siglongjmp(A,B) longjmp(A,B)
#define sigsetjmp(A,B) setjmp(A)
#define sigjmp_buf jmp_buf
#endif
typedef struct {
sigjmp_buf buf;
void *addr;
void (*bus)(int);
void (*segv)(int);
} jbuf_type;
static jbuf_type *
jbuf()
{
NSMutableData *d;
NSMutableDictionary *dict;
dict = [[NSThread currentThread] threadDictionary];
d = [dict objectForKey: @"GSjbuf"];
if (d == nil)
{
d = [[NSMutableData alloc] initWithLength: sizeof(jbuf_type)];
[dict setObject: d forKey: @"GSjbuf"];
RELEASE(d);
}
return (jbuf_type*)[d mutableBytes];
}
static void
recover(int sig)
{
siglongjmp(jbuf()->buf, 1);
}
void *
NSFrameAddress(NSUInteger offset)
{
jbuf_type *env;
env = jbuf();
if (sigsetjmp(env->buf, 1) == 0)
{
env->segv = signal(SIGSEGV, recover);
env->bus = signal(SIGBUS, recover);
switch (offset)
{
_NS_FRAME_HACK(0); _NS_FRAME_HACK(1); _NS_FRAME_HACK(2);
_NS_FRAME_HACK(3); _NS_FRAME_HACK(4); _NS_FRAME_HACK(5);
_NS_FRAME_HACK(6); _NS_FRAME_HACK(7); _NS_FRAME_HACK(8);
_NS_FRAME_HACK(9); _NS_FRAME_HACK(10); _NS_FRAME_HACK(11);
_NS_FRAME_HACK(12); _NS_FRAME_HACK(13); _NS_FRAME_HACK(14);
_NS_FRAME_HACK(15); _NS_FRAME_HACK(16); _NS_FRAME_HACK(17);
_NS_FRAME_HACK(18); _NS_FRAME_HACK(19); _NS_FRAME_HACK(20);
_NS_FRAME_HACK(21); _NS_FRAME_HACK(22); _NS_FRAME_HACK(23);
_NS_FRAME_HACK(24); _NS_FRAME_HACK(25); _NS_FRAME_HACK(26);
_NS_FRAME_HACK(27); _NS_FRAME_HACK(28); _NS_FRAME_HACK(29);
_NS_FRAME_HACK(30); _NS_FRAME_HACK(31); _NS_FRAME_HACK(32);
_NS_FRAME_HACK(33); _NS_FRAME_HACK(34); _NS_FRAME_HACK(35);
_NS_FRAME_HACK(36); _NS_FRAME_HACK(37); _NS_FRAME_HACK(38);
_NS_FRAME_HACK(39); _NS_FRAME_HACK(40); _NS_FRAME_HACK(41);
_NS_FRAME_HACK(42); _NS_FRAME_HACK(43); _NS_FRAME_HACK(44);
_NS_FRAME_HACK(45); _NS_FRAME_HACK(46); _NS_FRAME_HACK(47);
_NS_FRAME_HACK(48); _NS_FRAME_HACK(49); _NS_FRAME_HACK(50);
_NS_FRAME_HACK(51); _NS_FRAME_HACK(52); _NS_FRAME_HACK(53);
_NS_FRAME_HACK(54); _NS_FRAME_HACK(55); _NS_FRAME_HACK(56);
_NS_FRAME_HACK(57); _NS_FRAME_HACK(58); _NS_FRAME_HACK(59);
_NS_FRAME_HACK(60); _NS_FRAME_HACK(61); _NS_FRAME_HACK(62);
_NS_FRAME_HACK(63); _NS_FRAME_HACK(64); _NS_FRAME_HACK(65);
_NS_FRAME_HACK(66); _NS_FRAME_HACK(67); _NS_FRAME_HACK(68);
_NS_FRAME_HACK(69); _NS_FRAME_HACK(70); _NS_FRAME_HACK(71);
_NS_FRAME_HACK(72); _NS_FRAME_HACK(73); _NS_FRAME_HACK(74);
_NS_FRAME_HACK(75); _NS_FRAME_HACK(76); _NS_FRAME_HACK(77);
_NS_FRAME_HACK(78); _NS_FRAME_HACK(79); _NS_FRAME_HACK(80);
_NS_FRAME_HACK(81); _NS_FRAME_HACK(82); _NS_FRAME_HACK(83);
_NS_FRAME_HACK(84); _NS_FRAME_HACK(85); _NS_FRAME_HACK(86);
_NS_FRAME_HACK(87); _NS_FRAME_HACK(88); _NS_FRAME_HACK(89);
_NS_FRAME_HACK(90); _NS_FRAME_HACK(91); _NS_FRAME_HACK(92);
_NS_FRAME_HACK(93); _NS_FRAME_HACK(94); _NS_FRAME_HACK(95);
_NS_FRAME_HACK(96); _NS_FRAME_HACK(97); _NS_FRAME_HACK(98);
_NS_FRAME_HACK(99);
default: env->addr = NULL; break;
}
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
else
{
env = jbuf();
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
env->addr = NULL;
}
return env->addr;
}
NSUInteger NSCountFrames(void)
{
jbuf_type *env;
env = jbuf();
if (sigsetjmp(env->buf, 1) == 0)
{
env->segv = signal(SIGSEGV, recover);
env->bus = signal(SIGBUS, recover);
env->addr = 0;
#define _NS_COUNT_HACK(X) if (__builtin_frame_address(X + 1) == 0) \
goto done; else env->addr = (void*)(X + 1);
_NS_COUNT_HACK(0); _NS_COUNT_HACK(1); _NS_COUNT_HACK(2);
_NS_COUNT_HACK(3); _NS_COUNT_HACK(4); _NS_COUNT_HACK(5);
_NS_COUNT_HACK(6); _NS_COUNT_HACK(7); _NS_COUNT_HACK(8);
_NS_COUNT_HACK(9); _NS_COUNT_HACK(10); _NS_COUNT_HACK(11);
_NS_COUNT_HACK(12); _NS_COUNT_HACK(13); _NS_COUNT_HACK(14);
_NS_COUNT_HACK(15); _NS_COUNT_HACK(16); _NS_COUNT_HACK(17);
_NS_COUNT_HACK(18); _NS_COUNT_HACK(19); _NS_COUNT_HACK(20);
_NS_COUNT_HACK(21); _NS_COUNT_HACK(22); _NS_COUNT_HACK(23);
_NS_COUNT_HACK(24); _NS_COUNT_HACK(25); _NS_COUNT_HACK(26);
_NS_COUNT_HACK(27); _NS_COUNT_HACK(28); _NS_COUNT_HACK(29);
_NS_COUNT_HACK(30); _NS_COUNT_HACK(31); _NS_COUNT_HACK(32);
_NS_COUNT_HACK(33); _NS_COUNT_HACK(34); _NS_COUNT_HACK(35);
_NS_COUNT_HACK(36); _NS_COUNT_HACK(37); _NS_COUNT_HACK(38);
_NS_COUNT_HACK(39); _NS_COUNT_HACK(40); _NS_COUNT_HACK(41);
_NS_COUNT_HACK(42); _NS_COUNT_HACK(43); _NS_COUNT_HACK(44);
_NS_COUNT_HACK(45); _NS_COUNT_HACK(46); _NS_COUNT_HACK(47);
_NS_COUNT_HACK(48); _NS_COUNT_HACK(49); _NS_COUNT_HACK(50);
_NS_COUNT_HACK(51); _NS_COUNT_HACK(52); _NS_COUNT_HACK(53);
_NS_COUNT_HACK(54); _NS_COUNT_HACK(55); _NS_COUNT_HACK(56);
_NS_COUNT_HACK(57); _NS_COUNT_HACK(58); _NS_COUNT_HACK(59);
_NS_COUNT_HACK(60); _NS_COUNT_HACK(61); _NS_COUNT_HACK(62);
_NS_COUNT_HACK(63); _NS_COUNT_HACK(64); _NS_COUNT_HACK(65);
_NS_COUNT_HACK(66); _NS_COUNT_HACK(67); _NS_COUNT_HACK(68);
_NS_COUNT_HACK(69); _NS_COUNT_HACK(70); _NS_COUNT_HACK(71);
_NS_COUNT_HACK(72); _NS_COUNT_HACK(73); _NS_COUNT_HACK(74);
_NS_COUNT_HACK(75); _NS_COUNT_HACK(76); _NS_COUNT_HACK(77);
_NS_COUNT_HACK(78); _NS_COUNT_HACK(79); _NS_COUNT_HACK(80);
_NS_COUNT_HACK(81); _NS_COUNT_HACK(82); _NS_COUNT_HACK(83);
_NS_COUNT_HACK(84); _NS_COUNT_HACK(85); _NS_COUNT_HACK(86);
_NS_COUNT_HACK(87); _NS_COUNT_HACK(88); _NS_COUNT_HACK(89);
_NS_COUNT_HACK(90); _NS_COUNT_HACK(91); _NS_COUNT_HACK(92);
_NS_COUNT_HACK(93); _NS_COUNT_HACK(94); _NS_COUNT_HACK(95);
_NS_COUNT_HACK(96); _NS_COUNT_HACK(97); _NS_COUNT_HACK(98);
_NS_COUNT_HACK(99);
done:
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
else
{
env = jbuf();
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
return (uintptr_t)env->addr;
}
void *
NSReturnAddress(NSUInteger offset)
{
jbuf_type *env;
env = jbuf();
if (sigsetjmp(env->buf, 1) == 0)
{
env->segv = signal(SIGSEGV, recover);
env->bus = signal(SIGBUS, recover);
switch (offset)
{
_NS_RETURN_HACK(0); _NS_RETURN_HACK(1); _NS_RETURN_HACK(2);
_NS_RETURN_HACK(3); _NS_RETURN_HACK(4); _NS_RETURN_HACK(5);
_NS_RETURN_HACK(6); _NS_RETURN_HACK(7); _NS_RETURN_HACK(8);
_NS_RETURN_HACK(9); _NS_RETURN_HACK(10); _NS_RETURN_HACK(11);
_NS_RETURN_HACK(12); _NS_RETURN_HACK(13); _NS_RETURN_HACK(14);
_NS_RETURN_HACK(15); _NS_RETURN_HACK(16); _NS_RETURN_HACK(17);
_NS_RETURN_HACK(18); _NS_RETURN_HACK(19); _NS_RETURN_HACK(20);
_NS_RETURN_HACK(21); _NS_RETURN_HACK(22); _NS_RETURN_HACK(23);
_NS_RETURN_HACK(24); _NS_RETURN_HACK(25); _NS_RETURN_HACK(26);
_NS_RETURN_HACK(27); _NS_RETURN_HACK(28); _NS_RETURN_HACK(29);
_NS_RETURN_HACK(30); _NS_RETURN_HACK(31); _NS_RETURN_HACK(32);
_NS_RETURN_HACK(33); _NS_RETURN_HACK(34); _NS_RETURN_HACK(35);
_NS_RETURN_HACK(36); _NS_RETURN_HACK(37); _NS_RETURN_HACK(38);
_NS_RETURN_HACK(39); _NS_RETURN_HACK(40); _NS_RETURN_HACK(41);
_NS_RETURN_HACK(42); _NS_RETURN_HACK(43); _NS_RETURN_HACK(44);
_NS_RETURN_HACK(45); _NS_RETURN_HACK(46); _NS_RETURN_HACK(47);
_NS_RETURN_HACK(48); _NS_RETURN_HACK(49); _NS_RETURN_HACK(50);
_NS_RETURN_HACK(51); _NS_RETURN_HACK(52); _NS_RETURN_HACK(53);
_NS_RETURN_HACK(54); _NS_RETURN_HACK(55); _NS_RETURN_HACK(56);
_NS_RETURN_HACK(57); _NS_RETURN_HACK(58); _NS_RETURN_HACK(59);
_NS_RETURN_HACK(60); _NS_RETURN_HACK(61); _NS_RETURN_HACK(62);
_NS_RETURN_HACK(63); _NS_RETURN_HACK(64); _NS_RETURN_HACK(65);
_NS_RETURN_HACK(66); _NS_RETURN_HACK(67); _NS_RETURN_HACK(68);
_NS_RETURN_HACK(69); _NS_RETURN_HACK(70); _NS_RETURN_HACK(71);
_NS_RETURN_HACK(72); _NS_RETURN_HACK(73); _NS_RETURN_HACK(74);
_NS_RETURN_HACK(75); _NS_RETURN_HACK(76); _NS_RETURN_HACK(77);
_NS_RETURN_HACK(78); _NS_RETURN_HACK(79); _NS_RETURN_HACK(80);
_NS_RETURN_HACK(81); _NS_RETURN_HACK(82); _NS_RETURN_HACK(83);
_NS_RETURN_HACK(84); _NS_RETURN_HACK(85); _NS_RETURN_HACK(86);
_NS_RETURN_HACK(87); _NS_RETURN_HACK(88); _NS_RETURN_HACK(89);
_NS_RETURN_HACK(90); _NS_RETURN_HACK(91); _NS_RETURN_HACK(92);
_NS_RETURN_HACK(93); _NS_RETURN_HACK(94); _NS_RETURN_HACK(95);
_NS_RETURN_HACK(96); _NS_RETURN_HACK(97); _NS_RETURN_HACK(98);
_NS_RETURN_HACK(99);
default: env->addr = NULL; break;
}
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
else
{
env = jbuf();
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
env->addr = NULL;
}
return env->addr;
}
NSMutableArray *
GSPrivateStackAddresses(void)
{
NSMutableArray *stack;
NSAutoreleasePool *pool;
#if HAVE_BACKTRACE
void *addresses[1024];
int n = backtrace(addresses, 1024);
int i;
stack = [NSMutableArray arrayWithCapacity: n];
pool = [NSAutoreleasePool new];
for (i = 0; i < n; i++)
{
[stack addObject: [NSValue valueWithPointer: addresses[i]]];
}
#else
unsigned n = NSCountFrames();
unsigned i;
jbuf_type *env;
stack = [NSMutableArray arrayWithCapacity: n];
pool = [NSAutoreleasePool new];
/* There should be more frame addresses than return addresses.
*/
if (n > 0)
{
n--;
}
if (n > 0)
{
n--;
}
env = jbuf();
if (sigsetjmp(env->buf, 1) == 0)
{
env->segv = signal(SIGSEGV, recover);
env->bus = signal(SIGBUS, recover);
for (i = 0; i < n; i++)
{
switch (i)
{
_NS_RETURN_HACK(0); _NS_RETURN_HACK(1); _NS_RETURN_HACK(2);
_NS_RETURN_HACK(3); _NS_RETURN_HACK(4); _NS_RETURN_HACK(5);
_NS_RETURN_HACK(6); _NS_RETURN_HACK(7); _NS_RETURN_HACK(8);
_NS_RETURN_HACK(9); _NS_RETURN_HACK(10); _NS_RETURN_HACK(11);
_NS_RETURN_HACK(12); _NS_RETURN_HACK(13); _NS_RETURN_HACK(14);
_NS_RETURN_HACK(15); _NS_RETURN_HACK(16); _NS_RETURN_HACK(17);
_NS_RETURN_HACK(18); _NS_RETURN_HACK(19); _NS_RETURN_HACK(20);
_NS_RETURN_HACK(21); _NS_RETURN_HACK(22); _NS_RETURN_HACK(23);
_NS_RETURN_HACK(24); _NS_RETURN_HACK(25); _NS_RETURN_HACK(26);
_NS_RETURN_HACK(27); _NS_RETURN_HACK(28); _NS_RETURN_HACK(29);
_NS_RETURN_HACK(30); _NS_RETURN_HACK(31); _NS_RETURN_HACK(32);
_NS_RETURN_HACK(33); _NS_RETURN_HACK(34); _NS_RETURN_HACK(35);
_NS_RETURN_HACK(36); _NS_RETURN_HACK(37); _NS_RETURN_HACK(38);
_NS_RETURN_HACK(39); _NS_RETURN_HACK(40); _NS_RETURN_HACK(41);
_NS_RETURN_HACK(42); _NS_RETURN_HACK(43); _NS_RETURN_HACK(44);
_NS_RETURN_HACK(45); _NS_RETURN_HACK(46); _NS_RETURN_HACK(47);
_NS_RETURN_HACK(48); _NS_RETURN_HACK(49); _NS_RETURN_HACK(50);
_NS_RETURN_HACK(51); _NS_RETURN_HACK(52); _NS_RETURN_HACK(53);
_NS_RETURN_HACK(54); _NS_RETURN_HACK(55); _NS_RETURN_HACK(56);
_NS_RETURN_HACK(57); _NS_RETURN_HACK(58); _NS_RETURN_HACK(59);
_NS_RETURN_HACK(60); _NS_RETURN_HACK(61); _NS_RETURN_HACK(62);
_NS_RETURN_HACK(63); _NS_RETURN_HACK(64); _NS_RETURN_HACK(65);
_NS_RETURN_HACK(66); _NS_RETURN_HACK(67); _NS_RETURN_HACK(68);
_NS_RETURN_HACK(69); _NS_RETURN_HACK(70); _NS_RETURN_HACK(71);
_NS_RETURN_HACK(72); _NS_RETURN_HACK(73); _NS_RETURN_HACK(74);
_NS_RETURN_HACK(75); _NS_RETURN_HACK(76); _NS_RETURN_HACK(77);
_NS_RETURN_HACK(78); _NS_RETURN_HACK(79); _NS_RETURN_HACK(80);
_NS_RETURN_HACK(81); _NS_RETURN_HACK(82); _NS_RETURN_HACK(83);
_NS_RETURN_HACK(84); _NS_RETURN_HACK(85); _NS_RETURN_HACK(86);
_NS_RETURN_HACK(87); _NS_RETURN_HACK(88); _NS_RETURN_HACK(89);
_NS_RETURN_HACK(90); _NS_RETURN_HACK(91); _NS_RETURN_HACK(92);
_NS_RETURN_HACK(93); _NS_RETURN_HACK(94); _NS_RETURN_HACK(95);
_NS_RETURN_HACK(96); _NS_RETURN_HACK(97); _NS_RETURN_HACK(98);
_NS_RETURN_HACK(99);
default: env->addr = 0; break;
}
if (env->addr == 0)
{
break;
}
[stack addObject: [NSValue valueWithPointer: env->addr]];
}
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
else
{
env = jbuf();
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
#endif
[pool drain];
return stack;
}
const char *_NSPrintForDebugger(id object)
{
if (object && [object respondsToSelector: @selector(description)])
return [[object description] cString];
return NULL;
}
NSString *_NSNewStringFromCString(const char *cstring)
{
return [NSString stringWithCString: cstring
encoding: [NSString defaultCStringEncoding]];
}