/* Implementation of extension methods to base additions Copyright (C) 2010 Free Software Foundation, Inc. Written by: Richard Frith-Macdonald This file is part of the GNUstep Base Library. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111 USA. */ #import "common.h" #import "Foundation/NSAutoreleasePool.h" #import "Foundation/NSByteOrder.h" #import "Foundation/NSException.h" #import "GNUstepBase/NSData+GNUstepBase.h" #import "GNUstepBase/NSString+GNUstepBase.h" #include #include /** * Extension methods for the NSData class. */ @implementation NSData (GNUstepBase) /** * Returns an NSString object containing an ASCII hexadecimal representation * of the receiver. This means that the returned object will contain * exactly twice as many characters as there are bytes as the receiver, * as each byte in the receiver is represented by two hexadecimal digits.
* The high order four bits of each byte is encoded before the low * order four bits. Capital letters 'A' to 'F' are used to represent * values from 10 to 15.
* If you need the hexadecimal representation as raw byte data, use code * like - * * hexData = [[sourceData hexadecimalRepresentation] * dataUsingEncoding: NSASCIIStringEncoding]; * */ - (NSString*) hexadecimalRepresentation { static const char *hexChars = "0123456789ABCDEF"; unsigned slen = [self length]; unsigned dlen = slen * 2; const unsigned char *src = (const unsigned char *)[self bytes]; char *dst = (char*)NSZoneMalloc(NSDefaultMallocZone(), dlen); unsigned spos = 0; unsigned dpos = 0; NSData *data; NSString *string; while (spos < slen) { unsigned char c = src[spos++]; dst[dpos++] = hexChars[(c >> 4) & 0x0f]; dst[dpos++] = hexChars[c & 0x0f]; } data = [NSData allocWithZone: NSDefaultMallocZone()]; data = [data initWithBytesNoCopy: dst length: dlen]; string = [[NSString alloc] initWithData: data encoding: NSASCIIStringEncoding]; RELEASE(data); return AUTORELEASE(string); } /** * Initialises the receiver with the supplied string data which contains * a hexadecimal coding of the bytes. The parsing of the string is * fairly tolerant, ignoring whitespace and permitting both upper and * lower case hexadecimal digits (the -hexadecimalRepresentation method * produces a string using only uppercase digits with no white space).
* If the string does not contain one or more pairs of hexadecimal digits * then an exception is raised. */ - (id) initWithHexadecimalRepresentation: (NSString*)string { NSAutoreleasePool *arp = [NSAutoreleasePool new]; NSData *d; const char *src; const char *end; unsigned char *dst; unsigned int pos = 0; unsigned char byte = 0; BOOL high = NO; d = [string dataUsingEncoding: NSASCIIStringEncoding allowLossyConversion: YES]; src = (const char*)[d bytes]; end = src + [d length]; dst = NSZoneMalloc(NSDefaultMallocZone(), [d length]/2 + 1); while (src < end) { char c = *src++; unsigned char v; if (isspace(c)) { continue; } if (c >= '0' && c <= '9') { v = c - '0'; } else if (c >= 'A' && c <= 'F') { v = c - 'A' + 10; } else if (c >= 'a' && c <= 'f') { v = c - 'a' + 10; } else { pos = 0; break; } if (high == NO) { byte = v << 4; high = YES; } else { byte |= v; high = NO; dst[pos++] = byte; } } if (pos > 0 && high == NO) { self = [self initWithBytes: dst length: pos]; } else { DESTROY(self); } NSZoneFree(NSDefaultMallocZone(), dst); [arp drain]; if (self == nil) { [NSException raise: NSInvalidArgumentException format: @"%@: invalid hexadeciaml string data", NSStringFromSelector(_cmd)]; } return self; } struct MD5Context { uint32_t buf[4]; uint32_t bits[2]; uint8_t in[64]; }; static void MD5Init (struct MD5Context *context); static void MD5Update (struct MD5Context *context, unsigned char const *buf, unsigned len); static void MD5Final (unsigned char digest[16], struct MD5Context *context); static void MD5Transform (uint32_t buf[4], uint32_t const in[16]); /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ /* * Ensure data is little-endian */ static void littleEndian (void *buf, unsigned words) { if (NSHostByteOrder() == NS_BigEndian) { while (words-- > 0) { union swap { uint32_t num; uint8_t byt[4]; } tmp; uint8_t b0; uint8_t b1; tmp.num = ((uint32_t*)buf)[words]; b0 = tmp.byt[0]; b1 = tmp.byt[1]; tmp.byt[0] = tmp.byt[3]; tmp.byt[1] = tmp.byt[2]; tmp.byt[2] = b1; tmp.byt[3] = b0; ((uint32_t*)buf)[words] = tmp.num; } } } /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ static void MD5Init (struct MD5Context *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ static void MD5Update (struct MD5Context *ctx, unsigned char const *buf, unsigned len) { uint32_t t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *) ctx->in + t; t = 64 - t; if (len < t) { memcpy (p, buf, len); return; } memcpy (p, buf, t); littleEndian (ctx->in, 16); MD5Transform (ctx->buf, (uint32_t *) ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy (ctx->in, buf, 64); littleEndian (ctx->in, 16); MD5Transform (ctx->buf, (uint32_t *) ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy (ctx->in, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ static void MD5Final (unsigned char digest[16], struct MD5Context *ctx) { unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset (p, 0, count); littleEndian (ctx->in, 16); MD5Transform (ctx->buf, (uint32_t *) ctx->in); /* Now fill the next block with 56 bytes */ memset (ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset (p, 0, count - 8); } littleEndian (ctx->in, 14); /* Append length in bits and transform */ ((uint32_t *) ctx->in)[14] = ctx->bits[0]; ((uint32_t *) ctx->in)[15] = ctx->bits[1]; MD5Transform (ctx->buf, (uint32_t *) ctx->in); littleEndian ((unsigned char *) ctx->buf, 4); memcpy (digest, ctx->buf, 16); memset (ctx, 0, sizeof (*ctx)); /* In case it's sensitive */ } /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ (w += f(x, y, z) + data, w = w<>(32-s), w += x) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 43bit words of new data. MD5Update blocks * the data and converts bytes into 43bit words for this routine. */ static void MD5Transform (uint32_t buf[4], uint32_t const in[16]) { register uint32_t a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP (F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP (F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP (F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP (F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP (F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP (F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP (F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP (F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP (F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP (F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP (F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP (F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP (F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP (F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP (F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP (F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP (F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP (F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP (F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP (F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP (F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP (F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP (F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP (F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP (F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP (F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP (F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP (F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP (F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP (F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP (F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP (F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP (F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP (F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP (F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP (F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP (F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP (F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP (F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP (F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP (F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP (F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP (F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP (F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP (F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP (F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP (F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP (F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP (F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP (F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP (F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP (F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP (F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /** * Creates an MD5 digest of the information stored in the receiver and * returns it as an autoreleased 16 byte NSData object.
* If you need to produce a digest of string information, you need to * decide what character encoding is to be used and convert your string * to a data object of that encoding type first using the * [NSString-dataUsingEncoding:] method - * * myDigest = [[myString dataUsingEncoding: NSUTF8StringEncoding] md5Digest]; * * If you need to use the digest in a human readable form, you will * probably want it to be seen as 32 hexadecimal digits, and can do that * using the -hexadecimalRepresentation method. */ - (NSData*) md5Digest { struct MD5Context ctx; unsigned char digest[16]; MD5Init(&ctx); MD5Update(&ctx, [self bytes], [self length]); MD5Final(digest, &ctx); return [NSData dataWithBytes: digest length: 16]; } /** * Decodes the source data from uuencoded and return the result.
* Returns the encoded file name in namePtr if it is not null. * Returns the encoded file mode in modePtr if it is not null. */ - (BOOL) uudecodeInto: (NSMutableData*)decoded name: (NSString**)namePtr mode: (NSInteger*)modePtr { const unsigned char *bytes = (const unsigned char*)[self bytes]; unsigned length = [self length]; unsigned decLength = [decoded length]; unsigned pos = 0; NSString *name = nil; if (namePtr != 0) { *namePtr = nil; } if (modePtr != 0) { *modePtr = 0; } #define DEC(c) (((c) - ' ') & 077) for (pos = 0; pos < length; pos++) { if (bytes[pos] == '\n') { if (name != nil) { unsigned i = 0; int lineLength; unsigned char *decPtr; lineLength = DEC(bytes[i++]); if (lineLength <= 0) { break; // Got line length zero or less. } [decoded setLength: decLength + lineLength]; decPtr = [decoded mutableBytes]; while (lineLength > 0) { unsigned char tmp[4]; int c; /* * In case the data is corrupt, we need to copy into * a temporary buffer avoiding buffer overrun in the * main buffer. */ tmp[0] = bytes[i++]; if (i < pos) { tmp[1] = bytes[i++]; if (i < pos) { tmp[2] = bytes[i++]; if (i < pos) { tmp[3] = bytes[i++]; } else { tmp[3] = 0; } } else { tmp[2] = 0; tmp[3] = 0; } } else { tmp[1] = 0; tmp[2] = 0; tmp[3] = 0; } if (lineLength >= 1) { c = DEC(tmp[0]) << 2 | DEC(tmp[1]) >> 4; decPtr[decLength++] = (unsigned char)c; } if (lineLength >= 2) { c = DEC(tmp[1]) << 4 | DEC(tmp[2]) >> 2; decPtr[decLength++] = (unsigned char)c; } if (lineLength >= 3) { c = DEC(tmp[2]) << 6 | DEC(tmp[3]); decPtr[decLength++] = (unsigned char)c; } lineLength -= 3; } } else if (pos > 6 && strncmp((const char*)bytes, "begin ", 6) == 0) { unsigned off = 6; unsigned end = pos; int mode = 0; NSData *d; if (end > off && bytes[end-1] == '\r') { end--; } while (off < end && bytes[off] >= '0' && bytes[off] <= '7') { mode *= 8; mode += bytes[off] - '0'; off++; } if (modePtr != 0) { *modePtr = mode; } while (off < end && bytes[off] == ' ') { off++; } d = [NSData dataWithBytes: &bytes[off] length: end - off]; name = [[NSString alloc] initWithData: d encoding: NSASCIIStringEncoding]; IF_NO_GC(AUTORELEASE(name);) if (namePtr != 0) { *namePtr = name; } } pos++; bytes += pos; length -= pos; } } if (name == nil) { return NO; } return YES; } /** * Encode the source data to uuencoded.
* Uses the supplied name as the filename in the encoded data, * and says that the file mode is as specified.
* If no name is supplied, uses untitled as the name. */ - (BOOL) uuencodeInto: (NSMutableData*)encoded name: (NSString*)name mode: (NSInteger)mode { const unsigned char *bytes = (const unsigned char*)[self bytes]; int length = [self length]; unsigned char buf[64]; unsigned i; name = [name stringByTrimmingSpaces]; if ([name length] == 0) { name = @"untitled"; } /* * The header is a line of the form 'begin mode filename' */ snprintf((char*)buf, sizeof(buf), "begin %03o ", (int)mode); [encoded appendBytes: buf length: strlen((const char*)buf)]; [encoded appendData: [name dataUsingEncoding: NSASCIIStringEncoding]]; [encoded appendBytes: "\n" length: 1]; #define ENC(c) ((c) > 0 ? ((c) & 077) + ' ': '`') while (length > 0) { int count; unsigned pos; /* * We want up to 45 bytes in a line ... and we record the * number of bytes as the initial output character. */ count = length; if (count > 45) { count = 45; } i = 0; buf[i++] = ENC(count); /* * Now we encode the actual data for the line. */ for (pos = 0; count > 0; count -= 3) { unsigned char tmp[3]; int c; /* * Copy data into a temporary buffer ensuring we don't * overrun the end of the original buffer risking access * violation. */ tmp[0] = bytes[pos++]; if (pos < length) { tmp[1] = bytes[pos++]; if (pos < length) { tmp[2] = bytes[pos++]; } else { tmp[2] = 0; } } else { tmp[1] = 0; tmp[2] = 0; } c = tmp[0] >> 2; buf[i++] = ENC(c); c = ((tmp[0] << 4) & 060) | ((tmp[1] >> 4) & 017); buf[i++] = ENC(c); c = ((tmp[1] << 2) & 074) | ((tmp[2] >> 6) & 03); buf[i++] = ENC(c); c = tmp[2] & 077; buf[i++] = ENC(c); } bytes += pos; length -= pos; buf[i++] = '\n'; [encoded appendBytes: buf length: i]; } /* * Encode a line of length zero followed by 'end' as the terminator. */ [encoded appendBytes: "`\nend\n" length: 6]; return YES; } @end