/** Zone memory management. -*- Mode: ObjC -*- Copyright (C) 1997,1998 Free Software Foundation, Inc. Written by: Yoo C. Chung Date: January 1997 Rewrite by: Richard Frith-Macdonald This file is part of the GNUstep Base Library. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111 USA. NSZone class reference $Date$ $Revision$ */ /* Design goals: - Allocation and deallocation should be reasonably efficient. - We want to catch code that writes outside it's permitted area. */ /* Actual design: - The default zone uses objc_malloc() and friends. We assume that they're thread safe and that they return NULL if we're out of memory (glibc malloc does this, what about other mallocs? FIXME). - The OpenStep spec says that when a zone is recycled, any memory in use is returned to the default zone. Since, in general, we have no control over the system malloc, we can't possibly do this. Instead, we move the recycled zone to a list of 'dead' zones, and as soon as all memory used in it is released, we destroy it and remove it from that list. In the meantime, we release any blocks of memory we can (ie those that don't contain unfreed chunks). - For freeable zones, a small linear buffer is used for deallocating and allocating. Anything that can't go into the buffer then uses a more general purpose segregated fit algorithm after flushing the buffer. - For memory chunks in freeable zones, the pointer to the chunk is preceded by the a chunk header which contains the size of the chunk (plus a couple of flags) and a pointer to the end of the memory requested. This adds 8 bytes for freeable zones, which is usually what we need for alignment purposes anyway (assuming we're on a 32 bit machine). The granularity for allocation of chunks is quite large - a chunk must be big enough to hold the chunk header plus a couple of pointers and an unsigned size value. The actual memory allocated will be the size of the chunk header plus the size of memory requested plus one (a guard byte), all rounded up to a multiple of the granularity. - For nonfreeable zones, worst-like fit is used. This is OK since we don't have to worry about memory fragmentation. */ /* Other information: - This uses some GCC specific extensions. But since the library is supposed to compile on GCC 2.7.2.1 (patched) or higher, and the only other Objective-C compiler I know of (other than NeXT's, which is based on GCC as far as I know) is the StepStone compiler, which I haven't the foggiest idea why anyone would prefer it to GCC ;), it should be OK. - These functions should be thread safe, but I haven't really tested them extensively in multithreaded cases. */ /* Define to turn off NSAssertions. */ #define NS_BLOCK_ASSERTIONS 1 #define IN_NSZONE_M 1 #include "config.h" #include "GNUstepBase/preface.h" #include #include #include "Foundation/NSObjCRuntime.h" #include "Foundation/NSException.h" #include "Foundation/NSString.h" #include "Foundation/NSZone.h" #include "Foundation/NSLock.h" #include "GSPrivate.h" /** * Try to get more memory - the normal process has failed. * If we can't do anything, just return a null pointer. * Try to do some logging if possible. */ void * GSOutOfMemory(NSUInteger size, BOOL retry) { fprintf(stderr, "GSOutOfMemory ... wanting %lu bytes.\n", (unsigned long)size); return 0; } /* Default zone functions for default zone. */ static void* default_malloc (NSZone *zone, size_t size); static void* default_realloc (NSZone *zone, void *ptr, size_t size); static void default_free (NSZone *zone, void *ptr); static void default_recycle (NSZone *zone); static BOOL default_check (NSZone *zone); static BOOL default_lookup (NSZone *zone, void *ptr); static struct NSZoneStats default_stats (NSZone *zone); static void* default_malloc (NSZone *zone, size_t size) { void *mem; mem = objc_malloc(size); if (mem == NULL) [NSException raise: NSMallocException format: @"Default zone has run out of memory"]; return mem; } static void* default_realloc (NSZone *zone, void *ptr, size_t size) { void *mem; if (size == 0) { objc_free(ptr); return NULL; } if (ptr == 0) { mem = objc_malloc(size); if (mem == NULL) [NSException raise: NSMallocException format: @"Default zone has run out of memory"]; return mem; } mem = objc_realloc(ptr, size); if (mem == NULL) [NSException raise: NSMallocException format: @"Default zone has run out of memory"]; return mem; } static void default_free (NSZone *zone, void *ptr) { objc_free(ptr); } static void default_recycle (NSZone *zone) { /* Recycle the default zone? Thou hast got to be kiddin'. */ [NSException raise: NSGenericException format: @"Trying to recycle default zone"]; } static BOOL default_check (NSZone *zone) { /* We can't check memory managed by objc_malloc(). */ [NSException raise: NSGenericException format: @"No checking for default zone"]; return NO; } static BOOL default_lookup (NSZone *zone, void *ptr) { /* Assume all memory is in default zone. */ return YES; } static struct NSZoneStats default_stats (NSZone *zone) { struct NSZoneStats dummy = {0,0,0,0,0}; /* We can't obtain statistics from the memory managed by objc_malloc(). */ [NSException raise: NSGenericException format: @"No statistics for default zone"]; return dummy; } static NSZone default_zone = { default_malloc, default_realloc, default_free, default_recycle, default_check, default_lookup, default_stats, 0, @"default", 0 }; /* * For backward compatibility. */ NSZone *__nszone_private_hidden_default_zone = &default_zone; void NSSetZoneName (NSZone *zone, NSString *name) { if (!zone) zone = NSDefaultMallocZone(); [gnustep_global_lock lock]; name = [name copy]; if (zone->name != nil) [zone->name release]; zone->name = name; [gnustep_global_lock unlock]; } NSString* NSZoneName (NSZone *zone) { if (!zone) zone = NSDefaultMallocZone(); return zone->name; } #if GS_WITH_GC #if defined(DEBUG) #define GC_DEBUG 1 #endif /* DEBUG */ #include /* * Dummy zones used with garbage collection. * The 'atomic' zone is for memory that will be assumed not to contain * pointers for garbage collection purposes. */ static NSZone atomic_zone = { 0, 0, 0, 0, 0, 0, 0, 0, @"default", 0 }; void * NSAllocateCollectable(NSUInteger size, NSUInteger options) { void *ptr; if (options & NSScannedOption) { if (options & NSCollectorDisabledOption) { ptr = (void*)GC_MALLOC_UNCOLLECTABLE(size); memset(ptr, '\0', size); } else { ptr = (void*)GC_MALLOC_IGNORE_OFF_PAGE(size); memset(ptr, '\0', size); } } else { if (options & NSCollectorDisabledOption) { ptr = (void*)calloc(1, size); } else { ptr = (void*)GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(size); memset(ptr, '\0', size); } } return ptr; } void * NSReallocateCollectable(void *ptr, NSUInteger size, NSUInteger options) { if (ptr == 0) { ptr = NSAllocateCollectable(size, options); } else if (size > 0 && GC_base(ptr) == 0) { /* This is not collectable memory, so we don't know how big it is. * that means we must use realloc first, to get a known size, and * then, if needed, allocate a chunk the right size and copy to it. */ ptr = realloc(ptr, size); if (ptr != 0) { if ((options & NSScannedOption) || !(options & NSCollectorDisabledOption)) { void *tmp = NSAllocateCollectable(size, options); memcpy(tmp, ptr, size); free(ptr); ptr = tmp; } } } else { void *tmp = NSAllocateCollectable(size, options); unsigned length = GC_size(ptr); if (length > size) { length = size; } if (tmp != 0 && length > 0) { memcpy(tmp, ptr, length); } GC_FREE(ptr); ptr = tmp; } return ptr; } NSZone* NSCreateZone (NSUInteger start, NSUInteger gran, BOOL canFree) { NSLog(@" *** Creating a zone while running GC is ignored."); return &default_zone; } NSZone* NSDefaultMallocZone (void) { return &default_zone; } NSZone* GSAtomicMallocZone (void) { return &atomic_zone; } NSZone* NSZoneFromPointer (void *ptr) { return &default_zone; } void NSRecycleZone (NSZone *zone) { } BOOL NSZoneCheck (NSZone *zone) { return YES; } struct NSZoneStats NSZoneStats (NSZone *zone) { struct NSZoneStats stats = { 0 }; return stats; } void GSMakeWeakPointer(Class class, const char *iVarName) { class_ivar_set_gcinvisible(class, iVarName, YES); } BOOL GSAssignZeroingWeakPointer(void **destination, void *source) { if (destination == 0) { return NO; // Bad destination pointer } if (*destination == source) { return YES; // Already assigned. } if (source != 0 && GC_base(source) == 0) { return NO; // Source is not garbage collectable. } if (*destination != 0) { GC_unregister_disappearing_link(destination); } *destination = source; if (source != 0) { GC_general_register_disappearing_link(destination, source); } return YES; } void* NSZoneMalloc (NSZone *zone, NSUInteger size) { return NSZoneCalloc(zone, 1, size); } void* NSZoneCalloc (NSZone *zone, NSUInteger elems, NSUInteger bytes) { size_t size = elems * bytes; void *ptr; if (zone == &atomic_zone) { ptr = (void*)GC_MALLOC_ATOMIC(size); memset(ptr, '\0', size); } else { ptr = (void*)malloc(size); if (ptr == 0) { ptr = GSOutOfMemory(size, NO); } if (ptr != 0) { memset(ptr, '\0', size); } } return ptr; } void* NSZoneRealloc (NSZone *zone, void *ptr, NSUInteger size) { if (GC_base(ptr) != 0) { ptr = GC_REALLOC(ptr, size); } else { ptr = realloc(ptr, size); } return ptr; } void NSZoneFree (NSZone *zone, void *ptr) { if (GC_base(ptr) != 0) { GC_FREE(ptr); } else { free(ptr); } } BOOL GSPrivateIsCollectable(const void *ptr) { if (GC_base((void*)ptr) == 0) return NO; else return YES; } #else /* GS_WITH_GC */ /* Alignment */ #ifdef ALIGN #undef ALIGN #endif #define ALIGN ((__alignof__(double) < 8) ? 8 : __alignof__(double)) #define MINGRAN 256 /* Minimum granularity. */ #define DEFBLOCK 16384 /* Default granularity. */ #define BUFFER 4 /* Buffer size. FIXME?: Is this a reasonable optimum. */ #define MAX_SEG 16 /* Segregated list size. */ #define FBSZ sizeof(ff_block) #define NBSZ sizeof(nf_chunk) /* Information bits in size. */ #define INUSE 0x01 /* Current chunk in use. */ #define PREVUSE 0x02 /* Previous chunk in use. */ #define LIVE 0x04 /* Bits to mask off to get size. */ #define SIZE_BITS (INUSE | PREVUSE | LIVE) #define NF_HEAD sizeof(nf_block) typedef struct _ffree_free_link ff_link; typedef struct _nfree_block_struct nf_block; typedef struct _ffree_block_struct ff_block; typedef struct _ffree_zone_struct ffree_zone; typedef struct _nfree_zone_struct nfree_zone; /* Header for blocks in nonfreeable zones. */ struct _nfree_block_unpadded { struct _nfree_block_struct *next; size_t size; // Size of block size_t top; // Position of next memory chunk to allocate }; #define NFBPAD sizeof(struct _nfree_block_unpadded) struct _nfree_block_struct { struct _nfree_block_struct *next; size_t size; // Size of block size_t top; // Position of next memory chunk to allocate char padding[ALIGN - ((NFBPAD % ALIGN) ? (NFBPAD % ALIGN) : ALIGN)]; }; struct _ffree_block_unpadded { size_t size; struct _ffree_block_struct *next; }; #define FFCPAD sizeof(struct _ffree_block_unpadded) /* Header for blocks and chunks in freeable zones. */ struct _ffree_block_struct { size_t size; struct _ffree_block_struct *next; char padding[ALIGN - ((FFCPAD % ALIGN) ? (FFCPAD % ALIGN) : ALIGN)]; }; struct _ffree_free_link_unpadded { size_t size; ff_link *prev; ff_link *next; size_t back; /* Back link at end of 'dead' block. */ }; #define FFDPAD sizeof(struct _ffree_free_link_unpadded) struct _ffree_free_link { size_t size; ff_link *prev; ff_link *next; size_t back; char padding[ALIGN - ((FFDPAD % ALIGN) ? (FFDPAD % ALIGN) : ALIGN)]; }; /* NSZone structure for freeable zones. */ struct _ffree_zone_struct { NSZone common; objc_mutex_t lock; ff_block *blocks; // Linked list of blocks ff_link *segheadlist[MAX_SEG]; // Segregated list, holds heads ff_link *segtaillist[MAX_SEG]; // Segregated list, holds tails size_t bufsize; // Buffer size size_t size_buf[BUFFER]; // Buffer holding sizes ff_block *ptr_buf[BUFFER]; // Buffer holding pointers to chunks }; /* Rounds up N to nearest multiple of BASE. */ static inline size_t roundupto (size_t n, size_t base) { size_t a = (n/base)*base; return (n-a)? (a+base): n; } /* * Minimum chunk size for freeable zones. * Need room for basic chunk header, next and prev pointers for * free-list, and a reverse pointer (size_t) to go at the end of the * chunk while it is waiting to be consolidated with other chunks. */ #define MINCHUNK sizeof(ff_link) #define CLTOSZ(n) ((n)*MINCHUNK) /* Converts classes to sizes. */ static inline void* chunkToPointer(ff_block *chunk) { return (void*)(&chunk[1]); } static inline ff_block* pointerToChunk(void* ptr) { return &(((ff_block*)ptr)[-1]); } static inline size_t chunkIsLive(ff_block* ptr) { return ptr->size & LIVE; } static inline size_t chunkIsInUse(ff_block* ptr) { return ptr->size & INUSE; } static inline size_t chunkIsPrevInUse(ff_block* ptr) { return ptr->size & PREVUSE; } static inline size_t chunkSize(ff_block* ptr) { return ptr->size & ~SIZE_BITS; } static inline void chunkClrInUse(ff_block* ptr) { ptr->size &= ~INUSE; } static inline size_t chunkClrLive(ff_block* ptr) { return ptr->size &= ~LIVE; } static inline void chunkClrPrevInUse(ff_block* ptr) { ptr->size &= ~PREVUSE; } static inline void chunkSetInUse(ff_block* ptr) { ptr->size |= INUSE; } static inline size_t chunkSetLive(ff_block* ptr) { return ptr->size |= LIVE; } static inline void chunkSetPrevInUse(ff_block* ptr) { ptr->size |= PREVUSE; } static inline void chunkSetSize(ff_block* ptr, size_t size) { ptr->size = size; } static inline ff_block* chunkNext(ff_block *ptr) { return (ff_block*) ((void*)ptr+chunkSize(ptr)); } static inline void chunkMakeLink(ff_block *ptr) { NSAssert(!chunkIsInUse(ptr), NSInternalInconsistencyException); NSAssert(!chunkIsLive(ptr), NSInternalInconsistencyException); (&(chunkNext(ptr)->size))[-1] = chunkSize(ptr); } static inline ff_block* chunkChop(ff_block *ptr, size_t size) { ff_block *remainder; size_t left = chunkSize(ptr)-size; NSAssert((chunkSize(ptr) % MINCHUNK) == 0, NSInternalInconsistencyException); NSAssert(chunkSize(ptr) > size, NSInternalInconsistencyException); remainder = (ff_block*)((void*)ptr+size); chunkSetSize(remainder, left | PREVUSE); chunkMakeLink(remainder); chunkSetSize(ptr, size | chunkIsPrevInUse(ptr) | INUSE); return remainder; } static inline ff_block* chunkPrev(ff_block *ptr) { size_t offset; ff_block *prev; NSAssert(!chunkIsPrevInUse(ptr), NSInternalInconsistencyException); offset = (&(ptr->size))[-1]; NSAssert(offset > 0 && (offset % MINCHUNK) == 0, NSInternalInconsistencyException); prev = (ff_block*)((void*)ptr-offset); NSAssert(chunkSize(prev) == offset, NSInternalInconsistencyException); NSAssert(!chunkIsInUse(prev), NSInternalInconsistencyException); return prev; } /* NSZone structure for nonfreeable zones. */ struct _nfree_zone_struct { NSZone common; objc_mutex_t lock; /* Linked list of blocks in decreasing order of free space, except maybe for the first block. */ nf_block *blocks; size_t use; }; /* Memory management functions for freeable zones. */ static void* fmalloc (NSZone *zone, size_t size); static void* frealloc (NSZone *zone, void *ptr, size_t size); static void ffree (NSZone *zone, void *ptr); static void frecycle (NSZone *zone); static BOOL fcheck (NSZone *zone); static BOOL flookup (NSZone *zone, void *ptr); static struct NSZoneStats fstats (NSZone *zone); static inline size_t segindex (size_t size); static ff_block* get_chunk (ffree_zone *zone, size_t size); static void take_chunk (ffree_zone *zone, ff_block *chunk); static void put_chunk (ffree_zone *zone, ff_block *chunk); static inline void add_buf (ffree_zone *zone, ff_block *chunk); static void flush_buf (ffree_zone *zone); /* Memory management functions for nonfreeable zones. */ static void* nmalloc (NSZone *zone, size_t size); static void nrecycle (NSZone *zone); static void* nrealloc (NSZone *zone, void *ptr, size_t size); static void nfree (NSZone *zone, void *ptr); static BOOL ncheck (NSZone *zone); static BOOL nlookup (NSZone *zone, void *ptr); static struct NSZoneStats nstats (NSZone *zone); /* Memory management functions for recycled zones. */ static void* rmalloc (NSZone *zone, size_t size); static void rrecycle (NSZone *zone); static void* rrealloc (NSZone *zone, void *ptr, size_t size); static void rffree (NSZone *zone, void *ptr); static void rnfree (NSZone *zone, void *ptr); /* * Lists of zones to be used to determine if a pointer is in a zone. */ static NSZone *zone_list = 0; static inline void destroy_zone(NSZone* zone) { if (zone_list == zone) zone_list = zone->next; else { NSZone *ptr = zone_list; while (ptr->next != zone) ptr = ptr->next; if (ptr) ptr->next = zone->next; } objc_free((void*)zone); } /* Search the buffer to see if there is any memory chunks large enough to satisfy request using first fit. If the memory chunk found has a size exactly equal to the one requested, remove it from the buffer and return it. If not, cut off a chunk that does match the size and return it. If there is no chunk large enough in the buffer, get a chunk from the general purpose allocator that uses segregated fit. Since a chunk in the buffer is not freed in the general purpose allocator, the headers are as if it is still in use. */ static void* fmalloc (NSZone *zone, size_t size) { size_t i = 0; size_t chunksize = roundupto(size+FBSZ+1, MINCHUNK); ffree_zone *zptr = (ffree_zone*)zone; size_t bufsize; size_t *size_buf = zptr->size_buf; ff_block **ptr_buf = zptr->ptr_buf; ff_block *chunkhead; void *result; objc_mutex_lock(zptr->lock); bufsize = zptr->bufsize; while ((i < bufsize) && (chunksize > size_buf[i])) i++; if (i < bufsize) /* Use memory chunk in buffer. */ { if (size_buf[i] == chunksize) /* Exact fit. */ { zptr->bufsize--; bufsize = zptr->bufsize; chunkhead = ptr_buf[i]; size_buf[i] = size_buf[bufsize]; ptr_buf[i] = ptr_buf[bufsize]; NSAssert(chunkIsInUse(chunkhead), NSInternalInconsistencyException); NSAssert((chunkSize(chunkhead) % MINCHUNK) == 0, NSInternalInconsistencyException); } else { /* * Break off chunk leaving remainder marked as in use since it * stays in this buffer rather than on a free-list. */ chunkhead = ptr_buf[i]; size_buf[i] -= chunksize; ptr_buf[i] = chunkChop(chunkhead, chunksize); chunkSetInUse(ptr_buf[i]); } } else /* Get memory from segregate fit allocator. */ { flush_buf(zptr); chunkhead = get_chunk(zptr, chunksize); if (chunkhead == NULL) { objc_mutex_unlock(zptr->lock); if (zone->name != nil) [NSException raise: NSMallocException format: @"Zone %@ has run out of memory", zone->name]; else [NSException raise: NSMallocException format: @"Out of memory"]; } NSAssert(chunkIsInUse(chunkhead), NSInternalInconsistencyException); NSAssert(chunkIsPrevInUse(chunkNext(chunkhead)), NSInternalInconsistencyException); NSAssert((chunkSize(chunkhead) % MINCHUNK) == 0, NSInternalInconsistencyException); } chunkhead->next = (ff_block*)(chunkToPointer(chunkhead)+size); *((char*)chunkhead->next) = (char)42; chunkSetLive(chunkhead); result = chunkToPointer(chunkhead); objc_mutex_unlock(zptr->lock); return result; } /* If PTR == NULL, then it's the same as ordinary memory allocation. If a smaller size than it originally had is requested, shrink the chunk. If a larger size is requested, check if there is enough space after it. If there isn't enough space, get a new chunk and move it there, releasing the original. The space before the chunk should also be checked, but I'll leave this to a later date. */ static void* frealloc (NSZone *zone, void *ptr, size_t size) { size_t realsize; size_t chunksize = roundupto(size+FBSZ+1, MINCHUNK); ffree_zone *zptr = (ffree_zone*)zone; ff_block *chunkhead, *slack; void *result; NSAssert(ptr == NULL || NSZoneFromPointer(ptr) == zone, NSInternalInconsistencyException); if (ptr == NULL) return fmalloc(zone, size); chunkhead = pointerToChunk(ptr); objc_mutex_lock(zptr->lock); realsize = chunkSize(chunkhead); NSAssert(chunkIsInUse(chunkhead), NSInternalInconsistencyException); NSAssert((realsize % MINCHUNK) == 0, NSInternalInconsistencyException); chunkClrLive(chunkhead); if (chunksize < realsize) { /* * Chop tail off existing memory chunk and tell the next chunk * after it that it is no longer in use. Then put it in the * buffer to be added to the free list later (we can't add it * immediately 'cos we might invalidate the rule that there * must not be two adjacent unused chunks). */ slack = chunkChop(chunkhead, chunksize); chunkSetInUse(slack); add_buf(zptr, slack); } else if (chunksize > realsize) { size_t nextsize; ff_block *nextchunk, *farchunk; nextchunk = chunkNext(chunkhead); nextsize = chunkSize(nextchunk); NSAssert((nextsize % MINCHUNK) == 0, NSInternalInconsistencyException); if (!chunkIsInUse(nextchunk) && (nextsize+realsize >= chunksize)) /* Expand to next chunk. */ { take_chunk(zptr, nextchunk); if (nextsize+realsize == chunksize) { farchunk = chunkNext(nextchunk); chunkSetPrevInUse(farchunk); } else { chunkSetSize(chunkhead, nextsize+realsize); slack = chunkChop(chunkhead, chunksize); put_chunk(zptr, slack); } chunkSetSize(chunkhead, chunksize | chunkIsPrevInUse(chunkhead) | INUSE); } else /* Get new chunk and copy. */ { ff_block *newchunk; newchunk = get_chunk(zptr, chunksize); if (newchunk == NULL) { objc_mutex_unlock(zptr->lock); if (zone->name != nil) [NSException raise: NSMallocException format: @"Zone %@ has run out of memory", zone->name]; else [NSException raise: NSMallocException format: @"Out of memory"]; } memcpy((void*)(&newchunk[1]), (void*)(&chunkhead[1]), realsize-FBSZ); add_buf(zptr, chunkhead); chunkhead = newchunk; } } chunkhead->next = (ff_block*)(chunkToPointer(chunkhead)+size); *((char*)chunkhead->next) = (char)42; chunkSetLive(chunkhead); result = chunkToPointer(chunkhead); objc_mutex_unlock(zptr->lock); return result; } /* Frees memory chunk by simply adding it to the buffer. */ static void ffree (NSZone *zone, void *ptr) { ff_block *chunk; NSAssert(NSZoneFromPointer(ptr) == zone, NSInternalInconsistencyException); objc_mutex_lock(((ffree_zone*)zone)->lock); chunk = pointerToChunk(ptr); if (chunkIsLive(chunk) == 0) [NSException raise: NSMallocException format: @"Attempt to free freed memory"]; NSAssert(*((char*)chunk->next) == (char)42, NSInternalInconsistencyException); add_buf((ffree_zone*)zone, chunk); objc_mutex_unlock(((ffree_zone*)zone)->lock); } static BOOL frecycle1(NSZone *zone) { ffree_zone *zptr = (ffree_zone*)zone; ff_block *block; ff_block *nextblock; objc_mutex_lock(zptr->lock); flush_buf(zptr); block = zptr->blocks; while (block != NULL) { ff_block *tmp = &block[1]; nextblock = block->next; if (chunkIsInUse(tmp) == 0 && chunkNext(tmp) == chunkNext(block)) { if (zptr->blocks == block) zptr->blocks = block->next; else { tmp = zptr->blocks; while (tmp->next != block) tmp = tmp->next; tmp->next = block->next; } objc_free((void*)block); } block = nextblock; } objc_mutex_unlock(zptr->lock); if (zptr->blocks == 0) { objc_mutex_deallocate(zptr->lock); return YES; } return NO; } /* Recycle the zone. */ static void frecycle (NSZone *zone) { [gnustep_global_lock lock]; if (zone->name != nil) { NSString *name = zone->name; zone->name = nil; [name release]; } if (frecycle1(zone) == YES) destroy_zone(zone); else { zone->malloc = rmalloc; zone->realloc = rrealloc; zone->free = rffree; zone->recycle = rrecycle; } [gnustep_global_lock unlock]; } static void rffree (NSZone *zone, void *ptr) { ffree(zone, ptr); [gnustep_global_lock lock]; if (frecycle1(zone)) destroy_zone(zone); [gnustep_global_lock unlock]; } /* Check integrity of a freeable zone. Doesn't have to be particularly efficient. */ static BOOL fcheck (NSZone *zone) { size_t i; ffree_zone *zptr = (ffree_zone*)zone; ff_block *block; objc_mutex_lock(zptr->lock); /* Check integrity of each block the zone owns. */ block = zptr->blocks; while (block != NULL) { ff_block *blockstart = &block[1]; ff_block *blockend = chunkNext(block); ff_block *nextchunk = blockstart; if (blockend->next != block) goto inconsistent; if (!chunkIsPrevInUse(blockstart)) goto inconsistent; while (nextchunk < blockend) { ff_block *chunk = nextchunk; size_t chunksize; chunksize = chunkSize(chunk); if ((chunksize % ALIGN) != 0) goto inconsistent; nextchunk = chunkNext(chunk); if (chunkIsInUse(chunk)) /* Check whether this is a valid used chunk. */ { if (!chunkIsPrevInUse(nextchunk)) goto inconsistent; if (chunkIsLive(chunk)) { if (chunk->next < &chunk[1] || chunk->next > nextchunk) goto inconsistent; if (*(char*)chunk->next != (char)42) goto inconsistent; } } else /* Check whether this is a valid free chunk. */ { if (chunkIsPrevInUse(nextchunk)) goto inconsistent; if (!chunkIsInUse(nextchunk)) goto inconsistent; if (chunkIsLive(chunk)) goto inconsistent; } if (chunk != blockstart && chunkIsPrevInUse(chunk) == 0) { ff_block *prev = chunkPrev(chunk); if (chunkNext(prev) != chunk) goto inconsistent; } } /* Check whether the block ends properly. */ if (nextchunk != blockend) goto inconsistent; if (chunkSize(blockend) != 0) goto inconsistent; if (chunkIsInUse(blockend) == 0) goto inconsistent; block = block->next; } /* Check the integrity of the segregated list. */ for (i = 0; i < MAX_SEG; i++) { ff_link *chunk = zptr->segheadlist[i]; while (chunk != NULL) { ff_link *nextchunk; nextchunk = chunk->next; /* Isn't this one ugly if statement? */ if (chunkIsInUse((ff_block*)chunk) || (segindex(chunkSize((ff_block*)chunk)) != i) || ((nextchunk != NULL) && (chunk != nextchunk->prev)) || ((nextchunk == NULL) && (chunk != zptr->segtaillist[i]))) goto inconsistent; chunk = nextchunk; } } /* Check the buffer. */ if (zptr->bufsize > BUFFER) goto inconsistent; for (i = 0; i < zptr->bufsize; i++) { ff_block *chunk = zptr->ptr_buf[i]; if ((zptr->size_buf[i] != chunkSize(chunk)) || !chunkIsInUse(chunk)) goto inconsistent; } objc_mutex_unlock(zptr->lock); return YES; inconsistent: // Jump here if an inconsistency was found. objc_mutex_unlock(zptr->lock); return NO; } static BOOL flookup (NSZone *zone, void *ptr) { ffree_zone *zptr = (ffree_zone*)zone; ff_block *block; BOOL found = NO; objc_mutex_lock(zptr->lock); for (block = zptr->blocks; block != NULL; block = block->next) { if (ptr >= (void*)block && ptr < (void*)chunkNext(block)) { found = YES; break; } } objc_mutex_unlock(zptr->lock); return found; } /* Obtain statistics about the zone. Doesn't have to be particularly efficient. */ static struct NSZoneStats fstats (NSZone *zone) { size_t i; struct NSZoneStats stats; ffree_zone *zptr = (ffree_zone*)zone; ff_block *block; stats.bytes_total = 0; stats.chunks_used = 0; stats.bytes_used = 0; stats.chunks_free = 0; stats.bytes_free = 0; objc_mutex_lock(zptr->lock); block = zptr->blocks; /* Go through each block. */ while (block != NULL) { ff_block *blockend = chunkNext(block); ff_block *chunk = &block[1]; stats.bytes_total += chunkSize(block); while (chunk < blockend) { size_t chunksize = chunkSize(chunk); if (chunkIsInUse(chunk)) { stats.chunks_used++; stats.bytes_used += chunksize; } else { stats.chunks_free++; stats.bytes_free += chunksize; } chunk = chunkNext(chunk); } block = block->next; } /* Go through buffer. */ for (i = 0; i < zptr->bufsize; i++) { stats.chunks_used--; stats.chunks_free++; stats.bytes_used -= zptr->size_buf[i]; stats.bytes_free += zptr->size_buf[i]; } objc_mutex_unlock(zptr->lock); /* Remove overhead. */ stats.bytes_used -= FBSZ*stats.chunks_used; return stats; } /* Calculate which segregation class a certain size should be in. FIXME: Optimize code and find a more optimum distribution. */ static inline size_t segindex (size_t size) { NSAssert(size%MINCHUNK == 0, NSInternalInconsistencyException); if (size < CLTOSZ(8)) return size/MINCHUNK; else if (size < CLTOSZ(16)) return 7; else if (size < CLTOSZ(32)) return 8; else if (size < CLTOSZ(64)) return 9; else if (size < CLTOSZ(128)) return 10; else if (size < CLTOSZ(256)) return 11; else if (size < CLTOSZ(512)) return 12; else if (size < CLTOSZ(1024)) return 13; else if (size < CLTOSZ(2048)) return 14; else return 15; } /* Look through the segregated list with first fit to find a memory chunk. If one is not found, get more memory. */ static ff_block* get_chunk (ffree_zone *zone, size_t size) { size_t class = segindex(size); ff_block *chunk; ff_link *link = zone->segheadlist[class]; NSAssert(size%MINCHUNK == 0, NSInternalInconsistencyException); while ((link != NULL) && (chunkSize((ff_block*)link) < size)) link = link->next; if (link == NULL) /* Get more memory. */ { class++; while ((class < MAX_SEG) && (zone->segheadlist[class] == NULL)) class++; if (class == MAX_SEG) /* Absolutely no memory in segregated list. */ { size_t blocksize; ff_block *block; blocksize = roundupto(size, zone->common.gran); block = objc_malloc(blocksize+2*FBSZ); if (block == NULL) return NULL; /* * Set up the new block header and add to blocks list. */ block->size = blocksize+FBSZ; /* Point to block trailer. */ block->next = zone->blocks; zone->blocks = block; /* * Set up the block trailer. */ chunk = chunkNext(block); chunk->next = block; /* Point back to block head. */ /* * Now set up block contents. */ if (size < blocksize) { chunkSetSize(chunk, INUSE); /* Tailer size is zero. */ chunk = &block[1]; chunkSetSize(chunk, size | PREVUSE | INUSE); chunk = chunkNext(chunk); chunkSetSize(chunk, (block->size-FBSZ-size) | PREVUSE); put_chunk(zone, chunk); chunk = &block[1]; } else { chunkSetSize(chunk, PREVUSE | INUSE); chunk = &block[1]; chunkSetSize(chunk, size | PREVUSE | INUSE); } } else { ff_block *slack; NSAssert(class < MAX_SEG, NSInternalInconsistencyException); chunk = (ff_block*)zone->segheadlist[class]; NSAssert(!chunkIsInUse(chunk), NSInternalInconsistencyException); NSAssert(size < chunkSize(chunk), NSInternalInconsistencyException); NSAssert((chunkSize(chunk) % MINCHUNK) == 0, NSInternalInconsistencyException); take_chunk(zone, chunk); slack = chunkChop(chunk, size); put_chunk(zone, slack); } } else { size_t chunksize; chunk = (ff_block*)link; chunksize = chunkSize(chunk); NSAssert((chunksize % MINCHUNK) == 0, NSInternalInconsistencyException); NSAssert(!chunkIsInUse(chunk), NSInternalInconsistencyException); NSAssert(chunkIsPrevInUse(chunk), NSInternalInconsistencyException); NSAssert(chunkIsInUse(chunkNext(chunk)), NSInternalInconsistencyException); take_chunk(zone, chunk); if (chunksize > size) { ff_block *slack; slack = chunkChop(chunk, size); put_chunk(zone, slack); } else { ff_block *nextchunk = chunkNext(chunk); NSAssert(!chunkIsInUse(chunk), NSInternalInconsistencyException); NSAssert(!chunkIsPrevInUse(nextchunk), NSInternalInconsistencyException); NSAssert(chunksize == size, NSInternalInconsistencyException); chunkSetInUse(chunk); chunkSetPrevInUse(nextchunk); } } NSAssert(chunkIsInUse(chunk), NSInternalInconsistencyException); NSAssert(chunkIsPrevInUse(chunkNext(chunk)), NSInternalInconsistencyException); return chunk; } /* Take the given chunk out of the free list. No headers are set. */ static void take_chunk (ffree_zone *zone, ff_block *chunk) { size_t size = chunkSize(chunk); size_t class = segindex(size); ff_link *otherlink; ff_link *links = (ff_link*)chunk; NSAssert((size % MINCHUNK) == 0, NSInternalInconsistencyException); NSAssert(!chunkIsInUse(chunk), NSInternalInconsistencyException); if (links->prev == NULL) zone->segheadlist[class] = links->next; else { otherlink = links->prev; otherlink->next = links->next; } if (links->next == NULL) zone->segtaillist[class] = links->prev; else { otherlink = links->next; otherlink->prev = links->prev; } } /* * Add the given chunk to the segregated list. The header to the * chunk must be set appropriately, but the tailer is set here. * NB. The chunk must NOT be in use, and the adjacent chunks within * its memory block MUST be in use - the memory coalescing done in * flush_buf() depends on this rule. */ static void put_chunk (ffree_zone *zone, ff_block *chunk) { size_t size = chunkSize(chunk); size_t class = segindex(size); ff_link *links = (ff_link*)chunk; NSAssert((chunkSize(chunk) % MINCHUNK) == 0, NSInternalInconsistencyException); NSAssert(!chunkIsInUse(chunk), NSInternalInconsistencyException); NSAssert(chunkIsPrevInUse(chunk), NSInternalInconsistencyException); NSAssert(chunkIsInUse(chunkNext(chunk)), NSInternalInconsistencyException); chunkMakeLink(chunk); if (zone->segtaillist[class] == NULL) { NSAssert(zone->segheadlist[class] == NULL, NSInternalInconsistencyException); zone->segheadlist[class] = zone->segtaillist[class] = links; links->prev = links->next = NULL; } else { ff_link *prevlink = zone->segtaillist[class]; NSAssert(zone->segheadlist[class] != NULL, NSInternalInconsistencyException); links->next = NULL; links->prev = prevlink; prevlink->next = links; zone->segtaillist[class] = links; } } /* Add the given pointer to the buffer. If the buffer becomes full, flush it. The given pointer must always be one that points to used memory (i.e. chunks with headers that declare them as used). */ static inline void add_buf (ffree_zone *zone, ff_block *chunk) { size_t bufsize = zone->bufsize; NSAssert(bufsize < BUFFER, NSInternalInconsistencyException); NSAssert(chunkIsInUse(chunk), NSInternalInconsistencyException); NSAssert((chunkSize(chunk) % MINCHUNK) == 0, NSInternalInconsistencyException); NSAssert(chunkSize(chunk) >= MINCHUNK, NSInternalInconsistencyException); zone->bufsize++; zone->size_buf[bufsize] = chunkSize(chunk); zone->ptr_buf[bufsize] = chunk; chunkClrLive(chunk); if (bufsize == BUFFER-1) flush_buf(zone); } /* Flush buffers. All coalescing is done here. */ static void flush_buf (ffree_zone *zone) { size_t i, size; size_t bufsize = zone->bufsize; ff_block *chunk, *nextchunk; size_t *size_buf = zone->size_buf; ff_block **ptr_buf = zone->ptr_buf; NSAssert(bufsize <= BUFFER, NSInternalInconsistencyException); for (i = 0; i < bufsize; i++) { size = size_buf[i]; chunk = ptr_buf[i]; NSAssert(chunkSize(chunk) == size, NSInternalInconsistencyException); NSAssert(chunkIsInUse(chunk), NSInternalInconsistencyException); nextchunk = chunkNext(chunk); if (!chunkIsPrevInUse(chunk)) /* Coalesce with previous chunk. */ { chunk = chunkPrev(chunk); NSAssert(!chunkIsInUse(chunk), NSInternalInconsistencyException); NSAssert(chunkIsPrevInUse(chunk), NSInternalInconsistencyException); size += chunkSize(chunk); take_chunk(zone, chunk); } if (!chunkIsInUse(nextchunk)) /* Coalesce with next chunk. */ { size_t nextsize = chunkSize(nextchunk); NSAssert(chunkIsPrevInUse(nextchunk), NSInternalInconsistencyException); NSAssert((nextsize % MINCHUNK) == 0, NSInternalInconsistencyException); size += nextsize; take_chunk(zone, nextchunk); nextchunk = chunkNext(nextchunk); } chunkSetSize(chunk, size | PREVUSE); put_chunk(zone, chunk); chunkClrPrevInUse(nextchunk); NSAssert(chunkNext(chunk) == nextchunk, NSInternalInconsistencyException); NSAssert(chunkPrev(nextchunk) == chunk, NSInternalInconsistencyException); NSAssert((chunkSize(chunk) % MINCHUNK) == 0, NSInternalInconsistencyException); NSAssert(!chunkIsInUse(chunk), NSInternalInconsistencyException); NSAssert(chunkIsPrevInUse(chunk), NSInternalInconsistencyException); NSAssert(chunkIsInUse(nextchunk), NSInternalInconsistencyException); NSAssert(!chunkIsPrevInUse(nextchunk), NSInternalInconsistencyException); } zone->bufsize = 0; } /* If the first block in block list has enough space, use that space. Otherwise, sort the block list in decreasing free space order (only the first block needs to be put in its appropriate place since the rest of the list is already sorted). Then check if the first block has enough space for the request. If it does, use it. If it doesn't, get more memory from the default zone, since none of the other blocks in the block list could have enough memory. */ static void* nmalloc (NSZone *zone, size_t size) { nfree_zone *zptr = (nfree_zone*)zone; size_t chunksize = roundupto(size, ALIGN); size_t freesize; void *chunkhead; nf_block *block; size_t top; objc_mutex_lock(zptr->lock); block = zptr->blocks; top = block->top; freesize = block->size-top; if (freesize >= chunksize) { chunkhead = (void*)(block)+top; block->top += chunksize; } else { nf_block *preblock; /* First, get the block list in decreasing free size order. */ preblock = NULL; while ((block->next != NULL) && (freesize < block->next->size-block->next->top)) { preblock = block; block = block->next; } if (preblock != NULL) { preblock->next = zptr->blocks; zptr->blocks = zptr->blocks->next; preblock->next->next = block; } if (zptr->blocks->size-zptr->blocks->top < chunksize) /* Get new block. */ { size_t blocksize = roundupto(chunksize+NF_HEAD, zone->gran); block = objc_malloc(blocksize); if (block == NULL) { objc_mutex_unlock(zptr->lock); if (zone->name != nil) [NSException raise: NSMallocException format: @"Zone %@ has run out of memory", zone->name]; else [NSException raise: NSMallocException format: @"Out of memory"]; } block->next = zptr->blocks; block->size = blocksize; block->top = NF_HEAD; zptr->blocks = block; } chunkhead = (void*)block+block->top; block->top += chunksize; } zptr->use++; objc_mutex_unlock(zptr->lock); return chunkhead; } /* Return the blocks to the default zone, then deallocate mutex, and then release zone name if it exists. */ static BOOL nrecycle1 (NSZone *zone) { nfree_zone *zptr = (nfree_zone*)zone; objc_mutex_lock(zptr->lock); if (zptr->use == 0) { nf_block *nextblock; nf_block *block = zptr->blocks; while (block != NULL) { nextblock = block->next; objc_free(block); block = nextblock; } zptr->blocks = 0; } objc_mutex_unlock(zptr->lock); if (zptr->blocks == 0) { objc_mutex_deallocate(zptr->lock); return YES; } return NO; } /* Recycle the zone. */ static void nrecycle (NSZone *zone) { [gnustep_global_lock lock]; if (zone->name != nil) { NSString *name = zone->name; zone->name = nil; [name release]; } if (nrecycle1(zone) == YES) destroy_zone(zone); else { zone->malloc = rmalloc; zone->realloc = rrealloc; zone->free = rnfree; zone->recycle = rrecycle; } [gnustep_global_lock unlock]; } static void* nrealloc (NSZone *zone, void *ptr, size_t size) { nfree_zone *zptr = (nfree_zone*)zone; void *tmp = nmalloc(zone, size); if (ptr != 0) { objc_mutex_lock(zptr->lock); if (tmp) { nf_block *block; size_t old = 0; for (block = zptr->blocks; block != NULL; block = block->next) { if (ptr >= (void*)block && ptr < ((void*)block)+block->size) { old = ((void*)block)+block->size - ptr; break; } } if (old > 0) { if (size < old) old = size; memcpy(tmp, ptr, old); } } zptr->use--; objc_mutex_unlock(zptr->lock); } return tmp; } /* * The OpenStep spec says we don't release memory - but we have to do * some minimal bookkeeping so that, when the zone is recycled, we can * determine if all the allocated memory has been freed. Until it is * all freed, we can't actually destroy the zone! */ static void nfree (NSZone *zone, void *ptr) { nfree_zone *zptr = (nfree_zone*)zone; objc_mutex_lock(zptr->lock); zptr->use--; objc_mutex_unlock(zptr->lock); } static void rnfree (NSZone *zone, void *ptr) { nfree_zone *zptr = (nfree_zone*)zone; nfree(zone, ptr); if (zptr->use == 0) { [gnustep_global_lock lock]; nrecycle1(zone); destroy_zone(zone); [gnustep_global_lock unlock]; } } /* Check integrity of a nonfreeable zone. Doesn't have to particularly efficient. */ static BOOL ncheck (NSZone *zone) { nfree_zone *zptr = (nfree_zone*)zone; nf_block *block; objc_mutex_lock(zptr->lock); block = zptr->blocks; while (block != NULL) { if (block->size < block->top) { objc_mutex_unlock(zptr->lock); return NO; } block = block->next; } /* FIXME: Do more checking? */ objc_mutex_unlock(zptr->lock); return YES; } static BOOL nlookup (NSZone *zone, void *ptr) { nfree_zone *zptr = (nfree_zone*)zone; nf_block *block; BOOL found = NO; objc_mutex_lock(zptr->lock); for (block = zptr->blocks; block != NULL; block = block->next) { if (ptr >= (void*)block && ptr < ((void*)block)+block->size) { found = YES; break; } } objc_mutex_unlock(zptr->lock); return found; } /* Return statistics for a nonfreeable zone. Doesn't have to particularly efficient. */ static struct NSZoneStats nstats (NSZone *zone) { struct NSZoneStats stats; nfree_zone *zptr = (nfree_zone*)zone; nf_block *block; stats.bytes_total = 0; stats.chunks_used = 0; stats.bytes_used = 0; stats.chunks_free = 0; stats.bytes_free = 0; objc_mutex_lock(zptr->lock); block = zptr->blocks; while (block != NULL) { size_t *chunk; stats.bytes_total += block->size; chunk = (void*)block+NF_HEAD; while ((void*)chunk < (void*)block+block->top) { stats.chunks_used++; stats.bytes_used += *chunk; chunk = (void*)chunk+(*chunk); } if (block->size != block->top) { stats.chunks_free++; stats.bytes_free += block->size-block->top; } block = block->next; } objc_mutex_unlock(zptr->lock); return stats; } static void* rmalloc (NSZone *zone, size_t size) { [NSException raise: NSMallocException format: @"Attempt to malloc memory in recycled zone"]; return 0; } static void rrecycle (NSZone *zone) { [NSException raise: NSMallocException format: @"Attempt to recycle a recycled zone"]; } static void* rrealloc (NSZone *zone, void *ptr, size_t size) { [NSException raise: NSMallocException format: @"Attempt to realloc memory in recycled zone"]; return 0; } static void rnfree (NSZone *zone, void *ptr); GS_DECLARE NSZone* NSZoneFromPointer(void *ptr) { NSZone *zone; if (ptr == 0) return 0; if (zone_list == 0) return &default_zone; /* * See if we can find the zone in our list of all zones. */ [gnustep_global_lock lock]; for (zone = zone_list; zone != 0; zone = zone->next) { if ((zone->lookup)(zone, ptr) == YES) { break; } } [gnustep_global_lock unlock]; return (zone == 0) ? &default_zone : zone; } NSZone* NSCreateZone (NSUInteger start, NSUInteger gran, BOOL canFree) { size_t i, startsize, granularity; NSZone *newZone; if (start > 0) startsize = roundupto(start, roundupto(MINGRAN, MINCHUNK)); else startsize = roundupto(MINGRAN, MINCHUNK); if (gran > 0) granularity = roundupto(gran, roundupto(MINGRAN, MINCHUNK)); else granularity = roundupto(MINGRAN, MINCHUNK); if (canFree) { ffree_zone *zone; ff_block *block; ff_block *chunk; ff_block *tailer; zone = objc_malloc(sizeof(ffree_zone)); if (zone == NULL) [NSException raise: NSMallocException format: @"No memory to create zone"]; zone->common.malloc = fmalloc; zone->common.realloc = frealloc; zone->common.free = ffree; zone->common.recycle = frecycle; zone->common.check = fcheck; zone->common.lookup = flookup; zone->common.stats = fstats; zone->common.gran = granularity; zone->common.name = nil; zone->lock = objc_mutex_allocate(); for (i = 0; i < MAX_SEG; i++) { zone->segheadlist[i] = NULL; zone->segtaillist[i] = NULL; } zone->bufsize = 0; zone->blocks = objc_malloc(startsize + 2*FBSZ); if (zone->blocks == NULL) { objc_mutex_deallocate(zone->lock); objc_free(zone); [NSException raise: NSMallocException format: @"No memory to create zone"]; } /* * Set up block header. */ block = zone->blocks; block->next = NULL; /* Point to next block. */ block->size = startsize+FBSZ; /* Point to first chunk. */ /* * Set up block trailer. */ tailer = chunkNext(block); chunkSetSize(tailer, PREVUSE|INUSE); tailer->next = block; /* Point back to block start. */ /* * Set up the block as a single chunk and put it in the * buffer for quick allocation. */ chunk = &block[1]; chunkSetSize(chunk, (block->size-FBSZ) | PREVUSE|INUSE); add_buf(zone, chunk); newZone = (NSZone*)zone; } else { nf_block *block; nfree_zone *zone; zone = objc_malloc(sizeof(nfree_zone)); if (zone == NULL) [NSException raise: NSMallocException format: @"No memory to create zone"]; zone->common.malloc = nmalloc; zone->common.realloc = nrealloc; zone->common.free = nfree; zone->common.recycle = nrecycle; zone->common.check = ncheck; zone->common.lookup = nlookup; zone->common.stats = nstats; zone->common.gran = granularity; zone->common.name = nil; zone->lock = objc_mutex_allocate(); zone->blocks = objc_malloc(startsize); zone->use = 0; if (zone->blocks == NULL) { objc_mutex_deallocate(zone->lock); objc_free(zone); [NSException raise: NSMallocException format: @"No memory to create zone"]; } block = zone->blocks; block->next = NULL; block->size = startsize; block->top = NF_HEAD; newZone = (NSZone*)zone; } [gnustep_global_lock lock]; newZone->next = zone_list; zone_list = newZone; [gnustep_global_lock unlock]; return newZone; } void* NSZoneCalloc (NSZone *zone, NSUInteger elems, NSUInteger bytes) { return memset(NSZoneMalloc(zone, elems*bytes), 0, elems*bytes); } void * NSAllocateCollectable(NSUInteger size, NSUInteger options) { return NSZoneCalloc(NSDefaultMallocZone(), 1, size); } void * NSReallocateCollectable(void *ptr, NSUInteger size, NSUInteger options) { return NSZoneRealloc(0, ptr, size); } NSZone* NSDefaultMallocZone (void) { return &default_zone; } NSZone* GSAtomicMallocZone (void) { return &default_zone; } void GSMakeWeakPointer(Class class, const char *iVarName) { return; } BOOL GSAssignZeroingWeakPointer(void **destination, void *source) { if (destination == 0) { return NO; } *destination = source; return YES; } void* NSZoneMalloc (NSZone *zone, NSUInteger size) { if (!zone) zone = NSDefaultMallocZone(); return (zone->malloc)(zone, size); } void* NSZoneRealloc (NSZone *zone, void *ptr, NSUInteger size) { if (!zone) zone = NSDefaultMallocZone(); return (zone->realloc)(zone, ptr, size); } void NSRecycleZone (NSZone *zone) { if (!zone) zone = NSDefaultMallocZone(); (zone->recycle)(zone); } void NSZoneFree (NSZone *zone, void *ptr) { if (!zone) zone = NSDefaultMallocZone(); (zone->free)(zone, ptr); } BOOL NSZoneCheck (NSZone *zone) { if (!zone) zone = NSDefaultMallocZone(); return (zone->check)(zone); } struct NSZoneStats NSZoneStats (NSZone *zone) { if (!zone) zone = NSDefaultMallocZone(); return (zone->stats)(zone); } BOOL GSPrivateIsCollectable(const void *ptr) { return NO; } #endif /* GS_WITH_GC */