libs-base/Source/NSDebug.m

1215 lines
34 KiB
Mathematica
Raw Permalink Normal View History

/** Debugging utilities for GNUStep and OpenStep
Copyright (C) 1997,1999,2000,2001 Free Software Foundation, Inc.
Written by: Richard Frith-Macdonald <richard@brainstorm.co.uk>
Date: August 1997
Extended by: Nicola Pero <n.pero@mi.flashnet.it>
Date: December 2000, April 2001
This file is part of the GNUstep Base Library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02111 USA.
<title>NSDebug utilities reference</title>
$Date$ $Revision$
*/
#import "common.h"
#include <stdio.h>
#import "GSPrivate.h"
#import "GNUstepBase/GSLock.h"
#import "Foundation/NSArray.h"
#import "Foundation/NSData.h"
#import "Foundation/NSDictionary.h"
#import "Foundation/NSLock.h"
#import "Foundation/NSNotification.h"
#import "Foundation/NSNotificationQueue.h"
#import "Foundation/NSThread.h"
#import "Foundation/NSValue.h"
#if HAVE_EXECINFO_H
#include <execinfo.h>
#endif
typedef struct {
Class class;
/* The following are used for statistical info */
unsigned int count;
unsigned int lastc;
unsigned int total;
unsigned int peak;
/* The following are used to record actual objects */
BOOL is_recording;
id *recorded_objects;
id *recorded_tags;
unsigned int num_recorded_objects;
unsigned int stack_size;
} table_entry;
static unsigned int num_classes = 0;
static unsigned int table_size = 0;
static table_entry* the_table = 0;
static BOOL debug_allocation = NO;
static GSLazyRecursiveLock *uniqueLock = nil;
static const char* _GSDebugAllocationList(BOOL difference);
static const char* _GSDebugAllocationListAll(void);
static void _GSDebugAllocationAdd(Class c, id o);
static void _GSDebugAllocationRemove(Class c, id o);
static void (*_GSDebugAllocationAddFunc)(Class c, id o)
= _GSDebugAllocationAdd;
static void (*_GSDebugAllocationRemoveFunc)(Class c, id o)
= _GSDebugAllocationRemove;
@interface GSDebugAlloc : NSObject
+ (void) initialize;
@end
@implementation GSDebugAlloc
+ (void) initialize
{
uniqueLock = [GSLazyRecursiveLock new];
}
@end
/**
* This functions allows to set own function callbacks for debugging allocation
* of objects. Useful if you intend to write your own object allocation code.
*/
void
GSSetDebugAllocationFunctions(void (*newAddObjectFunc)(Class c, id o),
void (*newRemoveObjectFunc)(Class c, id o))
{
[uniqueLock lock];
if (newAddObjectFunc && newRemoveObjectFunc)
{
_GSDebugAllocationAddFunc = newAddObjectFunc;
_GSDebugAllocationRemoveFunc = newRemoveObjectFunc;
}
else
{
// Back to default
_GSDebugAllocationAddFunc = _GSDebugAllocationAdd;
_GSDebugAllocationRemoveFunc = _GSDebugAllocationRemove;
}
[uniqueLock unlock];
}
/**
* This function activates or deactivates object allocation debugging.<br />
* Returns the previous state.<br />
* You should call this function to activate
* allocation debugging before using any of the other allocation
* debugging functions such as GSDebugAllocationList() or
* GSDebugAllocationTotal().<br />
* Object allocation debugging
* should not affect performance too much, and is very useful
* as it allows you to monitor how many objects of each class
* your application has allocated.
*/
BOOL
GSDebugAllocationActive(BOOL active)
{
BOOL old = debug_allocation;
[GSDebugAlloc class]; /* Ensure thread support is working */
debug_allocation = active ? YES : NO;
return old;
}
/**
* This function activates tracking all allocated instances of
* the specified class c.<br />
* This tracking can slow your
* application down, so you should use it only when you are
* into serious debugging. Usually, you will monitor your
* application by using the functions GSDebugAllocationList()
* and similar, which do not slow things down much and return
* the number of allocated instances; when
* (if) by studying the reports generated by these functions
* you have found a leak of objects of a certain class, and
* if you can't figure out how to fix it by looking at the
* code, you can use this function to start tracking
* allocated instances of that class, and the following one
* can sometime allow you to list the leaked objects directly.
*/
void
GSDebugAllocationActiveRecordingObjects(Class c)
{
unsigned int i;
GSDebugAllocationActive(YES);
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
[uniqueLock lock];
the_table[i].is_recording = YES;
[uniqueLock unlock];
return;
}
}
[uniqueLock lock];
if (num_classes >= table_size)
{
int more = table_size + 128;
table_entry *tmp;
tmp = NSZoneMalloc(NSDefaultMallocZone(), more * sizeof(table_entry));
if (tmp == 0)
{
[uniqueLock unlock];
return;
}
if (the_table)
{
memcpy(tmp, the_table, num_classes * sizeof(table_entry));
NSZoneFree(NSDefaultMallocZone(), the_table);
}
the_table = tmp;
table_size = more;
}
the_table[num_classes].class = c;
the_table[num_classes].count = 0;
the_table[num_classes].lastc = 0;
the_table[num_classes].total = 0;
the_table[num_classes].peak = 0;
the_table[num_classes].is_recording = YES;
the_table[num_classes].recorded_objects = NULL;
the_table[num_classes].recorded_tags = NULL;
the_table[num_classes].num_recorded_objects = 0;
the_table[num_classes].stack_size = 0;
num_classes++;
[uniqueLock unlock];
}
void
GSDebugAllocationAdd(Class c, id o)
{
(*_GSDebugAllocationAddFunc)(c,o);
}
void
_GSDebugAllocationAdd(Class c, id o)
{
if (debug_allocation == YES)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
[uniqueLock lock];
the_table[i].count++;
the_table[i].total++;
if (the_table[i].count > the_table[i].peak)
{
the_table[i].peak = the_table[i].count;
}
if (the_table[i].is_recording == YES)
{
if (the_table[i].num_recorded_objects
>= the_table[i].stack_size)
{
int more = the_table[i].stack_size + 128;
id *tmp;
id *tmp1;
tmp = NSZoneMalloc(NSDefaultMallocZone(),
more * sizeof(id));
if (tmp == 0)
{
[uniqueLock unlock];
return;
}
tmp1 = NSZoneMalloc(NSDefaultMallocZone(),
more * sizeof(id));
if (tmp1 == 0)
{
NSZoneFree(NSDefaultMallocZone(), tmp);
[uniqueLock unlock];
return;
}
if (the_table[i].recorded_objects != NULL)
{
memcpy(tmp, the_table[i].recorded_objects,
the_table[i].num_recorded_objects
* sizeof(id));
NSZoneFree(NSDefaultMallocZone(),
the_table[i].recorded_objects);
memcpy(tmp1, the_table[i].recorded_tags,
the_table[i].num_recorded_objects
* sizeof(id));
NSZoneFree(NSDefaultMallocZone(),
the_table[i].recorded_tags);
}
the_table[i].recorded_objects = tmp;
the_table[i].recorded_tags = tmp1;
the_table[i].stack_size = more;
}
(the_table[i].recorded_objects)
[the_table[i].num_recorded_objects] = o;
(the_table[i].recorded_tags)
[the_table[i].num_recorded_objects] = nil;
the_table[i].num_recorded_objects++;
}
[uniqueLock unlock];
return;
}
}
[uniqueLock lock];
if (num_classes >= table_size)
{
unsigned int more = table_size + 128;
table_entry *tmp;
tmp = NSZoneMalloc(NSDefaultMallocZone(), more * sizeof(table_entry));
if (tmp == 0)
{
[uniqueLock unlock];
return; /* Argh */
}
if (the_table)
{
memcpy(tmp, the_table, num_classes * sizeof(table_entry));
NSZoneFree(NSDefaultMallocZone(), the_table);
}
the_table = tmp;
table_size = more;
}
the_table[num_classes].class = c;
the_table[num_classes].count = 1;
the_table[num_classes].lastc = 0;
the_table[num_classes].total = 1;
the_table[num_classes].peak = 1;
the_table[num_classes].is_recording = NO;
the_table[num_classes].recorded_objects = NULL;
the_table[num_classes].recorded_tags = NULL;
the_table[num_classes].num_recorded_objects = 0;
the_table[num_classes].stack_size = 0;
num_classes++;
[uniqueLock unlock];
}
}
/**
* <p>
* Returns the number
* of instances of the specified class which are currently
* allocated. This number is very important to detect memory
* leaks. If you notice that this number is constantly
* increasing without apparent reason, it is very likely a
* memory leak - you need to check that you are correctly
* releasing objects of this class, otherwise when your
* application runs for a long time, it will eventually
* allocate so many objects as to eat up all your system's
* memory ...
* </p>
* <p>
* This function, like the ones below, returns the number of
* objects allocated/released from the time when
* GSDebugAllocationActive() was first called. A negative
* number means that in total, there are less objects of this
* class allocated now than there were when you called
* GSDebugAllocationActive(); a positive one means there are
* more.
* </p>
*/
int
GSDebugAllocationCount(Class c)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
return the_table[i].count;
}
}
return 0;
}
/**
* Returns the total
* number of instances of the specified class c which have been
* allocated - basically the number of times you have
* allocated an object of this class. If this number is very
* high, it means you are creating a lot of objects of this
* class; even if you are releasing them correctly, you must
* not forget that allocating and deallocating objects is
* usually one of the slowest things you can do, so you might
* want to consider whether you can reduce the number of
* allocations and deallocations that you are doing - for
* example, by recycling objects of this class, uniquing
* them, and/or using some sort of flyweight pattern. It
* might also be possible that you are unnecessarily creating
* too many objects of this class. Well - of course some times
* there is nothing you can do about it.
*/
int
GSDebugAllocationTotal(Class c)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
return the_table[i].total;
}
}
return 0;
}
/**
* Returns the peak
* number of instances of the specified class which have been
* concurrently allocated. If this number is very high, it
* means at some point in time you had a situation with a
* huge number of objects of this class allocated - this is
* an indicator that probably at some point in time your
* application was using a lot of memory - so you might want
* to investigate whether you can prevent this problem by
* inserting autorelease pools in your application's
* processing loops.
*/
int
GSDebugAllocationPeak(Class c)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
return the_table[i].peak;
}
}
return 0;
}
/**
* This function returns a NULL
* terminated array listing all the classes for which
* statistical information has been collected. Usually, you
* call this function, and then loop on all the classes returned,
* and for each one you get current, peak and total count by
* using GSDebugAllocationCount(), GSDebugAllocationPeak() and
* GSDebugAllocationTotal().
*/
Class *
GSDebugAllocationClassList()
{
Class *ans;
size_t siz;
unsigned int i;
[uniqueLock lock];
siz = sizeof(Class) * (num_classes + 1);
ans = NSZoneMalloc(NSDefaultMallocZone(), siz);
for (i = 0; i < num_classes; i++)
{
ans[i] = the_table[i].class;
}
ans[num_classes] = NULL;
[uniqueLock unlock];
return ans;
}
/**
* This function returns a newline
* separated list of the classes which have instances
* allocated, and the instance counts. If the 'changeFlag'
* argument is YES then the list gives the number of
* instances allocated/deallocated since the function was
* last called. This function only returns the current count
* of instances (not the peak or total count), but its output
* is ready to be displayed or logged.
*/
const char*
GSDebugAllocationList(BOOL changeFlag)
{
const char *ans;
NSData *d;
if (debug_allocation == NO)
{
return "Debug allocation system is not active!\n";
}
[uniqueLock lock];
ans = _GSDebugAllocationList(changeFlag);
d = [NSData dataWithBytes: ans length: strlen(ans) + 1];
[uniqueLock unlock];
return (const char*)[d bytes];
}
static const char*
_GSDebugAllocationList(BOOL difference)
{
unsigned int pos = 0;
unsigned int i;
static unsigned int siz = 0;
static char *buf = 0;
for (i = 0; i < num_classes; i++)
{
int val = the_table[i].count;
if (difference)
{
val -= the_table[i].lastc;
}
if (val != 0)
{
pos += 22 + strlen(class_getName(the_table[i].class));
}
}
if (pos == 0)
{
if (difference)
{
return "There are NO newly allocated or deallocated object!\n";
}
else
{
return "I can find NO allocated object!\n";
}
}
pos++;
if (pos > siz)
{
if (pos & 0xff)
{
pos = ((pos >> 8) + 1) << 8;
}
siz = pos;
if (buf)
{
NSZoneFree(NSDefaultMallocZone(), buf);
}
buf = NSZoneMalloc(NSDefaultMallocZone(), siz);
}
if (buf)
{
pos = 0;
for (i = 0; i < num_classes; i++)
{
int val = the_table[i].count;
if (difference)
{
val -= the_table[i].lastc;
}
the_table[i].lastc = the_table[i].count;
if (val != 0)
{
snprintf(&buf[pos], siz - pos, "%d\t%s\n",
val, class_getName(the_table[i].class));
pos += strlen(&buf[pos]);
}
}
}
return buf;
}
/**
* This function returns a newline
* separated list of the classes which have had instances
* allocated at any point, and the total count of the number
* of instances allocated for each class. The difference with
* GSDebugAllocationList() is that this function returns also
* classes which have no objects allocated at the moment, but
* which had in the past.
*/
const char*
GSDebugAllocationListAll()
{
const char *ans;
NSData *d;
if (debug_allocation == NO)
{
return "Debug allocation system is not active!\n";
}
[uniqueLock lock];
ans = _GSDebugAllocationListAll();
d = [NSData dataWithBytes: ans length: strlen(ans)+1];
[uniqueLock unlock];
return (const char*)[d bytes];
}
static const char*
_GSDebugAllocationListAll(void)
{
unsigned int pos = 0;
unsigned int i;
static unsigned int siz = 0;
static char *buf = 0;
for (i = 0; i < num_classes; i++)
{
int val = the_table[i].total;
if (val != 0)
{
pos += 22 + strlen(class_getName(the_table[i].class));
}
}
if (pos == 0)
{
return "I can find NO allocated object!\n";
}
pos++;
if (pos > siz)
{
if (pos & 0xff)
{
pos = ((pos >> 8) + 1) << 8;
}
siz = pos;
if (buf)
{
NSZoneFree(NSDefaultMallocZone(), buf);
}
buf = NSZoneMalloc(NSDefaultMallocZone(), siz);
}
if (buf)
{
pos = 0;
for (i = 0; i < num_classes; i++)
{
int val = the_table[i].total;
if (val != 0)
{
snprintf(&buf[pos], siz - pos, "%d\t%s\n",
val, class_getName(the_table[i].class));
pos += strlen(&buf[pos]);
}
}
}
return buf;
}
void
GSDebugAllocationRemove(Class c, id o)
{
(*_GSDebugAllocationRemoveFunc)(c,o);
}
void
_GSDebugAllocationRemove(Class c, id o)
{
if (debug_allocation == YES)
{
unsigned int i;
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
id tag = nil;
[uniqueLock lock];
the_table[i].count--;
if (the_table[i].is_recording)
{
unsigned j, k;
for (j = 0; j < the_table[i].num_recorded_objects; j++)
{
if ((the_table[i].recorded_objects)[j] == o)
{
tag = (the_table[i].recorded_tags)[j];
break;
}
}
if (j < the_table[i].num_recorded_objects)
{
for (k = j;
k + 1 < the_table[i].num_recorded_objects;
k++)
{
(the_table[i].recorded_objects)[k] =
(the_table[i].recorded_objects)[k + 1];
(the_table[i].recorded_tags)[k] =
(the_table[i].recorded_tags)[k + 1];
}
the_table[i].num_recorded_objects--;
}
else
{
/* Not found - no problem - this happens if the
object was allocated before we started
recording */
;
}
}
[uniqueLock unlock];
[tag release];
return;
}
}
}
}
/**
* This function associates the supplied tag with a recorded
* object and returns the tag which was previously associated
* with it (if any).<br />
* If the object was not recorded, the method returns nil<br />
* The tag is retained while it is associated with the object.
*/
id
GSDebugAllocationTagRecordedObject(id object, id tag)
{
Class c = [object class];
id o = nil;
int i;
int j;
if (debug_allocation == NO)
{
return nil;
}
[uniqueLock lock];
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
break;
}
}
if (i == num_classes
|| the_table[i].is_recording == NO
|| the_table[i].num_recorded_objects == 0)
{
[uniqueLock unlock];
return nil;
}
for (j = 0; j < the_table[i].num_recorded_objects; j++)
{
if (the_table[i].recorded_objects[j] == object)
{
o = the_table[i].recorded_tags[j];
the_table[i].recorded_tags[j] = RETAIN(tag);
break;
}
}
[uniqueLock unlock];
return AUTORELEASE(o);
}
/**
* This function returns an array
* containing all the allocated objects of a certain class
* which have been recorded ... to start the recording, you need
* to invoke GSDebugAllocationActiveRecordingObjects().
* Presumably, you will immediately call [NSObject-description] on them
* to find out the objects you are leaking. The objects are
* returned in an array, so until the array is autoreleased,
* the objects are not released.
*/
NSArray *
GSDebugAllocationListRecordedObjects(Class c)
{
NSArray *answer;
unsigned int i, k;
id *tmp;
if (debug_allocation == NO)
{
return nil;
}
[uniqueLock lock];
for (i = 0; i < num_classes; i++)
{
if (the_table[i].class == c)
{
break;
}
}
if (i == num_classes)
{
[uniqueLock unlock];
return nil;
}
if (the_table[i].is_recording == NO)
{
[uniqueLock unlock];
return nil;
}
if (the_table[i].num_recorded_objects == 0)
{
[uniqueLock unlock];
return [NSArray array];
}
tmp = NSZoneMalloc(NSDefaultMallocZone(),
the_table[i].num_recorded_objects * sizeof(id));
if (tmp == 0)
{
[uniqueLock unlock];
return nil;
}
/* First, we copy the objects into a temporary buffer */
memcpy(tmp, the_table[i].recorded_objects,
the_table[i].num_recorded_objects * sizeof(id));
/* Retain all the objects - NB: if retaining one of the objects as a
side effect eleases another one of them , we are broken ... */
#if !GS_WITH_GC
for (k = 0; k < the_table[i].num_recorded_objects; k++)
{
[tmp[k] retain];
}
#endif
/* Then, we bravely unlock the lock */
[uniqueLock unlock];
/* Only then we create an array with them - this is now safe as we
have copied the objects out, unlocked, and retained them. */
answer = [NSArray arrayWithObjects: tmp
count: the_table[i].num_recorded_objects];
/* Now we release all the objects to balance the retain */
for (k = 0; k < the_table[i].num_recorded_objects; k++)
{
RELEASE (tmp[k]);
}
/* And free the space used by them */
NSZoneFree(NSDefaultMallocZone(), tmp);
return answer;
}
#if !defined(HAVE_BUILTIN_EXTRACT_RETURN_ADDRESS)
# define __builtin_extract_return_address(X) X
#endif
#define _NS_FRAME_HACK(a) \
case a: env->addr = __builtin_frame_address(a + 1); break;
#define _NS_RETURN_HACK(a) \
case a: env->addr = (__builtin_frame_address(a + 1) ? \
__builtin_extract_return_address(__builtin_return_address(a + 1)) : 0); break;
/*
* The following horrible signal handling code is a workaround for the fact
* that the __builtin_frame_address() and __builtin_return_address()
* functions are not reliable (at least not on my EM64T based system) and
* will sometimes walk off the stack and access illegal memory locations.
* In order to prevent such an occurrance from crashing the application,
* we use sigsetjmp() and siglongjmp() to ensure that we can recover, and
* we keep the jump buffer in thread-local memory to avoid possible thread
* safety issues.
* Of course this will fail horribly if an exception occurs in one of the
* few methods we use to manage the per-thread jump buffer.
*/
#if defined(HAVE_SYS_SIGNAL_H)
# include <sys/signal.h>
#elif defined(HAVE_SIGNAL_H)
# include <signal.h>
#endif
#include <setjmp.h>
#if defined(__MINGW__)
#ifndef SIGBUS
#define SIGBUS SIGILL
#endif
#endif
/* sigsetjmp may be a function or a macro. The test for the function is
* done at configure time so we can tell here if either is available.
*/
#if !defined(HAVE_SIGSETJMP) && !defined(sigsetjmp)
#define siglongjmp(A,B) longjmp(A,B)
#define sigsetjmp(A,B) setjmp(A)
#define sigjmp_buf jmp_buf
#endif
typedef struct {
sigjmp_buf buf;
void *addr;
void (*bus)(int);
void (*segv)(int);
} jbuf_type;
static jbuf_type *
jbuf()
{
NSMutableData *d;
NSMutableDictionary *dict;
dict = [[NSThread currentThread] threadDictionary];
d = [dict objectForKey: @"GSjbuf"];
if (d == nil)
{
d = [[NSMutableData alloc] initWithLength: sizeof(jbuf_type)];
[dict setObject: d forKey: @"GSjbuf"];
RELEASE(d);
}
return (jbuf_type*)[d mutableBytes];
}
static void
recover(int sig)
{
siglongjmp(jbuf()->buf, 1);
}
void *
NSFrameAddress(NSUInteger offset)
{
jbuf_type *env;
env = jbuf();
if (sigsetjmp(env->buf, 1) == 0)
{
env->segv = signal(SIGSEGV, recover);
env->bus = signal(SIGBUS, recover);
switch (offset)
{
_NS_FRAME_HACK(0); _NS_FRAME_HACK(1); _NS_FRAME_HACK(2);
_NS_FRAME_HACK(3); _NS_FRAME_HACK(4); _NS_FRAME_HACK(5);
_NS_FRAME_HACK(6); _NS_FRAME_HACK(7); _NS_FRAME_HACK(8);
_NS_FRAME_HACK(9); _NS_FRAME_HACK(10); _NS_FRAME_HACK(11);
_NS_FRAME_HACK(12); _NS_FRAME_HACK(13); _NS_FRAME_HACK(14);
_NS_FRAME_HACK(15); _NS_FRAME_HACK(16); _NS_FRAME_HACK(17);
_NS_FRAME_HACK(18); _NS_FRAME_HACK(19); _NS_FRAME_HACK(20);
_NS_FRAME_HACK(21); _NS_FRAME_HACK(22); _NS_FRAME_HACK(23);
_NS_FRAME_HACK(24); _NS_FRAME_HACK(25); _NS_FRAME_HACK(26);
_NS_FRAME_HACK(27); _NS_FRAME_HACK(28); _NS_FRAME_HACK(29);
_NS_FRAME_HACK(30); _NS_FRAME_HACK(31); _NS_FRAME_HACK(32);
_NS_FRAME_HACK(33); _NS_FRAME_HACK(34); _NS_FRAME_HACK(35);
_NS_FRAME_HACK(36); _NS_FRAME_HACK(37); _NS_FRAME_HACK(38);
_NS_FRAME_HACK(39); _NS_FRAME_HACK(40); _NS_FRAME_HACK(41);
_NS_FRAME_HACK(42); _NS_FRAME_HACK(43); _NS_FRAME_HACK(44);
_NS_FRAME_HACK(45); _NS_FRAME_HACK(46); _NS_FRAME_HACK(47);
_NS_FRAME_HACK(48); _NS_FRAME_HACK(49); _NS_FRAME_HACK(50);
_NS_FRAME_HACK(51); _NS_FRAME_HACK(52); _NS_FRAME_HACK(53);
_NS_FRAME_HACK(54); _NS_FRAME_HACK(55); _NS_FRAME_HACK(56);
_NS_FRAME_HACK(57); _NS_FRAME_HACK(58); _NS_FRAME_HACK(59);
_NS_FRAME_HACK(60); _NS_FRAME_HACK(61); _NS_FRAME_HACK(62);
_NS_FRAME_HACK(63); _NS_FRAME_HACK(64); _NS_FRAME_HACK(65);
_NS_FRAME_HACK(66); _NS_FRAME_HACK(67); _NS_FRAME_HACK(68);
_NS_FRAME_HACK(69); _NS_FRAME_HACK(70); _NS_FRAME_HACK(71);
_NS_FRAME_HACK(72); _NS_FRAME_HACK(73); _NS_FRAME_HACK(74);
_NS_FRAME_HACK(75); _NS_FRAME_HACK(76); _NS_FRAME_HACK(77);
_NS_FRAME_HACK(78); _NS_FRAME_HACK(79); _NS_FRAME_HACK(80);
_NS_FRAME_HACK(81); _NS_FRAME_HACK(82); _NS_FRAME_HACK(83);
_NS_FRAME_HACK(84); _NS_FRAME_HACK(85); _NS_FRAME_HACK(86);
_NS_FRAME_HACK(87); _NS_FRAME_HACK(88); _NS_FRAME_HACK(89);
_NS_FRAME_HACK(90); _NS_FRAME_HACK(91); _NS_FRAME_HACK(92);
_NS_FRAME_HACK(93); _NS_FRAME_HACK(94); _NS_FRAME_HACK(95);
_NS_FRAME_HACK(96); _NS_FRAME_HACK(97); _NS_FRAME_HACK(98);
_NS_FRAME_HACK(99);
default: env->addr = NULL; break;
}
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
else
{
env = jbuf();
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
env->addr = NULL;
}
return env->addr;
}
NSUInteger NSCountFrames(void)
{
jbuf_type *env;
env = jbuf();
if (sigsetjmp(env->buf, 1) == 0)
{
env->segv = signal(SIGSEGV, recover);
env->bus = signal(SIGBUS, recover);
env->addr = 0;
#define _NS_COUNT_HACK(X) if (__builtin_frame_address(X + 1) == 0) \
goto done; else env->addr = (void*)(X + 1);
_NS_COUNT_HACK(0); _NS_COUNT_HACK(1); _NS_COUNT_HACK(2);
_NS_COUNT_HACK(3); _NS_COUNT_HACK(4); _NS_COUNT_HACK(5);
_NS_COUNT_HACK(6); _NS_COUNT_HACK(7); _NS_COUNT_HACK(8);
_NS_COUNT_HACK(9); _NS_COUNT_HACK(10); _NS_COUNT_HACK(11);
_NS_COUNT_HACK(12); _NS_COUNT_HACK(13); _NS_COUNT_HACK(14);
_NS_COUNT_HACK(15); _NS_COUNT_HACK(16); _NS_COUNT_HACK(17);
_NS_COUNT_HACK(18); _NS_COUNT_HACK(19); _NS_COUNT_HACK(20);
_NS_COUNT_HACK(21); _NS_COUNT_HACK(22); _NS_COUNT_HACK(23);
_NS_COUNT_HACK(24); _NS_COUNT_HACK(25); _NS_COUNT_HACK(26);
_NS_COUNT_HACK(27); _NS_COUNT_HACK(28); _NS_COUNT_HACK(29);
_NS_COUNT_HACK(30); _NS_COUNT_HACK(31); _NS_COUNT_HACK(32);
_NS_COUNT_HACK(33); _NS_COUNT_HACK(34); _NS_COUNT_HACK(35);
_NS_COUNT_HACK(36); _NS_COUNT_HACK(37); _NS_COUNT_HACK(38);
_NS_COUNT_HACK(39); _NS_COUNT_HACK(40); _NS_COUNT_HACK(41);
_NS_COUNT_HACK(42); _NS_COUNT_HACK(43); _NS_COUNT_HACK(44);
_NS_COUNT_HACK(45); _NS_COUNT_HACK(46); _NS_COUNT_HACK(47);
_NS_COUNT_HACK(48); _NS_COUNT_HACK(49); _NS_COUNT_HACK(50);
_NS_COUNT_HACK(51); _NS_COUNT_HACK(52); _NS_COUNT_HACK(53);
_NS_COUNT_HACK(54); _NS_COUNT_HACK(55); _NS_COUNT_HACK(56);
_NS_COUNT_HACK(57); _NS_COUNT_HACK(58); _NS_COUNT_HACK(59);
_NS_COUNT_HACK(60); _NS_COUNT_HACK(61); _NS_COUNT_HACK(62);
_NS_COUNT_HACK(63); _NS_COUNT_HACK(64); _NS_COUNT_HACK(65);
_NS_COUNT_HACK(66); _NS_COUNT_HACK(67); _NS_COUNT_HACK(68);
_NS_COUNT_HACK(69); _NS_COUNT_HACK(70); _NS_COUNT_HACK(71);
_NS_COUNT_HACK(72); _NS_COUNT_HACK(73); _NS_COUNT_HACK(74);
_NS_COUNT_HACK(75); _NS_COUNT_HACK(76); _NS_COUNT_HACK(77);
_NS_COUNT_HACK(78); _NS_COUNT_HACK(79); _NS_COUNT_HACK(80);
_NS_COUNT_HACK(81); _NS_COUNT_HACK(82); _NS_COUNT_HACK(83);
_NS_COUNT_HACK(84); _NS_COUNT_HACK(85); _NS_COUNT_HACK(86);
_NS_COUNT_HACK(87); _NS_COUNT_HACK(88); _NS_COUNT_HACK(89);
_NS_COUNT_HACK(90); _NS_COUNT_HACK(91); _NS_COUNT_HACK(92);
_NS_COUNT_HACK(93); _NS_COUNT_HACK(94); _NS_COUNT_HACK(95);
_NS_COUNT_HACK(96); _NS_COUNT_HACK(97); _NS_COUNT_HACK(98);
_NS_COUNT_HACK(99);
done:
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
else
{
env = jbuf();
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
return (uintptr_t)env->addr;
}
void *
NSReturnAddress(NSUInteger offset)
{
jbuf_type *env;
env = jbuf();
if (sigsetjmp(env->buf, 1) == 0)
{
env->segv = signal(SIGSEGV, recover);
env->bus = signal(SIGBUS, recover);
switch (offset)
{
_NS_RETURN_HACK(0); _NS_RETURN_HACK(1); _NS_RETURN_HACK(2);
_NS_RETURN_HACK(3); _NS_RETURN_HACK(4); _NS_RETURN_HACK(5);
_NS_RETURN_HACK(6); _NS_RETURN_HACK(7); _NS_RETURN_HACK(8);
_NS_RETURN_HACK(9); _NS_RETURN_HACK(10); _NS_RETURN_HACK(11);
_NS_RETURN_HACK(12); _NS_RETURN_HACK(13); _NS_RETURN_HACK(14);
_NS_RETURN_HACK(15); _NS_RETURN_HACK(16); _NS_RETURN_HACK(17);
_NS_RETURN_HACK(18); _NS_RETURN_HACK(19); _NS_RETURN_HACK(20);
_NS_RETURN_HACK(21); _NS_RETURN_HACK(22); _NS_RETURN_HACK(23);
_NS_RETURN_HACK(24); _NS_RETURN_HACK(25); _NS_RETURN_HACK(26);
_NS_RETURN_HACK(27); _NS_RETURN_HACK(28); _NS_RETURN_HACK(29);
_NS_RETURN_HACK(30); _NS_RETURN_HACK(31); _NS_RETURN_HACK(32);
_NS_RETURN_HACK(33); _NS_RETURN_HACK(34); _NS_RETURN_HACK(35);
_NS_RETURN_HACK(36); _NS_RETURN_HACK(37); _NS_RETURN_HACK(38);
_NS_RETURN_HACK(39); _NS_RETURN_HACK(40); _NS_RETURN_HACK(41);
_NS_RETURN_HACK(42); _NS_RETURN_HACK(43); _NS_RETURN_HACK(44);
_NS_RETURN_HACK(45); _NS_RETURN_HACK(46); _NS_RETURN_HACK(47);
_NS_RETURN_HACK(48); _NS_RETURN_HACK(49); _NS_RETURN_HACK(50);
_NS_RETURN_HACK(51); _NS_RETURN_HACK(52); _NS_RETURN_HACK(53);
_NS_RETURN_HACK(54); _NS_RETURN_HACK(55); _NS_RETURN_HACK(56);
_NS_RETURN_HACK(57); _NS_RETURN_HACK(58); _NS_RETURN_HACK(59);
_NS_RETURN_HACK(60); _NS_RETURN_HACK(61); _NS_RETURN_HACK(62);
_NS_RETURN_HACK(63); _NS_RETURN_HACK(64); _NS_RETURN_HACK(65);
_NS_RETURN_HACK(66); _NS_RETURN_HACK(67); _NS_RETURN_HACK(68);
_NS_RETURN_HACK(69); _NS_RETURN_HACK(70); _NS_RETURN_HACK(71);
_NS_RETURN_HACK(72); _NS_RETURN_HACK(73); _NS_RETURN_HACK(74);
_NS_RETURN_HACK(75); _NS_RETURN_HACK(76); _NS_RETURN_HACK(77);
_NS_RETURN_HACK(78); _NS_RETURN_HACK(79); _NS_RETURN_HACK(80);
_NS_RETURN_HACK(81); _NS_RETURN_HACK(82); _NS_RETURN_HACK(83);
_NS_RETURN_HACK(84); _NS_RETURN_HACK(85); _NS_RETURN_HACK(86);
_NS_RETURN_HACK(87); _NS_RETURN_HACK(88); _NS_RETURN_HACK(89);
_NS_RETURN_HACK(90); _NS_RETURN_HACK(91); _NS_RETURN_HACK(92);
_NS_RETURN_HACK(93); _NS_RETURN_HACK(94); _NS_RETURN_HACK(95);
_NS_RETURN_HACK(96); _NS_RETURN_HACK(97); _NS_RETURN_HACK(98);
_NS_RETURN_HACK(99);
default: env->addr = NULL; break;
}
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
else
{
env = jbuf();
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
env->addr = NULL;
}
return env->addr;
}
NSMutableArray *
GSPrivateStackAddresses(void)
{
NSMutableArray *stack;
NSAutoreleasePool *pool;
#if HAVE_BACKTRACE
void *addresses[1024];
int n = backtrace(addresses, 1024);
int i;
stack = [NSMutableArray arrayWithCapacity: n];
pool = [NSAutoreleasePool new];
for (i = 0; i < n; i++)
{
[stack addObject: [NSValue valueWithPointer: addresses[i]]];
}
#else
unsigned n = NSCountFrames();
unsigned i;
jbuf_type *env;
stack = [NSMutableArray arrayWithCapacity: n];
pool = [NSAutoreleasePool new];
/* There should be more frame addresses than return addresses.
*/
if (n > 0)
{
n--;
}
if (n > 0)
{
n--;
}
env = jbuf();
if (sigsetjmp(env->buf, 1) == 0)
{
env->segv = signal(SIGSEGV, recover);
env->bus = signal(SIGBUS, recover);
for (i = 0; i < n; i++)
{
switch (i)
{
_NS_RETURN_HACK(0); _NS_RETURN_HACK(1); _NS_RETURN_HACK(2);
_NS_RETURN_HACK(3); _NS_RETURN_HACK(4); _NS_RETURN_HACK(5);
_NS_RETURN_HACK(6); _NS_RETURN_HACK(7); _NS_RETURN_HACK(8);
_NS_RETURN_HACK(9); _NS_RETURN_HACK(10); _NS_RETURN_HACK(11);
_NS_RETURN_HACK(12); _NS_RETURN_HACK(13); _NS_RETURN_HACK(14);
_NS_RETURN_HACK(15); _NS_RETURN_HACK(16); _NS_RETURN_HACK(17);
_NS_RETURN_HACK(18); _NS_RETURN_HACK(19); _NS_RETURN_HACK(20);
_NS_RETURN_HACK(21); _NS_RETURN_HACK(22); _NS_RETURN_HACK(23);
_NS_RETURN_HACK(24); _NS_RETURN_HACK(25); _NS_RETURN_HACK(26);
_NS_RETURN_HACK(27); _NS_RETURN_HACK(28); _NS_RETURN_HACK(29);
_NS_RETURN_HACK(30); _NS_RETURN_HACK(31); _NS_RETURN_HACK(32);
_NS_RETURN_HACK(33); _NS_RETURN_HACK(34); _NS_RETURN_HACK(35);
_NS_RETURN_HACK(36); _NS_RETURN_HACK(37); _NS_RETURN_HACK(38);
_NS_RETURN_HACK(39); _NS_RETURN_HACK(40); _NS_RETURN_HACK(41);
_NS_RETURN_HACK(42); _NS_RETURN_HACK(43); _NS_RETURN_HACK(44);
_NS_RETURN_HACK(45); _NS_RETURN_HACK(46); _NS_RETURN_HACK(47);
_NS_RETURN_HACK(48); _NS_RETURN_HACK(49); _NS_RETURN_HACK(50);
_NS_RETURN_HACK(51); _NS_RETURN_HACK(52); _NS_RETURN_HACK(53);
_NS_RETURN_HACK(54); _NS_RETURN_HACK(55); _NS_RETURN_HACK(56);
_NS_RETURN_HACK(57); _NS_RETURN_HACK(58); _NS_RETURN_HACK(59);
_NS_RETURN_HACK(60); _NS_RETURN_HACK(61); _NS_RETURN_HACK(62);
_NS_RETURN_HACK(63); _NS_RETURN_HACK(64); _NS_RETURN_HACK(65);
_NS_RETURN_HACK(66); _NS_RETURN_HACK(67); _NS_RETURN_HACK(68);
_NS_RETURN_HACK(69); _NS_RETURN_HACK(70); _NS_RETURN_HACK(71);
_NS_RETURN_HACK(72); _NS_RETURN_HACK(73); _NS_RETURN_HACK(74);
_NS_RETURN_HACK(75); _NS_RETURN_HACK(76); _NS_RETURN_HACK(77);
_NS_RETURN_HACK(78); _NS_RETURN_HACK(79); _NS_RETURN_HACK(80);
_NS_RETURN_HACK(81); _NS_RETURN_HACK(82); _NS_RETURN_HACK(83);
_NS_RETURN_HACK(84); _NS_RETURN_HACK(85); _NS_RETURN_HACK(86);
_NS_RETURN_HACK(87); _NS_RETURN_HACK(88); _NS_RETURN_HACK(89);
_NS_RETURN_HACK(90); _NS_RETURN_HACK(91); _NS_RETURN_HACK(92);
_NS_RETURN_HACK(93); _NS_RETURN_HACK(94); _NS_RETURN_HACK(95);
_NS_RETURN_HACK(96); _NS_RETURN_HACK(97); _NS_RETURN_HACK(98);
_NS_RETURN_HACK(99);
default: env->addr = 0; break;
}
if (env->addr == 0)
{
break;
}
[stack addObject: [NSValue valueWithPointer: env->addr]];
}
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
else
{
env = jbuf();
signal(SIGSEGV, env->segv);
signal(SIGBUS, env->bus);
}
#endif
[pool drain];
return stack;
}
const char *_NSPrintForDebugger(id object)
{
if (object && [object respondsToSelector: @selector(description)])
return [[object description] cString];
return NULL;
}
NSString *_NSNewStringFromCString(const char *cstring)
{
return [NSString stringWithCString: cstring
encoding: [NSString defaultCStringEncoding]];
}