libs-base/Source/NSString.m

4944 lines
127 KiB
Mathematica
Raw Permalink Normal View History

/** Implementation of GNUSTEP string class
Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
Written by: Andrew Kachites McCallum <mccallum@gnu.ai.mit.edu>
Date: January 1995
Unicode implementation by Stevo Crvenkovski <stevo@btinternet.com>
Date: February 1997
Optimisations by Richard Frith-Macdonald <richard@brainstorm.co.uk>
Date: October 1998 - 2000
This file is part of the GNUstep Base Library.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02111 USA.
<title>NSString class reference</title>
$Date$ $Revision$
*/
/* Caveats:
Some implementations will need to be changed.
Does not support all justification directives for `%@' in format strings
on non-GNU-libc systems.
*/
/*
Locales somewhat supported.
Limited choice of default encodings.
*/
/* Needed for visiblity of fwprintf prototype. */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "config.h"
#include <stdio.h>
#include <string.h>
#include "GNUstepBase/preface.h"
#include "Foundation/NSAutoreleasePool.h"
#include "Foundation/NSString.h"
#include "Foundation/NSCalendarDate.h"
#include "Foundation/NSArray.h"
#include "Foundation/NSCharacterSet.h"
#include "Foundation/NSException.h"
#include "Foundation/NSValue.h"
#include "Foundation/NSDictionary.h"
#include "Foundation/NSFileManager.h"
#include "Foundation/NSPortCoder.h"
#include "Foundation/NSPathUtilities.h"
#include "Foundation/NSRange.h"
#include "Foundation/NSException.h"
#include "Foundation/NSData.h"
#include "Foundation/NSBundle.h"
#include "Foundation/NSURL.h"
#include "Foundation/NSMapTable.h"
#include "Foundation/NSLock.h"
#include "Foundation/NSUserDefaults.h"
#include "Foundation/NSDebug.h"
// For private method _decodePropertyListForKey:
#include "Foundation/NSKeyedArchiver.h"
#include "GNUstepBase/GSMime.h"
#include "GSPrivate.h"
#include "GSFormat.h"
#include <limits.h>
#include <sys/stat.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <sys/types.h>
#include <fcntl.h>
#include <stdio.h>
#include <wchar.h>
#include "GNUstepBase/Unicode.h"
#include "GSPrivate.h"
extern BOOL GSScanDouble(unichar*, unsigned, double*);
@class GSString;
@class GSMutableString;
@class GSPlaceholderString;
@interface GSPlaceholderString : NSObject // Help the compiler
@end
@class GSMutableArray;
@class GSMutableDictionary;
@class NSImmutableString;
@interface NSImmutableString : NSObject // Help the compiler
@end
@class GSImmutableString;
@interface GSImmutableString : NSObject // Help the compiler
@end
/*
* Cache classes and method implementations for speed.
*/
static Class NSDataClass;
static Class NSStringClass;
static Class NSMutableStringClass;
static Class GSStringClass;
static Class GSMutableStringClass;
static Class GSPlaceholderStringClass;
static GSPlaceholderString *defaultPlaceholderString;
static NSMapTable *placeholderMap;
static NSLock *placeholderLock;
static SEL cMemberSel = 0;
#define IMMUTABLE(S) AUTORELEASE([(S) copyWithZone: NSDefaultMallocZone()])
#define IS_BIT_SET(a,i) ((((a) & (1<<(i)))) > 0)
static unsigned const char *whitespaceBitmapRep = NULL;
#define GS_IS_WHITESPACE(X) IS_BIT_SET(whitespaceBitmapRep[(X)/8], (X) % 8)
static void setupWhitespace(void)
{
if (whitespaceBitmapRep == NULL)
{
NSCharacterSet *whitespace;
NSData *bitmap;
/*
We can not use whitespaceAndNewlineCharacterSet here as this would lead
to a recursion, as this also reads in a property list.
whitespace = [NSCharacterSet whitespaceAndNewlineCharacterSet];
*/
whitespace = [NSCharacterSet characterSetWithCharactersInString:
@" \t\r\n\f\b"];
bitmap = RETAIN([whitespace bitmapRepresentation]);
whitespaceBitmapRep = [bitmap bytes];
}
}
/*
* Include sequence handling code with instructions to generate search
* and compare functions for NSString objects.
*/
#define GSEQ_STRCOMP strCompNsNs
#define GSEQ_STRRANGE strRangeNsNs
#define GSEQ_O GSEQ_NS
#define GSEQ_S GSEQ_NS
#include "GSeq.h"
/*
* The path handling mode.
*/
static enum {
PH_DO_THE_RIGHT_THING,
PH_UNIX,
PH_WINDOWS
} pathHandling = PH_DO_THE_RIGHT_THING;
/**
* This function is intended to be called at startup (before anything else
* which needs to use paths, such as reading config files and user defaults)
* to allow a program to control the style of path handling required.<br />
* Almost all programs should avoid using this.<br />
* Changing the path handling mode is not thread-safe.<br />
* If mode is "windows" this sets path handling to be windows specific,<br />
* If mode is "unix" it sets path handling to be unix specific,<br />
* Any other none-null string sets do-the-right-thing mode.<br />
* The function returns a C String describing the old mode.
*/
const char*
GSPathHandling(const char *mode)
{
int old = pathHandling;
if (mode != 0)
{
if (strcasecmp(mode, "windows") == 0)
{
pathHandling = PH_WINDOWS;
}
else if (strcasecmp(mode, "unix") == 0)
{
pathHandling = PH_UNIX;
}
else
{
pathHandling = PH_DO_THE_RIGHT_THING;
}
}
switch (old)
{
case PH_WINDOWS: return "windows";
case PH_UNIX: return "unix";
default: return "right";
}
}
#define GSPathHandlingRight() \
((pathHandling == PH_DO_THE_RIGHT_THING) ? YES : NO)
#define GSPathHandlingUnix() \
((pathHandling == PH_UNIX) ? YES : NO)
#define GSPathHandlingWindows() \
((pathHandling == PH_WINDOWS) ? YES : NO)
/*
* The pathSeps character set is used for parsing paths ... it *must*
* contain the '/' character, which is the internal path separator,
* and *may* contain additiona system specific separators.
*
* We can't have a 'pathSeps' variable initialized in the +initialize
* method because that would cause recursion.
*/
static NSCharacterSet*
pathSeps(void)
{
static NSCharacterSet *wPathSeps = nil;
static NSCharacterSet *uPathSeps = nil;
static NSCharacterSet *rPathSeps = nil;
if (GSPathHandlingRight())
{
if (rPathSeps == nil)
{
[placeholderLock lock];
if (rPathSeps == nil)
{
rPathSeps
= [NSCharacterSet characterSetWithCharactersInString: @"/\\"];
IF_NO_GC(RETAIN(rPathSeps));
}
[placeholderLock unlock];
}
return rPathSeps;
}
if (GSPathHandlingUnix())
{
if (uPathSeps == nil)
{
[placeholderLock lock];
if (uPathSeps == nil)
{
uPathSeps
= [NSCharacterSet characterSetWithCharactersInString: @"/"];
IF_NO_GC(RETAIN(uPathSeps));
}
[placeholderLock unlock];
}
return uPathSeps;
}
if (GSPathHandlingWindows())
{
if (wPathSeps == nil)
{
[placeholderLock lock];
if (wPathSeps == nil)
{
wPathSeps
= [NSCharacterSet characterSetWithCharactersInString: @"\\"];
IF_NO_GC(RETAIN(wPathSeps));
}
[placeholderLock unlock];
}
return wPathSeps;
}
pathHandling = PH_DO_THE_RIGHT_THING;
return pathSeps();
}
inline static BOOL
pathSepMember(unichar c)
{
if (c == (unichar)'/')
{
if (GSPathHandlingWindows() == NO)
{
return YES;
}
}
else if (c == (unichar)'\\')
{
if (GSPathHandlingUnix() == NO)
{
return YES;
}
}
return NO;
}
/*
* For cross-platform portability we always use slash as the separator
* when building paths ... unless specific windows path handling is
* required.
*/
inline static unichar
pathSepChar()
{
if (GSPathHandlingWindows() == NO)
{
return '/';
}
return '\\';
}
/*
* For cross-platform portability we always use slash as the separator
* when building paths ... unless specific windows path handling is
* required.
*/
inline static NSString*
pathSepString()
{
if (GSPathHandlingWindows() == NO)
{
return @"/";
}
return @"\\";
}
/*
* Find end of 'root' sequence in a string. Characters before this
* point in the string cannot be split into path components/extensions.
* Possible roots are -
*
* '/' absolute root on unix
* '' if entire path is empty string
* 'C:/' absolute root for a drive on windows
* 'C:' if entire path is 'C:' or 'C:relativepath'
* '//host/share/' absolute root for a host and share on windows
* '//host/share' if entire path is '//host/share'
* '~/' home directory for user
* '~' if entire path is '~'
* '~username/' home directory for user
* '~username' if entire path is '~username'
*
* Most roots are terminated in '/' (or '\') unless the root is the entire
* path. The exception is for windows drive-relative paths, where the root
* may be a drive letter followed by a colon, but there may still be path
* components after the root with no path separator.
*
* The presence of any non-empty root indicates an absolute path except -
* 1. A windows drive-relative path is not absolute unless the root
* ends with a path separator, since the path part on the drive is relative.
* 2. On windows, a root consisting of a single path separator indicates
* a drive-relative path with no drive ... so the path is relative.
*/
static unsigned rootOf(NSString *s, unsigned l)
{
unsigned root = 0;
if (l > 0)
{
unichar c = [s characterAtIndex: 0];
if (c == '~')
{
NSRange range = NSMakeRange(1, l-1);
range = [s rangeOfCharacterFromSet: pathSeps()
options: NSLiteralSearch
range: range];
if (range.length == 0)
{
root = l; // ~ or ~name
}
else
{
root = NSMaxRange(range); // ~/... or ~name/...
}
}
else
{
if (pathSepMember(c))
{
root++;
}
if (GSPathHandlingUnix() == NO)
{
if (root == 0 && l > 1
&& ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z'))
&& [s characterAtIndex: 1] == ':')
{
// Got a drive relative path ... see if it's absolute.
root = 2;
if (l > 2 && pathSepMember([s characterAtIndex: 2]))
{
root++;
}
}
else if (root == 1
&& l > 4 && pathSepMember([s characterAtIndex: 1]))
{
NSRange range = NSMakeRange(2, l-2);
range = [s rangeOfCharacterFromSet: pathSeps()
options: NSLiteralSearch
range: range];
if (range.length > 0 && range.location > 2)
{
unsigned pos = NSMaxRange(range);
// Found end of UNC host perhaps ... look for share
if (pos < l)
{
range = NSMakeRange(pos, l - pos);
range = [s rangeOfCharacterFromSet: pathSeps()
options: NSLiteralSearch
range: range];
if (range.length > 0)
{
/*
* Found another slash ... but if it comes
* immediately after the last one this can't
* be a UNC path as it's '//host//' rather
* than '//host/share'
*/
if (range.location > pos)
{
root = NSMaxRange(range);
}
}
else
{
root = l;
}
}
}
}
}
}
}
return root;
}
/* Convert a high-low surrogate pair into Unicode scalar code-point */
static inline uint32_t
surrogatePairValue(unichar high, unichar low)
{
return ((high - (unichar)0xD800) * (unichar)400)
+ ((low - (unichar)0xDC00) + (unichar)10000);
}
@implementation NSString
// NSString itself is an abstract class which provides factory
// methods to generate objects of unspecified subclasses.
static NSStringEncoding _DefaultStringEncoding;
static BOOL _ByteEncodingOk;
static const unichar byteOrderMark = 0xFEFF;
static const unichar byteOrderMarkSwapped = 0xFFFE;
/* UTF-16 Surrogate Ranges */
static NSRange highSurrogateRange = {0xD800, 1024};
static NSRange lowSurrogateRange = {0xDC00, 1024};
#ifdef HAVE_REGISTER_PRINTF_FUNCTION
#include <stdio.h>
#include <printf.h>
#include <stdarg.h>
/* <sattler@volker.cs.Uni-Magdeburg.DE>, with libc-5.3.9 thinks this
flag PRINTF_ATSIGN_VA_LIST should be 0, but for me, with libc-5.0.9,
it crashes. -mccallum
Apparently GNU libc 2.xx needs this to be 0 also, along with Linux
libc versions 5.2.xx and higher (including libc6, which is just GNU
libc). -chung */
#define PRINTF_ATSIGN_VA_LIST \
(defined(_LINUX_C_LIB_VERSION_MINOR) \
&& _LINUX_C_LIB_VERSION_MAJOR <= 5 \
&& _LINUX_C_LIB_VERSION_MINOR < 2)
#if ! PRINTF_ATSIGN_VA_LIST
static int
arginfo_func (const struct printf_info *info, size_t n, int *argtypes)
{
*argtypes = PA_POINTER;
return 1;
}
#endif /* !PRINTF_ATSIGN_VA_LIST */
static int
handle_printf_atsign (FILE *stream,
const struct printf_info *info,
#if PRINTF_ATSIGN_VA_LIST
va_list *ap_pointer)
#elif defined(_LINUX_C_LIB_VERSION_MAJOR) \
&& _LINUX_C_LIB_VERSION_MAJOR < 6
const void **const args)
#else /* GNU libc needs the following. */
const void *const *args)
#endif
{
#if ! PRINTF_ATSIGN_VA_LIST
const void *ptr = *args;
#endif
id string_object;
int len;
/* xxx This implementation may not pay pay attention to as much
of printf_info as it should. */
#if PRINTF_ATSIGN_VA_LIST
string_object = va_arg (*ap_pointer, id);
#else
string_object = *((id*) ptr);
#endif
string_object = [string_object description];
if (info->wide)
{
if (sizeof(wchar_t) == 4)
{
unsigned length = [string_object length];
wchar_t buf[length + 1];
unsigned i;
for (i = 0; i < length; i++)
{
buf[i] = [string_object characterAtIndex: i];
}
buf[i] = 0;
len = fwprintf(stream, L"%*ls",
(info->left ? - info->width : info->width), buf);
}
else
{
len = fwprintf(stream, L"%*ls",
(info->left ? - info->width : info->width),
[string_object cStringUsingEncoding: NSUnicodeStringEncoding]);
}
}
else
{
len = fprintf(stream, "%*s",
(info->left ? - info->width : info->width),
[string_object lossyCString]);
}
return len;
}
#endif /* HAVE_REGISTER_PRINTF_FUNCTION */
+ (void) initialize
{
/*
* Flag required as we call this method explicitly from GSBuildStrings()
* to ensure that NSString is initialised properly.
*/
static BOOL beenHere = NO;
if (self == [NSString class] && beenHere == NO)
{
beenHere = YES;
cMemberSel = @selector(characterIsMember:);
caiSel = @selector(characterAtIndex:);
gcrSel = @selector(getCharacters:range:);
ranSel = @selector(rangeOfComposedCharacterSequenceAtIndex:);
_DefaultStringEncoding = GetDefEncoding();
_ByteEncodingOk = GSIsByteEncoding(_DefaultStringEncoding);
NSStringClass = self;
[self setVersion: 1];
NSMutableStringClass = [NSMutableString class];
NSDataClass = [NSData class];
GSPlaceholderStringClass = [GSPlaceholderString class];
GSStringClass = [GSString class];
GSMutableStringClass = [GSMutableString class];
/*
* Set up infrastructure for placeholder strings.
*/
defaultPlaceholderString = (GSPlaceholderString*)
NSAllocateObject(GSPlaceholderStringClass, 0, NSDefaultMallocZone());
placeholderMap = NSCreateMapTable(NSNonOwnedPointerMapKeyCallBacks,
NSNonRetainedObjectMapValueCallBacks, 0);
placeholderLock = [NSLock new];
#ifdef HAVE_REGISTER_PRINTF_FUNCTION
if (register_printf_function ('@',
handle_printf_atsign,
#if PRINTF_ATSIGN_VA_LIST
0))
#else
arginfo_func))
#endif
[NSException raise: NSGenericException
format: @"register printf handling of %%@ failed"];
#endif /* HAVE_REGISTER_PRINTF_FUNCTION */
}
}
+ (id) allocWithZone: (NSZone*)z
{
if (self == NSStringClass)
{
/*
* For a constant string, we return a placeholder object that can
* be converted to a real object when its initialisation method
* is called.
*/
if (z == NSDefaultMallocZone() || z == 0)
{
/*
* As a special case, we can return a placeholder for a string
* in the default malloc zone extremely efficiently.
*/
return defaultPlaceholderString;
}
else
{
id obj;
/*
* For anything other than the default zone, we need to
* locate the correct placeholder in the (lock protected)
* table of placeholders.
*/
[placeholderLock lock];
obj = (id)NSMapGet(placeholderMap, (void*)z);
if (obj == nil)
{
/*
* There is no placeholder object for this zone, so we
* create a new one and use that.
*/
obj = (id)NSAllocateObject(GSPlaceholderStringClass, 0, z);
NSMapInsert(placeholderMap, (void*)z, (void*)obj);
}
[placeholderLock unlock];
return obj;
}
}
else if (GSObjCIsKindOf(self, GSStringClass) == YES)
{
[NSException raise: NSInternalInconsistencyException
format: @"Called +allocWithZone: on private string class"];
return nil; /* NOT REACHED */
}
else
{
/*
* For user provided strings, we simply allocate an object of
* the given class.
*/
return NSAllocateObject (self, 0, z);
}
}
/**
* Return the class used to store constant strings (those ascii strings
* placed in the source code using the @"this is a string" syntax).<br />
* Use this method to obtain the constant string class rather than
* using the obsolete name <em>NXConstantString</em> in your code ...
* with more recent compiler versions the name of this class is variable
* (and will automatically be changed by GNUstep to avoid conflicts
* with the default implementation in the Objective-C runtime library).
*/
+ (Class) constantStringClass
{
return [NXConstantString class];
}
/**
* Create an empty string.
*/
+ (id) string
{
return AUTORELEASE([[self allocWithZone: NSDefaultMallocZone()] init]);
}
/**
* Create a copy of aString.
*/
+ (id) stringWithString: (NSString*)aString
{
NSString *obj;
obj = [self allocWithZone: NSDefaultMallocZone()];
obj = [obj initWithString: aString];
return AUTORELEASE(obj);
}
/**
* Create a string of unicode characters.
*/
+ (id) stringWithCharacters: (const unichar*)chars
length: (unsigned int)length
{
NSString *obj;
obj = [self allocWithZone: NSDefaultMallocZone()];
obj = [obj initWithCharacters: chars length: length];
return AUTORELEASE(obj);
}
/**
* Create a string based on the given C (char[]) string, which should be
* null-terminated and encoded in the default C string encoding. (Characters
* will be converted to unicode representation internally.)
*/
+ (id) stringWithCString: (const char*)byteString
{
NSString *obj;
unsigned length = byteString ? strlen(byteString) : 0;
obj = [self allocWithZone: NSDefaultMallocZone()];
obj = [obj initWithCString: byteString length: length];
return AUTORELEASE(obj);
}
/**
* Create a string based on the given C (char[]) string, which should be
* null-terminated and encoded in the specified C string encoding.
* Characters may be converted to unicode representation internally.
*/
+ (id) stringWithCString: (const char*)byteString
encoding: (NSStringEncoding)encoding
{
NSString *obj;
obj = [self allocWithZone: NSDefaultMallocZone()];
obj = [obj initWithCString: byteString encoding: encoding];
return AUTORELEASE(obj);
}
/**
* Create a string based on the given C (char[]) string, which may contain
* null bytes and should be encoded in the default C string encoding.
* (Characters will be converted to unicode representation internally.)
*/
+ (id) stringWithCString: (const char*)byteString
length: (unsigned int)length
{
NSString *obj;
obj = [self allocWithZone: NSDefaultMallocZone()];
obj = [obj initWithCString: byteString length: length];
return AUTORELEASE(obj);
}
/**
* Create a string based on the given UTF-8 string, null-terminated.
*/
+ (id) stringWithUTF8String: (const char *)bytes
{
NSString *obj;
obj = [self allocWithZone: NSDefaultMallocZone()];
obj = [obj initWithUTF8String: bytes];
return AUTORELEASE(obj);
}
/**
* Load contents of file at path into a new string. Will interpret file as
* containing direct unicode if it begins with the unicode byte order mark,
* else converts to unicode using default C string encoding.
*/
+ (id) stringWithContentsOfFile: (NSString *)path
{
NSString *obj;
obj = [self allocWithZone: NSDefaultMallocZone()];
obj = [obj initWithContentsOfFile: path];
return AUTORELEASE(obj);
}
/**
* Load contents of given URL into a new string. Will interpret contents as
* containing direct unicode if it begins with the unicode byte order mark,
* else converts to unicode using default C string encoding.
*/
+ (id) stringWithContentsOfURL: (NSURL *)url
{
NSString *obj;
obj = [self allocWithZone: NSDefaultMallocZone()];
obj = [obj initWithContentsOfURL: url];
return AUTORELEASE(obj);
}
/**
* Creates a new string using C printf-style formatting. First argument should
* be a constant format string, like '<code>@"float val = %f"</code>', remaining
* arguments should be the variables to print the values of, comma-separated.
*/
+ (id) stringWithFormat: (NSString*)format,...
{
va_list ap;
id ret;
va_start(ap, format);
if (format == nil)
ret = nil;
else
ret = AUTORELEASE([[self allocWithZone: NSDefaultMallocZone()]
initWithFormat: format arguments: ap]);
va_end(ap);
return ret;
}
/**
* <p>In MacOS-X class clusters do not have designated initialisers,
* and there is a general rule that -init is treated as the designated
* initialiser of the class cluster, but that other intitialisers
* may not work as expected and would need to be individually overridden
* in any subclass.
* </p>
* <p>GNUstep tries to make it easier to subclass a class cluster,
* by making class clusters follow the same convention as normal
* classes, so the designated initialiser is the <em>richest</em>
* initialiser. This means that all other initialisers call the
* documented designated initialiser (which calls -init only for
* MacOS-X compatibility), and anyone writing a subclass only needs
* to override that one initialiser in order to have all the other
* ones work.
* </p>
* <p>For MacOS-X compatibility, you may also need to override various
* other initialisers. Exactly which ones, you will need to determine
* by trial on a MacOS-X system ... and may vary between releases of
* MacOS-X. So to be safe, on MacOS-X you probably need to re-implement
* <em>all</em> the class cluster initialisers you might use in conjunction
* with your subclass.
* </p>
* <p>NB. The GNUstep designated initialiser for the NSString class cluster
* has changed to -initWithBytesNoCopy:length:encoding:freeWhenDone:
* from -initWithCharactersNoCopy:length:freeWhenDone: and older code
* subclassing NSString will need to be updated.
* </p>
*/
- (id) init
{
self = [super init];
return self;
}
/**
* Initialises the receiver with a copy of the supplied length of bytes,
* using the specified encoding.<br />
* For NSUnicodeStringEncoding and NSUTF8String encoding, a Byte Order
* Marker (if present at the start of the data) is removed automatically.<br />
* If the data can not be interpreted using the encoding, the receiver
* is released and nil is returned.
*/
- (id) initWithBytes: (const void*)bytes
length: (unsigned int)length
encoding: (NSStringEncoding)encoding
{
if (length == 0)
{
return [self initWithBytesNoCopy: (void *)0
length: 0
encoding: encoding
freeWhenDone: NO];
}
else
{
void *buf = NSZoneMalloc(GSObjCZone(self), length);
memcpy(buf, bytes, length);
return [self initWithBytesNoCopy: buf
length: length
encoding: encoding
freeWhenDone: YES];
}
}
/** <init /> <override-subclass />
* Initialises the receiver with the supplied length of bytes, using the
* specified encoding.<br />
* For NSUnicodeStringEncoding and NSUTF8String encoding, a Byte Order
* Marker (if present at the start of the data) is removed automatically.<br />
* If the data is not in a format which can be used internally unmodified,
* it is copied, otherwise it is used as is. If the data is not copied
* the flag determines whether the string will free it when it is no longer
* needed.<br />
* If the data can not be interpreted using the encoding, the receiver
* is released and nil is returned.
* <p>Note, this is the most basic initialiser for strings.
* In the GNUstep implementation, your subclasses may override
* this initialiser in order to have all others function.</p>
*/
- (id) initWithBytesNoCopy: (void*)bytes
length: (unsigned int)length
encoding: (NSStringEncoding)encoding
freeWhenDone: (BOOL)flag
{
self = [self init];
return self;
}
/**
* <p>Initialize with given unicode chars up to length, regardless of presence
* of null bytes. Does not copy the string. If flag, frees its storage when
* this instance is deallocated.</p>
*/
- (id) initWithCharactersNoCopy: (unichar*)chars
length: (unsigned int)length
freeWhenDone: (BOOL)flag
{
return [self initWithBytesNoCopy: chars
length: length * sizeof(unichar)
encoding: NSUnicodeStringEncoding
freeWhenDone: flag];
}
/**
* <p>Initialize with given unicode chars up to length, regardless of presence
* of null bytes. Copies the string and frees copy when deallocated.</p>
*/
- (id) initWithCharacters: (const unichar*)chars
length: (unsigned int)length
{
return [self initWithBytes: chars
length: length * sizeof(unichar)
encoding: NSUnicodeStringEncoding];
}
/**
* <p>Initialize with given C string byteString up to length, regardless of
* presence of null bytes. Characters converted to unicode based on the
* default C encoding. Does not copy the string. If flag, frees its storage
* when this instance is deallocated.</p>
*/
- (id) initWithCStringNoCopy: (char*)byteString
length: (unsigned int)length
freeWhenDone: (BOOL)flag
{
return [self initWithBytesNoCopy: byteString
length: length
encoding: _DefaultStringEncoding
freeWhenDone: flag];
}
/**
* <p>Initialize with given C string byteString up to first nul byte.
* Characters converted to unicode based on the specified C encoding.
* Copies the string.</p>
*/
- (id) initWithCString: (const char*)byteString
encoding: (NSStringEncoding)encoding
{
return [self initWithBytes: byteString
length: strlen(byteString)
encoding: encoding];
}
/**
* <p>Initialize with given C string byteString up to length, regardless of
* presence of null bytes. Characters converted to unicode based on the
* default C encoding. Copies the string.</p>
*/
- (id) initWithCString: (const char*)byteString length: (unsigned int)length
{
return [self initWithBytes: byteString
length: length
encoding: _DefaultStringEncoding];
}
/**
* <p>Initialize with given C string byteString, which should be
* null-terminated. Characters are converted to unicode based on the default
* C encoding. Copies the string.</p>
*/
- (id) initWithCString: (const char*)byteString
{
return [self initWithBytes: byteString
length: (byteString ? strlen(byteString) : 0)
encoding: _DefaultStringEncoding];
}
/**
* Initialize to be a copy of the given string.
*/
- (id) initWithString: (NSString*)string
{
unsigned length = [string length];
if (length > 0)
{
unichar *s = NSZoneMalloc(GSObjCZone(self), sizeof(unichar)*length);
[string getCharacters: s range: ((NSRange){0, length})];
self = [self initWithCharactersNoCopy: s
length: length
freeWhenDone: YES];
}
else
{
self = [self initWithCharactersNoCopy: (unichar*)0
length: 0
freeWhenDone: NO];
}
return self;
}
/**
* Initialize based on given null-terminated UTF-8 string bytes.
*/
- (id) initWithUTF8String: (const char *)bytes
{
return [self initWithBytes: bytes
length: (bytes ? strlen(bytes) : 0)
encoding: NSUTF8StringEncoding];
}
/**
* Invokes -initWithFormat:locale:arguments: with a nil locale.
*/
- (id) initWithFormat: (NSString*)format,...
{
va_list ap;
va_start(ap, format);
self = [self initWithFormat: format locale: nil arguments: ap];
va_end(ap);
return self;
}
/**
* Invokes -initWithFormat:locale:arguments:
*/
- (id) initWithFormat: (NSString*)format
locale: (NSDictionary*)locale, ...
{
va_list ap;
va_start(ap, locale);
return [self initWithFormat: format locale: locale arguments: ap];
va_end(ap);
return self;
}
/**
* Invokes -initWithFormat:locale:arguments: with a nil locale.
*/
- (id) initWithFormat: (NSString*)format
arguments: (va_list)argList
{
return [self initWithFormat: format locale: nil arguments: argList];
}
/**
* Initialises the string using the specified format and locale
* to format the following arguments.
*/
- (id) initWithFormat: (NSString*)format
locale: (NSDictionary*)locale
arguments: (va_list)argList
{
extern void GSStrExternalize();
unsigned char buf[2048];
GSStr_t f;
unichar fbuf[1024];
unichar *fmt = fbuf;
size_t len;
/*
* First we provide an array of unichar characters containing the
* format string. For performance reasons we try to use an on-stack
* buffer if the format string is small enough ... it almost always
* will be.
*/
len = [format length];
if (len >= 1024)
{
fmt = objc_malloc((len+1)*sizeof(unichar));
}
[format getCharacters: fmt range: ((NSRange){0, len})];
fmt[len] = '\0';
/*
* Now set up 'f' as a GSMutableString object whose initial buffer is
* allocated on the stack. The GSFormat function can write into it.
*/
f.isa = GSMutableStringClass;
f._zone = NSDefaultMallocZone();
f._contents.c = buf;
f._capacity = sizeof(buf);
f._count = 0;
f._flags.wide = 0;
f._flags.free = 0;
GSFormat(&f, fmt, argList, locale);
GSStrExternalize(&f);
if (fmt != fbuf)
{
objc_free(fmt);
}
/*
* Don't use noCopy because f._contents.u may be memory on the stack,
* and even if it wasn't f._capacity may be greater than f._count so
* we could be wasting quite a bit of space. Better to accept a
* performance hit due to copying data (and allocating/deallocating
* the temporary buffer) for large strings. For most strings, the
* on-stack memory will have been used, so we will get better performance.
*/
if (f._flags.wide == 1)
{
self = [self initWithCharacters: f._contents.u length: f._count];
}
else
{
self = [self initWithCString: (char*)f._contents.c length: f._count];
}
/*
* If the string had to grow beyond the initial buffer size, we must
* release any allocated memory.
*/
if (f._flags.free == 1)
{
NSZoneFree(f._zone, f._contents.c);
}
return self;
}
/**
* Initialises the receiver with the supplied data, using the
* specified encoding.<br />
* For NSUnicodeStringEncoding and NSUTF8String encoding, a Byte Order
* Marker (if present at the start of the data) is removed automatically.<br />
* If the data can not be interpreted using the encoding, the receiver
* is released and nil is returned.
*/
- (id) initWithData: (NSData*)data
encoding: (NSStringEncoding)encoding
{
return [self initWithBytes: [data bytes]
length: [data length]
encoding: encoding];
}
/**
* <p>Initialises the receiver with the contents of the file at path.
* </p>
* <p>Invokes [NSData-initWithContentsOfFile:] to read the file, then
* examines the data to infer its encoding type, and converts the
* data to a string using -initWithData:encoding:
* </p>
* <p>The encoding to use is determined as follows ... if the data begins
* with the 16-bit unicode Byte Order Marker, then it is assumed to be
* unicode data in the appropriate ordering and converted as such.<br />
* If it begins with a UTF8 representation of the BOM, the UTF8 encoding
* is used.<br />
* Otherwise, the default C String encoding is used.
* </p>
* <p>Releases the receiver and returns nil if the file could not be read
* and converted to a string.
* </p>
*/
- (id) initWithContentsOfFile: (NSString*)path
{
NSStringEncoding enc = _DefaultStringEncoding;
NSData *d;
unsigned int len;
const unsigned char *data_bytes;
d = [[NSDataClass alloc] initWithContentsOfFile: path];
if (d == nil)
{
RELEASE(self);
return nil;
}
len = [d length];
if (len == 0)
{
RELEASE(d);
RELEASE(self);
return @"";
}
data_bytes = [d bytes];
if ((data_bytes != NULL) && (len >= 2))
{
const unichar *data_ucs2chars = (const unichar *) data_bytes;
if ((data_ucs2chars[0] == byteOrderMark)
|| (data_ucs2chars[0] == byteOrderMarkSwapped))
{
/* somebody set up us the BOM! */
enc = NSUnicodeStringEncoding;
}
else if (len >= 3
&& data_bytes[0] == 0xEF
&& data_bytes[1] == 0xBB
&& data_bytes[2] == 0xBF)
{
enc = NSUTF8StringEncoding;
}
}
self = [self initWithData: d encoding: enc];
RELEASE(d);
if (self == nil)
{
NSWarnMLog(@"Contents of file '%@' are not string data", path);
}
return self;
}
/**
* <p>Initialises the receiver with the contents of the given URL.
* </p>
* <p>Invokes [NSData+dataWithContentsOfURL:] to read the contents, then
* examines the data to infer its encoding type, and converts the
* data to a string using -initWithData:encoding:
* </p>
* <p>The encoding to use is determined as follows ... if the data begins
* with the 16-bit unicode Byte Order Marker, then it is assumed to be
* unicode data in the appropriate ordering and converted as such.<br />
* If it begins with a UTF8 representation of the BOM, the UTF8 encoding
* is used.<br />
* Otherwise, the default C String encoding is used.
* </p>
* <p>Releases the receiver and returns nil if the URL contents could not be
* read and converted to a string.
* </p>
*/
- (id) initWithContentsOfURL: (NSURL*)url
{
NSStringEncoding enc = _DefaultStringEncoding;
NSData *d = [NSDataClass dataWithContentsOfURL: url];
unsigned int len = [d length];
const unsigned char *data_bytes;
if (d == nil)
{
NSWarnMLog(@"Contents of URL '%@' are not readable", url);
RELEASE(self);
return nil;
}
if (len == 0)
{
RELEASE(self);
return @"";
}
data_bytes = [d bytes];
if ((data_bytes != NULL) && (len >= 2))
{
const unichar *data_ucs2chars = (const unichar *) data_bytes;
if ((data_ucs2chars[0] == byteOrderMark)
|| (data_ucs2chars[0] == byteOrderMarkSwapped))
{
enc = NSUnicodeStringEncoding;
}
else if (len >= 3
&& data_bytes[0] == 0xEF
&& data_bytes[1] == 0xBB
&& data_bytes[2] == 0xBF)
{
enc = NSUTF8StringEncoding;
}
}
self = [self initWithData: d encoding: enc];
if (self == nil)
{
NSWarnMLog(@"Contents of URL '%@' are not string data", url);
}
return self;
}
/**
* Returns the number of Unicode characters in this string, including the
* individual characters of composed character sequences,
*/
- (unsigned int) length
{
[self subclassResponsibility: _cmd];
return 0;
}
// Accessing Characters
/**
* Returns unicode character at index. <code>unichar</code> is an unsigned
* short. Thus, a 16-bit character is returned.
*/
- (unichar) characterAtIndex: (unsigned int)index
{
[self subclassResponsibility: _cmd];
return (unichar)0;
}
/**
* Returns this string as an array of 16-bit <code>unichar</code> (unsigned
* short) values. buffer must be preallocated and should be capable of
* holding -length shorts.
*/
// Inefficient. Should be overridden
- (void) getCharacters: (unichar*)buffer
{
[self getCharacters: buffer range: ((NSRange){0, [self length]})];
return;
}
/**
* Returns aRange of string as an array of 16-bit <code>unichar</code>
* (unsigned short) values. buffer must be preallocated and should be capable
* of holding a sufficient number of shorts.
*/
// Inefficient. Should be overridden
- (void) getCharacters: (unichar*)buffer
range: (NSRange)aRange
{
unsigned l = [self length];
unsigned i;
unichar (*caiImp)(NSString*, SEL, unsigned int);
GS_RANGE_CHECK(aRange, l);
caiImp = (unichar (*)(NSString*,SEL,unsigned))
[self methodForSelector: caiSel];
for (i = 0; i < aRange.length; i++)
{
buffer[i] = (*caiImp)(self, caiSel, aRange.location + i);
}
}
/**
* Constructs a new ASCII string which is a representation of the receiver
* in which characters are escaped where necessary in order to produce a
* legal URL.<br />
* Returns nil if the receiver cannot be represented using the specified
* encoding.
*/
- (NSString*) stringByAddingPercentEscapesUsingEncoding: (NSStringEncoding)e
{
NSData *data = [self dataUsingEncoding: e];
NSString *s = nil;
if (data != nil)
{
unsigned char *src = (unsigned char*)[data bytes];
unsigned int slen = [data length];
NSMutableData *d = [[NSMutableData alloc] initWithLength: slen * 3];
unsigned char *dst = (unsigned char*)[d mutableBytes];
unsigned int spos = 0;
unsigned int dpos = 0;
while (spos < slen)
{
unsigned char c = src[spos++];
unsigned int hi;
unsigned int lo;
switch (c)
{
case ',':
case ';':
case '"':
case '\'':
case '&':
case '=':
case '(':
case ')':
case '<':
case '>':
case '?':
case '#':
case '{':
case '}':
case '%':
case ' ':
case '+':
dst[dpos++] = '%';
hi = (c & 0xf0) >> 4;
dst[dpos++] = (hi > 9) ? 'A' + hi - 10 : '0' + hi;
lo = (c & 0x0f);
dst[dpos++] = (lo > 9) ? 'A' + lo - 10 : '0' + lo;
break;
default:
if (c < ' ' || c > 127)
{
dst[dpos++] = '%';
hi = (c & 0xf0) >> 4;
dst[dpos++] = (hi > 9) ? 'A' + hi - 10 : '0' + hi;
lo = (c & 0x0f);
dst[dpos++] = (lo > 9) ? 'A' + lo - 10 : '0' + lo;
}
else
{
dst[dpos++] = c;
}
break;
}
}
[d setLength: dpos];
s = [[NSString alloc] initWithData: d encoding: NSASCIIStringEncoding];
RELEASE(d);
AUTORELEASE(s);
}
return s;
}
/**
* Constructs a new string consisting of this instance followed by the string
* specified by format.
*/
- (NSString*) stringByAppendingFormat: (NSString*)format,...
{
va_list ap;
id ret;
va_start(ap, format);
ret = [self stringByAppendingString:
[NSString stringWithFormat: format arguments: ap]];
va_end(ap);
return ret;
}
/**
* Constructs a new string consisting of this instance followed by the aString.
*/
- (NSString*) stringByAppendingString: (NSString*)aString
{
unsigned len = [self length];
unsigned otherLength = [aString length];
NSZone *z = GSObjCZone(self);
unichar *s = NSZoneMalloc(z, (len+otherLength)*sizeof(unichar));
NSString *tmp;
[self getCharacters: s range: ((NSRange){0, len})];
[aString getCharacters: s + len range: ((NSRange){0, otherLength})];
tmp = [[NSStringClass allocWithZone: z] initWithCharactersNoCopy: s
length: len + otherLength freeWhenDone: YES];
return AUTORELEASE(tmp);
}
// Dividing Strings into Substrings
/**
* <p>Returns an array of [NSString]s representing substrings of this string
* that are separated by separator (which itself is never returned in the
* array). If there are no occurrences of separator, the whole string is
* returned. If string begins or ends with separator, empty strings will
* be returned for those positions.</p>
* <p>Note, use an [NSScanner] if you need more sophisticated parsing.</p>
*/
- (NSArray*) componentsSeparatedByString: (NSString*)separator
{
NSRange search;
NSRange complete;
NSRange found;
NSMutableArray *array = [NSMutableArray array];
search = NSMakeRange (0, [self length]);
complete = search;
found = [self rangeOfString: separator];
while (found.length != 0)
{
NSRange current;
current = NSMakeRange (search.location,
found.location - search.location);
[array addObject: [self substringWithRange: current]];
search = NSMakeRange (found.location + found.length,
complete.length - found.location - found.length);
found = [self rangeOfString: separator
options: 0
range: search];
}
// Add the last search string range
[array addObject: [self substringWithRange: search]];
// FIXME: Need to make mutable array into non-mutable array?
return array;
}
/**
* Returns a substring of the receiver from character at the specified
* index to the end of the string.<br />
* So, supplying an index of 3 would return a substring consisting of
* the entire string apart from the first three character (those would
* be at index 0, 1, and 2).<br />
* If the supplied index is greater than or equal to the length of the
* receiver an exception is raised.
*/
- (NSString*) substringFromIndex: (unsigned int)index
{
return [self substringWithRange: ((NSRange){index, [self length]-index})];
}
/**
* Returns a substring of the receiver from the start of the
* string to (but not including) the specified index position.<br />
* So, supplying an index of 3 would return a substring consisting of
* the first three characters of the receiver.<br />
* If the supplied index is greater than the length of the receiver
* an exception is raised.
*/
- (NSString*) substringToIndex: (unsigned int)index
{
return [self substringWithRange: ((NSRange){0,index})];;
}
/**
* An obsolete name for -substringWithRange: ... deprecated.
*/
- (NSString*) substringFromRange: (NSRange)aRange
{
return [self substringWithRange: aRange];
}
/**
* Returns a substring of the receiver containing the characters
* in aRange.<br />
* If aRange specifies any character position not
* present in the receiver, an exception is raised.<br />
* If aRange has a length of zero, an empty string is returned.
*/
- (NSString*) substringWithRange: (NSRange)aRange
{
unichar *buf;
id ret;
unsigned len = [self length];
GS_RANGE_CHECK(aRange, len);
if (aRange.length == 0)
return @"";
buf = NSZoneMalloc(GSObjCZone(self), sizeof(unichar)*aRange.length);
[self getCharacters: buf range: aRange];
ret = [[NSStringClass allocWithZone: NSDefaultMallocZone()]
initWithCharactersNoCopy: buf length: aRange.length freeWhenDone: YES];
return AUTORELEASE(ret);
}
// Finding Ranges of Characters and Substrings
/**
* Returns position of first character in this string that is in aSet.
* Positions start at 0. If the character is a composed character sequence,
* the range returned will contain the whole sequence, else just the character
* itself.
*/
- (NSRange) rangeOfCharacterFromSet: (NSCharacterSet*)aSet
{
NSRange all = NSMakeRange(0, [self length]);
return [self rangeOfCharacterFromSet: aSet
options: 0
range: all];
}
/**
* Returns position of first character in this string that is in aSet.
* Positions start at 0. If the character is a composed character sequence,
* the range returned will contain the whole sequence, else just the character
* itself. mask may contain <code>NSCaseInsensitiveSearch</code>,
* <code>NSLiteralSearch</code> (don't consider alternate forms of composed
* characters equal), or <code>NSBackwardsSearch</code> (search from end of
* string).
*/
- (NSRange) rangeOfCharacterFromSet: (NSCharacterSet*)aSet
options: (unsigned int)mask
{
NSRange all = NSMakeRange(0, [self length]);
return [self rangeOfCharacterFromSet: aSet
options: mask
range: all];
}
/**
* Returns position of first character in this string that is in aSet.
* Positions start at 0. If the character is a composed character sequence,
* the range returned will contain the whole sequence, else just the character
* itself. mask may contain <code>NSCaseInsensitiveSearch</code>,
* <code>NSLiteralSearch</code> (don't consider alternate forms of composed
* characters equal), or <code>NSBackwardsSearch</code> (search from end of
* string). Search only carried out within aRange.
*/
- (NSRange) rangeOfCharacterFromSet: (NSCharacterSet*)aSet
options: (unsigned int)mask
range: (NSRange)aRange
{
unsigned int i;
unsigned int start;
unsigned int stop;
int step;
NSRange range;
unichar (*cImp)(id, SEL, unsigned int);
BOOL (*mImp)(id, SEL, unichar);
i = [self length];
GS_RANGE_CHECK(aRange, i);
if ((mask & NSBackwardsSearch) == NSBackwardsSearch)
{
start = NSMaxRange(aRange)-1; stop = aRange.location-1; step = -1;
}
else
{
start = aRange.location; stop = NSMaxRange(aRange); step = 1;
}
range.location = NSNotFound;
range.length = 0;
cImp = (unichar(*)(id,SEL,unsigned int))
[self methodForSelector: caiSel];
mImp = (BOOL(*)(id,SEL,unichar))
[aSet methodForSelector: cMemberSel];
for (i = start; i != stop; i += step)
{
unichar letter = (unichar)(*cImp)(self, caiSel, i);
if ((*mImp)(aSet, cMemberSel, letter))
{
range = NSMakeRange(i, 1);
break;
}
}
return range;
}
/**
* Invokes -rangeOfString:options: with no options.
*/
- (NSRange) rangeOfString: (NSString*)string
{
NSRange all = NSMakeRange(0, [self length]);
return [self rangeOfString: string
options: 0
range: all];
}
/**
* Invokes -rangeOfString:options:range: with the range set
* set to the range of the whole of the receiver.
*/
- (NSRange) rangeOfString: (NSString*)string
options: (unsigned int)mask
{
NSRange all = NSMakeRange(0, [self length]);
return [self rangeOfString: string
options: mask
range: all];
}
/**
* Returns the range giving the location and length of the first
* occurrence of aString within aRange.
* <br/>
* If aString does not exist in the receiver (an empty
* string is never considered to exist in the receiver),
* the length of the returned range is zero.
* <br/>
* If aString is nil, an exception is raised.
* <br/>
* If any part of aRange lies outside the range of the
* receiver, an exception is raised.
* <br/>
* The options mask may contain the following options -
* <list>
* <item><code>NSCaseInsensitiveSearch</code></item>
* <item><code>NSLiteralSearch</code></item>
* <item><code>NSBackwardsSearch</code></item>
* <item><code>NSAnchoredSearch</code></item>
* </list>
* The <code>NSAnchoredSearch</code> option means aString must occur at the
* beginning (or end, if <code>NSBackwardsSearch</code> is also given) of the
* string. Options should be OR'd together using <code>'|'</code>.
*/
- (NSRange) rangeOfString: (NSString *)aString
options: (unsigned int)mask
range: (NSRange)aRange
{
if (aString == nil)
[NSException raise: NSInvalidArgumentException format: @"range of nil"];
return strRangeNsNs(self, aString, mask, aRange);
}
- (unsigned int) indexOfString: (NSString *)substring
{
NSRange range = {0, [self length]};
range = [self rangeOfString: substring options: 0 range: range];
return range.length ? range.location : NSNotFound;
}
- (unsigned int) indexOfString: (NSString*)substring
fromIndex: (unsigned int)index
{
NSRange range = {index, [self length] - index};
range = [self rangeOfString: substring options: 0 range: range];
return range.length ? range.location : NSNotFound;
}
// Determining Composed Character Sequences
/**
* Unicode utility method. If character at anIndex is part of a composed
* character sequence anIndex (note indices start from 0), returns the full
* range of this sequence.
*/
- (NSRange) rangeOfComposedCharacterSequenceAtIndex: (unsigned int)anIndex
{
unsigned start;
unsigned end;
unsigned length = [self length];
unichar ch;
unichar (*caiImp)(NSString*, SEL, unsigned int);
NSCharacterSet *nbSet = [NSCharacterSet nonBaseCharacterSet];
if (anIndex >= length)
[NSException raise: NSRangeException format:@"Invalid location."];
caiImp = (unichar (*)(NSString*,SEL,unsigned))
[self methodForSelector: caiSel];
for (start = anIndex; start > 0; start--)
{
ch = (*caiImp)(self, caiSel, start);
if ([nbSet characterIsMember: ch] == NO)
break;
}
for (end = start+1; end < length; end++)
{
ch = (*caiImp)(self, caiSel, end);
if ([nbSet characterIsMember: ch] == NO)
break;
}
return NSMakeRange(start, end-start);
}
// Identifying and Comparing Strings
/**
* <p>Compares this instance with aString. Returns
* <code>NSOrderedAscending</code>, <code>NSOrderedDescending</code>, or
* <code>NSOrderedSame</code>, depending on whether this instance occurs
* before or after string in lexical order, or is equal to it.</p>
*/
- (NSComparisonResult) compare: (NSString*)aString
{
return [self compare: aString options: 0];
}
/**
* <p>Compares this instance with aString. mask may be either
* <code>NSCaseInsensitiveSearch</code> or <code>NSLiteralSearch</code>. The
* latter requests a literal byte-by-byte comparison, which is fastest but may
* return inaccurate results in cases where two different composed character
* sequences may be used to express the same character.</p>
*/
- (NSComparisonResult) compare: (NSString*)aString
options: (unsigned int)mask
{
return [self compare: aString options: mask
range: ((NSRange){0, [self length]})];
}
/**
* <p>Compares this instance with string. mask may be either
* <code>NSCaseInsensitiveSearch</code> or <code>NSLiteralSearch</code>. The
* latter requests a literal byte-by-byte comparison, which is fastest but may
* return inaccurate results in cases where two different composed character
* sequences may be used to express the same character. aRange refers
* to this instance, and should be set to 0..length to compare the whole
* string.</p>
*/
// xxx Should implement full POSIX.2 collate
- (NSComparisonResult) compare: (NSString*)aString
options: (unsigned int)mask
range: (NSRange)aRange
{
if (aString == nil)
[NSException raise: NSInvalidArgumentException format: @"compare with nil"];
return strCompNsNs(self, aString, mask, aRange);
}
/**
* Returns whether this string starts with aString.
*/
- (BOOL) hasPrefix: (NSString*)aString
{
NSRange range;
range = [self rangeOfString: aString options: NSAnchoredSearch];
return (range.length > 0) ? YES : NO;
}
/**
* Returns whether this string ends with aString.
*/
- (BOOL) hasSuffix: (NSString*)aString
{
NSRange range;
range = [self rangeOfString: aString
options: NSAnchoredSearch | NSBackwardsSearch];
return (range.length > 0) ? YES : NO;
}
/**
* Returns whether the receiver and an anObject are equals as strings.
* If anObject isn't an NSString, returns NO.
*/
- (BOOL) isEqual: (id)anObject
{
if (anObject == self)
{
return YES;
}
if (anObject != nil && GSObjCIsInstance(anObject) == YES)
{
Class c = GSObjCClass(anObject);
if (c != nil)
{
if (GSObjCIsKindOf(c, NSStringClass))
{
return [self isEqualToString: anObject];
}
}
}
return NO;
}
/**
* Returns whether this instance is equal as a string to aString. See also
* -compare: and related methods.
*/
- (BOOL) isEqualToString: (NSString*)aString
{
if ([self hash] != [aString hash])
return NO;
if (strCompNsNs(self, aString, 0, (NSRange){0, [self length]})
== NSOrderedSame)
return YES;
return NO;
}
/**
* Return 28-bit hash value (in 32-bit integer). The top few bits are used
* for other purposes in a bitfield in the concrete string subclasses, so we
* must not use the full unsigned integer.
*/
- (unsigned int) hash
{
unsigned ret = 0;
unsigned len = [self length];
if (len > 0)
{
unichar buf[64];
unichar *ptr = (len <= 64) ? buf :
NSZoneMalloc(NSDefaultMallocZone(), len * sizeof(unichar));
unichar *p;
unsigned char_count = 0;
[self getCharacters: ptr range: NSMakeRange(0,len)];
p = ptr;
while (char_count++ < len)
{
unichar c = *p++;
// FIXME ... should normalize composed character sequences.
ret = (ret << 5) + ret + c;
}
if (ptr != buf)
{
NSZoneFree(NSDefaultMallocZone(), ptr);
}
/*
* The hash caching in our concrete string classes uses zero to denote
* an empty cache value, so we MUST NOT return a hash of zero.
*/
ret &= 0x0fffffff;
if (ret == 0)
{
ret = 0x0fffffff;
}
return ret;
}
else
{
return 0x0ffffffe; /* Hash for an empty string. */
}
}
// Getting a Shared Prefix
/**
* Returns the largest initial portion of this instance shared with aString.
* mask may be either <code>NSCaseInsensitiveSearch</code> or
* <code>NSLiteralSearch</code>. The latter requests a literal byte-by-byte
* comparison, which is fastest but may return inaccurate results in cases
* where two different composed character sequences may be used to express
* the same character.
*/
- (NSString*) commonPrefixWithString: (NSString*)aString
options: (unsigned int)mask
{
if (mask & NSLiteralSearch)
{
int prefix_len = 0;
unsigned length = [self length];
unsigned aLength = [aString length];
unichar *u,*w;
unichar a1[length+1];
unichar *s1 = a1;
unichar a2[aLength+1];
unichar *s2 = a2;
u = s1;
[self getCharacters: s1 range: ((NSRange){0, length})];
s1[length] = (unichar)0;
[aString getCharacters: s2 range: ((NSRange){0, aLength})];
s2[aLength] = (unichar)0;
u = s1;
w = s2;
if (mask & NSCaseInsensitiveSearch)
{
while (*s1 && *s2 && (uni_tolower(*s1) == uni_tolower(*s2)))
{
s1++;
s2++;
prefix_len++;
}
}
else
{
while (*s1 && *s2 && (*s1 == *s2))
{
s1++;
s2++;
prefix_len++;
}
}
return [NSStringClass stringWithCharacters: u length: prefix_len];
}
else
{
unichar (*scImp)(NSString*, SEL, unsigned int);
unichar (*ocImp)(NSString*, SEL, unsigned int);
void (*sgImp)(NSString*, SEL, unichar*, NSRange) = 0;
void (*ogImp)(NSString*, SEL, unichar*, NSRange) = 0;
NSRange (*srImp)(NSString*, SEL, unsigned int) = 0;
NSRange (*orImp)(NSString*, SEL, unsigned int) = 0;
BOOL gotRangeImps = NO;
BOOL gotFetchImps = NO;
NSRange sRange;
NSRange oRange;
unsigned sLength = [self length];
unsigned oLength = [aString length];
unsigned sIndex = 0;
unsigned oIndex = 0;
if (!sLength)
return IMMUTABLE(self);
if (!oLength)
return IMMUTABLE(aString);
scImp = (unichar (*)(NSString*,SEL,unsigned))
[self methodForSelector: caiSel];
ocImp = (unichar (*)(NSString*,SEL,unsigned))
[aString methodForSelector: caiSel];
while ((sIndex < sLength) && (oIndex < oLength))
{
unichar sc = (*scImp)(self, caiSel, sIndex);
unichar oc = (*ocImp)(aString, caiSel, oIndex);
if (sc == oc)
{
sIndex++;
oIndex++;
}
else if ((mask & NSCaseInsensitiveSearch)
&& (uni_tolower(sc) == uni_tolower(oc)))
{
sIndex++;
oIndex++;
}
else
{
if (gotRangeImps == NO)
{
gotRangeImps = YES;
srImp=(NSRange (*)())[self methodForSelector: ranSel];
orImp=(NSRange (*)())[aString methodForSelector: ranSel];
}
sRange = (*srImp)(self, ranSel, sIndex);
oRange = (*orImp)(aString, ranSel, oIndex);
if ((sRange.length < 2) || (oRange.length < 2))
return [self substringWithRange: NSMakeRange(0, sIndex)];
else
{
GSEQ_MAKE(sBuf, sSeq, sRange.length);
GSEQ_MAKE(oBuf, oSeq, oRange.length);
if (gotFetchImps == NO)
{
gotFetchImps = YES;
sgImp=(void (*)())[self methodForSelector: gcrSel];
ogImp=(void (*)())[aString methodForSelector: gcrSel];
}
(*sgImp)(self, gcrSel, sBuf, sRange);
(*ogImp)(aString, gcrSel, oBuf, oRange);
if (GSeq_compare(&sSeq, &oSeq) == NSOrderedSame)
{
sIndex += sRange.length;
oIndex += oRange.length;
}
else if (mask & NSCaseInsensitiveSearch)
{
GSeq_lowercase(&sSeq);
GSeq_lowercase(&oSeq);
if (GSeq_compare(&sSeq, &oSeq) == NSOrderedSame)
{
sIndex += sRange.length;
oIndex += oRange.length;
}
else
return [self substringWithRange: NSMakeRange(0,sIndex)];
}
else
return [self substringWithRange: NSMakeRange(0,sIndex)];
}
}
}
return [self substringWithRange: NSMakeRange(0, sIndex)];
}
}
/**
* Determines the smallest range of lines containing aRange and returns
* the information as a range.<br />
* Calls -getLineStart:end:contentsEnd:forRange: to do the work.
*/
- (NSRange) lineRangeForRange: (NSRange)aRange
{
unsigned startIndex;
unsigned lineEndIndex;
[self getLineStart: &startIndex
end: &lineEndIndex
contentsEnd: NULL
forRange: aRange];
return NSMakeRange(startIndex, lineEndIndex - startIndex);
}
/**
* Determines the smallest range of lines containing aRange and returns
* the locations in that range.<br />
* Lines are delimited by any of these character sequences, the longest
* (CRLF) sequence preferred.
* <list>
* <item>U+000A (linefeed)</item>
* <item>U+000D (carriage return)</item>
* <item>U+2028 (Unicode line separator)</item>
* <item>U+2029 (Unicode paragraph separator)</item>
* <item>U+000D U+000A (CRLF)</item>
* </list>
* The index of the first character of the line at or before aRange is
* returned in startIndex.<br />
* The index of the first character of the next line after the line terminator
* is returned in endIndex.<br />
* The index of the last character before the line terminator is returned
* contentsEndIndex.<br />
* Raises an NSRangeException if the range is invalid, but permits the index
* arguments to be null pointers (in which case no value is returned in that
* argument).
*/
- (void) getLineStart: (unsigned int *)startIndex
end: (unsigned int *)lineEndIndex
contentsEnd: (unsigned int *)contentsEndIndex
forRange: (NSRange)aRange
{
unichar thischar;
unsigned start, end, len, termlen;
unichar (*caiImp)(NSString*, SEL, unsigned int);
len = [self length];
GS_RANGE_CHECK(aRange, len);
caiImp = (unichar (*)())[self methodForSelector: caiSel];
start = aRange.location;
if (startIndex)
{
if (start == 0)
{
*startIndex = 0;
}
else
{
start--;
while (start > 0)
{
BOOL done = NO;
thischar = (*caiImp)(self, caiSel, start);
switch (thischar)
{
case (unichar)0x000A:
case (unichar)0x000D:
case (unichar)0x2028:
case (unichar)0x2029:
done = YES;
break;
default:
start--;
break;
}
if (done)
break;
}
if (start == 0)
{
thischar = (*caiImp)(self, caiSel, start);
switch (thischar)
{
case (unichar)0x000A:
case (unichar)0x000D:
case (unichar)0x2028:
case (unichar)0x2029:
start++;
break;
default:
break;
}
}
else
{
start++;
}
*startIndex = start;
}
}
if (lineEndIndex || contentsEndIndex)
{
BOOL found = NO;
end = aRange.location;
if (aRange.length)
{
end += (aRange.length - 1);
}
while (end < len)
{
thischar = (*caiImp)(self, caiSel, end);
switch (thischar)
{
case (unichar)0x000A:
case (unichar)0x000D:
case (unichar)0x2028:
case (unichar)0x2029:
found = YES;
break;
default:
break;
}
end++;
if (found)
break;
}
termlen = 1;
if (lineEndIndex)
{
if (end < len
&& ((*caiImp)(self, caiSel, end-1) == (unichar)0x000D)
&& ((*caiImp)(self, caiSel, end) == (unichar)0x000A))
{
*lineEndIndex = end+1;
termlen = 2;
}
else
{
*lineEndIndex = end;
}
}
if (contentsEndIndex)
{
if (found)
{
*contentsEndIndex = end-termlen;
}
else
{
/* xxx OPENSTEP documentation does not say what to do if last
line is not terminated. Assume this */
*contentsEndIndex = end;
}
}
}
}
// Changing Case
/**
* Returns version of string in which each whitespace-delimited <em>word</em>
* is capitalized (not every letter). Conversion to capitals is done in a
* unicode-compliant manner but there may be exceptional cases where behavior
* is not what is desired.
*/
// xxx There is more than this in word capitalization in Unicode,
// but this will work in most cases
- (NSString*) capitalizedString
{
unichar *s;
unsigned count = 0;
BOOL found = YES;
unsigned len = [self length];
if (len == 0)
return IMMUTABLE(self);
if (whitespaceBitmapRep == NULL)
setupWhitespace();
s = NSZoneMalloc(GSObjCZone(self), sizeof(unichar)*len);
[self getCharacters: s range: ((NSRange){0, len})];
while (count < len)
{
if (GS_IS_WHITESPACE(s[count]))
{
count++;
found = YES;
while (count < len
&& GS_IS_WHITESPACE(s[count]))
{
count++;
}
}
if (count < len)
{
if (found)
{
s[count] = uni_toupper(s[count]);
count++;
}
else
{
while (count < len
&& !GS_IS_WHITESPACE(s[count]))
{
s[count] = uni_tolower(s[count]);
count++;
}
}
}
found = NO;
}
return AUTORELEASE([[NSString allocWithZone: NSDefaultMallocZone()]
initWithCharactersNoCopy: s length: len freeWhenDone: YES]);
}
/**
* Returns a copy of the receiver with all characters converted
* to lowercase.
*/
- (NSString*) lowercaseString
{
static NSCharacterSet *uc = nil;
unichar *s;
unsigned count;
NSRange start;
unsigned len = [self length];
if (len == 0)
{
return IMMUTABLE(self);
}
if (uc == nil)
{
uc = RETAIN([NSCharacterSet uppercaseLetterCharacterSet]);
}
start = [self rangeOfCharacterFromSet: uc
options: NSLiteralSearch
range: ((NSRange){0, len})];
if (start.length == 0)
{
return IMMUTABLE(self);
}
s = NSZoneMalloc(GSObjCZone(self), sizeof(unichar)*len);
[self getCharacters: s range: ((NSRange){0, len})];
for (count = start.location; count < len; count++)
{
s[count] = uni_tolower(s[count]);
}
return AUTORELEASE([[NSStringClass allocWithZone: NSDefaultMallocZone()]
initWithCharactersNoCopy: s length: len freeWhenDone: YES]);
}
/**
* Returns a copy of the receiver with all characters converted
* to uppercase.
*/
- (NSString*) uppercaseString
{
static NSCharacterSet *lc = nil;
unichar *s;
unsigned count;
NSRange start;
unsigned len = [self length];
if (len == 0)
{
return IMMUTABLE(self);
}
if (lc == nil)
{
lc = RETAIN([NSCharacterSet lowercaseLetterCharacterSet]);
}
start = [self rangeOfCharacterFromSet: lc
options: NSLiteralSearch
range: ((NSRange){0, len})];
if (start.length == 0)
{
return IMMUTABLE(self);
}
s = NSZoneMalloc(GSObjCZone(self), sizeof(unichar)*len);
[self getCharacters: s range: ((NSRange){0, len})];
for (count = start.location; count < len; count++)
{
s[count] = uni_toupper(s[count]);
}
return AUTORELEASE([[NSStringClass allocWithZone: NSDefaultMallocZone()]
initWithCharactersNoCopy: s length: len freeWhenDone: YES]);
}
// Storing the String
/** Returns <code>self</code>. */
- (NSString*) description
{
return self;
}
// Getting C Strings
/**
* Returns a pointer to a null terminated string of 16-bit unichar
* The memory pointed to is not owned by the caller, so the
* caller must copy its contents to keep it.
*/
- (const unichar*) unicharString
{
NSMutableData *data;
unichar *uniStr;
GSOnceMLog(@"deprecated ... use cStringUsingEncoding:");
data = [NSMutableData dataWithLength: ([self length] + 1) * sizeof(unichar)];
uniStr = (unichar*)[data mutableBytes];
if (uniStr != 0)
{
[self getCharacters: uniStr];
}
return uniStr;
}
/**
* Returns a pointer to a null terminated string of 8-bit characters in the
* default encoding. The memory pointed to is not owned by the caller, so the
* caller must copy its contents to keep it. Raises an
* <code>NSCharacterConversionException</code> if loss of information would
* occur during conversion. (See -canBeConvertedToEncoding: .)
*/
- (const char*) cString
{
NSData *d;
NSMutableData *m;
d = [self dataUsingEncoding: _DefaultStringEncoding
allowLossyConversion: NO];
if (d == nil)
{
[NSException raise: NSCharacterConversionException
format: @"unable to convert to cString"];
}
m = [d mutableCopy];
[m appendBytes: "" length: 1];
AUTORELEASE(m);
return (const char*)[m bytes];
}
/**
* Returns a pointer to a null terminated string of characters in the
* specified encoding.<br />
* NB. under GNUstep you can used this to obtain a nul terminated utf-16
* string (sixteen bit characters) as well as eight bit strings.<br />
* The memory pointed to is not owned by the caller, so the
* caller must copy its contents to keep it.<br />
* Raises an <code>NSCharacterConversionException</code> if loss of
* information would occur during conversion.
*/
- (const char*) cStringUsingEncoding: (NSStringEncoding)encoding
{
NSData *d;
NSMutableData *m;
d = [self dataUsingEncoding: encoding allowLossyConversion: NO];
if (d == nil)
{
[NSException raise: NSCharacterConversionException
format: @"unable to convert to cString"];
}
m = [d mutableCopy];
if (encoding == NSUnicodeStringEncoding)
{
unichar c = 0;
[m appendBytes: &c length: 2];
}
else
{
[m appendBytes: "" length: 1];
}
AUTORELEASE(m);
return (const char*)[m bytes];
}
/**
* Returns the number of bytes needed to encode the receiver in the
* specified encoding (without adding a nul character terminator).<br />
* Returns 0 if the conversion is not possible.
*/
- (unsigned) lengthOfBytesUsingEncoding: (NSStringEncoding)encoding
{
NSData *d;
d = [self dataUsingEncoding: encoding allowLossyConversion: NO];
return [d length];
}
/**
* Returns a size guaranteed to be large enough to encode the receiver in the
* specified encoding (without adding a nul character terminator). This may
* be larger than the actual number of bytes needed.
*/
- (unsigned) maximumLengthOfBytesUsingEncoding: (NSStringEncoding)encoding
{
if (encoding == NSUnicodeStringEncoding)
return [self length] * 2;
if (encoding == NSUTF8StringEncoding)
return [self length] * 6;
if (encoding == NSUTF7StringEncoding)
return [self length] * 8;
return [self length]; // Assume single byte/char
}
/**
* Returns a C string converted using the default C string encoding, which may
* result in information loss. The memory pointed to is not owned by the
* caller, so the caller must copy its contents to keep it.
*/
- (const char*) lossyCString
{
NSData *d;
NSMutableData *m;
d = [self dataUsingEncoding: _DefaultStringEncoding
allowLossyConversion: YES];
m = [d mutableCopy];
[m appendBytes: "" length: 1];
AUTORELEASE(m);
return (const char*)[m bytes];
}
/**
* Returns null-terminated UTF-8 version of this unicode string. The char[]
* memory comes from an autoreleased object, so it will eventually go out of
* scope.
*/
- (const char *) UTF8String
{
NSData *d;
NSMutableData *m;
d = [self dataUsingEncoding: NSUTF8StringEncoding
allowLossyConversion: NO];
m = [d mutableCopy];
[m appendBytes: "" length: 1];
AUTORELEASE(m);
return (const char*)[m bytes];
}
/**
* Returns length of a version of this unicode string converted to bytes
* using the default C string encoding. If the conversion would result in
* information loss, the results are unpredictable. Check
* -canBeConvertedToEncoding: first.
*/
- (unsigned int) cStringLength
{
NSData *d;
d = [self dataUsingEncoding: _DefaultStringEncoding
allowLossyConversion: NO];
return [d length];
}
/**
* Deprecated ... do not use.<br />.
* Use -getCString:maxLength:encoding: instead.
*/
- (void) getCString: (char*)buffer
{
[self getCString: buffer maxLength: NSMaximumStringLength
range: ((NSRange){0, [self length]})
remainingRange: NULL];
}
/**
* Deprecated ... do not use.<br />.
* Use -getCString:maxLength:encoding: instead.
*/
- (void) getCString: (char*)buffer
maxLength: (unsigned int)maxLength
{
[self getCString: buffer maxLength: maxLength
range: ((NSRange){0, [self length]})
remainingRange: NULL];
}
/**
* Retrieve up to maxLength bytes from the receiver into the buffer.<br />
* In GNUstep, this method implements the actual behavior of the MacOS-X
* method rather than it's documented behavior ...<br />
* The maxLength argument must be the size (in bytes) of the area of
* memory pointed to by the buffer argument.<br />
* Returns YES on success.<br />
* Returns NO if maxLength is too small to hold the entire string
* including a terminating nul character.<br />
* If it returns NO, the terminating nul will <em>not</em> have been
* written to the buffer.<br />
* Raises an exception if the string can not be converted to the
* specified encoding without loss of information.<br />
* eg. If the receiver is @"hello" then the provided buffer must be
* at least six bytes long and the value of maxLength must be at least
* six if NSASCIIStringEncoding is requested, but they must be at least
* twelve if NSUnicodeStringEncoding is requested.
*/
- (BOOL) getCString: (char*)buffer
maxLength: (unsigned int)maxLength
encoding: (NSStringEncoding)encoding
{
if (encoding == NSUnicodeStringEncoding)
{
unsigned length = [self length];
if (maxLength > length * sizeof(unichar))
{
unichar *ptr = (unichar*)buffer;
maxLength = (maxLength - 1) / sizeof(unichar);
[self getCharacters: ptr
range: NSMakeRange(0, maxLength)];
ptr[maxLength] = 0;
return YES;
}
return NO;
}
else
{
NSData *d = [self dataUsingEncoding: encoding];
unsigned length = [d length];
BOOL result = (length <= maxLength) ? YES : NO;
if (length > maxLength) length = maxLength;
memcpy(buffer, [d bytes], length);
buffer[length] = '\0';
return result;
}
}
/**
* Deprecated ... do not use.<br />.
* Use -getCString:maxLength:encoding: instead.
*/
- (void) getCString: (char*)buffer
maxLength: (unsigned int)maxLength
range: (NSRange)aRange
remainingRange: (NSRange*)leftoverRange
{
unsigned len;
unsigned count;
unichar (*caiImp)(NSString*, SEL, unsigned int);
len = [self cStringLength];
GS_RANGE_CHECK(aRange, len);
caiImp = (unichar (*)())[self methodForSelector: caiSel];
if (maxLength < aRange.length)
{
len = maxLength;
if (leftoverRange)
{
leftoverRange->location = 0;
leftoverRange->length = 0;
}
}
else
{
len = aRange.length;
if (leftoverRange)
{
leftoverRange->location = aRange.location + maxLength;
leftoverRange->length = aRange.length - maxLength;
}
}
count = 0;
while (count < len)
{
buffer[count] = encode_unitochar(
(*caiImp)(self, caiSel, aRange.location + count),
_DefaultStringEncoding);
if (buffer[count] == 0)
{
[NSException raise: NSCharacterConversionException
format: @"unable to convert to cString"];
}
count++;
}
buffer[len] = '\0';
}
// Getting Numeric Values
// xxx Should we use NSScanner here ?
/**
* If the string consists of the words 'true' or 'yes' (case insensitive)
* or begins with a non-zero numeric value, return YES, otherwise return
* NO.
*/
- (BOOL) boolValue
{
if ([self caseInsensitiveCompare: @"YES"] == NSOrderedSame)
{
return YES;
}
if ([self caseInsensitiveCompare: @"true"] == NSOrderedSame)
{
return YES;
}
return [self intValue] != 0 ? YES : NO;
}
/**
* Returns the string's content as a double. Skips leading whitespace.<br />
* Conversion is not localised (i.e. uses '.' as the decimal separator).<br />
* Returns 0.0 on underflow or if the string does not contain a number.
*/
- (double) doubleValue
{
unichar buf[32];
unsigned len = [self length];
double d = 0.0;
if (len > 32) len = 32;
[self getCharacters: buf range: NSMakeRange(0, len)];
GSScanDouble(buf, len, &d);
return d;
}
/**
* Returns the string's content as a float. Skips leading whitespace.<br />
* Conversion is not localised (i.e. uses '.' as the decimal separator).<br />
* Returns 0.0 on underflow or if the string does not contain a number.
*/
- (float) floatValue
{
unichar buf[32];
unsigned len = [self length];
double d = 0.0;
if (len > 32) len = 32;
[self getCharacters: buf range: NSMakeRange(0, len)];
GSScanDouble(buf, len, &d);
return (float)d;
}
/**
* <p>Returns the string's content as an int.<br/>
* Current implementation uses C library <code>atoi()</code>, which does not
* detect conversion errors -- use with care!</p>
*/
- (int) intValue
{
return atoi([self lossyCString]);
}
// Working With Encodings
/**
* <p>
* Returns the encoding used for any method accepting a C string.
* This value is determined automatically from the program's
* environment and cannot be changed programmatically.
* </p>
* <p>
* You should <em>NOT</em> override this method in an attempt to
* change the encoding being used... it won't work.
* </p>
* <p>
* In GNUstep, this encoding is determined by the initial value
* of the <code>GNUSTEP_STRING_ENCODING</code> environment
* variable. If this is not defined,
* <code>NSISOLatin1StringEncoding</code> is assumed.
* </p>
*/
+ (NSStringEncoding) defaultCStringEncoding
{
return _DefaultStringEncoding;
}
/**
* Returns an array of all available string encodings,
* terminated by a null value.
*/
+ (NSStringEncoding*) availableStringEncodings
{
return GetAvailableEncodings();
}
/**
* Returns the localized name of the encoding specified.
*/
+ (NSString*) localizedNameOfStringEncoding: (NSStringEncoding)encoding
{
id ourbundle;
id ourname;
/*
Should be path to localizable.strings file.
Until we have it, just make sure that bundle
is initialized.
*/
ourbundle = [NSBundle bundleForLibrary: @"gnustep-base"];
ourname = GetEncodingName(encoding);
return [ourbundle localizedStringForKey: ourname
value: ourname
table: nil];
}
/**
* Returns whether this string can be converted to the given string encoding
* without information loss.
*/
- (BOOL) canBeConvertedToEncoding: (NSStringEncoding)encoding
{
id d = [self dataUsingEncoding: encoding allowLossyConversion: NO];
return d != nil ? YES : NO;
}
/**
* Converts string to a byte array in the given encoding, returning nil if
* this would result in information loss.
*/
- (NSData*) dataUsingEncoding: (NSStringEncoding)encoding
{
return [self dataUsingEncoding: encoding allowLossyConversion: NO];
}
/**
* Converts string to a byte array in the given encoding. If flag is NO,
* nil would be returned if this would result in information loss.
*/
- (NSData*) dataUsingEncoding: (NSStringEncoding)encoding
allowLossyConversion: (BOOL)flag
{
unsigned int count = 0;
unsigned int len = [self length];
unichar (*caiImp)(NSString*, SEL, unsigned int);
if (len == 0)
{
return [NSDataClass data];
}
caiImp = (unichar (*)())[self methodForSelector: caiSel];
if ((encoding == NSASCIIStringEncoding)
|| (encoding == NSISOLatin1StringEncoding)
|| (encoding == NSISOLatin2StringEncoding)
|| (encoding == NSNEXTSTEPStringEncoding)
|| (encoding == NSNonLossyASCIIStringEncoding)
|| (encoding == NSSymbolStringEncoding)
|| (encoding == NSISOCyrillicStringEncoding)
|| (encoding == NSISOThaiStringEncoding))
{
char t;
unsigned char *buff;
buff = (unsigned char*)NSZoneMalloc(NSDefaultMallocZone(), len+1);
if (!flag)
{
for (count = 0; count < len; count++)
{
t = encode_unitochar((*caiImp)(self, caiSel, count), encoding);
if (t)
{
buff[count] = t;
}
else
{
NSZoneFree(NSDefaultMallocZone(), buff);
return nil;
}
}
}
else /* lossy */
{
for (count = 0; count < len; count++)
{
t = encode_unitochar((*caiImp)(self, caiSel, count), encoding);
if (t)
{
buff[count] = t;
}
else
{
/* xxx should handle decomposed characters */
/* OpenStep documentation is unclear on what to do
* if there is no simple replacement for character
*/
buff[count] = '*';
}
}
}
buff[count] = '\0';
return [NSDataClass dataWithBytesNoCopy: buff length: count];
}
else if (encoding == NSUTF8StringEncoding)
{
unsigned char *buff;
unsigned i, j;
unichar ch, ch2;
uint32_t cp;
buff = (unsigned char *)NSZoneMalloc(NSDefaultMallocZone(), len*3);
/*
* Each UTF-16 character maps to at most 3 bytes of UTF-8, so we simply
* allocate three times as many bytes as UTF-16 characters, then use
* NSZoneRealloc() later to trim the excess. Most Unix virtual memory
* implementations allocate address space, and actual memory pages are
* not actually allocated until used, so this method shouldn't cause
* memory problems on most Unix systems. On other systems, it may prove
* advantageous to scan the UTF-16 string to determine the UTF-8 string
* length before allocating memory.
*/
for (i = j = 0; i < len; i++)
{
ch = (*caiImp)(self, caiSel, i);
if (NSLocationInRange(ch, highSurrogateRange) && ((i+1) < len))
{
ch2 = (*caiImp)(self, caiSel, i+1);
if (NSLocationInRange(ch2, lowSurrogateRange))
{
cp = surrogatePairValue(ch, ch2);
i++;
}
else
cp = (uint32_t)ch;
}
else
cp = (uint32_t)ch;
if (cp < 0x80)
{
buff[j++] = cp;
}
else if (cp < 0x800)
{
buff[j++] = 0xC0 | ch>>6;
buff[j++] = 0x80 | (ch & 0x3F);
}
else if (cp < 0x10000)
{
buff[j++] = 0xE0 | ch>>12;
buff[j++] = 0x80 | (ch>>6 & 0x3F);
buff[j++] = 0x80 | (ch & 0x3F);
}
else if (cp < 0x200000)
{
buff[j++] = 0xF0 | ch>>18;
buff[j++] = 0x80 | (ch>>12 & 0x3F);
buff[j++] = 0x80 | (ch>>6 & 0x3F);
buff[j++] = 0x80 | (ch & 0x3F);
}
}
buff = NSZoneRealloc(NSDefaultMallocZone(), buff, j);
return [NSDataClass dataWithBytesNoCopy: buff
length: j];
}
else if (encoding == NSUnicodeStringEncoding)
{
unichar *buff;
buff = (unichar*)NSZoneMalloc(NSDefaultMallocZone(),
sizeof(unichar)*(len+1));
buff[0] = byteOrderMark;
[self getCharacters: &buff[1] range: ((NSRange){0, len})];
return [NSDataClass dataWithBytesNoCopy: buff
length: sizeof(unichar)*(len+1)];
}
else
{
unsigned char *b = 0;
unsigned l = 0;
unichar *u;
u = (unichar*)NSZoneMalloc(NSDefaultMallocZone(), len*sizeof(unichar));
[self getCharacters: u range: ((NSRange){0, len})];
if (GSFromUnicode(&b, &l, u, len, encoding, NSDefaultMallocZone(),
(flag == NO) ? GSUniStrict : 0)
== NO)
{
NSZoneFree(NSDefaultMallocZone(), u);
return nil;
}
NSZoneFree(NSDefaultMallocZone(), u);
return [NSDataClass dataWithBytesNoCopy: b length: l];
}
return nil;
}
/**
* Returns the encoding with which this string can be converted without
* information loss that would result in most efficient character access.
*/
- (NSStringEncoding) fastestEncoding
{
return NSUnicodeStringEncoding;
}
/**
* Returns the smallest encoding with which this string can be converted
* without information loss.
*/
- (NSStringEncoding) smallestEncoding
{
return NSUnicodeStringEncoding;
}
- (unsigned int) completePathIntoString: (NSString**)outputName
caseSensitive: (BOOL)flag
matchesIntoArray: (NSArray**)outputArray
filterTypes: (NSArray*)filterTypes
{
NSString *basePath = [self stringByDeletingLastPathComponent];
NSString *lastComp = [self lastPathComponent];
NSString *tmpPath;
NSDirectoryEnumerator *e;
NSMutableArray *op = nil;
unsigned matchCount = 0;
if (outputArray != 0)
{
op = (NSMutableArray*)[NSMutableArray array];
}
if (outputName != NULL)
{
*outputName = nil;
}
if ([basePath length] == 0)
{
basePath = @".";
}
e = [[NSFileManager defaultManager] enumeratorAtPath: basePath];
while (tmpPath = [e nextObject], tmpPath)
{
/* Prefix matching */
if (flag == YES)
{ /* Case sensitive */
if ([tmpPath hasPrefix: lastComp] == NO)
{
continue;
}
}
else if ([[tmpPath uppercaseString]
hasPrefix: [lastComp uppercaseString]] == NO)
{
continue;
}
/* Extensions filtering */
if (filterTypes
&& ([filterTypes containsObject: [tmpPath pathExtension]] == NO))
{
continue;
}
/* Found a completion */
matchCount++;
if (outputArray != NULL)
{
[op addObject: tmpPath];
}
if ((outputName != NULL) &&
((*outputName == nil) || (([*outputName length] < [tmpPath length]))))
{
*outputName = tmpPath;
}
}
if (outputArray != NULL)
{
*outputArray = AUTORELEASE([op copy]);
}
return matchCount;
}
static NSFileManager *fm = nil;
#if defined(__MINGW32__)
- (const GSNativeChar*) fileSystemRepresentation
{
if (fm == nil)
{
fm = RETAIN([NSFileManager defaultManager]);
}
return [fm fileSystemRepresentationWithPath: self];
}
- (BOOL) getFileSystemRepresentation: (GSNativeChar*)buffer
maxLength: (unsigned int)size
{
const unichar *ptr;
unsigned i;
if (size == 0)
{
return NO;
}
if (buffer == 0)
{
[NSException raise: NSInvalidArgumentException
format: @"%@ given null pointer",
NSStringFromSelector(_cmd)];
}
ptr = [self fileSystemRepresentation];
for (i = 0; i < size; i++)
{
buffer[i] = ptr[i];
if (ptr[i] == 0)
{
break;
}
}
if (i == size && ptr[i] != 0)
{
return NO; // Not at end.
}
return YES;
}
#else
- (const GSNativeChar*) fileSystemRepresentation
{
if (fm == nil)
{
fm = RETAIN([NSFileManager defaultManager]);
}
return [fm fileSystemRepresentationWithPath: self];
}
- (BOOL) getFileSystemRepresentation: (GSNativeChar*)buffer
maxLength: (unsigned int)size
{
const char* ptr;
if (size == 0)
{
return NO;
}
if (buffer == 0)
{
[NSException raise: NSInvalidArgumentException
format: @"%@ given null pointer",
NSStringFromSelector(_cmd)];
}
ptr = [self fileSystemRepresentation];
if (strlen(ptr) > size)
{
return NO;
}
strcpy(buffer, ptr);
return YES;
}
#endif
- (NSString*) lastPathComponent
{
unsigned int l = [self length];
NSRange range;
unsigned int i;
if (l == 0)
{
return @""; // self is empty
}
// Skip back over any trailing path separators, but not in to root.
i = rootOf(self, l);
while (l > i && pathSepMember([self characterAtIndex: l-1]) == YES)
{
l--;
}
// If only the root is left, return it.
if (i == l)
{
/*
* NB. tilde escapes should not have trailing separator in the
* path component as they are not trreated as true roots.
*/
if ([self characterAtIndex: 0] == '~'
&& pathSepMember([self characterAtIndex: i-1]) == YES)
{
return [self substringToIndex: i-1];
}
return [self substringToIndex: i];
}
// Got more than root ... find last component.
range = [self rangeOfCharacterFromSet: pathSeps()
options: NSBackwardsSearch
range: ((NSRange){i, l-i})];
if (range.length > 0)
{
// Found separator ... adjust to point to component.
i = NSMaxRange(range);
}
return [self substringWithRange: ((NSRange){i, l-i})];
}
- (NSString*) pathExtension
{
NSRange range;
unsigned int l = [self length];
unsigned int root;
if (l == 0)
{
return @"";
}
root = rootOf(self, l);
/*
* Step past trailing path separators.
*/
while (l > root && pathSepMember([self characterAtIndex: l-1]) == YES)
{
l--;
}
range = NSMakeRange(root, l-root);
/*
* Look for a dot in the path ... if there isn't one, or if it is
* immediately after the root or a path separator, there is no extension.
*/
range = [self rangeOfString: @"." options: NSBackwardsSearch range: range];
if (range.length > 0 && range.location > root
&& pathSepMember([self characterAtIndex: range.location-1]) == NO)
{
NSRange sepRange;
/*
* Found a dot, so we determine the range of the (possible)
* path extension, then check to see if we have a path
* separator within it ... if we have a path separator then
* the dot is inside the last path component and there is
* therefore no extension.
*/
range.location++;
range.length = l - range.location;
sepRange = [self rangeOfCharacterFromSet: pathSeps()
options: NSBackwardsSearch
range: range];
if (sepRange.length == 0)
{
return [self substringFromRange: range];
}
}
return @"";
}
- (NSString*) stringByAppendingPathComponent: (NSString*)aString
{
unsigned originalLength = [self length];
unsigned length = originalLength;
unsigned aLength = [aString length];
unsigned root = rootOf(aString, aLength);
unichar buf[length+aLength+1];
if (length == 0)
{
[aString getCharacters: buf range: ((NSRange){0, aLength})];
length = aLength;
}
else
{
[self getCharacters: buf range: ((NSRange){0, length})];
/* We strip back trailing path separators, and replace them with
* a single one ... except in the case where we have a windows
* drive specification, and the string being appended does not
* have a path separator as a root. In that case we just want to
* append to the drive specification directly, leaving a relative
* path like c:foo
*/
if (length != 2 || buf[1] != ':' || GSPathHandlingUnix() == YES
|| buf[0] < 'A' || buf[0] > 'z' || (buf[0] > 'Z' && buf[0] < 'a')
|| (root > 0 && pathSepMember([aString characterAtIndex: root-1])))
{
while (length > 0 && pathSepMember(buf[length-1]) == YES)
{
length--;
}
buf[length++] = pathSepChar();
}
if ((aLength - root) > 0)
{
// appending .. discard root from aString
[aString getCharacters: &buf[length]
range: ((NSRange){root, aLength-root})];
length += aLength-root;
}
// Find length of root part of new path.
root = rootOf(self, originalLength);
}
// Trim trailing path separators
while (length > 1 && pathSepMember(buf[length-1]) == YES)
{
length--;
}
/* Trim multi separator sequences outside root (root may contain an
* initial // pair if it is a windows UNC path).
*/
if (length > 0)
{
aLength = length - 1;
while (aLength > root)
{
if (pathSepMember(buf[aLength]) == YES)
{
buf[aLength] = pathSepChar();
if (pathSepMember(buf[aLength-1]) == YES)
{
unsigned pos;
buf[aLength-1] = pathSepChar();
for (pos = aLength+1; pos < length; pos++)
{
buf[pos-1] = buf[pos];
}
length--;
}
}
aLength--;
}
}
return [NSStringClass stringWithCharacters: buf length: length];
}
- (NSString*) stringByAppendingPathExtension: (NSString*)aString
{
unsigned l = [self length];
unsigned originalLength = l;
unsigned root;
if (l == 0)
{
NSLog(@"[%@-%@] cannot append extension '%@' to empty string",
NSStringFromClass([self class]), NSStringFromSelector(_cmd), aString);
return @""; // Must have a file name to append extension.
}
root = rootOf(self, l);
/*
* Step past trailing path separators.
*/
while (l > root && pathSepMember([self characterAtIndex: l-1]) == YES)
{
l--;
}
if (root == l)
{
NSLog(@"[%@-%@] cannot append extension '%@' to path '%@'",
NSStringFromClass([self class]), NSStringFromSelector(_cmd),
aString, self);
return IMMUTABLE(self); // Must have a file name to append extension.
}
/* MacOS-X prohibits an extension beginning with a path separator,
* but this code extends that a little to prohibit any root from
* being used as an extension. Perhaps we should be more permissive?
*/
root = rootOf(aString, [aString length]);
if (root > 0)
{
NSLog(@"[%@-%@] cannot append extension '%@' to path '%@'",
NSStringFromClass([self class]), NSStringFromSelector(_cmd),
aString, self);
return IMMUTABLE(self); // Must have a file name to append extension.
}
if (originalLength != l)
{
NSRange range = NSMakeRange(0, l);
return [[self substringFromRange: range]
stringByAppendingFormat: @".%@", aString];
}
return [self stringByAppendingFormat: @".%@", aString];
}
- (NSString*) stringByDeletingLastPathComponent
{
NSRange range;
unsigned int l = [self length];
unsigned int i;
if (l == 0)
{
return @"";
}
i = rootOf(self, l);
/*
* Any root without a trailing path separator can be deleted
* as it's either a relative path or a tilde expression.
*/
if (i == l && pathSepMember([self characterAtIndex: i-1]) == NO)
{
return @""; // Delete relative root
}
/*
* Step past trailing path separators.
*/
while (l > i && pathSepMember([self characterAtIndex: l-1]) == YES)
{
l--;
}
/*
* If all we have left is the root, return that root, except for the
* special case of a tilde expression ... which may be deleted even
* when it is followed by a separator.
*/
if (l == i)
{
if ([self characterAtIndex: 0] == '~')
{
return @""; // Tilde roots may be deleted.
}
return [self substringToIndex: i]; // Return root component.
}
/*
* Locate path separator preceding last path component.
*/
range = [self rangeOfCharacterFromSet: pathSeps()
options: NSBackwardsSearch
range: ((NSRange){i, l-i})];
if (range.length == 0)
{
return [self substringToIndex: i];
}
return [self substringToIndex: range.location];
}
- (NSString*) stringByDeletingPathExtension
{
NSRange range;
NSRange r0;
NSRange r1;
NSString *substring;
unsigned l = [self length];
unsigned root;
if ((root = rootOf(self, l)) == l)
{
return IMMUTABLE(self);
}
/*
* Skip past any trailing path separators... but not into root.
*/
while (l > root && pathSepMember([self characterAtIndex: l-1]) == YES)
{
l--;
}
range = NSMakeRange(root, l-root);
/*
* Locate path extension.
*/
r0 = [self rangeOfString: @"."
options: NSBackwardsSearch
range: range];
/*
* Locate a path separator.
*/
r1 = [self rangeOfCharacterFromSet: pathSeps()
options: NSBackwardsSearch
range: range];
/*
* Assuming the extension separator was found in the last path
* component, set the length of the substring we want.
*/
if (r0.length > 0 && r0.location > root
&& (r1.length == 0 || r1.location < r0.location))
{
l = r0.location;
}
substring = [self substringToIndex: l];
return substring;
}
- (NSString*) stringByExpandingTildeInPath
{
NSString *homedir;
NSRange firstSlashRange;
unsigned length;
if ((length = [self length]) == 0)
{
return IMMUTABLE(self);
}
if ([self characterAtIndex: 0] != 0x007E)
{
return IMMUTABLE(self);
}
/* FIXME ... should remove in future
* Anything beginning '~@' is assumed to be a windows path specification
* which can't be expanded.
*/
if (length > 1 && [self characterAtIndex: 1] == 0x0040)
{
return IMMUTABLE(self);
}
firstSlashRange = [self rangeOfCharacterFromSet: pathSeps()
options: NSLiteralSearch
range: ((NSRange){0, length})];
if (firstSlashRange.length == 0)
{
firstSlashRange.location = length;
}
/* FIXME ... should remove in future
* Anything beginning '~' followed by a single letter is assumed
* to be a windows drive specification.
*/
if (firstSlashRange.location == 2 && isalpha([self characterAtIndex: 1]))
{
return IMMUTABLE(self);
}
if (firstSlashRange.location != 1)
{
/* It is of the form `~username/blah/...' or '~username' */
int userNameLen;
NSString *uname;
if (firstSlashRange.length != 0)
{
userNameLen = firstSlashRange.location - 1;
}
else
{
/* It is actually of the form `~username' */
userNameLen = [self length] - 1;
firstSlashRange.location = [self length];
}
uname = [self substringWithRange: ((NSRange){1, userNameLen})];
homedir = NSHomeDirectoryForUser (uname);
}
else
{
/* It is of the form `~/blah/...' or is '~' */
homedir = NSHomeDirectory ();
}
if (homedir != nil)
{
if (firstSlashRange.location < length)
{
return [homedir stringByAppendingPathComponent:
[self substringFromIndex: firstSlashRange.location]];
}
else
{
return IMMUTABLE(homedir);
}
}
else
{
return IMMUTABLE(self);
}
}
- (NSString*) stringByAbbreviatingWithTildeInPath
{
NSString *homedir = NSHomeDirectory ();
if (![self hasPrefix: homedir])
{
return IMMUTABLE(self);
}
if ([self length] == [homedir length])
{
return @"~";
}
return [@"~" stringByAppendingPathComponent:
[self substringFromIndex: [homedir length]]];
}
/**
* Returns a string formed by extending or truncating the receiver to
* newLength characters. If the new string is larger, it is padded
* by appending characters from padString (appending it as many times
* as required). The first character from padString to be appended
* is specified by padIndex.<br />
*/
- (NSString*) stringByPaddingToLength: (unsigned int)newLength
withString: (NSString*)padString
startingAtIndex: (unsigned int)padIndex
{
unsigned length = [self length];
unsigned padLength;
if (padString == nil || [padString isKindOfClass: [NSString class]] == NO)
{
[NSException raise: NSInvalidArgumentException
format: @"%@ - Illegal pad string", NSStringFromSelector(_cmd)];
}
padLength = [padString length];
if (padIndex >= padLength)
{
[NSException raise: NSRangeException
format: @"%@ - pad index larger too big", NSStringFromSelector(_cmd)];
}
if (newLength == length)
{
return IMMUTABLE(self);
}
else if (newLength < length)
{
return [self substringToIndex: newLength];
}
else
{
length = newLength - length; // What we want to add.
if (length <= (padLength - padIndex))
{
NSRange r;
r = NSMakeRange(padIndex, length);
return [self stringByAppendingString:
[padString substringWithRange: r]];
}
else
{
NSMutableString *m = [self mutableCopy];
if (padIndex > 0)
{
NSRange r;
r = NSMakeRange(padIndex, padLength - padIndex);
[m appendString: [padString substringWithRange: r]];
length -= r.length;
}
/*
* In case we have to append a small string lots of times,
* we cache the method impllementation to do it.
*/
if (length >= padLength)
{
void (*appImp)(NSMutableString*, SEL, NSString*);
SEL appSel;
appSel = @selector(appendString:);
appImp = (void (*)(NSMutableString*, SEL, NSString*))
[m methodForSelector: appSel];
while (length >= padLength)
{
(*appImp)(m, appSel, padString);
length -= padLength;
}
}
if (length > 0)
{
[m appendString:
[padString substringWithRange: NSMakeRange(0, length)]];
}
return AUTORELEASE(m);
}
}
}
/**
* Returns a string created by replacing percent escape sequences in the
* receiver assuming that the resulting data represents characters in
* the specified encoding.<br />
* Returns nil if the result is not a string in the specified encoding.
*/
- (NSString*) stringByReplacingPercentEscapesUsingEncoding: (NSStringEncoding)e
{
NSMutableData *d;
NSString *s = nil;
d = [[self dataUsingEncoding: NSASCIIStringEncoding] mutableCopy];
if (d != nil)
{
unsigned char *p = (unsigned char*)[d mutableBytes];
unsigned l = [d length];
unsigned i = 0;
unsigned j = 0;
while (i < l)
{
unsigned char t;
if ((t = p[i++]) == '%')
{
unsigned char c;
if (i >= l)
{
DESTROY(d);
break;
}
t = p[i++];
if (isxdigit(t))
{
if (t <= '9')
{
c = t - '0';
}
else if (t <= 'A')
{
c = t - 'A' + 10;
}
else
{
c = t - 'a' + 10;
}
}
else
{
DESTROY(d);
break;
}
c <<= 4;
if (i >= l)
{
DESTROY(d);
break;
}
t = p[i++];
if (isxdigit(t))
{
if (t <= '9')
{
c |= t - '0';
}
else if (t <= 'A')
{
c |= t - 'A' + 10;
}
else
{
c |= t - 'a' + 10;
}
}
else
{
DESTROY(d);
break;
}
p[j++] = c;
}
else
{
p[j++] = t;
}
}
[d setLength: j];
s = AUTORELEASE([[NSString alloc] initWithData: d encoding: e]);
RELEASE(d);
}
return s;
}
- (NSString*) stringByResolvingSymlinksInPath
{
#if defined(__MINGW32__)
return IMMUTABLE(self);
#else
#ifndef MAX_PATH
#define MAX_PATH 1024
#endif
char newBuf[MAX_PATH];
#ifdef HAVE_REALPATH
if (realpath([self fileSystemRepresentation], newBuf) == 0)
return IMMUTABLE(self);
#else
char extra[MAX_PATH];
char *dest;
const char *name = [self fileSystemRepresentation];
const char *start;
const char *end;
unsigned num_links = 0;
if (name[0] != '/')
{
if (!getcwd(newBuf, MAX_PATH))
{
return IMMUTABLE(self); /* Couldn't get directory. */
}
dest = strchr(newBuf, '\0');
}
else
{
newBuf[0] = '/';
dest = &newBuf[1];
}
for (start = end = name; *start; start = end)
{
struct stat st;
int n;
int len;
/* Elide repeated path separators */
while (*start == '/')
{
start++;
}
/* Locate end of path component */
end = start;
while (*end && *end != '/')
{
end++;
}
len = end - start;
if (len == 0)
{
break; /* End of path. */
}
else if (len == 1 && *start == '.')
{
/* Elide '/./' sequence by ignoring it. */
}
else if (len == 2 && strncmp(start, "..", len) == 0)
{
/*
* Backup - if we are not at the root, remove the last component.
*/
if (dest > &newBuf[1])
{
do
{
dest--;
}
while (dest[-1] != '/');
}
}
else
{
if (dest[-1] != '/')
{
*dest++ = '/';
}
if (&dest[len] >= &newBuf[MAX_PATH])
{
return IMMUTABLE(self); /* Resolved name too long. */
}
memcpy(dest, start, len);
dest += len;
*dest = '\0';
if (lstat(newBuf, &st) < 0)
{
return IMMUTABLE(self); /* Unable to stat file. */
}
if (S_ISLNK(st.st_mode))
{
char buf[MAX_PATH];
if (++num_links > MAXSYMLINKS)
{
return IMMUTABLE(self); /* Too many links. */
}
n = readlink(newBuf, buf, MAX_PATH);
if (n < 0)
{
return IMMUTABLE(self); /* Couldn't resolve. */
}
buf[n] = '\0';
if ((n + strlen(end)) >= MAX_PATH)
{
return IMMUTABLE(self); /* Path too long. */
}
/*
* Concatenate the resolved name with the string still to
* be processed, and start using the result as input.
*/
strcat(buf, end);
strcpy(extra, buf);
name = end = extra;
if (buf[0] == '/')
{
/*
* For an absolute link, we start at root again.
*/
dest = newBuf + 1;
}
else
{
/*
* Backup - remove the last component.
*/
if (dest > newBuf + 1)
{
do
{
dest--;
}
while (dest[-1] != '/');
}
}
}
else
{
num_links = 0;
}
}
}
if (dest > newBuf + 1 && dest[-1] == '/')
{
--dest;
}
*dest = '\0';
#endif
if (strncmp(newBuf, "/private/", 9) == 0)
{
struct stat st;
if (lstat(&newBuf[8], &st) == 0)
{
strcpy(newBuf, &newBuf[8]);
}
}
return [[NSFileManager defaultManager]
stringWithFileSystemRepresentation: newBuf length: strlen(newBuf)];
#endif /* (__MINGW32__) */
}
- (NSString*) stringByStandardizingPath
{
NSMutableString *s;
NSRange r;
unichar (*caiImp)(NSString*, SEL, unsigned int);
unsigned int l = [self length];
unichar c;
unsigned root;
if (l == 0)
{
return @"";
}
c = [self characterAtIndex: 0];
if (c == '~')
{
s = AUTORELEASE([[self stringByExpandingTildeInPath] mutableCopy]);
}
else
{
s = AUTORELEASE([self mutableCopy]);
}
if (GSPathHandlingUnix() == YES)
{
[s replaceString: @"\\" withString: @"/"];
}
else if (GSPathHandlingWindows() == YES)
{
[s replaceString: @"/" withString: @"\\"];
}
l = [s length];
root = rootOf(s, l);
caiImp = (unichar (*)())[s methodForSelector: caiSel];
// Condense multiple separator ('/') sequences.
r = (NSRange){root, l-root};
while ((r = [s rangeOfCharacterFromSet: pathSeps()
options: 0
range: r]).length == 1)
{
while (NSMaxRange(r) < l
&& pathSepMember((*caiImp)(s, caiSel, NSMaxRange(r))) == YES)
{
r.length++;
}
r.location++;
r.length--;
if (r.length > 0)
{
[s deleteCharactersInRange: r];
l -= r.length;
}
r.length = l - r.location;
}
// Condense ('/./') sequences.
r = (NSRange){root, l-root};
while ((r = [s rangeOfString: @"." options: 0 range: r]).length == 1)
{
if (r.location > 0
&& pathSepMember((*caiImp)(s, caiSel, r.location-1)) == YES
&& (NSMaxRange(r) == l
|| pathSepMember((*caiImp)(s, caiSel, NSMaxRange(r))) == YES))
{
r.length++;
[s deleteCharactersInRange: r];
l -= r.length;
}
else
{
r.location++;
}
r.length = l - r.location;
}
// Strip trailing '/' if present.
if (l > root && pathSepMember([s characterAtIndex: l - 1]) == YES)
{
r.length = 1;
r.location = l - r.length;
[s deleteCharactersInRange: r];
l -= r.length;
}
if ([s isAbsolutePath] == NO)
{
return s;
}
// Remove leading `/private' if present.
if ([s hasPrefix: @"/private"])
{
[s deleteCharactersInRange: ((NSRange){0,8})];
l -= 8;
}
/*
* For absolute paths, we must resolve symbolic links or (on MINGW)
* remove '/../' sequences and their matching parent directories.
*/
#if defined(__MINGW32__)
/* Condense `/../' */
r = (NSRange){root, l-root};
while ((r = [s rangeOfString: @".." options: 0 range: r]).length == 2)
{
if (r.location > 0
&& pathSepMember((*caiImp)(s, caiSel, r.location-1)) == YES
&& (NSMaxRange(r) == l
|| pathSepMember((*caiImp)(s, caiSel, NSMaxRange(r))) == YES))
{
r.location--;
r.length++;
if (r.location > root)
{
NSRange r2 = {root, r.location-root};
r = [s rangeOfCharacterFromSet: pathSeps()
options: NSBackwardsSearch
range: r2];
if (r.length == 0)
{
r = r2;
}
else
{
r.length = NSMaxRange(r2) - r.location;
}
r.length += 3; /* Add the `/..' */
}
[s deleteCharactersInRange: r];
l -= r.length;
}
else
{
r.location++;
}
r.length = l - r.location;
}
return IMMUTABLE(s);
#else
return [s stringByResolvingSymlinksInPath];
#endif
}
/**
* Return a string formed by removing characters from the ends of the
* receiver. Characters are removed only if they are in aSet.<br />
* If the string consists entirely of characters in aSet, an empty
* string is returned.<br />
* The aSet argument must not be nil.<br />
*/
- (NSString*) stringByTrimmingCharactersInSet: (NSCharacterSet*)aSet
{
unsigned length = [self length];
unsigned end = length;
unsigned start = 0;
if (aSet == nil)
{
[NSException raise: NSInvalidArgumentException
format: @"%@ - nil character set argument", NSStringFromSelector(_cmd)];
}
if (length > 0)
{
unichar (*caiImp)(NSString*, SEL, unsigned int);
BOOL (*mImp)(id, SEL, unichar);
unichar letter;
caiImp = (unichar (*)())[self methodForSelector: caiSel];
mImp = (BOOL(*)(id,SEL,unichar)) [aSet methodForSelector: cMemberSel];
while (end > 0)
{
letter = (*caiImp)(self, caiSel, end-1);
if ((*mImp)(aSet, cMemberSel, letter) == NO)
{
break;
}
end--;
}
while (start < end)
{
letter = (*caiImp)(self, caiSel, start);
if ((*mImp)(aSet, cMemberSel, letter) == NO)
{
break;
}
start++;
}
}
if (start == 0 && end == length)
{
return IMMUTABLE(self);
}
if (start == end)
{
return @"";
}
return [self substringFromRange: NSMakeRange(start, end - start)];
}
// private methods for Unicode level 3 implementation
- (int) _baseLength
{
int blen = 0;
unsigned len = [self length];
if (len > 0)
{
unsigned int count = 0;
unichar (*caiImp)(NSString*, SEL, unsigned int);
caiImp = (unichar (*)())[self methodForSelector: caiSel];
while (count < len)
{
if (!uni_isnonsp((*caiImp)(self, caiSel, count++)))
{
blen++;
}
}
}
return blen;
}
+ (NSString*) pathWithComponents: (NSArray*)components
{
NSString *s;
unsigned c;
unsigned i;
c = [components count];
if (c == 0)
{
return @"";
}
s = [components objectAtIndex: 0];
if ([s length] == 0)
{
s = pathSepString();
}
for (i = 1; i < c; i++)
{
s = [s stringByAppendingPathComponent: [components objectAtIndex: i]];
}
return s;
}
- (BOOL) isAbsolutePath
{
unichar c;
unsigned l = [self length];
unsigned root;
if (l == 0)
{
return NO; // Empty string ... relative
}
c = [self characterAtIndex: 0];
if (c == (unichar)'~')
{
return YES; // Begins with tilde ... absolute
}
/*
* Any string beginning with '/' is absolute ... except in windows mode
* or on windows and not in unix mode.
*/
if (c == pathSepChar())
{
#if defined(__MINGW32__)
if (GSPathHandlingUnix() == YES)
{
return YES;
}
#else
if (GSPathHandlingWindows() == NO)
{
return YES;
}
#endif
}
/*
* Any root over two characters long must be a drive specification with a
* slash (absolute) or a UNC path (always absolute).
*/
root = rootOf(self, l);
if (root > 2)
{
return YES; // UNC or C:/ ... absolute
}
/*
* What we have left are roots of the form 'C:' or '\' or a path
* with no root, or a '/' (in windows mode only sence we already
* handled a single slash in unix mode) ...
* all these cases are relative paths.
*/
return NO;
}
- (NSArray*) pathComponents
{
NSMutableArray *a;
NSArray *r;
NSString *s = self;
unsigned int l = [s length];
unsigned int root;
unsigned int i;
NSRange range;
if (l == 0)
{
return [NSArray array];
}
root = rootOf(s, l);
a = [[NSMutableArray alloc] initWithCapacity: 8];
if (root > 0)
{
[a addObject: [s substringToIndex: root]];
}
i = root;
while (i < l)
{
range = [s rangeOfCharacterFromSet: pathSeps()
options: NSLiteralSearch
range: ((NSRange){i, l - i})];
if (range.length > 0)
{
if (range.location > i)
{
[a addObject: [s substringWithRange:
NSMakeRange(i, range.location - i)]];
}
i = NSMaxRange(range);
}
else
{
[a addObject: [s substringFromIndex: i]];
i = l;
}
}
/*
* If the path ended with a path separator which was not already
* added as part of the root, add it as final component.
*/
if (l > root && pathSepMember([s characterAtIndex: l-1]))
{
[a addObject: pathSepString()];
}
r = [a copy];
RELEASE(a);
return AUTORELEASE(r);
}
- (NSArray*) stringsByAppendingPaths: (NSArray*)paths
{
NSMutableArray *a;
NSArray *r;
unsigned i, count = [paths count];
a = [[NSMutableArray allocWithZone: NSDefaultMallocZone()]
initWithCapacity: count];
for (i = 0; i < count; i++)
{
NSString *s = [paths objectAtIndex: i];
s = [self stringByAppendingPathComponent: s];
[a addObject: s];
}
r = [a copy];
RELEASE(a);
return AUTORELEASE(r);
}
/**
* Returns an autoreleased string with given format using the default locale.
*/
+ (NSString*) localizedStringWithFormat: (NSString*) format, ...
{
va_list ap;
id ret;
NSDictionary *dict;
va_start(ap, format);
if (format == nil)
{
ret = nil;
}
else
{
dict = GSUserDefaultsDictionaryRepresentation();
ret = AUTORELEASE([[self allocWithZone: NSDefaultMallocZone()]
initWithFormat: format locale: dict arguments: ap]);
}
va_end(ap);
return ret;
}
/**
* Compares this string with aString ignoring case. Convenience for
* -compare:options:range: with the <code>NSCaseInsensitiveSearch</code>
* option, in the default locale.
*/
- (NSComparisonResult) caseInsensitiveCompare: (NSString*)aString
{
return [self compare: aString
options: NSCaseInsensitiveSearch
range: ((NSRange){0, [self length]})];
}
/**
* <p>Compares this instance with string, using rules in locale given by dict.
* mask may be either <code>NSCaseInsensitiveSearch</code> or
* <code>NSLiteralSearch</code>. The latter requests a literal byte-by-byte
* comparison, which is fastest but may return inaccurate results in cases
* where two different composed character sequences may be used to express
* the same character. compareRange refers to this instance, and should be
* set to 0..length to compare the whole string.</p>
*
* <p>Returns <code>NSOrderedAscending</code>, <code>NSOrderedDescending</code>,
* or <code>NSOrderedSame</code>, depending on whether this instance occurs
* before or after string in lexical order, or is equal to it.</p>
*
* <p><em><strong>Warning:</strong> this implementation and others in NSString
* IGNORE the locale.</em></p>
*/
- (NSComparisonResult) compare: (NSString *)string
options: (unsigned int)mask
range: (NSRange)compareRange
locale: (NSDictionary *)dict
{
// FIXME: This does only a normal compare, ignoring locale
return [self compare: string
options: mask
range: compareRange];
}
/**
* Compares this instance with string, using rules in the default locale.
*/
- (NSComparisonResult) localizedCompare: (NSString *)string
{
NSDictionary *dict = GSUserDefaultsDictionaryRepresentation();
return [self compare: string
options: 0
range: ((NSRange){0, [self length]})
locale: dict];
}
/**
* Compares this instance with string, using rules in the default locale,
* ignoring case.
*/
- (NSComparisonResult) localizedCaseInsensitiveCompare: (NSString *)string
{
NSDictionary *dict = GSUserDefaultsDictionaryRepresentation();
return [self compare: string
options: NSCaseInsensitiveSearch
range: ((NSRange){0, [self length]})
locale: dict];
}
/**
* Writes contents out to file at filename, using the default C string encoding
* unless this would result in information loss, otherwise straight unicode.
* The '<code>atomically</code>' option if set will cause the contents to be
* written to a temp file, which is then closed and renamed to filename. Thus,
* an incomplete file at filename should never result.
*/
- (BOOL) writeToFile: (NSString*)filename
atomically: (BOOL)useAuxiliaryFile
{
id d = [self dataUsingEncoding: _DefaultStringEncoding];
if (d == nil)
{
d = [self dataUsingEncoding: NSUnicodeStringEncoding];
}
return [d writeToFile: filename atomically: useAuxiliaryFile];
}
/**
* Writes contents out to anURL, using the default C string encoding
* unless this would result in information loss, otherwise straight unicode.
* See [NSURLHandle-writeData:] on which URL types are supported.
* The '<code>atomically</code>' option is only heeded if the URL is a
* <code>file://</code> URL; see -writeToFile:atomically: .
*/
- (BOOL) writeToURL: (NSURL*)anURL atomically: (BOOL)atomically
{
id d = [self dataUsingEncoding: _DefaultStringEncoding];
if (d == nil)
{
d = [self dataUsingEncoding: NSUnicodeStringEncoding];
}
return [d writeToURL: anURL atomically: atomically];
}
/* NSCopying Protocol */
- (id) copyWithZone: (NSZone*)zone
{
/*
* Default implementation should not simply retain ... the string may
* have been initialised with freeWhenDone==NO and not own its
* characters ... so the code which created it may destroy the memory
* when it has finished with the original string ... leaving the
* copy with pointers to invalid data. So, we always copy in full.
*/
return [[NSStringClass allocWithZone: zone] initWithString: self];
}
- (id) mutableCopyWithZone: (NSZone*)zone
{
return [[GSMutableStringClass allocWithZone: zone] initWithString: self];
}
/* NSCoding Protocol */
- (void) encodeWithCoder: (NSCoder*)aCoder
{
if ([aCoder allowsKeyedCoding])
{
[(NSKeyedArchiver*)aCoder _encodePropertyList: self forKey: @"NS.string"];
}
else
{
unsigned count = [self length];
[aCoder encodeValueOfObjCType: @encode(unsigned int) at: &count];
if (count > 0)
{
NSStringEncoding enc = NSUnicodeStringEncoding;
unichar *chars;
[aCoder encodeValueOfObjCType: @encode(NSStringEncoding) at: &enc];
chars = NSZoneMalloc(NSDefaultMallocZone(), count*sizeof(unichar));
[self getCharacters: chars range: ((NSRange){0, count})];
[aCoder encodeArrayOfObjCType: @encode(unichar)
count: count
at: chars];
NSZoneFree(NSDefaultMallocZone(), chars);
}
}
}
- (id) initWithCoder: (NSCoder*)aCoder
{
if ([aCoder allowsKeyedCoding])
{
NSString *string = (NSString*)[(NSKeyedUnarchiver*)aCoder
_decodePropertyListForKey: @"NS.string"];
self = [self initWithString: string];
}
else
{
unsigned count;
[aCoder decodeValueOfObjCType: @encode(unsigned int) at: &count];
if (count > 0)
{
NSStringEncoding enc;
NSZone *zone;
[aCoder decodeValueOfObjCType: @encode(NSStringEncoding) at: &enc];
#if GS_WITH_GC
zone = GSAtomicMallocZone();
#else
zone = GSObjCZone(self);
#endif
if (enc == NSUnicodeStringEncoding)
{
unichar *chars;
chars = NSZoneMalloc(zone, count*sizeof(unichar));
[aCoder decodeArrayOfObjCType: @encode(unichar)
count: count
at: chars];
self = [self initWithCharactersNoCopy: chars
length: count
freeWhenDone: YES];
}
else
{
unsigned char *chars;
chars = NSZoneMalloc(zone, count+1);
[aCoder decodeArrayOfObjCType: @encode(unsigned char)
count: count
at: chars];
self = [self initWithBytesNoCopy: chars
length: count
encoding: enc
freeWhenDone: YES];
}
}
else
{
self = [self initWithBytesNoCopy: ""
length: 0
encoding: NSASCIIStringEncoding
freeWhenDone: NO];
}
}
return self;
}
- (Class) classForCoder
{
return NSStringClass;
}
- (id) replacementObjectForPortCoder: (NSPortCoder*)aCoder
{
if ([aCoder isByref] == NO)
return self;
return [super replacementObjectForPortCoder: aCoder];
}
/**
* <p>Attempts to interpret the receiver as a <em>property list</em>
* and returns the result. If the receiver does not contain a
* string representation of a <em>property list</em> then the method
* returns nil.
* </p>
* <p>Containers (arrays and dictionaries) are decoded as <em>mutable</em>
* objects.
* </p>
* <p>There are three readable <em>property list</em> storage formats -
* The binary format used by [NSSerializer] does not concern us here,
* but there are two 'human readable' formats, the <em>traditional</em>
* OpenStep format (which is extended in GNUstep) and the <em>XML</em> format.
* </p>
* <p>The [NSArray-descriptionWithLocale:indent:] and
* [NSDictionary-descriptionWithLocale:indent:] methods
* both generate strings containing traditional style <em>property lists</em>,
* but [NSArray-writeToFile:atomically:] and
* [NSDictionary-writeToFile:atomically:] generate either traditional or
* XML style <em>property lists</em> depending on the value of the
* GSMacOSXCompatible and NSWriteOldStylePropertyLists user defaults.<br />
* If GSMacOSXCompatible is YES then XML <em>property lists</em> are
* written unless NSWriteOldStylePropertyLists is also YES.<br />
* By default GNUstep writes old style data and always supports reading of
* either style.
* </p>
* <p>The traditional format is more compact and more easily readable by
* people, but (without the GNUstep extensions) cannot represent date and
* number objects (except as strings). The XML format is more verbose and
* less readable, but can be fed into modern XML tools and thus used to
* pass data to non-OpenStep applications more readily.
* </p>
* <p>The traditional format is strictly ascii encoded, with any unicode
* characters represented by escape sequences. The XML format is encoded
* as UTF8 data.
* </p>
* <p>Both the traditional format and the XML format permit comments to be
* placed in <em>property list</em> documents. In traditional format the
* comment notations used in Objective-C programming are supported, while
* in XML format, the standard SGML comment sequences are used.
* </p>
* <p>See the documentation for [NSPropertyListSerialization] for more
* information on what a property list is.</p>
*/
- (id) propertyList
{
NSData *data;
id result = nil;
NSPropertyListFormat format;
NSString *error = nil;
if ([self length] == 0)
{
return nil;
}
data = [self dataUsingEncoding: NSUTF8StringEncoding];
NSAssert(data, @"Couldn't get utf8 data from string.");
result = [NSPropertyListSerialization
propertyListFromData: data
mutabilityOption: NSPropertyListMutableContainers
format: &format
errorDescription: &error];
if (result == nil)
{
[NSException raise: NSGenericException
format: @"Parse failed - %@", error];
}
return result;
}
/**
* <p>Reads a <em>property list</em> (see -propertyList) from a simplified
* file format. This format is a traditional style property list file
* containing a single dictionary, but with the leading '{' and trailing
* '}' characters omitted.
* </p>
* <p>That is to say, the file contains only semicolon separated key/value
* pairs (and optionally comments). As a convenience, it is possible to
* omit the equals sign and the value, so an entry consists of a key string
* followed by a semicolon. In this case, the value for that key is
* assumed to be an empty string.
* </p>
* <example>
* // Strings file entries follow -
* key1 = " a string value";
* key2; // This key has an empty string as a value.
* "Another key" = "a longer string value for th third key";
* </example>
*/
- (NSDictionary*) propertyListFromStringsFileFormat
{
extern id GSPropertyListFromStringsFormat(NSString *string);
return GSPropertyListFromStringsFormat(self);
}
@end
/**
* This is the mutable form of the [NSString] class.
*/
@implementation NSMutableString
+ (id) allocWithZone: (NSZone*)z
{
if (self == NSMutableStringClass)
{
return NSAllocateObject(GSMutableStringClass, 0, z);
}
else
{
return NSAllocateObject(self, 0, z);
}
}
// Creating Temporary Strings
/**
* Constructs an empty string.
*/
+ (id) string
{
return AUTORELEASE([[GSMutableStringClass allocWithZone:
NSDefaultMallocZone()] initWithCapacity: 0]);
}
/**
* Constructs an empty string with initial buffer size of capacity.
*/
+ (NSMutableString*) stringWithCapacity: (unsigned int)capacity
{
return AUTORELEASE([[GSMutableStringClass allocWithZone:
NSDefaultMallocZone()] initWithCapacity: capacity]);
}
/**
* Create a string of unicode characters.
*/
// Inefficient implementation.
+ (id) stringWithCharacters: (const unichar*)characters
length: (unsigned int)length
{
return AUTORELEASE([[GSMutableStringClass allocWithZone:
NSDefaultMallocZone()] initWithCharacters: characters length: length]);
}
/**
* Load contents of file at path into a new string. Will interpret file as
* containing direct unicode if it begins with the unicode byte order mark,
* else converts to unicode using default C string encoding.
*/
+ (id) stringWithContentsOfFile: (NSString *)path
{
return AUTORELEASE([[GSMutableStringClass allocWithZone:
NSDefaultMallocZone()] initWithContentsOfFile: path]);
}
/**
* Create a string based on the given C (char[]) string, which should be
* null-terminated and encoded in the default C string encoding. (Characters
* will be converted to unicode representation internally.)
*/
+ (id) stringWithCString: (const char*)byteString
{
return AUTORELEASE([[GSMutableStringClass allocWithZone:
NSDefaultMallocZone()] initWithCString: byteString]);
}
/**
* Create a string based on the given C (char[]) string, which may contain
* null bytes and should be encoded in the default C string encoding.
* (Characters will be converted to unicode representation internally.)
*/
+ (id) stringWithCString: (const char*)byteString
length: (unsigned int)length
{
return AUTORELEASE([[GSMutableStringClass allocWithZone:
NSDefaultMallocZone()] initWithCString: byteString length: length]);
}
/**
* Creates a new string using C printf-style formatting. First argument should
* be a constant format string, like '<code>@"float val = %f"</code>', remaining
* arguments should be the variables to print the values of, comma-separated.
*/
+ (id) stringWithFormat: (NSString*)format, ...
{
va_list ap;
va_start(ap, format);
self = [super stringWithFormat: format arguments: ap];
va_end(ap);
return self;
}
/** <init/> <override-subclass />
* Constructs an empty string with initial buffer size of capacity.<br />
* Calls -init (which does nothing but maintain MacOS-X compatibility),
* and needs to be re-implemented in subclasses in order to have all
* other initialisers work.
*/
- (id) initWithCapacity: (unsigned int)capacity
{
self = [self init];
return self;
}
- (id) initWithCharactersNoCopy: (unichar*)chars
length: (unsigned int)length
freeWhenDone: (BOOL)flag
{
if ((self = [self initWithCapacity: length]) != nil && length > 0)
{
NSString *tmp;
tmp = [NSString allocWithZone: NSDefaultMallocZone()];
tmp = [tmp initWithCharactersNoCopy: chars
length: length
freeWhenDone: flag];
[self replaceCharactersInRange: NSMakeRange(0,0) withString: tmp];
RELEASE(tmp);
}
return self;
}
- (id) initWithCStringNoCopy: (char*)chars
length: (unsigned int)length
freeWhenDone: (BOOL)flag
{
if ((self = [self initWithCapacity: length]) != nil && length > 0)
{
NSString *tmp;
tmp = [NSString allocWithZone: NSDefaultMallocZone()];
tmp = [tmp initWithCStringNoCopy: chars
length: length
freeWhenDone: flag];
[self replaceCharactersInRange: NSMakeRange(0,0) withString: tmp];
RELEASE(tmp);
}
return self;
}
// Modify A String
/**
* Modifies this string by appending aString.
*/
- (void) appendString: (NSString*)aString
{
NSRange aRange;
aRange.location = [self length];
aRange.length = 0;
[self replaceCharactersInRange: aRange withString: aString];
}
/**
* Modifies this string by appending string described by given format.
*/
// Inefficient implementation.
- (void) appendFormat: (NSString*)format, ...
{
va_list ap;
id tmp;
va_start(ap, format);
tmp = [[NSStringClass allocWithZone: NSDefaultMallocZone()]
initWithFormat: format arguments: ap];
va_end(ap);
[self appendString: tmp];
RELEASE(tmp);
}
- (Class) classForCoder
{
return NSMutableStringClass;
}
/**
* Modifies this instance by deleting specified range of characters.
*/
- (void) deleteCharactersInRange: (NSRange)range
{
[self replaceCharactersInRange: range withString: nil];
}
/**
* Modifies this instance by inserting aString at loc.
*/
- (void) insertString: (NSString*)aString atIndex: (unsigned int)loc
{
NSRange range = {loc, 0};
[self replaceCharactersInRange: range withString: aString];
}
/**
* Modifies this instance by deleting characters in range and then inserting
* aString at its beginning.
*/
- (void) replaceCharactersInRange: (NSRange)range
withString: (NSString*)aString
{
[self subclassResponsibility: _cmd];
}
/**
* Replaces all occurrences of the replace string with the by string,
* for those cases where the entire replace string lies within the
* specified searchRange value.<br />
* The value of opts determines the direction of the search is and
* whether only leading/trailing occurrences (anchored search) of
* replace are substituted.<br />
* Raises NSInvalidArgumentException if either string argument is nil.<br />
* Raises NSRangeException if part of searchRange is beyond the end
* of the receiver.
*/
- (unsigned int) replaceOccurrencesOfString: (NSString*)replace
withString: (NSString*)by
options: (unsigned int)opts
range: (NSRange)searchRange
{
NSRange range;
unsigned int count = 0;
if (replace == nil)
{
[NSException raise: NSInvalidArgumentException
format: @"%@ nil search string", NSStringFromSelector(_cmd)];
}
if (by == nil)
{
[NSException raise: NSInvalidArgumentException
format: @"%@ nil replace string", NSStringFromSelector(_cmd)];
}
range = [self rangeOfString: replace options: opts range: searchRange];
if (range.length > 0)
{
unsigned byLen = [by length];
do
{
count++;
[self replaceCharactersInRange: range
withString: by];
if ((opts & NSBackwardsSearch) == NSBackwardsSearch)
{
searchRange.length = range.location - searchRange.location;
}
else
{
unsigned int newEnd;
newEnd = NSMaxRange(searchRange) + byLen - range.length;
searchRange.location = range.location + byLen;
searchRange.length = newEnd - searchRange.location;
}
range = [self rangeOfString: replace
options: opts
range: searchRange];
}
while (range.length > 0);
}
return count;
}
/**
* Modifies this instance by replacing contents with those of aString.
*/
- (void) setString: (NSString*)aString
{
NSRange range = {0, [self length]};
[self replaceCharactersInRange: range withString: aString];
}
@end
/**
* GNUstep specific (non-standard) additions to the NSMutableString class.
* The methods in this category are not available in MacOS-X
*/
@implementation NSMutableString (GNUstep)
/**
* Returns a proxy to the receiver which will allow access to the
* receiver as an NSString, but which will not allow any of the
* extra NSMutableString methods to be used. You can use this method
* to provide other code with read-only access to a mutable string
* you own.
*/
- (NSString*) immutableProxy
{
if ([self isKindOfClass: GSMutableStringClass])
{
return AUTORELEASE([[GSImmutableString alloc] initWithString: self]);
}
else
{
return AUTORELEASE([[NSImmutableString alloc] initWithString: self]);
}
}
@end