libs-back/Source/x11/raster.c
David Ayers c352f79a30 * Source/x11/raster.c (RCreateImage): Remove unused variables.
* Source/x11/XGServerEvent.m (gotShmCompletion:) Declare privat
	interface for shared memory handling.


git-svn-id: svn+ssh://svn.gna.org/svn/gnustep/libs/back/trunk@22840 72102866-910b-0410-8b05-ffd578937521
2006-04-30 08:56:51 +00:00

538 lines
12 KiB
C

/* raster.c - main and other misc stuff
*
* Raster graphics library
*
* Copyright (c) 1997-2002 Alfredo K. Kojima
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <X11/Xlib.h>
#include "x11/wraster.h"
#include <assert.h>
char *WRasterLibVersion="0.9";
int RErrorCode=RERR_NONE;
#define HAS_ALPHA(I) ((I)->format == RRGBAFormat)
#define MAX_WIDTH 20000
#define MAX_HEIGHT 20000
/* 20000^2*4 < 2G */
RImage*
RCreateImage(unsigned width, unsigned height, int alpha)
{
RImage *image=NULL;
assert(width>0 && height>0);
/* check for bogus image sizes (and avoid overflow as a bonus) */
if (width > MAX_WIDTH || height > MAX_HEIGHT) {
RErrorCode = RERR_NOMEMORY;
return NULL;
}
image = malloc(sizeof(RImage));
if (!image) {
RErrorCode = RERR_NOMEMORY;
return NULL;
}
memset(image, 0, sizeof(RImage));
image->width = width;
image->height = height;
image->format = alpha ? RRGBAFormat : RRGBFormat;
image->refCount = 1;
/* the +4 is to give extra bytes at the end of the buffer,
* so that we can optimize image conversion for MMX(tm).. see convert.c
*/
image->data = malloc(width * height * (alpha ? 4 : 3) + 4);
if (!image->data) {
RErrorCode = RERR_NOMEMORY;
free(image);
image = NULL;
}
return image;
}
RImage*
RRetainImage(RImage *image)
{
if (image)
image->refCount++;
return image;
}
void
RReleaseImage(RImage *image)
{
assert(image!=NULL);
image->refCount--;
if (image->refCount < 1) {
free(image->data);
free(image);
}
}
/* Obsoleted function. Use RReleaseImage() instead. This was kept only to
* allow a smoother transition and to avoid breaking existing programs, but
* it will be removed in a future release. Right now is just an alias to
* RReleaseImage(). Do _NOT_ use RDestroyImage() anymore in your programs.
* Being an alias to RReleaseImage() this function no longer actually
* destroys the image, unless the image is no longer retained in some other
* place.
*/
void
RDestroyImage(RImage *image)
{
RReleaseImage(image);
}
RImage*
RCloneImage(RImage *image)
{
RImage *new_image;
assert(image!=NULL);
new_image = RCreateImage(image->width, image->height, HAS_ALPHA(image));
if (!new_image)
return NULL;
new_image->background = image->background;
memcpy(new_image->data, image->data,
image->width*image->height*(HAS_ALPHA(image) ? 4 : 3));
return new_image;
}
RImage*
RGetSubImage(RImage *image, int x, int y, unsigned width, unsigned height)
{
int i, ofs;
RImage *new_image;
unsigned total_line_size, line_size;
assert(image!=NULL);
assert(x>=0 && y>=0);
assert(x<image->width && y<image->height);
assert(width>0 && height>0);
if (x+width > image->width)
width = image->width-x;
if (y+height > image->height)
height = image->height-y;
new_image = RCreateImage(width, height, HAS_ALPHA(image));
if (!new_image)
return NULL;
new_image->background = image->background;
total_line_size = image->width * (HAS_ALPHA(image) ? 4 : 3);
line_size = width * (HAS_ALPHA(image) ? 4 : 3);
ofs = x*(HAS_ALPHA(image) ? 4 : 3) + y*total_line_size;;
for (i=0; i<height; i++) {
memcpy(&new_image->data[i*line_size],
&image->data[i*total_line_size+ofs], line_size);
}
return new_image;
}
/*
*----------------------------------------------------------------------
* RCombineImages-
* Combines two equal sized images with alpha image. The second
* image will be placed on top of the first one.
*----------------------------------------------------------------------
*/
void
RCombineImages(RImage *image, RImage *src)
{
assert(image->width == src->width);
assert(image->height == src->height);
if (!HAS_ALPHA(src)) {
if (!HAS_ALPHA(image)) {
memcpy(image->data, src->data, image->height*image->width*3);
} else {
int x, y;
unsigned char *d, *s;
d = image->data;
s = src->data;
for (y = 0; y < image->height; y++) {
for (x = 0; x < image->width; x++) {
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
d++;
}
}
}
} else {
register int i;
unsigned char *d;
unsigned char *s;
int alpha, calpha;
d = image->data;
s = src->data;
if (!HAS_ALPHA(image)) {
for (i=0; i<image->height*image->width; i++) {
alpha = *(s+3);
calpha = 255 - alpha;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; d++; s++;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; d++; s++;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; d++; s++;
s++;
}
} else {
for (i=0; i<image->height*image->width; i++) {
alpha = *(s+3);
calpha = 255 - alpha;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; d++; s++;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; d++; s++;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; d++; s++;
*d++ |= *s++;
}
}
}
}
void
RCombineImagesWithOpaqueness(RImage *image, RImage *src, int opaqueness)
{
register int i;
unsigned char *d;
unsigned char *s;
int c_opaqueness;
assert(image->width == src->width);
assert(image->height == src->height);
d = image->data;
s = src->data;
c_opaqueness = 255 - opaqueness;
#define OP opaqueness
#define COP c_opaqueness
if (!HAS_ALPHA(src)) {
int dalpha = HAS_ALPHA(image);
for (i=0; i < image->width*image->height; i++) {
*d = (((int)*d *(int)COP) + ((int)*s *(int)OP))/256; d++; s++;
*d = (((int)*d *(int)COP) + ((int)*s *(int)OP))/256; d++; s++;
*d = (((int)*d *(int)COP) + ((int)*s *(int)OP))/256; d++; s++;
if (dalpha) {
d++;
}
}
} else {
int tmp;
if (!HAS_ALPHA(image)) {
for (i=0; i<image->width*image->height; i++) {
tmp = (*(s+3) * opaqueness)/256;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
s++;
}
} else {
for (i=0; i<image->width*image->height; i++) {
tmp = (*(s+3) * opaqueness)/256;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
*d |= tmp;
d++; s++;
}
}
}
#undef OP
#undef COP
}
int
calculateCombineArea(RImage *des, RImage *src, int *sx, int *sy,
int *swidth, int *sheight, int *dx, int *dy)
{
if (*dx < 0) {
*sx = -*dx;
*swidth = *swidth + *dx;
*dx = 0;
}
if (*dx + *swidth > des->width) {
*swidth = des->width - *dx;
}
if (*dy < 0) {
*sy = -*dy;
*sheight = *sheight + *dy;
*dy = 0;
}
if (*dy + *sheight > des->height) {
*sheight = des->height - *dy;
}
if (*sheight > 0 && *swidth > 0) {
return True;
} else return False;
}
void
RCombineArea(RImage *image, RImage *src, int sx, int sy, unsigned width,
unsigned height, int dx, int dy)
{
int x, y, dwi, swi;
unsigned char *d;
unsigned char *s;
int alpha, calpha;
if(!calculateCombineArea(image, src, &sx, &sy, &width, &height, &dx, &dy))
return;
if (!HAS_ALPHA(src)) {
if (!HAS_ALPHA(image)) {
swi = src->width * 3;
dwi = image->width * 3;
s = src->data + (sy*(int)src->width + sx) * 3;
d = image->data + (dy*(int)image->width + dx) * 3;
for (y=0; y < height; y++) {
memcpy(d, s, width*3);
d += dwi;
s += swi;
}
} else {
swi = (src->width - width) * 3;
dwi = (image->width - width) * 4;
s = src->data + (sy*(int)src->width + sx) * 3;
d = image->data + (dy*(int)image->width + dx) * 4;
for (y=0; y < height; y++) {
for (x=0; x < width; x++) {
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
d++;
}
d += dwi;
s += swi;
}
}
} else {
int dalpha = HAS_ALPHA(image);
swi = (src->width - width) * 4;
s = src->data + (sy*(int)src->width + sx) * 4;
if (dalpha) {
dwi = (image->width - width) * 4;
d = image->data + (dy*(int)image->width + dx) * 4;
} else {
dwi = (image->width - width) * 3;
d = image->data + (dy*(int)image->width + dx) * 3;
}
for (y=0; y < height; y++) {
for (x=0; x < width; x++) {
alpha = *(s+3);
calpha = 255 - alpha;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; s++; d++;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; s++; d++;
*d = (((int)*d * calpha) + ((int)*s * alpha))/256; s++; d++;
s++;
if (dalpha)
d++;
}
d += dwi;
s += swi;
}
}
}
void
RCombineAreaWithOpaqueness(RImage *image, RImage *src, int sx, int sy,
unsigned width, unsigned height, int dx, int dy,
int opaqueness)
{
int x, y, dwi, swi;
int c_opaqueness;
unsigned char *s, *d;
int dalpha = HAS_ALPHA(image);
int dch = (dalpha ? 4 : 3);
if(!calculateCombineArea(image, src, &sx, &sy, &width, &height, &dx, &dy))
return;
d = image->data + (dy*image->width + dx) * dch;
dwi = (image->width - width)*dch;
c_opaqueness = 255 - opaqueness;
#define OP opaqueness
#define COP c_opaqueness
if (!HAS_ALPHA(src)) {
s = src->data + (sy*src->width + sx)*3;
swi = (src->width - width) * 3;
for (y=0; y < height; y++) {
for (x=0; x < width; x++) {
*d = (((int)*d *(int)COP) + ((int)*s *(int)OP))/256; s++; d++;
*d = (((int)*d *(int)COP) + ((int)*s *(int)OP))/256; s++; d++;
*d = (((int)*d *(int)COP) + ((int)*s *(int)OP))/256; s++; d++;
if (dalpha)
d++;
}
d += dwi; s += swi;
}
} else {
int tmp;
s = src->data + (sy*src->width + sx)*4;
swi = (src->width - width) * 4;
for (y=0; y < height; y++) {
for (x=0; x < width; x++) {
tmp = (*(s+3) * opaqueness)/256;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
*d = (((int)*d * (255-tmp)) + ((int)*s * tmp))/256; d++; s++;
s++;
if (dalpha)
d++;
}
d += dwi; s += swi;
}
}
#undef OP
#undef COP
}
void
RCombineImageWithColor(RImage *image, RColor *color)
{
register int i;
unsigned char *d;
int alpha, nalpha, r, g, b;
d = image->data;
if (!HAS_ALPHA(image)) {
/* Image has no alpha channel, so we consider it to be all 255.
* Thus there are no transparent parts to be filled. */
return;
}
r = color->red;
g = color->green;
b = color->blue;
for (i=0; i < image->width*image->height; i++) {
alpha = *(d+3);
nalpha = 255 - alpha;
*d = (((int)*d * alpha) + (r * nalpha))/256; d++;
*d = (((int)*d * alpha) + (g * nalpha))/256; d++;
*d = (((int)*d * alpha) + (b * nalpha))/256; d++;
d++;
}
}
RImage*
RMakeTiledImage(RImage *tile, unsigned width, unsigned height)
{
int x, y;
unsigned w;
unsigned long tile_size = tile->width * tile->height;
unsigned long tx = 0;
RImage *image;
unsigned char *s, *d;
if (width == tile->width && height == tile->height)
image = RCloneImage(tile);
else if (width <= tile->width && height <= tile->height)
image = RGetSubImage(tile, 0, 0, width, height);
else {
int has_alpha = HAS_ALPHA(tile);
image = RCreateImage(width, height, has_alpha);
d = image->data;
s = tile->data;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x += tile->width) {
w = (width - x < tile->width) ? width - x : tile->width;
if (has_alpha) {
w *= 4;
memcpy(d, s+tx*4, w);
} else {
w *= 3;
memcpy(d, s+tx*3, w);
}
d += w;
}
tx = (tx + tile->width) % tile_size;
}
}
return image;
}