/* convert.c - convert RImage to Pixmap * * Raster graphics library * * Copyright (c) 1997-2002 Alfredo K. Kojima * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Problems: * 1. Using Grayscale visual with Dithering crashes wmaker * 2. Ghost dock/appicon is wrong in Pseudocolor, Staticgray, Grayscale */ #include #include #include #include #include #include #include #ifdef BENCH #include "bench.h" #endif #include "wrasterP.h" #ifdef XSHM extern Pixmap R_CreateXImageMappedPixmap(RContext *context, RXImage *ximage); #endif #define HAS_ALPHA(I) ((I)->format == RRGBAFormat) typedef struct RConversionTable { unsigned short table[256]; unsigned short index; struct RConversionTable *next; } RConversionTable; typedef struct RStdConversionTable { unsigned int table[256]; unsigned short mult; unsigned short max; struct RStdConversionTable *next; } RStdConversionTable; static RConversionTable *conversionTable = NULL; static RStdConversionTable *stdConversionTable = NULL; static unsigned short* computeTable(unsigned short mask) { RConversionTable *tmp = conversionTable; int i; while (tmp) { if (tmp->index == mask) break; tmp = tmp->next; } if (tmp) return tmp->table; tmp = (RConversionTable *)malloc(sizeof(RConversionTable)); if (tmp == NULL) return NULL; for (i=0;i<256;i++) tmp->table[i] = (i*mask + 0x7f)/0xff; tmp->index = mask; tmp->next = conversionTable; conversionTable = tmp; return tmp->table; } static unsigned int* computeStdTable(unsigned int mult, unsigned int max) { RStdConversionTable *tmp = stdConversionTable; unsigned int i; while (tmp) { if (tmp->mult == mult && tmp->max == max) break; tmp = tmp->next; } if (tmp) return tmp->table; tmp = (RStdConversionTable *)malloc(sizeof(RStdConversionTable)); if (tmp == NULL) return NULL; for (i=0; i<256; i++) { tmp->table[i] = (i*max)/0xff * mult; } tmp->mult = mult; tmp->max = max; tmp->next = stdConversionTable; stdConversionTable = tmp; return tmp->table; } /***************************************************************************/ static void convertTrueColor_generic(RXImage *ximg, RImage *image, signed char *err, signed char *nerr, const unsigned short *rtable, const unsigned short *gtable, const unsigned short *btable, const int dr, const int dg, const int db, const unsigned short roffs, const unsigned short goffs, const unsigned short boffs) { signed char *terr; int x, y, r, g, b; int pixel; int rer, ger, ber; unsigned char *ptr = image->data; int channels = (image->format == RRGBAFormat ? 4 : 3); /* convert and dither the image to XImage */ for (y=0; yheight; y++) { nerr[0] = 0; nerr[1] = 0; nerr[2] = 0; for (x=0; xwidth; x++, ptr+=channels) { /* reduce pixel */ pixel = *ptr + err[x]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; r = rtable[pixel]; /* calc error */ rer = pixel - r*dr; /* reduce pixel */ pixel = *(ptr+1) + err[x+1]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; g = gtable[pixel]; /* calc error */ ger = pixel - g*dg; /* reduce pixel */ pixel = *(ptr+2) + err[x+2]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; b = btable[pixel]; /* calc error */ ber = pixel - b*db; pixel = (r<image, x, y, pixel); /* distribute error */ r = (rer*3)/8; g = (ger*3)/8; b = (ber*3)/8; /* x+1, y */ err[x+3*1]+=r; err[x+1+3*1]+=g; err[x+2+3*1]+=b; /* x, y+1 */ nerr[x]+=r; nerr[x+1]+=g; nerr[x+2]+=b; /* x+1, y+1 */ nerr[x+3*1]=rer-2*r; nerr[x+1+3*1]=ger-2*g; nerr[x+2+3*1]=ber-2*b; } /* skip to next line */ terr = err; err = nerr; nerr = terr; } /* redither the 1st line to distribute error better */ ptr=image->data; y=0; nerr[0] = 0; nerr[1] = 0; nerr[2] = 0; for (x=0; xwidth; x++, ptr+=channels) { /* reduce pixel */ pixel = *ptr + err[x]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; r = rtable[pixel]; /* calc error */ rer = pixel - r*dr; /* reduce pixel */ pixel = *(ptr+1) + err[x+1]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; g = gtable[pixel]; /* calc error */ ger = pixel - g*dg; /* reduce pixel */ pixel = *(ptr+2) + err[x+2]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; b = btable[pixel]; /* calc error */ ber = pixel - b*db; pixel = (r<image, x, y, pixel); /* distribute error */ r = (rer*3)/8; g = (ger*3)/8; b = (ber*3)/8; /* x+1, y */ err[x+3*1]+=r; err[x+1+3*1]+=g; err[x+2+3*1]+=b; /* x, y+1 */ nerr[x]+=r; nerr[x+1]+=g; nerr[x+2]+=b; /* x+1, y+1 */ nerr[x+3*1]=rer-2*r; nerr[x+1+3*1]=ger-2*g; nerr[x+2+3*1]=ber-2*b; } } static RXImage* image2TrueColor(RContext *ctx, RImage *image) { RXImage *ximg; unsigned short rmask, gmask, bmask; unsigned short roffs, goffs, boffs; unsigned short *rtable, *gtable, *btable; int channels = (image->format == RRGBAFormat ? 4 : 3); ximg = RCreateXImage(ctx, ctx->depth, image->width, image->height); if (!ximg) { return NULL; } roffs = ctx->red_offset; goffs = ctx->green_offset; boffs = ctx->blue_offset; rmask = ctx->visual->red_mask >> roffs; gmask = ctx->visual->green_mask >> goffs; bmask = ctx->visual->blue_mask >> boffs; rtable = computeTable(rmask); gtable = computeTable(gmask); btable = computeTable(bmask); if (rtable==NULL || gtable==NULL || btable==NULL) { RErrorCode = RERR_NOMEMORY; RDestroyXImage(ctx, ximg); return NULL; } #ifdef BENCH cycle_bench(1); #endif if (ctx->attribs->render_mode==RBestMatchRendering) { int ofs, r, g, b; int x, y; unsigned long pixel; unsigned char *ptr = image->data; /* fake match */ #ifdef WR_DEBUG puts("true color match"); #endif if (rmask==0xff && gmask==0xff && bmask==0xff) { for (y=0; y < image->height; y++) { for (x=0; x < image->width; x++, ptr+=channels) { /* reduce pixel */ pixel = (*(ptr)<image, x, y, pixel); } } } else { for (y=0, ofs=0; y < image->height; y++) { for (x=0; x < image->width; x++, ofs+=channels-3) { /* reduce pixel */ r = rtable[ptr[ofs++]]; g = gtable[ptr[ofs++]]; b = btable[ptr[ofs++]]; pixel = (r<image, x, y, pixel); } } } } else { /* dither */ const int dr=0xff/rmask; const int dg=0xff/gmask; const int db=0xff/bmask; #ifdef WR_DEBUG puts("true color dither"); #endif { signed char *err; signed char *nerr; int ch = (image->format == RRGBAFormat ? 4 : 3); err = malloc(ch*(image->width+2)); nerr = malloc(ch*(image->width+2)); if (!err || !nerr) { if (nerr) free(nerr); RErrorCode = RERR_NOMEMORY; RDestroyXImage(ctx, ximg); return NULL; } memset(err, 0, ch*(image->width+2)); memset(nerr, 0, ch*(image->width+2)); convertTrueColor_generic(ximg, image, err, nerr, rtable, gtable, btable, dr, dg, db, roffs, goffs, boffs); free(err); free(nerr); } } #ifdef BENCH cycle_bench(0); #endif return ximg; } /***************************************************************************/ static void convertPseudoColor_to_8(RXImage *ximg, RImage *image, signed char *err, signed char *nerr, const unsigned short *rtable, const unsigned short *gtable, const unsigned short *btable, const int dr, const int dg, const int db, unsigned long *pixels, int cpc) { signed char *terr; int x, y, r, g, b; int pixel; int rer, ger, ber; unsigned char *ptr = image->data; unsigned char *optr = (unsigned char *)ximg->image->data; int channels = (image->format == RRGBAFormat ? 4 : 3); int cpcpc = cpc*cpc; /* convert and dither the image to XImage */ for (y=0; yheight; y++) { nerr[0] = 0; nerr[1] = 0; nerr[2] = 0; for (x=0; xwidth*3; x+=3, ptr+=channels) { /* reduce pixel */ pixel = *ptr + err[x]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; r = rtable[pixel]; /* calc error */ rer = pixel - r*dr; /* reduce pixel */ pixel = *(ptr+1) + err[x+1]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; g = gtable[pixel]; /* calc error */ ger = pixel - g*dg; /* reduce pixel */ pixel = *(ptr+2) + err[x+2]; if (pixel<0) pixel=0; else if (pixel>0xff) pixel=0xff; b = btable[pixel]; /* calc error */ ber = pixel - b*db; *optr++ = pixels[r*cpcpc + g*cpc + b]; /* distribute error */ r = (rer*3)/8; g = (ger*3)/8; b = (ber*3)/8; /* x+1, y */ err[x+3*1]+=r; err[x+1+3*1]+=g; err[x+2+3*1]+=b; /* x, y+1 */ nerr[x]+=r; nerr[x+1]+=g; nerr[x+2]+=b; /* x+1, y+1 */ nerr[x+3*1]=rer-2*r; nerr[x+1+3*1]=ger-2*g; nerr[x+2+3*1]=ber-2*b; } /* skip to next line */ terr = err; err = nerr; nerr = terr; optr += ximg->image->bytes_per_line - image->width; } } static RXImage* image2PseudoColor(RContext *ctx, RImage *image) { RXImage *ximg; register int x, y, r, g, b; unsigned char *ptr; unsigned long pixel; const int cpc=ctx->attribs->colors_per_channel; const unsigned short rmask = cpc-1; /* different sizes could be used */ const unsigned short gmask = rmask; /* for r,g,b */ const unsigned short bmask = rmask; unsigned short *rtable, *gtable, *btable; const int cpccpc = cpc*cpc; int channels = (image->format == RRGBAFormat ? 4 : 3); ximg = RCreateXImage(ctx, ctx->depth, image->width, image->height); if (!ximg) { return NULL; } ptr = image->data; /* Tables are same at the moment because rmask==gmask==bmask. */ rtable = computeTable(rmask); gtable = computeTable(gmask); btable = computeTable(bmask); if (rtable==NULL || gtable==NULL || btable==NULL) { RErrorCode = RERR_NOMEMORY; RDestroyXImage(ctx, ximg); return NULL; } if (ctx->attribs->render_mode == RBestMatchRendering) { /* fake match */ #ifdef WR_DEBUG printf("pseudo color match with %d colors per channel\n", cpc); #endif for (y=0; yheight; y++) { for (x=0; xwidth; x++, ptr+=channels-3) { /* reduce pixel */ r = rtable[*ptr++]; g = gtable[*ptr++]; b = btable[*ptr++]; pixel = r*cpccpc + g*cpc + b; /*data[ofs] = ctx->colors[pixel].pixel;*/ XPutPixel(ximg->image, x, y, ctx->colors[pixel].pixel); } } } else { /* dither */ signed char *err; signed char *nerr; const int dr=0xff/rmask; const int dg=0xff/gmask; const int db=0xff/bmask; #ifdef WR_DEBUG printf("pseudo color dithering with %d colors per channel\n", cpc); #endif err = malloc(4*(image->width+3)); nerr = malloc(4*(image->width+3)); if (!err || !nerr) { if (nerr) free(nerr); RErrorCode = RERR_NOMEMORY; RDestroyXImage(ctx, ximg); return NULL; } memset(err, 0, 4*(image->width+3)); memset(nerr, 0, 4*(image->width+3)); convertPseudoColor_to_8(ximg, image, err+4, nerr+4, rtable, gtable, btable, dr, dg, db, ctx->pixels, cpc); free(err); free(nerr); } return ximg; } /* * For standard colormap */ static RXImage* image2StandardPseudoColor(RContext *ctx, RImage *image) { RXImage *ximg; register int x, y, r, g, b; unsigned char *ptr; unsigned long pixel; unsigned char *data; unsigned int *rtable, *gtable, *btable; unsigned int base_pixel = ctx->std_rgb_map->base_pixel; int channels = (image->format == RRGBAFormat ? 4 : 3); ximg = RCreateXImage(ctx, ctx->depth, image->width, image->height); if (!ximg) { return NULL; } ptr = image->data; data = (unsigned char *)ximg->image->data; rtable = computeStdTable(ctx->std_rgb_map->red_mult, ctx->std_rgb_map->red_max); gtable = computeStdTable(ctx->std_rgb_map->green_mult, ctx->std_rgb_map->green_max); btable = computeStdTable(ctx->std_rgb_map->blue_mult, ctx->std_rgb_map->blue_max); if (rtable==NULL || gtable==NULL || btable==NULL) { RErrorCode = RERR_NOMEMORY; RDestroyXImage(ctx, ximg); return NULL; } if (ctx->attribs->render_mode == RBestMatchRendering) { for (y=0; yheight; y++) { for (x=0; xwidth; x++, ptr+=channels) { /* reduce pixel */ pixel = (rtable[*ptr] + gtable[*(ptr+1)] + btable[*(ptr+2)] + base_pixel) & 0xffffffff; XPutPixel(ximg->image, x, y, pixel); } } } else { /* dither */ signed short *err, *nerr; signed short *terr; int rer, ger, ber; int x1, ofs; #ifdef WR_DEBUG printf("pseudo color dithering with %d colors per channel\n", channels); #endif err = (short*)malloc(3*(image->width+2)*sizeof(short)); nerr = (short*)malloc(3*(image->width+2)*sizeof(short)); if (!err || !nerr) { if (err) free(err); if (nerr) free(nerr); RErrorCode = RERR_NOMEMORY; RDestroyXImage(ctx, ximg); return NULL; } for (x=0, x1=0; xwidth*3; x1+=channels-3) { err[x++] = ptr[x1++]; err[x++] = ptr[x1++]; err[x++] = ptr[x1++]; } err[x] = err[x+1] = err[x+2] = 0; /* convert and dither the image to XImage */ for (y=0, ofs=0; yheight; y++) { if (yheight-1) { int x1; for (x=0, x1=(y+1)*image->width*channels; xwidth*3; x1+=channels-3) { nerr[x++] = ptr[x1++]; nerr[x++] = ptr[x1++]; nerr[x++] = ptr[x1++]; } /* last column */ x1-=channels; nerr[x++] = ptr[x1++]; nerr[x++] = ptr[x1++]; nerr[x++] = ptr[x1++]; } for (x=0; xwidth*3; x+=3, ofs++) { /* reduce pixel */ if (err[x]>0xff) err[x]=0xff; else if (err[x]<0) err[x]=0; if (err[x+1]>0xff) err[x+1]=0xff; else if (err[x+1]<0) err[x+1]=0; if (err[x+2]>0xff) err[x+2]=0xff; else if (err[x+2]<0) err[x+2]=0; r = rtable[err[x]]; g = gtable[err[x+1]]; b = btable[err[x+2]]; pixel = r + g + b; data[ofs] = base_pixel + pixel; /* calc error */ rer = err[x] - (ctx->colors[pixel].red>>8); ger = err[x+1] - (ctx->colors[pixel].green>>8); ber = err[x+2] - (ctx->colors[pixel].blue>>8); /* distribute error */ err[x+3*1]+=(rer*7)/16; err[x+1+3*1]+=(ger*7)/16; err[x+2+3*1]+=(ber*7)/16; nerr[x]+=(rer*5)/16; nerr[x+1]+=(ger*5)/16; nerr[x+2]+=(ber*5)/16; if (x>0) { nerr[x-3*1]+=(rer*3)/16; nerr[x-3*1+1]+=(ger*3)/16; nerr[x-3*1+2]+=(ber*3)/16; } nerr[x+3*1]+=rer/16; nerr[x+1+3*1]+=ger/16; nerr[x+2+3*1]+=ber/16; } /* skip to next line */ terr = err; err = nerr; nerr = terr; ofs += ximg->image->bytes_per_line - image->width; } free(err); free(nerr); } ximg->image->data = (char*)data; return ximg; } static RXImage* image2GrayScale(RContext *ctx, RImage *image) { RXImage *ximg; register int x, y, g; unsigned char *ptr; const int cpc=ctx->attribs->colors_per_channel; unsigned short gmask; unsigned short *table; unsigned char *data; int channels = (image->format == RRGBAFormat ? 4 : 3); ximg = RCreateXImage(ctx, ctx->depth, image->width, image->height); if (!ximg) { return NULL; } ptr = image->data; data = (unsigned char *)ximg->image->data; if (ctx->vclass == StaticGray) gmask = (1<depth) - 1; /* use all grays */ else gmask = cpc*cpc*cpc-1; table = computeTable(gmask); if (table==NULL) { RErrorCode = RERR_NOMEMORY; RDestroyXImage(ctx, ximg); return NULL; } if (ctx->attribs->render_mode == RBestMatchRendering) { /* fake match */ #ifdef WR_DEBUG printf("grayscale match with %d colors per channel\n", cpc); #endif for (y=0; yheight; y++) { for (x=0; xwidth; x++) { /* reduce pixel */ g = table[(*ptr * 30 + *(ptr+1) * 59 + *(ptr+2) * 11)/100]; ptr += channels; /*data[ofs] = ctx->colors[g].pixel;*/ XPutPixel(ximg->image, x, y, ctx->colors[g].pixel); } } } else { /* dither */ short *gerr; short *ngerr; short *terr; int ger; const int dg=0xff/gmask; #ifdef WR_DEBUG printf("grayscale dither with %d colors per channel\n", cpc); #endif gerr = (short*)malloc((image->width+2)*sizeof(short)); ngerr = (short*)malloc((image->width+2)*sizeof(short)); if (!gerr || !ngerr) { if (ngerr) free(ngerr); RErrorCode = RERR_NOMEMORY; RDestroyXImage(ctx, ximg); return NULL; } for (x=0, y=0; xwidth; x++, y+=channels) { gerr[x] = (ptr[y]*30 + ptr[y+1]*59 + ptr[y+2]*11)/100; } gerr[x] = 0; /* convert and dither the image to XImage */ for (y=0; yheight; y++) { if (yheight-1) { int x1; for (x=0, x1=(y+1)*image->width*channels; xwidth; x++, x1+=channels) { ngerr[x] = (ptr[x1]*30 + ptr[x1+1]*59 + ptr[x1+2]*11)/100; } /* last column */ x1-=channels; ngerr[x] = (ptr[x1]*30 + ptr[x1+1]*59 + ptr[x1+2]*11)/100; } for (x=0; xwidth; x++) { /* reduce pixel */ if (gerr[x]>0xff) gerr[x]=0xff; else if (gerr[x]<0) gerr[x]=0; g = table[gerr[x]]; /*data[ofs] = ctx->colors[g].pixel;*/ XPutPixel(ximg->image, x, y, ctx->colors[g].pixel); /* calc error */ ger = gerr[x] - g*dg; /* distribute error */ g = (ger*3)/8; /* x+1, y */ gerr[x+1]+=g; /* x, y+1 */ ngerr[x]+=g; /* x+1, y+1 */ ngerr[x+1]+=ger-2*g; } /* skip to next line */ terr = gerr; gerr = ngerr; ngerr = terr; } free(gerr); free(ngerr); } ximg->image->data = (char*)data; return ximg; } static RXImage* image2Bitmap(RContext *ctx, RImage *image, int threshold) { RXImage *ximg; unsigned char *alpha; int x, y; ximg = RCreateXImage(ctx, 1, image->width, image->height); if (!ximg) { return NULL; } alpha = image->data+3; for (y = 0; y < image->height; y++) { for (x = 0; x < image->width; x++) { XPutPixel(ximg->image, x, y, (*alpha <= threshold ? 0 : 1)); alpha+=4; } } return ximg; } #ifdef HAVE_HERMES static RXImage* hermesConvert(RContext *context, RImage *image) { HermesFormat source; HermesFormat dest; RXImage *ximage; ximage = RCreateXImage(context, context->depth, image->width, image->height); if (!ximage) { return NULL; } /* The masks look weird for images with alpha. but they work this way. * wth does hermes do internally? */ source.bits = (HAS_ALPHA(image) ? 32 : 24); if (ximage->image->byte_order==LSBFirst) { source.r = 0xff0000; source.g = 0x00ff00; source.b = 0x0000ff; } else { if (source.bits == 32) { source.r = 0xff000000; source.g = 0x00ff0000; source.b = 0x0000ff00; } else { source.r = 0xff0000; source.g = 0x00ff00; source.b = 0x0000ff; } } source.a = 0; /* Don't care about alpha */ source.indexed = 0; source.has_colorkey = 0; /* This is a hack and certainly looks weird, but it works :P * it assumes though that green is inbetween red and blue (the mask) */ if (ximage->image->byte_order==LSBFirst) { dest.r = context->visual->blue_mask; dest.g = context->visual->green_mask; dest.b = context->visual->red_mask; } else { dest.r = context->visual->red_mask; dest.g = context->visual->green_mask; dest.b = context->visual->blue_mask; } dest.a = 0; dest.bits = ximage->image->bits_per_pixel; if (context->vclass == TrueColor) dest.indexed = 0; else dest.indexed = 1; dest.has_colorkey = 0; /*printf("source r=0x%x, g=0x%x, b=0x%x, a=0x%x, b=%d, i=%d, c=%d\n", source.r, source.g, source.b, source.a, source.bits, source.indexed, source.has_colorkey); printf("dest r=0x%x, g=0x%x, b=0x%x, a=0x%x, b=%d, i=%d, c=%d\n", dest.r, dest.g, dest.b, dest.a, dest.bits, dest.indexed, dest.has_colorkey); */ Hermes_ConverterRequest(context->hermes_data->converter, &source, &dest); Hermes_ConverterPalette(context->hermes_data->converter, context->hermes_data->palette, 0); Hermes_ConverterCopy(context->hermes_data->converter, image->data, 0, 0, image->width, image->height, image->width * (image->format == RRGBFormat ? 3 : 4), ximage->image->data, 0, 0, image->width, image->height, ximage->image->bytes_per_line); return ximage; } #endif /* HAVE_HERMES */ int RConvertImage(RContext *context, RImage *image, Pixmap *pixmap) { RXImage *ximg=NULL; #ifdef XSHM Pixmap tmp; #endif assert(context!=NULL); assert(image!=NULL); assert(pixmap!=NULL); switch (context->vclass) { case TrueColor: #ifdef HAVE_HERMES if (context->attribs->render_mode == RBestMatchRendering) { ximg = hermesConvert(context, image); } else { ximg = image2TrueColor(context, image); } #else /* !HAVE_HERMES */ ximg = image2TrueColor(context, image); #endif break; case PseudoColor: case StaticColor: /* For StaticColor we can also use hermes, but it doesn't dither */ #ifdef BENCH cycle_bench(1); #endif if (context->attribs->standard_colormap_mode != RIgnoreStdColormap) ximg = image2StandardPseudoColor(context, image); else ximg = image2PseudoColor(context, image); #ifdef BENCH cycle_bench(0); #endif break; case GrayScale: case StaticGray: ximg = image2GrayScale(context, image); break; } if (!ximg) { return False; } *pixmap = XCreatePixmap(context->dpy, context->drawable, image->width, image->height, context->depth); #ifdef XSHM if (context->flags.use_shared_pixmap && ximg->is_shared) tmp = R_CreateXImageMappedPixmap(context, ximg); else tmp = None; if (tmp) { /* * We have to copy the shm Pixmap into a normal Pixmap because * otherwise, we would have to control when Pixmaps are freed so * that we can detach their shm segments. This is a problem if the * program crash, leaving stale shared memory segments in the * system (lots of them). But with some work, we can optimize * things and remove this XCopyArea. This will require * explicitly freeing all pixmaps when exiting or restarting * wmaker. */ XCopyArea(context->dpy, tmp, *pixmap, context->copy_gc, 0, 0, image->width, image->height, 0, 0); XFreePixmap(context->dpy, tmp); } else { RPutXImage(context, *pixmap, context->copy_gc, ximg, 0, 0, 0, 0, image->width, image->height); } #else /* !XSHM */ RPutXImage(context, *pixmap, context->copy_gc, ximg, 0, 0, 0, 0, image->width, image->height); #endif /* !XSHM */ RDestroyXImage(context, ximg); return True; } int RConvertImageMask(RContext *context, RImage *image, Pixmap *pixmap, Pixmap *mask, int threshold) { GC gc; XGCValues gcv; RXImage *ximg=NULL; assert(context!=NULL); assert(image!=NULL); assert(pixmap!=NULL); assert(mask!=NULL); if (!RConvertImage(context, image, pixmap)) return False; if (image->format==RRGBFormat) { *mask = None; return True; } ximg = image2Bitmap(context, image, threshold); if (!ximg) { return False; } *mask = XCreatePixmap(context->dpy, context->drawable, image->width, image->height, 1); gcv.foreground = context->black; gcv.background = context->white; gcv.graphics_exposures = False; gc = XCreateGC(context->dpy, *mask, GCForeground|GCBackground |GCGraphicsExposures, &gcv); RPutXImage(context, *mask, gc, ximg, 0, 0, 0, 0, image->width, image->height); RDestroyXImage(context, ximg); XFreeGC(context->dpy, gc); return True; } Bool RGetClosestXColor(RContext *context, RColor *color, XColor *retColor) { if (context->vclass == TrueColor) { unsigned short rmask, gmask, bmask; unsigned short roffs, goffs, boffs; unsigned short *rtable, *gtable, *btable; roffs = context->red_offset; goffs = context->green_offset; boffs = context->blue_offset; rmask = context->visual->red_mask >> roffs; gmask = context->visual->green_mask >> goffs; bmask = context->visual->blue_mask >> boffs; rtable = computeTable(rmask); gtable = computeTable(gmask); btable = computeTable(bmask); retColor->pixel = (rtable[color->red]<green]<blue]<red = color->red << 8; retColor->green = color->green << 8; retColor->blue = color->blue << 8; retColor->flags = DoRed|DoGreen|DoBlue; } else if (context->vclass == PseudoColor || context->vclass == StaticColor) { if (context->attribs->standard_colormap_mode != RIgnoreStdColormap) { unsigned int *rtable, *gtable, *btable; rtable = computeStdTable(context->std_rgb_map->red_mult, context->std_rgb_map->red_max); gtable = computeStdTable(context->std_rgb_map->green_mult, context->std_rgb_map->green_max); btable = computeStdTable(context->std_rgb_map->blue_mult, context->std_rgb_map->blue_max); if (rtable==NULL || gtable==NULL || btable==NULL) { RErrorCode = RERR_NOMEMORY; return False; } retColor->pixel = (rtable[color->red] + gtable[color->green] + btable[color->blue] + context->std_rgb_map->base_pixel) & 0xffffffff; retColor->red = color->red<<8; retColor->green = color->green<<8; retColor->blue = color->blue<<8; retColor->flags = DoRed|DoGreen|DoBlue; } else { const int cpc=context->attribs->colors_per_channel; const unsigned short rmask = cpc-1; /* different sizes could be used */ const unsigned short gmask = rmask; /* for r,g,b */ const unsigned short bmask = rmask; unsigned short *rtable, *gtable, *btable; const int cpccpc = cpc*cpc; int index; rtable = computeTable(rmask); gtable = computeTable(gmask); btable = computeTable(bmask); if (rtable==NULL || gtable==NULL || btable==NULL) { RErrorCode = RERR_NOMEMORY; return False; } index = rtable[color->red]*cpccpc + gtable[color->green]*cpc + btable[color->blue]; *retColor = context->colors[index]; } } else if (context->vclass == GrayScale || context->vclass == StaticGray) { const int cpc = context->attribs->colors_per_channel; unsigned short gmask; unsigned short *table; int index; if (context->vclass == StaticGray) gmask = (1<depth) - 1; /* use all grays */ else gmask = cpc*cpc*cpc-1; table = computeTable(gmask); if (!table) return False; index = table[(color->red*30 + color->green*59 + color->blue*11)/100]; *retColor = context->colors[index]; } else { RErrorCode = RERR_INTERNAL; return False; } return True; }