libs-back/Source/x11/context.c

901 lines
22 KiB
C
Raw Normal View History

/* context.c - X context management
*
* Raster graphics library
*
* Copyright (c) 1997-2002 Alfredo K. Kojima
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <config.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xatom.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "wrasterP.h"
#ifdef HAVE_HERMES
#include <Hermes/Hermes.h>
#endif
#include "x11/StdCmap.h"
#include "x11/wraster.h"
#ifdef XRENDER
#include <X11/extensions/Xrender.h>
#endif
extern void _wraster_change_filter(int type);
static Bool bestContext(Display *dpy, int screen_number, RContext *context);
static RContextAttributes DEFAULT_CONTEXT_ATTRIBS = {
RC_UseSharedMemory|RC_RenderMode|RC_ColorsPerChannel, /* flags */
RDitheredRendering, /* render_mode */
4, /* colors_per_channel */
0,
0,
0,
0,
True, /* use_shared_memory */
RMitchellFilter,
RUseStdColormap
};
char**
RSupportedFileFormats(void)
{
static char *tmp[2];
tmp[0] = NULL;
return tmp;
}
/*
*
* Colormap allocation for PseudoColor visuals:
*
*
* switch standardColormap:
* none:
* allocate colors according to colors_per_channel
*
* best/default:
* if there's a std colormap defined then use it
*
* else
* create a std colormap and set it
*/
/*
*----------------------------------------------------------------------
* allocateStandardPseudoColor
* Creates the internal colormap for PseudoColor, setting the
* color values according to the supplied standard colormap.
*
* Returns: -
*
* Side effects: -
*
* Notes: -
*----------------------------------------------------------------------
*/
static Bool
allocateStandardPseudoColor(RContext *ctx, XStandardColormap *stdcmap)
{
int i;
ctx->ncolors = stdcmap->red_max * stdcmap->red_mult
+ stdcmap->green_max * stdcmap->green_mult
+ stdcmap->blue_max * stdcmap->blue_mult + 1;
if (ctx->ncolors <= 1) {
RErrorCode = RERR_INTERNAL;
puts("wraster: bad standard colormap");
return False;
}
ctx->colors = malloc(sizeof(XColor)*ctx->ncolors);
if (!ctx->colors) {
RErrorCode = RERR_NOMEMORY;
return False;
}
ctx->pixels = malloc(sizeof(unsigned long)*ctx->ncolors);
if (!ctx->pixels) {
free(ctx->colors);
ctx->colors = NULL;
RErrorCode = RERR_NOMEMORY;
return False;
}
#define calc(max,mult) (((i / stdcmap->mult) % \
(stdcmap->max + 1)) * 65535) / stdcmap->max
for (i = 0; i < ctx->ncolors; i++) {
ctx->colors[i].pixel = i + stdcmap->base_pixel;
ctx->colors[i].red = calc(red_max, red_mult);
ctx->colors[i].green = calc(green_max, green_mult);
ctx->colors[i].blue = calc(blue_max, blue_mult);
ctx->pixels[i] = ctx->colors[i].pixel;
}
#undef calc
return True;
}
static Bool
setupStandardColormap(RContext *ctx, Atom property)
{
if (!XmuLookupStandardColormap(ctx->dpy, ctx->screen_number,
ctx->visual->visualid,
ctx->depth, property,
True, True)) {
RErrorCode = RERR_STDCMAPFAIL;
return False;
}
return True;
}
static Bool
allocatePseudoColor(RContext *ctx)
{
XColor *colors;
XColor avcolors[256];
int avncolors;
int i, ncolors, r, g, b;
int retries;
int cpc = ctx->attribs->colors_per_channel;
ncolors = cpc * cpc * cpc;
if (ncolors > (1<<ctx->depth)) {
/* reduce colormap size */
cpc = ctx->attribs->colors_per_channel = 1<<((int)ctx->depth/3);
ncolors = cpc * cpc * cpc;
}
assert(cpc >= 2 && ncolors <= (1<<ctx->depth));
colors = malloc(sizeof(XColor)*ncolors);
if (!colors) {
RErrorCode = RERR_NOMEMORY;
return False;
}
ctx->pixels = malloc(sizeof(unsigned long)*ncolors);
if (!ctx->pixels) {
free(colors);
RErrorCode = RERR_NOMEMORY;
return False;
}
i=0;
if ((ctx->attribs->flags & RC_GammaCorrection) && ctx->attribs->rgamma > 0
&& ctx->attribs->ggamma > 0 && ctx->attribs->bgamma > 0) {
double rg, gg, bg;
double tmp;
/* do gamma correction */
rg = 1.0/ctx->attribs->rgamma;
gg = 1.0/ctx->attribs->ggamma;
bg = 1.0/ctx->attribs->bgamma;
for (r=0; r<cpc; r++) {
for (g=0; g<cpc; g++) {
for (b=0; b<cpc; b++) {
colors[i].red=(r*0xffff) / (cpc-1);
colors[i].green=(g*0xffff) / (cpc-1);
colors[i].blue=(b*0xffff) / (cpc-1);
colors[i].flags = DoRed|DoGreen|DoBlue;
tmp = (double)colors[i].red / 65536.0;
colors[i].red = (unsigned short)(65536.0*pow(tmp, rg));
tmp = (double)colors[i].green / 65536.0;
colors[i].green = (unsigned short)(65536.0*pow(tmp, gg));
tmp = (double)colors[i].blue / 65536.0;
colors[i].blue = (unsigned short)(65536.0*pow(tmp, bg));
i++;
}
}
}
} else {
for (r=0; r<cpc; r++) {
for (g=0; g<cpc; g++) {
for (b=0; b<cpc; b++) {
colors[i].red=(r*0xffff) / (cpc-1);
colors[i].green=(g*0xffff) / (cpc-1);
colors[i].blue=(b*0xffff) / (cpc-1);
colors[i].flags = DoRed|DoGreen|DoBlue;
i++;
}
}
}
}
/* try to allocate the colors */
for (i=0; i<ncolors; i++) {
if (!XAllocColor(ctx->dpy, ctx->cmap, &(colors[i]))) {
colors[i].flags = 0; /* failed */
} else {
colors[i].flags = DoRed|DoGreen|DoBlue;
}
}
/* try to allocate close values for the colors that couldn't
* be allocated before */
avncolors = (1<<ctx->depth>256 ? 256 : 1<<ctx->depth);
for (i=0; i<avncolors; i++) avcolors[i].pixel = i;
XQueryColors(ctx->dpy, ctx->cmap, avcolors, avncolors);
for (i=0; i<ncolors; i++) {
if (colors[i].flags==0) {
int j;
unsigned long cdiff=0xffffffff, diff;
unsigned long closest=0;
retries = 2;
while (retries--) {
/* find closest color */
for (j=0; j<avncolors; j++) {
r = (colors[i].red - avcolors[i].red)>>8;
g = (colors[i].green - avcolors[i].green)>>8;
b = (colors[i].blue - avcolors[i].blue)>>8;
diff = r*r + g*g + b*b;
if (diff<cdiff) {
cdiff = diff;
closest = j;
}
}
/* allocate closest color found */
colors[i].red = avcolors[closest].red;
colors[i].green = avcolors[closest].green;
colors[i].blue = avcolors[closest].blue;
if (XAllocColor(ctx->dpy, ctx->cmap, &colors[i])) {
colors[i].flags = DoRed|DoGreen|DoBlue;
break; /* succeeded, don't need to retry */
}
#ifdef DEBUG
printf("close color allocation failed. Retrying...\n");
#endif
}
}
}
ctx->colors = colors;
ctx->ncolors = ncolors;
/* fill the pixels shortcut array */
for (i = 0; i < ncolors; i++) {
ctx->pixels[i] = ctx->colors[i].pixel;
}
return True;
}
static XColor*
allocateGrayScale(RContext *ctx)
{
XColor *colors;
XColor avcolors[256];
int avncolors;
int i, ncolors, r, g, b;
int retries;
int cpc = ctx->attribs->colors_per_channel;
ncolors = cpc * cpc * cpc;
if (ctx->vclass == StaticGray) {
/* we might as well use all grays */
ncolors = 1<<ctx->depth;
} else {
if ( ncolors > (1<<ctx->depth) ) {
/* reduce colormap size */
cpc = ctx->attribs->colors_per_channel = 1<<((int)ctx->depth/3);
ncolors = cpc * cpc * cpc;
}
assert(cpc >= 2 && ncolors <= (1<<ctx->depth));
}
if (ncolors>=256 && ctx->vclass==StaticGray) {
/* don't need dithering for 256 levels of gray in StaticGray visual */
ctx->attribs->render_mode = RBestMatchRendering;
}
colors = malloc(sizeof(XColor)*ncolors);
if (!colors) {
RErrorCode = RERR_NOMEMORY;
return False;
}
for (i=0; i<ncolors; i++) {
colors[i].red=(i*0xffff) / (ncolors-1);
colors[i].green=(i*0xffff) / (ncolors-1);
colors[i].blue=(i*0xffff) / (ncolors-1);
colors[i].flags = DoRed|DoGreen|DoBlue;
}
/* try to allocate the colors */
for (i=0; i<ncolors; i++) {
#ifdef DEBUG
printf("trying:%x,%x,%x\n",colors[i].red,colors[i].green,colors[i].blue);
#endif
if (!XAllocColor(ctx->dpy, ctx->cmap, &(colors[i]))) {
colors[i].flags = 0; /* failed */
#ifdef DEBUG
printf("failed:%x,%x,%x\n",colors[i].red,colors[i].green,colors[i].blue);
#endif
} else {
colors[i].flags = DoRed|DoGreen|DoBlue;
#ifdef DEBUG
printf("success:%x,%x,%x\n",colors[i].red,colors[i].green,colors[i].blue);
#endif
}
}
/* try to allocate close values for the colors that couldn't
* be allocated before */
avncolors = (1<<ctx->depth>256 ? 256 : 1<<ctx->depth);
for (i=0; i<avncolors; i++) avcolors[i].pixel = i;
XQueryColors(ctx->dpy, ctx->cmap, avcolors, avncolors);
for (i=0; i<ncolors; i++) {
if (colors[i].flags==0) {
int j;
unsigned long cdiff=0xffffffff, diff;
unsigned long closest=0;
retries = 2;
while (retries--) {
/* find closest color */
for (j=0; j<avncolors; j++) {
r = (colors[i].red - avcolors[i].red)>>8;
g = (colors[i].green - avcolors[i].green)>>8;
b = (colors[i].blue - avcolors[i].blue)>>8;
diff = r*r + g*g + b*b;
if (diff<cdiff) {
cdiff = diff;
closest = j;
}
}
/* allocate closest color found */
#ifdef DEBUG
printf("best match:%x,%x,%x => %x,%x,%x\n",colors[i].red,colors[i].green,colors[i].blue,avcolors[closest].red,avcolors[closest].green,avcolors[closest].blue);
#endif
colors[i].red = avcolors[closest].red;
colors[i].green = avcolors[closest].green;
colors[i].blue = avcolors[closest].blue;
if (XAllocColor(ctx->dpy, ctx->cmap, &colors[i])) {
colors[i].flags = DoRed|DoGreen|DoBlue;
break; /* succeeded, don't need to retry */
}
#ifdef DEBUG
printf("close color allocation failed. Retrying...\n");
#endif
}
}
}
return colors;
}
static Bool
setupPseudoColorColormap(RContext *context)
{
Atom property = 0;
if (context->attribs->standard_colormap_mode == RCreateStdColormap) {
property = XInternAtom(context->dpy, "RGB_DEFAULT_MAP", False);
if (!setupStandardColormap(context, property)) {
return False;
}
}
if (context->attribs->standard_colormap_mode != RIgnoreStdColormap) {
XStandardColormap *maps;
int count, i;
if (!property) {
property = XInternAtom(context->dpy, "RGB_BEST_MAP", False);
if (!XGetRGBColormaps(context->dpy,
DefaultRootWindow(context->dpy),
&maps, &count, property)) {
maps = NULL;
}
if (!maps) {
property = XInternAtom(context->dpy, "RGB_DEFAULT_MAP", False);
if (!XGetRGBColormaps(context->dpy,
DefaultRootWindow(context->dpy),
&maps, &count, property)) {
maps = NULL;
}
}
} else {
if (!XGetRGBColormaps(context->dpy,
DefaultRootWindow(context->dpy),
&maps, &count, property)) {
maps = NULL;
}
}
if (maps) {
int theMap = -1;
for (i = 0; i < count; i++) {
if (maps[i].visualid == context->visual->visualid) {
theMap = i;
break;
}
}
if (theMap < 0) {
puts("wrlib: no std cmap found");
}
if (theMap >= 0
&& allocateStandardPseudoColor(context, &maps[theMap])) {
context->std_rgb_map = XAllocStandardColormap();
*context->std_rgb_map = maps[theMap];
context->cmap = context->std_rgb_map->colormap;
XFree(maps);
return True;
}
XFree(maps);
}
}
context->attribs->standard_colormap_mode = RIgnoreStdColormap;
/* RIgnoreStdColormap and fallback */
return allocatePseudoColor(context);
}
static char*
mygetenv(char *var, int scr)
{
char *p;
char varname[64];
sprintf(varname, "%s%i", var, scr);
p = getenv(varname);
if (!p) {
p = getenv(var);
}
return p;
}
static void
gatherconfig(RContext *context, int screen_n)
{
char *ptr;
ptr = mygetenv("WRASTER_GAMMA", screen_n);
if (ptr) {
float g1,g2,g3;
if (sscanf(ptr, "%f/%f/%f", &g1, &g2, &g3)!=3
|| g1<=0.0 || g2<=0.0 || g3<=0.0) {
printf("wrlib: invalid value(s) for gamma correction \"%s\"\n",
ptr);
} else {
context->attribs->flags |= RC_GammaCorrection;
context->attribs->rgamma = g1;
context->attribs->ggamma = g2;
context->attribs->bgamma = g3;
}
}
ptr = mygetenv("WRASTER_COLOR_RESOLUTION", screen_n);
if (ptr) {
int i;
if (sscanf(ptr, "%d", &i)!=1 || i<2 || i>6) {
printf("wrlib: invalid value for color resolution \"%s\"\n",ptr);
} else {
context->attribs->flags |= RC_ColorsPerChannel;
context->attribs->colors_per_channel = i;
}
}
ptr = mygetenv("WRASTER_OPTIMIZE_FOR_SPEED", screen_n);
if (ptr) {
context->flags.optimize_for_speed = 1;
} else {
context->flags.optimize_for_speed = 0;
}
}
static void
getColormap(RContext *context, int screen_number)
{
Colormap cmap = None;
XStandardColormap *cmaps;
int ncmaps, i;
if (XGetRGBColormaps(context->dpy,
RootWindow(context->dpy, screen_number),
&cmaps, &ncmaps, XA_RGB_DEFAULT_MAP)) {
for (i=0; i<ncmaps; ++i) {
if (cmaps[i].visualid == context->visual->visualid) {
cmap = cmaps[i].colormap;
break;
}
}
XFree(cmaps);
}
if (cmap == None) {
XColor color;
cmap = XCreateColormap(context->dpy,
RootWindow(context->dpy, screen_number),
context->visual, AllocNone);
color.red = color.green = color.blue = 0;
XAllocColor(context->dpy, cmap, &color);
context->black = color.pixel;
color.red = color.green = color.blue = 0xffff;
XAllocColor(context->dpy, cmap, &color);
context->white = color.pixel;
}
context->cmap = cmap;
}
static int
count_offset(unsigned long mask)
{
int i;
i=0;
while ((mask & 1)==0) {
i++;
mask = mask >> 1;
}
return i;
}
RContext*
RCreateContext(Display *dpy, int screen_number, RContextAttributes *attribs)
{
RContext *context;
XGCValues gcv;
context = malloc(sizeof(RContext));
if (!context) {
RErrorCode = RERR_NOMEMORY;
return NULL;
}
memset(context, 0, sizeof(RContext));
context->dpy = dpy;
context->screen_number = screen_number;
context->attribs = malloc(sizeof(RContextAttributes));
if (!context->attribs) {
free(context);
RErrorCode = RERR_NOMEMORY;
return NULL;
}
if (!attribs)
*context->attribs = DEFAULT_CONTEXT_ATTRIBS;
else
*context->attribs = *attribs;
if (!(context->attribs->flags & RC_StandardColormap)) {
context->attribs->standard_colormap_mode = RUseStdColormap;
}
if (!(context->attribs->flags & RC_ScalingFilter)) {
context->attribs->flags |= RC_ScalingFilter;
context->attribs->scaling_filter = RMitchellFilter;
}
/* get configuration from environment variables */
gatherconfig(context, screen_number);
#ifndef BENCH
_wraster_change_filter(context->attribs->scaling_filter);
#endif
if ((context->attribs->flags & RC_VisualID)) {
XVisualInfo *vinfo, templ;
int nret;
templ.screen = screen_number;
templ.visualid = context->attribs->visualid;
vinfo = XGetVisualInfo(context->dpy, VisualIDMask|VisualScreenMask,
&templ, &nret);
if (!vinfo || nret==0) {
free(context);
RErrorCode = RERR_BADVISUALID;
return NULL;
}
if (vinfo[0].visual == DefaultVisual(dpy, screen_number)) {
context->attribs->flags |= RC_DefaultVisual;
} else {
XSetWindowAttributes attr;
unsigned long mask;
context->visual = vinfo[0].visual;
context->depth = vinfo[0].depth;
context->vclass = vinfo[0].class;
getColormap(context, screen_number);
attr.colormap = context->cmap;
attr.override_redirect = True;
attr.border_pixel = 0;
attr.background_pixel = 0;
mask = CWBorderPixel|CWColormap|CWOverrideRedirect|CWBackPixel;
context->drawable =
XCreateWindow(dpy, RootWindow(dpy, screen_number), 1, 1,
1, 1, 0, context->depth, CopyFromParent,
context->visual, mask, &attr);
/* XSetWindowColormap(dpy, context->drawable, attr.colormap);*/
}
XFree(vinfo);
}
/* use default */
if (!context->visual) {
if ((context->attribs->flags & RC_DefaultVisual)
|| !bestContext(dpy, screen_number, context)) {
context->visual = DefaultVisual(dpy, screen_number);
context->depth = DefaultDepth(dpy, screen_number);
context->cmap = DefaultColormap(dpy, screen_number);
context->drawable = RootWindow(dpy, screen_number);
context->black = BlackPixel(dpy, screen_number);
context->white = WhitePixel(dpy, screen_number);
context->vclass = context->visual->class;
}
}
gcv.function = GXcopy;
gcv.graphics_exposures = False;
context->copy_gc = XCreateGC(dpy, context->drawable, GCFunction
|GCGraphicsExposures, &gcv);
#ifdef HAVE_HERMES
context->hermes_data = malloc(sizeof(RHermesData));
if (!context->hermes_data) {
RErrorCode = RERR_NOMEMORY;
free(context);
return NULL;
}
Hermes_Init();
context->hermes_data->palette = Hermes_PaletteInstance();
{
unsigned long flags = 0;
if (context->attribs->render_mode == RDitheredRendering) {
flags |= HERMES_CONVERT_DITHER;
}
context->hermes_data->converter = Hermes_ConverterInstance(flags);
}
#endif
if (context->vclass == PseudoColor || context->vclass == StaticColor) {
if (!setupPseudoColorColormap(context)) {
free(context);
return NULL;
}
#ifdef HAVE_HERMES
{
int32 palette[256];
int i;
for (i = 0; i < context->ncolors; i++) {
palette[i] = ((context->colors[i].red >> 8) << 16) ||
((context->colors[i].green >> 8) << 8) ||
((context->colors[i].blue >> 8));
}
Hermes_PaletteSet(context->hermes_data->palette, palette);
}
#endif
} else if (context->vclass == GrayScale || context->vclass == StaticGray) {
context->colors = allocateGrayScale(context);
if (!context->colors) {
free(context);
return NULL;
}
#ifdef HAVE_HERMES
{
int32 palette[256];
int i;
for (i = 0; i < context->ncolors; i++) {
palette[i] = ((context->colors[i].red >> 8) << 16) ||
((context->colors[i].green >> 8) << 8) ||
((context->colors[i].blue >> 8));
}
Hermes_PaletteSet(context->hermes_data->palette, palette);
}
#endif
} else if (context->vclass == TrueColor) {
/* calc offsets to create a TrueColor pixel */
context->red_offset = count_offset(context->visual->red_mask);
context->green_offset = count_offset(context->visual->green_mask);
context->blue_offset = count_offset(context->visual->blue_mask);
/* disable dithering on 24 bits visuals */
if (context->depth >= 24)
context->attribs->render_mode = RBestMatchRendering;
}
#ifdef HAVE_HERMES
#endif
/* check avaiability of MIT-SHM */
#ifdef XSHM
if (!(context->attribs->flags & RC_UseSharedMemory)) {
context->attribs->flags |= RC_UseSharedMemory;
context->attribs->use_shared_memory = True;
}
if (context->attribs->use_shared_memory) {
int major, minor;
Bool sharedPixmaps;
context->flags.use_shared_pixmap = 0;
if (!XShmQueryVersion(context->dpy, &major, &minor, &sharedPixmaps)) {
context->attribs->use_shared_memory = False;
} else {
if (XShmPixmapFormat(context->dpy)==ZPixmap)
context->flags.use_shared_pixmap = sharedPixmaps;
}
}
#endif
return context;
}
static Bool
bestContext(Display *dpy, int screen_number, RContext *context)
{
XVisualInfo *vinfo=NULL, rvinfo;
int best = -1, numvis, i;
long flags;
XSetWindowAttributes attr;
rvinfo.class = TrueColor;
rvinfo.screen = screen_number;
#ifdef XRENDER
rvinfo.depth = 32;
flags = VisualClassMask | VisualScreenMask | VisualDepthMask;
vinfo = XGetVisualInfo(dpy, flags, &rvinfo, &numvis);
if (vinfo)
{
for (i=numvis-1, best = -1; i>=0; i--)
{
XRenderPictFormat* pictFormat =
XRenderFindVisualFormat (dpy, vinfo[i].visual);
if (NULL != pictFormat
&& (pictFormat->type == PictTypeDirect)
&& (pictFormat->direct.alphaMask))
{
best = i;
}
}
}
#endif
if (best == -1)
{
flags = VisualClassMask | VisualScreenMask;
vinfo = XGetVisualInfo(dpy, flags, &rvinfo, &numvis);
if (vinfo)
{ /* look for a TrueColor, 24-bit or more (pref 24) */
for (i=numvis-1, best = -1; i>=0; i--)
{
if (vinfo[i].depth == 24) best = i;
else if (vinfo[i].depth>24 && best<0) best = i;
}
}
}
#if 0
if (best == -1) { /* look for a DirectColor, 24-bit or more (pref 24) */
rvinfo.class = DirectColor;
if (vinfo) XFree((char *) vinfo);
vinfo = XGetVisualInfo(dpy, flags, &rvinfo, &numvis);
if (vinfo) {
for (i=0, best = -1; i<numvis; i++) {
if (vinfo[i].depth == 24) best = i;
else if (vinfo[i].depth>24 && best<0) best = i;
}
}
}
#endif
if (best > -1) {
context->visual = vinfo[best].visual;
context->depth = vinfo[best].depth;
context->vclass = vinfo[best].class;
getColormap(context, screen_number);
attr.colormap = context->cmap;
attr.override_redirect = True;
attr.border_pixel = 0;
context->drawable =
XCreateWindow(dpy, RootWindow(dpy, screen_number),
1, 1, 1, 1, 0, context->depth,
CopyFromParent, context->visual,
CWBorderPixel|CWColormap|CWOverrideRedirect, &attr);
/* XSetWindowColormap(dpy, context->drawable, context->cmap);*/
}
if (vinfo) XFree((char *) vinfo);
if (best < 0)
return False;
else
return True;
}