/* Copyright (C) 1996-2001 Id Software, Inc. Copyright (C) 2002-2009 John Fitzgibbons and others Copyright (C) 2007-2008 Kristian Duske Copyright (C) 2010-2014 QuakeSpasm developers This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // mathlib.c -- math primitives #include "quakedef.h" vec3_t vec3_origin = {0,0,0}; /*-----------------------------------------------------------------*/ //#define DEG2RAD( a ) ( a * M_PI ) / 180.0F #define DEG2RAD( a ) ( (a) * M_PI_DIV_180 ) //johnfitz void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct( normal, normal ); d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for ( pos = 0, i = 0; i < 3; i++ ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst ); } //johnfitz -- removed RotatePointAroundVector() becuase it's no longer used and my compiler fucked it up anyway //spike -- readded, because it is useful, and my version of gcc has never had a problem with it. void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; zrot[0][0] = cos( DEG2RAD( degrees ) ); zrot[0][1] = sin( DEG2RAD( degrees ) ); zrot[1][0] = -sin( DEG2RAD( degrees ) ); zrot[1][1] = cos( DEG2RAD( degrees ) ); R_ConcatRotations( m, zrot, tmpmat ); R_ConcatRotations( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } /*-----------------------------------------------------------------*/ float anglemod(float a) { #if 0 if (a >= 0) a -= 360*(int)(a/360); else a += 360*( 1 + (int)(-a/360) ); #endif a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); return a; } /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 ================== */ int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, mplane_t *p) { float dist1, dist2; int sides; #if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this // function // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } #endif // general case switch (p->signbits) { case 0: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 1: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 2: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 3: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 4: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 5: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 6: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; case 7: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler Sys_Error ("BoxOnPlaneSide: Bad signbits"); break; } #if 0 int i; vec3_t corners[2]; for (i=0 ; i<3 ; i++) { if (plane->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist = DotProduct (plane->normal, corners[0]) - plane->dist; dist2 = DotProduct (plane->normal, corners[1]) - plane->dist; sides = 0; if (dist1 >= 0) sides = 1; if (dist2 < 0) sides |= 2; #endif sides = 0; if (dist1 >= p->dist) sides = 1; if (dist2 < p->dist) sides |= 2; #ifdef PARANOID if (sides == 0) Sys_Error ("BoxOnPlaneSide: sides==0"); #endif return sides; } //johnfitz -- the opposite of AngleVectors. this takes forward and generates pitch yaw roll //Spike: take right and up vectors to properly set yaw and roll void VectorAngles (const vec3_t forward, float *up, vec3_t angles) { if (forward[0] == 0 && forward[1] == 0) { //either vertically up or down if (forward[2] > 0) { angles[PITCH] = -90; angles[YAW] = up ? atan2(-up[1], -up[0]) / M_PI_DIV_180: 0; } else { angles[PITCH] = 90; angles[YAW] = up ? atan2(up[1], up[0]) / M_PI_DIV_180: 0; } angles[ROLL] = 0; } else { angles[PITCH] = -atan2(forward[2], sqrt(DotProduct2(forward,forward))); angles[YAW] = atan2(forward[1], forward[0]); if (up) { vec_t cp = cos(angles[PITCH]), sp = sin(angles[PITCH]); vec_t cy = cos(angles[YAW]), sy = sin(angles[YAW]); vec3_t tleft, tup; tleft[0] = -sy; tleft[1] = cy; tleft[2] = 0; tup[0] = sp*cy; tup[1] = sp*sy; tup[2] = cp; angles[ROLL] = -atan2(DotProduct(up, tleft), DotProduct(up, tup)) / M_PI_DIV_180; } else angles[ROLL] = 0; angles[PITCH] /= M_PI_DIV_180; angles[YAW] /= M_PI_DIV_180; } } void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } int VectorCompare (const vec3_t v1, const vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (v1[i] != v2[i]) return 0; return 1; } void VectorMA (const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale*vecb[0]; vecc[1] = veca[1] + scale*vecb[1]; vecc[2] = veca[2] + scale*vecb[2]; } vec_t _DotProduct (const vec3_t v1, const vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (const vec3_t veca, const vec3_t vecb, vec3_t out) { out[0] = veca[0]-vecb[0]; out[1] = veca[1]-vecb[1]; out[2] = veca[2]-vecb[2]; } void _VectorAdd (const vec3_t veca, const vec3_t vecb, vec3_t out) { out[0] = veca[0]+vecb[0]; out[1] = veca[1]+vecb[1]; out[2] = veca[2]+vecb[2]; } void _VectorCopy (const vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } vec_t VectorLength(const vec3_t v) { return sqrt(DotProduct(v,v)); } float VectorNormalize (vec3_t v) { float length, ilength; length = sqrt(DotProduct(v,v)); if (length) { ilength = 1/length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale (const vec3_t in, vec_t scale, vec3_t out) { out[0] = in[0]*scale; out[1] = in[1]*scale; out[2] = in[2]*scale; } int Q_log2(int val) { int answer=0; while (val>>=1) answer++; return answer; } /* ================ R_ConcatRotations ================ */ void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } /* ================ R_ConcatTransforms ================ */ void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3]; } /* =================== FloorDivMod Returns mathematically correct (floor-based) quotient and remainder for numer and denom, both of which should contain no fractional part. The quotient must fit in 32 bits. ==================== */ void FloorDivMod (double numer, double denom, int *quotient, int *rem) { int q, r; double x; #ifndef PARANOID if (denom <= 0.0) Sys_Error ("FloorDivMod: bad denominator %f\n", denom); // if ((floor(numer) != numer) || (floor(denom) != denom)) // Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n", // numer, denom); #endif if (numer >= 0.0) { x = floor(numer / denom); q = (int)x; r = (int)floor(numer - (x * denom)); } else { // // perform operations with positive values, and fix mod to make floor-based // x = floor(-numer / denom); q = -(int)x; r = (int)floor(-numer - (x * denom)); if (r != 0) { q--; r = (int)denom - r; } } *quotient = q; *rem = r; } /* =================== GreatestCommonDivisor ==================== */ int GreatestCommonDivisor (int i1, int i2) { if (i1 > i2) { if (i2 == 0) return (i1); return GreatestCommonDivisor (i2, i1 % i2); } else { if (i1 == 0) return (i2); return GreatestCommonDivisor (i1, i2 % i1); } } /* =================== Invert24To16 Inverts an 8.24 value to a 16.16 value ==================== */ fixed16_t Invert24To16(fixed16_t val) { if (val < 256) return (0xFFFFFFFF); return (fixed16_t) (((double)0x10000 * (double)0x1000000 / (double)val) + 0.5); } /* =================== Various 4*4 matrix functions. =================== */ void Matrix4_Transform4(const mat4_t matrix, const vec4_t vector, vec4_t product) { product[0] = matrix[0]*vector[0] + matrix[4]*vector[1] + matrix[8]*vector[2] + matrix[12]*vector[3]; product[1] = matrix[1]*vector[0] + matrix[5]*vector[1] + matrix[9]*vector[2] + matrix[13]*vector[3]; product[2] = matrix[2]*vector[0] + matrix[6]*vector[1] + matrix[10]*vector[2] + matrix[14]*vector[3]; product[3] = matrix[3]*vector[0] + matrix[7]*vector[1] + matrix[11]*vector[2] + matrix[15]*vector[3]; } void Matrix4_Multiply(const mat4_t a, const mat4_t b, mat4_t out) { out[0] = a[0] * b[0] + a[4] * b[1] + a[8] * b[2] + a[12] * b[3]; out[1] = a[1] * b[0] + a[5] * b[1] + a[9] * b[2] + a[13] * b[3]; out[2] = a[2] * b[0] + a[6] * b[1] + a[10] * b[2] + a[14] * b[3]; out[3] = a[3] * b[0] + a[7] * b[1] + a[11] * b[2] + a[15] * b[3]; out[4] = a[0] * b[4] + a[4] * b[5] + a[8] * b[6] + a[12] * b[7]; out[5] = a[1] * b[4] + a[5] * b[5] + a[9] * b[6] + a[13] * b[7]; out[6] = a[2] * b[4] + a[6] * b[5] + a[10] * b[6] + a[14] * b[7]; out[7] = a[3] * b[4] + a[7] * b[5] + a[11] * b[6] + a[15] * b[7]; out[8] = a[0] * b[8] + a[4] * b[9] + a[8] * b[10] + a[12] * b[11]; out[9] = a[1] * b[8] + a[5] * b[9] + a[9] * b[10] + a[13] * b[11]; out[10] = a[2] * b[8] + a[6] * b[9] + a[10] * b[10] + a[14] * b[11]; out[11] = a[3] * b[8] + a[7] * b[9] + a[11] * b[10] + a[15] * b[11]; out[12] = a[0] * b[12] + a[4] * b[13] + a[8] * b[14] + a[12] * b[15]; out[13] = a[1] * b[12] + a[5] * b[13] + a[9] * b[14] + a[13] * b[15]; out[14] = a[2] * b[12] + a[6] * b[13] + a[10] * b[14] + a[14] * b[15]; out[15] = a[3] * b[12] + a[7] * b[13] + a[11] * b[14] + a[15] * b[15]; } /* * Compute inverse of 4x4 transformation matrix. * Code contributed by Jacques Leroy jle@star.be * Return true for success, false for failure (singular matrix) * Spike: This comes from mesa's GLU. */ qboolean Matrix4_Invert(const float *m, float *out) { /* NB. OpenGL Matrices are COLUMN major. */ #define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; } #define MAT(m,r,c) (m)[(c)*4+(r)] float wtmp[4][8]; float m0, m1, m2, m3, s; float *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1), r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3), r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1), r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3), r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1), r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3), r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1), r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3), r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; /* choose pivot - or die */ if (fabs(r3[0]) > fabs(r2[0])) SWAP_ROWS(r3, r2) if (fabs(r2[0]) > fabs(r1[0])) SWAP_ROWS(r2, r1) if (fabs(r1[0]) > fabs(r0[0])) SWAP_ROWS(r1, r0) if (0.0 == r0[0]) return false; /* eliminate first variable */ m1 = r1[0] / r0[0]; m2 = r2[0] / r0[0]; m3 = r3[0] / r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; s = r0[4]; if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r0[5]; if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r0[6]; if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */ if (fabs(r3[1]) > fabs(r2[1])) SWAP_ROWS(r3, r2) if (fabs(r2[1]) > fabs(r1[1])) SWAP_ROWS(r2, r1) if (0.0 == r1[1]) return false; /* eliminate second variable */ m2 = r2[1] / r1[1]; m3 = r3[1] / r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */ if (fabs(r3[2]) > fabs(r2[2])) SWAP_ROWS(r3, r2) if (0.0 == r2[2]) return false; /* eliminate third variable */ m3 = r3[2] / r2[2]; r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; /* last check */ if (0.0 == r3[3]) return false; s = 1.0 / r3[3]; /* now back substitute row 3 */ r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; /* now back substitute row 2 */ s = 1.0 / r2[2]; r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); m1 = r1[3]; r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; m0 = r0[3]; r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; /* now back substitute row 1 */ s = 1.0 / r1[1]; r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); m0 = r0[2]; r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; /* now back substitute row 0 */ s = 1.0 / r0[0]; r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); MAT(out, 0, 0) = r0[4]; MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6]; MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4]; MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6]; MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4]; MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6]; MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4]; MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6]; MAT(out, 3, 3) = r3[7]; return true; #undef MAT #undef SWAP_ROWS } void Matrix4_ViewMatrix(const vec3_t viewangles, const vec3_t vieworg, mat4_t out) { //directly compute a view matrix. this is not the same as a model matrix (in part because the values are all negated). float cp = cos(-viewangles[0] * M_PI / 180.0); float sp = sin(-viewangles[0] * M_PI / 180.0); float cy = cos(-viewangles[1] * M_PI / 180.0); float sy = sin(-viewangles[1] * M_PI / 180.0); float cr = cos(-viewangles[2] * M_PI / 180.0); float sr = sin(-viewangles[2] * M_PI / 180.0); out[0] = -sr*sp*cy - cr*sy; out[1] = -cr*sp*cy + sr*sy; out[2] = -cp*cy; out[3] = 0; out[4] = sr*sp*sy - cr*cy; out[5] = cr*sp*sy + sr*cy; out[6] = cp*sy; out[7] = 0; out[8] = sr*cp; out[9] = cr*cp; out[10] = -sp; out[11] = 0; out[12] = - out[0]*vieworg[0] - out[4]*vieworg[1] - out[ 8]*vieworg[2]; out[13] = - out[1]*vieworg[0] - out[5]*vieworg[1] - out[ 9]*vieworg[2]; out[14] = - out[2]*vieworg[0] - out[6]*vieworg[1] - out[10]*vieworg[2]; out[15] = 1 - out[3]*vieworg[0] - out[7]*vieworg[1] - out[11]*vieworg[2]; } //computes an orthographic projection matrix (mostly equivelent to glFrustum) void Matrix4_ProjectionMatrix(float fovx, float fovy, float neard, float fard, qboolean d3d, float xskew, float yskew, mat4_t out) { double xmin, xmax, ymin, ymax; double dn = (d3d?0:-1), df = 1; xmax = neard * tan( fovx * M_PI / 360.0 ); xmin = -xmax; ymax = neard * tan( fovy * M_PI / 360.0 ); ymin = -ymax; xmax += xskew; //this stuff for r_stereo xmin += xskew; ymax += yskew; ymin += yskew; out[0] = (2*neard) / (xmax - xmin); out[4] = 0; out[8] = (xmax + xmin) / (xmax - xmin); out[12] = 0; out[1] = 0; out[5] = (2*neard) / (ymax - ymin); out[9] = (ymax + ymin) / (ymax - ymin); out[13] = 0; out[2] = 0; out[6] = 0; if (fard < neard) { //fiddle with the far clip plane to make it rather large //depth precision is non-linear, decaying with distance relative to the near clip plane, a closer near plane degrades precision faster, so an 'infinite' far clip plane doesn't actually hurt typical precision all that much, at least with a 24bit depth buffer. const double epsilon = 1.0/(1<<22); out[10] = epsilon-1; out[14] = (epsilon-(df-dn))*neard; } else { out[10] = (fard*df-neard*dn)/(neard-fard); out[14] = ((df-dn)*fard*neard)/(neard-fard); } out[3] = 0; out[7] = 0; out[11] = -1; out[15] = 0; }