/* Copyright (C) 1996-2001 Id Software, Inc. Copyright (C) 2002-2009 John Fitzgibbons and others Copyright (C) 2010-2014 QuakeSpasm developers This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_light.c #include "quakedef.h" int r_dlightframecount; extern cvar_t r_flatlightstyles; //johnfitz //Spike - made this a general function void CL_UpdateLightstyle(unsigned int idx, const char *str) { int total; int j; if (idx < MAX_LIGHTSTYLES) { q_strlcpy (cl_lightstyle[idx].map, str, MAX_STYLESTRING); cl_lightstyle[idx].length = Q_strlen(cl_lightstyle[idx].map); //johnfitz -- save extra info if (cl_lightstyle[idx].length) { total = 0; cl_lightstyle[idx].peak = 'a'; for (j=0; jradius * 0.35; VectorSubtract (light->origin, r_origin, v); if (VectorLength (v) < rad) { // view is inside the dlight if (light->color[0]==1 && light->color[1]==1 && light->color[2]==1) AddLightBlend (1.0, 0.5, 0.0, light->radius * 0.0003); else AddLightBlend (light->color[0], light->color[1], light->color[2], light->radius * 0.0003); return; } glBegin (GL_TRIANGLE_FAN); if (light->color[0]==1 && light->color[1]==1 && light->color[2]==1) //if its default full-white, show it with an orange tint instead to replicate expected QS behaviour without breaking coloured dlights. glColor3f (0.2f, 0.1f, 0.0); else glColor3f (light->color[0]*.2f, light->color[1]*.2f, light->color[2]*.2f); for (i=0 ; i<3 ; i++) v[i] = light->origin[i] - vpn[i]*rad; glVertex3fv (v); glColor3f (0,0,0); for (i=16 ; i>=0 ; i--) { a = i/16.0 * M_PI*2; for (j=0 ; j<3 ; j++) v[j] = light->origin[j] + vright[j]*cos(a)*rad + vup[j]*sin(a)*rad; glVertex3fv (v); } glEnd (); } /* ============= R_RenderDlights ============= */ void R_RenderDlights (void) { int i; dlight_t *l; if (!gl_flashblend.value) return; r_dlightframecount = r_framecount + 1; // because the count hasn't // advanced yet for this frame glDepthMask (0); glDisable (GL_TEXTURE_2D); glShadeModel (GL_SMOOTH); glEnable (GL_BLEND); glBlendFunc (GL_ONE, GL_ONE); l = cl_dlights; for (i=0 ; idie < cl.time || !l->radius) continue; R_RenderDlight (l); } glColor3f (1,1,1); glDisable (GL_BLEND); glEnable (GL_TEXTURE_2D); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDepthMask (1); } /* ============================================================================= DYNAMIC LIGHTS ============================================================================= */ /* ============= R_MarkLights -- johnfitz -- rewritten to use LordHavoc's lighting speedup ============= */ void R_MarkLights (dlight_t *light, vec3_t lightorg, int num, mnode_t *node) { mplane_t *splitplane; msurface_t *surf; vec3_t impact; float dist, l, maxdist; unsigned int i; int j, s, t; start: if (node->contents < 0) return; splitplane = node->plane; if (splitplane->type < 3) dist = lightorg[splitplane->type] - splitplane->dist; else dist = DotProduct (lightorg, splitplane->normal) - splitplane->dist; if (dist > light->radius) { node = node->children[0]; goto start; } if (dist < -light->radius) { node = node->children[1]; goto start; } maxdist = light->radius*light->radius; // mark the polygons surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { for (j=0 ; j<3 ; j++) impact[j] = lightorg[j] - surf->plane->normal[j]*dist; // clamp center of light to corner and check brightness l = DotProduct (impact, surf->lmvecs[0]) + surf->lmvecs[0][3]; s = l;if (s < 0) s = 0;else if (s > surf->extents[0]) s = surf->extents[0]; s = l - s; l = DotProduct (impact, surf->lmvecs[1]) + surf->lmvecs[1][3]; t = l;if (t < 0) t = 0;else if (t > surf->extents[1]) t = surf->extents[1]; t = l - t; // compare to minimum light if ((s*s+t*t+dist*dist) < maxdist) { if (surf->dlightframe != r_dlightframecount) // not dynamic until now { surf->dlightbits[num >> 5] = 1U << (num & 31); surf->dlightframe = r_dlightframecount; } else // already dynamic surf->dlightbits[num >> 5] |= 1U << (num & 31); } } if (node->children[0]->contents >= 0) R_MarkLights (light, lightorg, num, node->children[0]); if (node->children[1]->contents >= 0) R_MarkLights (light, lightorg, num, node->children[1]); } /* ============= R_PushDlights ============= */ void R_PushDlights (void) { int i; dlight_t *l; if (gl_flashblend.value) return; r_dlightframecount = r_framecount + 1; // because the count hasn't // advanced yet for this frame if (!r_refdef.drawworld) return; l = cl_dlights; for (i=0 ; idie < cl.time || !l->radius) continue; R_MarkLights (l, l->origin, i, cl.worldmodel->nodes); } } /* ============================================================================= BSPX LIGHTGRID LOADING + SAMPLING ============================================================================= */ extern char loadname[]; // for hunk tags. yuck yuck yuck. extern cvar_t mod_lightgrid; //for testing/debugging typedef struct { vec3_t gridscale; unsigned int count[3]; vec3_t mins; unsigned int styles; unsigned int rootnode; unsigned int numnodes; struct bspxlgnode_s { //this uses an octtree to trim samples. int mid[3]; unsigned int child[8]; #define LGNODE_LEAF (1u<<31) #define LGNODE_MISSING (1u<<30) } *nodes; unsigned int numleafs; struct bspxlgleaf_s { int mins[3]; int size[3]; struct bspxlgsamp_s { struct { byte style; byte rgb[3]; } map[4]; } *rgbvalues; } *leafs; } bspxlightgrid_t; struct rctx_s {byte *data; int ofs, size;}; static byte ReadByte(struct rctx_s *ctx) { if (ctx->ofs >= ctx->size) { ctx->ofs++; return 0; } return ctx->data[ctx->ofs++]; } static int ReadInt(struct rctx_s *ctx) { int r = (int)ReadByte(ctx)<<0; r|= (int)ReadByte(ctx)<<8; r|= (int)ReadByte(ctx)<<16; r|= (int)ReadByte(ctx)<<24; return r; } static float ReadFloat(struct rctx_s *ctx) { union {float f; int i;} u; u.i = ReadInt(ctx); return u.f; } void BSPX_LightGridLoad(qmodel_t *model, void *lgdata, size_t lgsize) { vec3_t step, mins; int size[3]; bspxlightgrid_t *grid; unsigned int numstyles, numnodes, numleafs, rootnode; unsigned int nodestart, leafsamps = 0, i, j, k, s; struct bspxlgsamp_s *samp; struct rctx_s ctx = {0}; ctx.data = lgdata; ctx.size = lgsize; model->lightgrid = NULL; if (!ctx.data) return; for (j = 0; j < 3; j++) step[j] = ReadFloat(&ctx); for (j = 0; j < 3; j++) size[j] = ReadInt(&ctx); for (j = 0; j < 3; j++) mins[j] = ReadFloat(&ctx); numstyles = ReadByte(&ctx); //urgh, misaligned the entire thing rootnode = ReadInt(&ctx); numnodes = ReadInt(&ctx); nodestart = ctx.ofs; ctx.ofs += (3+8)*4*numnodes; numleafs = ReadInt(&ctx); for (i = 0; i < numleafs; i++) { unsigned int lsz[3]; ctx.ofs += 3*4; for (j = 0; j < 3; j++) lsz[j] = ReadInt(&ctx); j = lsz[0]*lsz[1]*lsz[2]; leafsamps += j; while (j --> 0) { //this loop is annonying, memcpy dreams... s = ReadByte(&ctx); if (s == 255) continue; ctx.ofs += s*4; } } grid = Hunk_AllocName(sizeof(*grid) + sizeof(*grid->leafs)*numleafs + sizeof(*grid->nodes)*numnodes + sizeof(struct bspxlgsamp_s)*leafsamps, loadname); // memset(grid, 0xcc, sizeof(*grid) + sizeof(*grid->leafs)*numleafs + sizeof(*grid->nodes)*numnodes + sizeof(struct bspxlgsamp_s)*leafsamps); grid->leafs = (void*)(grid+1); grid->nodes = (void*)(grid->leafs + numleafs); samp = (void*)(grid->nodes+numnodes); for (j = 0; j < 3; j++) grid->gridscale[j] = 1/step[j]; //prefer it as a multiply VectorCopy(mins, grid->mins); VectorCopy(size, grid->count); grid->numnodes = numnodes; grid->numleafs = numleafs; grid->rootnode = rootnode; (void)numstyles; //rewind to the nodes. *sigh* ctx.ofs = nodestart; for (i = 0; i < numnodes; i++) { for (j = 0; j < 3; j++) grid->nodes[i].mid[j] = ReadInt(&ctx); for (j = 0; j < 8; j++) grid->nodes[i].child[j] = ReadInt(&ctx); } ctx.ofs += 4; for (i = 0; i < numleafs; i++) { for (j = 0; j < 3; j++) grid->leafs[i].mins[j] = ReadInt(&ctx); for (j = 0; j < 3; j++) grid->leafs[i].size[j] = ReadInt(&ctx); grid->leafs[i].rgbvalues = samp; j = grid->leafs[i].size[0]*grid->leafs[i].size[1]*grid->leafs[i].size[2]; while (j --> 0) { s = ReadByte(&ctx); if (s == 0xff) memset(samp, 0xff, sizeof(*samp)); else { for (k = 0; k < s; k++) { if (k >= 4) ReadInt(&ctx); else { samp->map[k].style = ReadByte(&ctx); samp->map[k].rgb[0] = ReadByte(&ctx); samp->map[k].rgb[1] = ReadByte(&ctx); samp->map[k].rgb[2] = ReadByte(&ctx); } } for (; k < 4; k++) { samp->map[k].style = (byte)~0u; samp->map[k].rgb[0] = samp->map[k].rgb[1] = samp->map[k].rgb[2] = 0; } } samp++; } } if (ctx.ofs != ctx.size) grid = NULL; model->lightgrid = (void*)grid; } static int BSPX_LightGridSingleValue(bspxlightgrid_t *grid, int x, int y, int z, float w, vec3_t res_diffuse) { int i; unsigned int node; struct bspxlgsamp_s *samp; float lev; node = grid->rootnode; while (!(node & LGNODE_LEAF)) { struct bspxlgnode_s *n; if (node & LGNODE_MISSING) return 0; //failure n = grid->nodes + node; node = n->child[ ((x>=n->mid[0])<<2)| ((y>=n->mid[1])<<1)| ((z>=n->mid[2])<<0)]; } { struct bspxlgleaf_s *leaf = &grid->leafs[node & ~LGNODE_LEAF]; x -= leaf->mins[0]; y -= leaf->mins[1]; z -= leaf->mins[2]; if (x >= leaf->size[0] || y >= leaf->size[1] || z >= leaf->size[2]) return 0; //sample we're after is out of bounds... i = x + leaf->size[0]*(y + leaf->size[1]*z); samp = leaf->rgbvalues + i; w *= (1/256.0); //no hdr support for (i = 0; i < countof(samp->map); i++) { if (samp->map[i].style == ((byte)(~0u))) break; //no more lev = d_lightstylevalue[samp->map[i].style]*w; res_diffuse[0] += samp->map[i].rgb[0] * lev; res_diffuse[1] += samp->map[i].rgb[1] * lev; res_diffuse[2] += samp->map[i].rgb[2] * lev; } } return 1; } static void BSPX_LightGridValue(bspxlightgrid_t *grid, const vec3_t point, vec3_t res_diffuse) { int i, tile[3]; float s, w, frac[3]; res_diffuse[0] = res_diffuse[1] = res_diffuse[2] = 0; //assume worst for (i = 0; i < 3; i++) { tile[i] = floor((point[i] - grid->mins[i]) * grid->gridscale[i]); frac[i] = (point[i] - grid->mins[i]) * grid->gridscale[i] - tile[i]; } for (i = 0, s = 0; i < 8; i++) { w = ((i&1)?frac[0]:1-frac[0]) * ((i&2)?frac[1]:1-frac[1]) * ((i&4)?frac[2]:1-frac[2]); s += w*BSPX_LightGridSingleValue(grid, tile[0]+!!(i&1), tile[1]+!!(i&2), tile[2]+!!(i&4), w, res_diffuse); } if (s) VectorScale(res_diffuse, 1.0/s, res_diffuse); //average the successful ones } /* ============================================================================= LEGACY LIGHT SAMPLING ============================================================================= */ mplane_t *lightplane; vec3_t lightspot; vec3_t lightcolor; //johnfitz -- lit support via lordhavoc /* ============= RecursiveLightPoint -- johnfitz -- replaced entire function for lit support via lordhavoc ============= */ int RecursiveLightPoint (vec3_t color, mnode_t *node, vec3_t rayorg, vec3_t start, vec3_t end, float *maxdist) { float front, back, frac; vec3_t mid; loc0: if (node->contents < 0) return false; // didn't hit anything // calculate mid point if (node->plane->type < 3) { front = start[node->plane->type] - node->plane->dist; back = end[node->plane->type] - node->plane->dist; } else { front = DotProduct(start, node->plane->normal) - node->plane->dist; back = DotProduct(end, node->plane->normal) - node->plane->dist; } // LordHavoc: optimized recursion if ((back < 0) == (front < 0)) // return RecursiveLightPoint (color, node->children[front < 0], rayorg, start, end, maxdist); { node = node->children[front < 0]; goto loc0; } frac = front / (front-back); mid[0] = start[0] + (end[0] - start[0])*frac; mid[1] = start[1] + (end[1] - start[1])*frac; mid[2] = start[2] + (end[2] - start[2])*frac; // go down front side if (RecursiveLightPoint (color, node->children[front < 0], rayorg, start, mid, maxdist)) return true; // hit something else { unsigned int i; int ds, dt; msurface_t *surf; // check for impact on this node VectorCopy (mid, lightspot); lightplane = node->plane; surf = cl.worldmodel->surfaces + node->firstsurface; for (i = 0;i < node->numsurfaces;i++, surf++) { float sfront, sback, dist; vec3_t raydelta; double dsfrac, dtfrac; if (surf->flags & SURF_DRAWTILED) continue; // no lightmaps // ericw -- added double casts to force 64-bit precision. // Without them the zombie at the start of jam3_ericw.bsp was // incorrectly being lit up in SSE builds. dsfrac = DoublePrecisionDotProduct (mid, surf->lmvecs[0]) + surf->lmvecs[0][3]; dtfrac = DoublePrecisionDotProduct (mid, surf->lmvecs[1]) + surf->lmvecs[1][3]; if (dsfrac < 0 || dtfrac < 0) continue; if (dsfrac > surf->extents[0] || dtfrac > surf->extents[1]) continue; ds = dsfrac; dt = dtfrac; dsfrac -= ds; dtfrac -= dt; if (surf->plane->type < 3) { sfront = rayorg[surf->plane->type] - surf->plane->dist; sback = end[surf->plane->type] - surf->plane->dist; } else { sfront = DotProduct(rayorg, surf->plane->normal) - surf->plane->dist; sback = DotProduct(end, surf->plane->normal) - surf->plane->dist; } VectorSubtract(end, rayorg, raydelta); dist = sfront / (sfront - sback) * VectorLength(raydelta); if (!surf->samples) { // We hit a surface that is flagged as lightmapped, but doesn't have actual lightmap info. // Instead of just returning black, we'll keep looking for nearby surfaces that do have valid samples. // This fixes occasional pitch-black models in otherwise well-lit areas in DOTM (e.g. mge1m1, mge4m1) // caused by overlapping surfaces with mixed lighting data. const float nearby = 8.f; dist += nearby; *maxdist = q_min(*maxdist, dist); continue; } if (dist < *maxdist) { // LordHavoc: enhanced to interpolate lighting int maps, line3, r00 = 0, g00 = 0, b00 = 0, r01 = 0, g01 = 0, b01 = 0, r10 = 0, g10 = 0, b10 = 0, r11 = 0, g11 = 0, b11 = 0; float scale, e; if (cl.worldmodel->flags & MOD_HDRLIGHTING) { static const float rgb9e5tab[32] = { //multipliers for the 9-bit mantissa, according to the biased mantissa //aka: pow(2, biasedexponent - bias-bits) where bias is 15 and bits is 9 1.0/(1<<24), 1.0/(1<<23), 1.0/(1<<22), 1.0/(1<<21), 1.0/(1<<20), 1.0/(1<<19), 1.0/(1<<18), 1.0/(1<<17), 1.0/(1<<16), 1.0/(1<<15), 1.0/(1<<14), 1.0/(1<<13), 1.0/(1<<12), 1.0/(1<<11), 1.0/(1<<10), 1.0/(1<<9), 1.0/(1<<8), 1.0/(1<<7), 1.0/(1<<6), 1.0/(1<<5), 1.0/(1<<4), 1.0/(1<<3), 1.0/(1<<2), 1.0/(1<<1), 1.0, 1.0*(1<<1), 1.0*(1<<2), 1.0*(1<<3), 1.0*(1<<4), 1.0*(1<<5), 1.0*(1<<6), 1.0*(1<<7), }; uint32_t *lightmap = (uint32_t*)surf->samples + (dt * (surf->extents[0]+1) + ds); line3 = (surf->extents[0]+1); for (maps = 0;maps < MAXLIGHTMAPS && surf->styles[maps] != INVALID_LIGHTSTYLE;maps++) { scale = (1<<7) * (float) d_lightstylevalue[surf->styles[maps]] * 1.0f / 256.0f; e = rgb9e5tab[lightmap[ 0]>>27] * scale;r00 += ((lightmap[ 0]>> 0)&0x1ff) * e;g00 += ((lightmap[ 0]>> 9)&0x1ff) * e;b00 += ((lightmap[ 0]>> 9)&0x1ff) * e; e = rgb9e5tab[lightmap[ 1]>>27] * scale;r01 += ((lightmap[ 1]>> 0)&0x1ff) * e;g01 += ((lightmap[ 1]>> 9)&0x1ff) * e;b01 += ((lightmap[ 1]>> 9)&0x1ff) * e; e = rgb9e5tab[lightmap[line3+0]>>27] * scale;r10 += ((lightmap[line3+0]>> 0)&0x1ff) * e;g10 += ((lightmap[line3+0]>> 9)&0x1ff) * e;b10 += ((lightmap[line3+0]>> 9)&0x1ff) * e; e = rgb9e5tab[lightmap[line3+1]>>27] * scale;r11 += ((lightmap[line3+1]>> 0)&0x1ff) * e;g11 += ((lightmap[line3+1]>> 9)&0x1ff) * e;b11 += ((lightmap[line3+1]>> 9)&0x1ff) * e; lightmap += (surf->extents[0]+1) * (surf->extents[1]+1); } } else { byte *lightmap = (byte*)surf->samples + (dt * (surf->extents[0]+1) + ds)*3; // LordHavoc: *3 for color line3 = (surf->extents[0]+1)*3; for (maps = 0;maps < MAXLIGHTMAPS && surf->styles[maps] != INVALID_LIGHTSTYLE;maps++) { scale = (float) d_lightstylevalue[surf->styles[maps]] * 1.0f / 256.0f; r00 += (float) lightmap[ 0] * scale;g00 += (float) lightmap[ 1] * scale;b00 += (float) lightmap[2] * scale; r01 += (float) lightmap[ 3] * scale;g01 += (float) lightmap[ 4] * scale;b01 += (float) lightmap[5] * scale; r10 += (float) lightmap[line3+0] * scale;g10 += (float) lightmap[line3+1] * scale;b10 += (float) lightmap[line3+2] * scale; r11 += (float) lightmap[line3+3] * scale;g11 += (float) lightmap[line3+4] * scale;b11 += (float) lightmap[line3+5] * scale; lightmap += (surf->extents[0]+1) * (surf->extents[1]+1)*3; // LordHavoc: *3 for colored lighting } } color[0] += (float) ((int) ((((((r11-r10) * dsfrac) + r10)-(((r01-r00) * dsfrac) + r00)) * dtfrac) + (((r01-r00) * dsfrac) + r00))); color[1] += (float) ((int) ((((((g11-g10) * dsfrac) + g10)-(((g01-g00) * dsfrac) + g00)) * dtfrac) + (((g01-g00) * dsfrac) + g00))); color[2] += (float) ((int) ((((((b11-b10) * dsfrac) + b10)-(((b01-b00) * dsfrac) + b00)) * dtfrac) + (((b01-b00) * dsfrac) + b00))); } return true; // success } // go down back side return RecursiveLightPoint (color, node->children[front >= 0], rayorg, mid, end, maxdist); } } /* ============= R_LightPoint -- johnfitz -- replaced entire function for lit support via lordhavoc ============= */ int R_LightPoint (vec3_t p) { vec3_t end; float maxdist = 8192.f; //johnfitz -- was 2048 if (!cl.worldmodel->lightdata) { lightcolor[0] = lightcolor[1] = lightcolor[2] = 255; return 255; } if (cl.worldmodel->lightgrid && mod_lightgrid.value) BSPX_LightGridValue(cl.worldmodel->lightgrid, p, lightcolor); else { end[0] = p[0]; end[1] = p[1]; end[2] = p[2] - maxdist; lightcolor[0] = lightcolor[1] = lightcolor[2] = 0; RecursiveLightPoint (lightcolor, cl.worldmodel->nodes, p, p, end, &maxdist); } return ((lightcolor[0] + lightcolor[1] + lightcolor[2]) * (1.0f / 3.0f)); }