/* Copyright (C) 1996-2001 Id Software, Inc. Copyright (C) 2010-2011 O. Sezer This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // snd_mix.c -- portable code to mix sounds for snd_dma.c #include "quakedef.h" #define PAINTBUFFER_SIZE 2048 portable_samplepair_t paintbuffer[PAINTBUFFER_SIZE]; int snd_scaletable[32][256]; int *snd_p, snd_linear_count; short *snd_out; static int snd_vol; static void Snd_WriteLinearBlastStereo16 (void) { int i; int val; for (i = 0; i < snd_linear_count; i += 2) { val = snd_p[i] >> 8; if (val > 0x7fff) snd_out[i] = 0x7fff; else if (val < (short)0x8000) snd_out[i] = (short)0x8000; else snd_out[i] = val; val = snd_p[i+1] >> 8; if (val > 0x7fff) snd_out[i+1] = 0x7fff; else if (val < (short)0x8000) snd_out[i+1] = (short)0x8000; else snd_out[i+1] = val; } } static void S_TransferStereo16 (int endtime) { int lpos; int lpaintedtime; snd_p = (int *) paintbuffer; lpaintedtime = paintedtime; while (lpaintedtime < endtime) { // handle recirculating buffer issues lpos = lpaintedtime & ((shm->samples >> 1) - 1); snd_out = (short *)shm->buffer + (lpos << 1); snd_linear_count = (shm->samples >> 1) - lpos; if (lpaintedtime + snd_linear_count > endtime) snd_linear_count = endtime - lpaintedtime; snd_linear_count <<= 1; // write a linear blast of samples Snd_WriteLinearBlastStereo16 (); snd_p += snd_linear_count; lpaintedtime += (snd_linear_count >> 1); } } static void S_TransferPaintBuffer (int endtime) { int out_idx, out_mask; int count, step, val; int *p; if (shm->samplebits == 16 && shm->channels == 2) { S_TransferStereo16 (endtime); return; } p = (int *) paintbuffer; count = (endtime - paintedtime) * shm->channels; out_mask = shm->samples - 1; out_idx = paintedtime * shm->channels & out_mask; step = 3 - shm->channels; if (shm->samplebits == 16) { short *out = (short *)shm->buffer; while (count--) { val = *p >> 8; p+= step; if (val > 0x7fff) val = 0x7fff; else if (val < (short)0x8000) val = (short)0x8000; out[out_idx] = val; out_idx = (out_idx + 1) & out_mask; } } else if (shm->samplebits == 8 && !shm->signed8) { unsigned char *out = shm->buffer; while (count--) { val = *p >> 8; p+= step; if (val > 0x7fff) val = 0x7fff; else if (val < (short)0x8000) val = (short)0x8000; out[out_idx] = (val >> 8) + 128; out_idx = (out_idx + 1) & out_mask; } } else if (shm->samplebits == 8) /* S8 format, e.g. with Amiga AHI */ { signed char *out = (signed char *) shm->buffer; while (count--) { val = *p >> 8; p+= step; if (val > 0x7fff) val = 0x7fff; else if (val < (short)0x8000) val = (short)0x8000; out[out_idx] = (val >> 8); out_idx = (out_idx + 1) & out_mask; } } } /* ============== S_MakeBlackmanWindowKernel Makes a lowpass filter kernel, from equation 16-4 in "The Scientist and Engineer's Guide to Digital Signal Processing" M is the kernel size (not counting the center point), must be even kernel has room for M+1 floats f_c is the filter cutoff frequency, as a fraction of the samplerate ============== */ static void S_MakeBlackmanWindowKernel(float *kernel, int M, float f_c) { int i; for (i = 0; i <= M; i++) { if (i == M/2) { kernel[i] = 2 * M_PI * f_c; } else { kernel[i] = ( sin(2 * M_PI * f_c * (i - M/2.0)) / (i - (M/2.0)) ) * (0.42 - 0.5*cos(2 * M_PI * i / (double)M) + 0.08*cos(4 * M_PI * i / (double)M) ); } } // normalize the kernel so all of the values sum to 1 { float sum = 0; for (i = 0; i <= M; i++) { sum += kernel[i]; } for (i = 0; i <= M; i++) { kernel[i] /= sum; } } } typedef struct { float *memory; // kernelsize floats float *kernel; // kernelsize floats int kernelsize; // M+1, rounded up to be a multiple of 16 int M; // M value used to make kernel, even int parity; // 0-3 float f_c; // cutoff frequency, [0..1], fraction of sample rate } filter_t; static void S_UpdateFilter(filter_t *filter, int M, float f_c) { if (filter->f_c != f_c || filter->M != M) { if (filter->memory != NULL) free(filter->memory); if (filter->kernel != NULL) free(filter->kernel); filter->M = M; filter->f_c = f_c; filter->parity = 0; // M + 1 rounded up to the next multiple of 16 filter->kernelsize = (M + 1) + 16 - ((M + 1) % 16); filter->memory = calloc(filter->kernelsize, sizeof(float)); filter->kernel = calloc(filter->kernelsize, sizeof(float)); S_MakeBlackmanWindowKernel(filter->kernel, M, f_c); } } /* ============== S_ApplyFilter Lowpass-filter the given buffer containing 44100Hz audio. As an optimization, it decimates the audio to 11025Hz (setting every sample position that's not a multiple of 4 to 0), then convoluting with the filter kernel is 4x faster, because we can skip 3/4 of the input samples that are known to be 0 and skip 3/4 of the filter kernel. ============== */ static void S_ApplyFilter(filter_t *filter, int *data, int stride, int count) { int i, j; float *input; const int kernelsize = filter->kernelsize; const float *kernel = filter->kernel; int parity; input = malloc(sizeof(float) * (filter->kernelsize + count)); // set up the input buffer // memory holds the previous filter->kernelsize samples of input. memcpy(input, filter->memory, filter->kernelsize * sizeof(float)); for (i=0; ikernelsize+i] = data[i * stride] / (32768.0 * 256.0); } // copy out the last filter->kernelsize samples to 'memory' for next time memcpy(filter->memory, input + count, filter->kernelsize * sizeof(float)); // apply the filter parity = filter->parity; for (i=0; iparity = parity; free(input); } /* ============== S_LowpassFilter lowpass filters 24-bit integer samples in 'data' (stored in 32-bit ints). assumes 44100Hz sample rate, and lowpasses at around 5kHz memory should be a zero-filled filter_t struct ============== */ static void S_LowpassFilter(int *data, int stride, int count, filter_t *memory) { int M; float bw, f_c; switch ((int)snd_filterquality.value) { case 1: M = 126; bw = 0.900; break; case 2: M = 150; bw = 0.915; break; case 3: M = 174; bw = 0.930; break; case 4: M = 198; bw = 0.945; break; case 5: default: M = 222; bw = 0.960; break; } f_c = (bw * 11025 / 2.0) / 44100.0; S_UpdateFilter(memory, M, f_c); S_ApplyFilter(memory, data, stride, count); } /* =============================================================================== CHANNEL MIXING =============================================================================== */ static void SND_PaintChannelFrom8 (channel_t *ch, sfxcache_t *sc, int endtime, int paintbufferstart); static void SND_PaintChannelFrom16 (channel_t *ch, sfxcache_t *sc, int endtime, int paintbufferstart); void S_PaintChannels (int endtime) { int i; int end, ltime, count; channel_t *ch; sfxcache_t *sc; snd_vol = sfxvolume.value * 256; while (paintedtime < endtime) { // if paintbuffer is smaller than DMA buffer end = endtime; if (endtime - paintedtime > PAINTBUFFER_SIZE) end = paintedtime + PAINTBUFFER_SIZE; // clear the paint buffer memset(paintbuffer, 0, (end - paintedtime) * sizeof(portable_samplepair_t)); // paint in the channels. ch = snd_channels; for (i = 0; i < total_channels; i++, ch++) { if (!ch->sfx) continue; if (!ch->leftvol && !ch->rightvol) continue; sc = S_LoadSound (ch->sfx); if (!sc) continue; ltime = paintedtime; while (ltime < end) { // paint up to end if (ch->end < end) count = ch->end - ltime; else count = end - ltime; if (count > 0) { // the last param to SND_PaintChannelFrom is the index // to start painting to in the paintbuffer, usually 0. if (sc->width == 1) SND_PaintChannelFrom8(ch, sc, count, ltime - paintedtime); else SND_PaintChannelFrom16(ch, sc, count, ltime - paintedtime); ltime += count; } // if at end of loop, restart if (ltime >= ch->end) { if (sc->loopstart >= 0) { ch->pos = sc->loopstart; ch->end = ltime + sc->length - ch->pos; } else { // channel just stopped ch->sfx = NULL; break; } } } } // clip each sample to 0dB, then reduce by 6dB (to leave some headroom for // the lowpass filter and the music). the lowpass will smooth out the // clipping for (i=0; i> 1; paintbuffer[i].right = CLAMP(-32768 << 8, paintbuffer[i].right, 32767 << 8) >> 1; } // apply a lowpass filter if (sndspeed.value == 11025 && shm->speed == 44100) { static filter_t memory_l, memory_r; S_LowpassFilter((int *)paintbuffer, 2, end - paintedtime, &memory_l); S_LowpassFilter(((int *)paintbuffer) + 1, 2, end - paintedtime, &memory_r); } // paint in the music if (s_rawend >= paintedtime) { // copy from the streaming sound source int s; int stop; stop = (end < s_rawend) ? end : s_rawend; for (i = paintedtime; i < stop; i++) { s = i & (MAX_RAW_SAMPLES - 1); // lower music by 6db to match sfx paintbuffer[i - paintedtime].left += s_rawsamples[s].left >> 1; paintbuffer[i - paintedtime].right += s_rawsamples[s].right >> 1; } // if (i != end) // Con_Printf ("partial stream\n"); // else // Con_Printf ("full stream\n"); } // transfer out according to DMA format S_TransferPaintBuffer(end); paintedtime = end; } } void SND_InitScaletable (void) { int i, j; int scale; for (i = 0; i < 32; i++) { scale = i * 8 * 256 * sfxvolume.value; for (j = 0; j < 256; j++) { /* When compiling with gcc-4.1.0 at optimisations O1 and higher, the tricky signed char type conversion is not guaranteed. Therefore we explicity calculate the signed value from the index as required. From Kevin Shanahan. See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26719 */ // snd_scaletable[i][j] = ((signed char)j) * scale; snd_scaletable[i][j] = ((j < 128) ? j : j - 256) * scale; } } } static void SND_PaintChannelFrom8 (channel_t *ch, sfxcache_t *sc, int count, int paintbufferstart) { int data; int *lscale, *rscale; unsigned char *sfx; int i; if (ch->leftvol > 255) ch->leftvol = 255; if (ch->rightvol > 255) ch->rightvol = 255; lscale = snd_scaletable[ch->leftvol >> 3]; rscale = snd_scaletable[ch->rightvol >> 3]; sfx = (unsigned char *)sc->data + ch->pos; for (i = 0; i < count; i++) { data = sfx[i]; paintbuffer[paintbufferstart + i].left += lscale[data]; paintbuffer[paintbufferstart + i].right += rscale[data]; } ch->pos += count; } static void SND_PaintChannelFrom16 (channel_t *ch, sfxcache_t *sc, int count, int paintbufferstart) { int data; int left, right; int leftvol, rightvol; signed short *sfx; int i; leftvol = ch->leftvol * snd_vol; rightvol = ch->rightvol * snd_vol; leftvol >>= 8; rightvol >>= 8; sfx = (signed short *)sc->data + ch->pos; for (i = 0; i < count; i++) { data = sfx[i]; // this was causing integer overflow as observed in quakespasm // with the warpspasm mod moved >>8 to left/right volume above. // left = (data * leftvol) >> 8; // right = (data * rightvol) >> 8; left = data * leftvol; right = data * rightvol; paintbuffer[paintbufferstart + i].left += left; paintbuffer[paintbufferstart + i].right += right; } ch->pos += count; }