/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the included (GNU.txt) GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #ifdef PSET_CLASSIC #include "glquake.h" #include "shader.h" #include "renderque.h" #define POLYS #ifdef FTE_TARGET_WEB #define rand myrand //emscripten's libc is doing a terrible job of this. static int rand(void) { //ripped from glibc static int state = 0xdeadbeef; int val = ((state * 1103515245) + 12345) & 0x7fffffff; state = val; return val; } #endif typedef enum { DODGY, ROCKET_TRAIL, ALT_ROCKET_TRAIL, BLOOD_TRAIL, GRENADE_TRAIL, BIG_BLOOD_TRAIL, TRACER1_TRAIL, TRACER2_TRAIL, VOOR_TRAIL, BRIGHTFIELD_POINT, BLOBEXPLOSION_POINT, LAVASPLASH_POINT, EXPLOSION_POINT, EXPLOSION2_POINT, TELEPORTSPLASH_POINT, MUZZLEFLASH_POINT, QWGUNSHOT_POINT, //not actually the same as nq, to deal with higher counts better QWSTDBLOOD_POINT, //same QWLGBLOOD_POINT, //same EFFECTTYPE_MAX } effect_type_t; typedef struct cparticle_s { avec3_t org; float die; avec3_t vel; float ramp; enum { pt_static, pt_fire, pt_explode, pt_explode2, pt_blob, pt_blob2, pt_grav, pt_slowgrav, pt_oneframe } type; unsigned int rgb; struct cparticle_s *next; } cparticle_t; #define DEFAULT_NUM_PARTICLES 2048 #define ABSOLUTE_MIN_PARTICLES 512 #define ABSOLUTE_MAX_PARTICLES 8192 static int r_numparticles; static cparticle_t *particles, *active_particles, *free_particles; extern cvar_t r_part_density, r_part_classic_expgrav, r_part_classic_opaque; static unsigned int particleframe; extern qbyte default_quakepal[]; /*for ramps more than anything else*/ static int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61}; static int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66}; static int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3}; #define qpal(q) ((default_quakepal[(q)*3+0]<<0) | (default_quakepal[(q)*3+1]<<8) | (default_quakepal[(q)*3+2]<<16)) #ifndef POLYS #define BUFFERVERTS 2048*3 static vecV_t classicverts[BUFFERVERTS]; static union c { byte_vec4_t b; unsigned int i; } classiccolours[BUFFERVERTS]; static vec2_t classictexcoords[BUFFERVERTS]; static index_t classicindexes[BUFFERVERTS]; static mesh_t classicmesh; #endif static shader_t *classicshader; //obtains an index for the name, even if it is unknown (one can be loaded after. will only fail if the effect limit is reached) //technically this function is not meant to fail often, but thats fine so long as the other functions are meant to safely reject invalid effect numbers. static int PClassic_FindParticleType(const char *name) { if (!stricmp("tr_rocket", name)) return ROCKET_TRAIL; if (!stricmp("tr_altrocket", name)) return ALT_ROCKET_TRAIL; if (!stricmp("tr_slightblood", name)) return BLOOD_TRAIL; if (!stricmp("tr_grenade", name)) return GRENADE_TRAIL; if (!stricmp("tr_blood", name)) return BIG_BLOOD_TRAIL; if (!stricmp("tr_wizspike", name)) return TRACER1_TRAIL; if (!stricmp("tr_knightspike", name)) return TRACER2_TRAIL; if (!stricmp("tr_vorespike", name)) return VOOR_TRAIL; if (!stricmp("te_tarexplosion", name)) return BLOBEXPLOSION_POINT; if (!stricmp("te_lavasplash", name)) return LAVASPLASH_POINT; if (!stricmp("te_explosion", name)) return EXPLOSION_POINT; if (!strnicmp("te_explosion2_", name, 14)) { char *e; int start = strtoul(name+14, &e, 10); int len = strtoul((*e == '_')?e+1:e, &e, 10); if (!*e && start >= 0 && start <= 255 && len >= 0 && len <= 255) return EXPLOSION2_POINT | (start<<8)|(len<<16); } if (!stricmp("te_teleport", name)) return TELEPORTSPLASH_POINT; if (!stricmp("te_muzzleflash", name)) return MUZZLEFLASH_POINT; if (!stricmp("ef_brightfield", name)) return BRIGHTFIELD_POINT; if (!stricmp("te_qwgunshot", name)) return QWGUNSHOT_POINT; if (!stricmp("te_qwblood", name)) return QWSTDBLOOD_POINT; if (!stricmp("te_lightningblood", name)) return QWLGBLOOD_POINT; return P_INVALID; } static qboolean PClassic_Query(int type, int body, char *outstr, int outstrlen) { char *n = NULL; switch(type&0xff) { case ROCKET_TRAIL: n = "tr_rocket"; break; case ALT_ROCKET_TRAIL: n = "tr_altrocket"; break; case BLOOD_TRAIL: n = "tr_slightblood"; break; case GRENADE_TRAIL: n = "tr_grenade"; break; case BIG_BLOOD_TRAIL: n = "tr_blood"; break; case TRACER1_TRAIL: n = "tr_wizspike"; break; case TRACER2_TRAIL: n = "tr_knightspike"; break; case VOOR_TRAIL: n = "tr_vorespike"; break; case BLOBEXPLOSION_POINT: n = "te_tarexplosion"; break; case LAVASPLASH_POINT: n = "te_lavasplash"; break; case EXPLOSION_POINT: n = "te_explosion"; break; case EXPLOSION2_POINT: n = va("te_explosion2_%i_%i", (type>>8)&0xff, (type>>16)&0xff); break; case TELEPORTSPLASH_POINT: n = "te_teleport"; break; case BRIGHTFIELD_POINT: n = "ef_brightfield"; break; } if (!n) return false; if (body == 0) { Q_strncpyz(outstr, n, outstrlen); return true; } return false; } //a convienience function. static int PClassic_RunParticleEffectTypeString (vec3_t org, vec3_t dir, float count, char *name) { int efnum = P_FindParticleType(name); return P_RunParticleEffectState(org, dir, count, efnum, NULL); } //DP extension: add particles within a box that look like rain or snow. static void PClassic_RunParticleWeather(vec3_t minb, vec3_t maxb, vec3_t dir, float count, int colour, char *efname) { } //DP extension: add particles within a box. static void PClassic_RunParticleCube(int ptype, vec3_t minb, vec3_t maxb, vec3_t dir_min, vec3_t dir_max, float count, int colour, qboolean gravity, float jitter) { } //hexen2 support: add particles flying out from a point with a randomized speed static void PClassic_RunParticleEffect2 (vec3_t org, vec3_t dmin, vec3_t dmax, int color, int effect, int count) { } //hexen2 support: add particles within a box. static void PClassic_RunParticleEffect3 (vec3_t org, vec3_t box, int color, int effect, int count) { } //hexen2 support: add particles around the spot in a radius. no idea what the 'effect' field is. static void PClassic_RunParticleEffect4 (vec3_t org, float radius, int color, int effect, int count) { } //this function is used as a fallback in case a trail effect is unknown. static void PClassic_ParticleTrailIndex (vec3_t start, vec3_t end, int type, int color, int crnd, trailstate_t **tsk) { } //the one-time initialisation function, called no mater which renderer is active. static qboolean PClassic_InitParticles (void) { int i; if ((i = COM_CheckParm ("-particles")) && i + 1 < com_argc) { r_numparticles = (int) (Q_atoi(com_argv[i + 1])); r_numparticles = bound(ABSOLUTE_MIN_PARTICLES, r_numparticles, ABSOLUTE_MAX_PARTICLES); } else { r_numparticles = DEFAULT_NUM_PARTICLES; } particles = (cparticle_t *) BZ_Malloc (r_numparticles * sizeof(cparticle_t)); #ifndef POLYS for (i = 0; i < BUFFERVERTS; i += 3) { classictexcoords[i+1][0] = 1; classictexcoords[i+2][1] = 1; classicindexes[i+0] = i+0; classicindexes[i+1] = i+1; classicindexes[i+2] = i+2; } classicmesh.xyz_array = classicverts; classicmesh.st_array = classictexcoords; classicmesh.colors4b_array = (byte_vec4_t*)classiccolours; classicmesh.indexes = classicindexes; #endif classicshader = R_RegisterShader("particles_classic", SUF_NONE, "{\n" "program defaultsprite\n" "nomipmaps\n" "surfaceparm nodlight\n" "{\n" "if r_part_classic_square\n" "map classicparticle_square\n" "else\n" "map classicparticle\n" "endif\n" "rgbgen vertex\n" "alphagen vertex\n" "blendfunc blend\n" "}\n" "}\n" ); return true; } static void PClassic_ShutdownParticles(void) { BZ_Free(particles); particles = NULL; } // a classic trailstate is really just a float stored in a pointer variable... // assuming float alignment/size is more strict than pointer static float Classic_GetLeftover(trailstate_t **tsk) { float *f = (float *)tsk; if (!f) return 0; return *f; } static void Classic_SetLeftover(trailstate_t **tsk, float leftover) { float *f = (float *)tsk; if (f) *f = leftover; } //called when an entity is removed from the world, taking its trailstate with it. static void PClassic_DelinkTrailstate(trailstate_t **tsk) { *tsk = NULL; } //wipes all the particles ready for the next map. static void PClassic_ClearParticles (void) { int i; free_particles = &particles[0]; active_particles = NULL; for (i = 0;i < r_numparticles; i++) particles[i].next = &particles[i+1]; particles[r_numparticles - 1].next = NULL; } //some particles (brightfield) must last only one frame static void PClassic_ClearPerFrame(void) { if (particleframe != -1 && particleframe != cl_framecount) { cparticle_t **link, *kill; for (link = &active_particles; *link; ) { if ((*link)->type == pt_oneframe) { kill = *link; *link = kill->next; kill->next = free_particles; free_particles = kill; } else link = &(*link)->next; } } } //draws all the active particles. static void PClassic_DrawParticles(void) { cparticle_t *p, *kill; int i; float time2, time3, time1, dvel, frametime, grav; vec3_t up, right; float dist, scale, r_partscale=0; #ifdef POLYS scenetris_t *scenetri; #else union c usecolours; #endif static float oldtime; RSpeedMark(); if (!active_particles) { oldtime = cl.time; return; } if (particleframe != -1 && particleframe != cl_framecount) { PClassic_ClearPerFrame(); particleframe = -1; } if (r_refdef.useperspective) r_partscale = 0.004 * tan (r_refdef.fov_x * (M_PI / 180) * 0.5f); else r_partscale = 0; VectorScale (vup, 1.5, up); VectorScale (vright, 1.5, right); frametime = cl.time - oldtime; oldtime = cl.time; frametime = bound(0, frametime, 1); if (cl.paused || r_secondaryview || r_refdef.recurse) frametime = 0; time3 = frametime * 15; time2 = frametime * 10; // 15; time1 = frametime * 5; grav = frametime * 800 * 0.05; dvel = 4 * frametime; #ifdef POLYS // if (cl_numstris && cl_stris[cl_numstris-1].shader == classicshader && cl_stris[cl_numstris-1].numvert + 8 <= MAX_INDICIES) // scenetri = &cl_stris[cl_numstris-1]; // else { if (cl_numstris == cl_maxstris) { cl_maxstris+=8; cl_stris = BZ_Realloc(cl_stris, sizeof(*cl_stris)*cl_maxstris); } scenetri = &cl_stris[cl_numstris++]; scenetri->shader = classicshader; scenetri->flags = BEF_NODLIGHT|BEF_NOSHADOWS; scenetri->firstidx = cl_numstrisidx; scenetri->firstvert = cl_numstrisvert; scenetri->numvert = 0; scenetri->numidx = 0; } #endif while(1) { kill = active_particles; if (kill && kill->die < cl.time) { active_particles = kill->next; kill->next = free_particles; free_particles = kill; continue; } break; } for (p = active_particles; p ; p = p->next) { while (1) { kill = p->next; if (kill && kill->die < cl.time) { p->next = kill->next; kill->next = free_particles; free_particles = kill; continue; } break; } // hack a scale up to keep particles from disapearing dist = (p->org[0] - r_origin[0]) * vpn[0] + (p->org[1] - r_origin[1]) * vpn[1] + (p->org[2] - r_origin[2]) * vpn[2]; scale = 1 + dist * r_partscale; #ifdef POLYS if (cl_numstrisvert+3 > cl_maxstrisvert) { cl_maxstrisvert+=1024*3; cl_strisvertv = BZ_Realloc(cl_strisvertv, sizeof(*cl_strisvertv)*cl_maxstrisvert); cl_strisvertt = BZ_Realloc(cl_strisvertt, sizeof(*cl_strisvertt)*cl_maxstrisvert); cl_strisvertc = BZ_Realloc(cl_strisvertc, sizeof(*cl_strisvertc)*cl_maxstrisvert); } // Vector4Set(cl_strisvertc[cl_numstrisvert+0],1,1,1,1); // Vector4Set(cl_strisvertc[cl_numstrisvert+1],1,1,1,1); // Vector4Set(cl_strisvertc[cl_numstrisvert+2],1,1,1,1); Vector4Set(cl_strisvertc[cl_numstrisvert+0], ((p->rgb&0xff)>>0)/255.0, ((p->rgb&0xff00)>>8)/255.0, ((p->rgb&0xff0000)>>16)/255.0, ((p->type == pt_fire && !r_part_classic_opaque.ival)?((6 - p->ramp) *0.166666):1.0)); Vector4Copy(cl_strisvertc[cl_numstrisvert+0], cl_strisvertc[cl_numstrisvert+1]); Vector4Copy(cl_strisvertc[cl_numstrisvert+0], cl_strisvertc[cl_numstrisvert+2]); Vector2Set(cl_strisvertt[cl_numstrisvert+0], 0, 0); Vector2Set(cl_strisvertt[cl_numstrisvert+1], 1, 0); Vector2Set(cl_strisvertt[cl_numstrisvert+2], 0, 1); VectorCopy(p->org, cl_strisvertv[cl_numstrisvert+0]); VectorMA(p->org, scale, up, cl_strisvertv[cl_numstrisvert+1]); VectorMA(p->org, scale, right, cl_strisvertv[cl_numstrisvert+2]); if (cl_numstrisidx+3 > cl_maxstrisidx) { cl_maxstrisidx += 1024*3; cl_strisidx = BZ_Realloc(cl_strisidx, sizeof(*cl_strisidx)*cl_maxstrisidx); } cl_strisidx[cl_numstrisidx++] = (cl_numstrisvert - scenetri->firstvert) + 0; cl_strisidx[cl_numstrisidx++] = (cl_numstrisvert - scenetri->firstvert) + 1; cl_strisidx[cl_numstrisidx++] = (cl_numstrisvert - scenetri->firstvert) + 2; cl_numstrisvert += 3; scenetri->numvert += 3; scenetri->numidx += 3; #else if (classicmesh.numvertexes >= BUFFERVERTS-3) { classicmesh.numindexes = classicmesh.numvertexes; BE_DrawMesh_Single(classicshader, &classicmesh, NULL, &classicshader->defaulttextures, 0); classicmesh.numvertexes = 0; } usecolours.i = p->rgb; if (p->type == pt_fire) usecolours.b[3] = 255 * (6 - p->ramp) / 6; else usecolours.b[3] = 255; classiccolours[classicmesh.numvertexes].i = usecolours.i; VectorCopy(p->org, classicverts[classicmesh.numvertexes]); classicmesh.numvertexes++; classiccolours[classicmesh.numvertexes].i = usecolours.i; VectorMA(p->org, scale, up, classicverts[classicmesh.numvertexes]); classicmesh.numvertexes++; classiccolours[classicmesh.numvertexes].i = usecolours.i; VectorMA(p->org, scale, right, classicverts[classicmesh.numvertexes]); classicmesh.numvertexes++; #endif p->org[0] += p->vel[0] * frametime; p->org[1] += p->vel[1] * frametime; p->org[2] += p->vel[2] * frametime; switch (p->type) { case pt_oneframe: case pt_static: break; case pt_fire: p->ramp += time1; if (p->ramp >= 6) p->die = -1; else p->rgb = qpal(ramp3[(int) p->ramp]); p->vel[2] += grav; break; case pt_explode: p->ramp += time2; if (p->ramp >=8) p->die = -1; else p->rgb = qpal(ramp1[(int) p->ramp]); for (i = 0; i < 3; i++) p->vel[i] += p->vel[i] * dvel; p->vel[2] -= grav*r_part_classic_expgrav.value; break; case pt_explode2: p->ramp += time3; if (p->ramp >=8) p->die = -1; else p->rgb = qpal(ramp2[(int) p->ramp]); for (i = 0; i < 3; i++) p->vel[i] -= p->vel[i] * frametime; p->vel[2] -= grav*r_part_classic_expgrav.value; break; case pt_blob: for (i = 0; i < 3; i++) p->vel[i] += p->vel[i] * dvel; p->vel[2] -= grav; break; case pt_blob2: for (i = 0; i < 2; i++) p->vel[i] -= p->vel[i] * dvel; p->vel[2] -= grav; break; case pt_slowgrav: case pt_grav: p->vel[2] -= grav; break; } } #ifndef POLYS if (classicmesh.numvertexes) { classicmesh.numindexes = classicmesh.numvertexes; BE_DrawMesh_Single(classicshader, &classicmesh, NULL, &classicshader->defaulttextures, 0); classicmesh.numvertexes = 0; } #endif RSpeedEnd(RSPEED_PARTICLESDRAW); } static void Classic_ParticleExplosion (vec3_t org) { int i, j; cparticle_t *p; int count; count = 1024 * r_part_density.value; for (i = 0; i < count; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 5; p->rgb = d_8to24rgbtable[ramp1[0]]; p->ramp = rand() & 3; if (i & 1) { p->type = pt_explode; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } else { p->type = pt_explode2; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand()%512) - 256; } } } } static void Classic_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength) { int i, j; cparticle_t *p; int colorMod = 0; for (i=0; i<512; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.3; p->rgb = d_8to24rgbtable[(colorStart + (colorMod % colorLength)) & 255]; colorMod++; p->type = pt_blob; for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } static void Classic_BlobExplosion (vec3_t org) { int i, j; cparticle_t *p; int count; count = 1024 * r_part_density.value; for (i = 0; i < count; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 1 + (rand() & 8) * 0.05; if (i & 1) { p->type = pt_blob; p->rgb = d_8to24rgbtable[66 + rand() % 6]; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } else { p->type = pt_blob2; p->rgb = d_8to24rgbtable[150 + rand() % 6]; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } } } static void Classic_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count, qboolean qwstyle) { int i, j, scale; cparticle_t *p; if (!dir) dir = vec3_origin; if (qwstyle) scale = (count > 130) ? 3 : (count > 20) ? 2 : 1; //QW else scale = 1; //NQ count = ceil(count*r_part_density.value); //round-to-0 was resulting in blood being far too hard to see, especially when blood is often spawned with multiple points all rounded down for (i = 0; i < count; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.1 * (rand() % 5); p->rgb = d_8to24rgbtable[(color & ~7) + (rand() & 7)]; if (qwstyle) p->type = pt_grav; //QW else p->type = pt_slowgrav; //NQ for (j = 0; j < 3; j++) { p->org[j] = org[j] + scale * ((rand() & 15) - 8); p->vel[j] = dir[j] * 15; } } } static void Classic_LavaSplash (vec3_t org) { int i, j, k; cparticle_t *p; float vel; vec3_t dir; for (i = -16; i < 16; i++) { for (j = -16; j < 16; j++) { for (k = 0; k < 1; k++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 2 + (rand() & 31) * 0.02; p->rgb = d_8to24rgbtable[224 + (rand() & 7)]; p->type = pt_grav; dir[0] = j * 8 + (rand() & 7); dir[1] = i * 8 + (rand() & 7); dir[2] = 256; p->org[0] = org[0] + dir[0]; p->org[1] = org[1] + dir[1]; p->org[2] = org[2] + (rand() & 63); VectorNormalizeFast (dir); vel = 50 + (rand() & 63); VectorScale (dir, vel, p->vel); } } } } static void Classic_TeleportSplash (vec3_t org) { int i, j, k; cparticle_t *p; float vel; vec3_t dir; int st = 4 / r_part_density.value; if (st == 0) st = 1; for (i = -16; i < 16; i += st) { for (j = -16; j < 16; j += st) { for (k = -24; k < 32; k += st) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.2 + (rand() & 7) * 0.02; p->rgb = d_8to24rgbtable[7 + (rand() & 7)]; p->type = pt_grav; dir[0] = j * 8; dir[1] = i * 8; dir[2] = k * 8; p->org[0] = org[0] + i + (rand() & 3); p->org[1] = org[1] + j + (rand() & 3); p->org[2] = org[2] + k + (rand() & 3); VectorNormalizeFast (dir); vel = 50 + (rand() & 63); VectorScale (dir, vel, p->vel); } } } } #define NUMVERTEXNORMALS 162 //vec3_t avelocity = {23, 7, 3}; //float partstep = 0.01; //float timescale = 0.01; static vec3_t avelocities[NUMVERTEXNORMALS]; static void Classic_BrightField (vec3_t org) { extern float r_avertexnormals[NUMVERTEXNORMALS][3]; float beamlength = 16; int i; cparticle_t *p; float angle; float sp, sy, cp, cy; vec3_t forward; float dist; PClassic_ClearPerFrame(); particleframe = cl_framecount; dist = 64; if (!avelocities[0][0]) { for (i=0 ; inext; p->next = active_particles; active_particles = p; angle = cl.time * avelocities[i][0]; sy = sin(angle); cy = cos(angle); angle = cl.time * avelocities[i][1]; sp = sin(angle); cp = cos(angle); //fixme: is roll important? forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; p->die = cl.time;// + 0.01; p->rgb = d_8to24rgbtable[0x6f]; p->type = pt_oneframe; p->org[0] = org[0] + r_avertexnormals[i][0]*dist + forward[0]*beamlength; p->org[1] = org[1] + r_avertexnormals[i][1]*dist + forward[1]*beamlength; p->org[2] = org[2] + r_avertexnormals[i][2]*dist + forward[2]*beamlength; } } //svc_tempentity support: this is the function that handles 'special' point effects. //use the trail state so fast/slow frames keep the correct particle counts on certain every-frame effects static int PClassic_RunParticleEffectState (vec3_t org, vec3_t dir, float count, int typenum, trailstate_t **tsk) { switch(typenum&0xff) { case BRIGHTFIELD_POINT: Classic_BrightField(org); break; case BLOBEXPLOSION_POINT: Classic_BlobExplosion(org); break; case LAVASPLASH_POINT: Classic_LavaSplash(org); break; case EXPLOSION_POINT: Classic_ParticleExplosion(org); break; case EXPLOSION2_POINT: Classic_ParticleExplosion2(org, (typenum>>8)&0xff, (typenum>>16)&0xff); break; case TELEPORTSPLASH_POINT: Classic_TeleportSplash(org); break; case MUZZLEFLASH_POINT: { dlight_t *dl = CL_AllocDlight (0); if (dir) VectorCopy(dir, dl->axis[0]); else VectorSet(dir, 0, 0, 1); VectorVectors(dl->axis[0], dl->axis[1], dl->axis[2]); VectorInverse(dl->axis[1]); if (dir) VectorMA (org, 15, dl->axis[0], dl->origin); else VectorCopy (org, dl->origin); dl->radius = 200 + (rand()&31); dl->minlight = 32; dl->die = cl.time + 0.1; dl->color[0] = 1.5; dl->color[1] = 1.3; dl->color[2] = 1.0; dl->channelfade[0] = 1.5; dl->channelfade[1] = 0.75; dl->channelfade[2] = 0.375; dl->decay = 1000; #ifdef RTLIGHTS dl->lightcolourscales[2] = 4; #endif } break; case QWGUNSHOT_POINT: Classic_RunParticleEffect(org, dir, 0, count*20, true); break; case QWSTDBLOOD_POINT: Classic_RunParticleEffect(org, dir, 73, count*20, true); break; case QWLGBLOOD_POINT: Classic_RunParticleEffect(org, dir, 225, count*50, true); break; default: return 1; } return 0; } static float Classic_ParticleTrail (vec3_t start, vec3_t end, float leftover, effect_type_t type) { vec3_t point, delta, dir, step; float len, rlen, scale; int i, j, num_particles; cparticle_t *p; static int tracercount; if (type >= BRIGHTFIELD_POINT) { PClassic_RunParticleEffectState(end, vec3_origin, 1, type, NULL); return 0; } VectorCopy (start, point); VectorSubtract (end, start, delta); if (!(len = VectorLength (delta))) goto done; VectorScale(delta, 1 / len, dir); //unit vector in direction of trail VectorMA(point, -leftover, dir, point); len += leftover; rlen = len; switch (type) { case ALT_ROCKET_TRAIL: scale = 1.5; break; case BLOOD_TRAIL: scale = 6; break; default: scale = 3; break; case TRACER1_TRAIL: case TRACER2_TRAIL: scale = (r_part_density.value < 0.5)?6*r_part_density.value:3; break; } scale /= r_part_density.value; VectorScale (dir, scale, step); len /= scale; leftover = rlen - ((int)(len) * scale); num_particles = (int) len; for (i = 0; i < num_particles && free_particles; i++) { p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorClear (p->vel); p->die = cl.time + 2; switch(type) { case GRENADE_TRAIL: p->ramp = (rand() & 3) + 2; p->rgb = d_8to24rgbtable[ramp3[(int) p->ramp]]; p->type = pt_fire; for (j = 0; j < 3; j++) p->org[j] = point[j] + ((rand() % 6) - 3); break; case BLOOD_TRAIL: p->type = pt_slowgrav; p->rgb = d_8to24rgbtable[67 + (rand() & 3)]; for (j = 0; j < 3; j++) p->org[j] = point[j] + ((rand() % 6) - 3); break; case BIG_BLOOD_TRAIL: p->type = pt_slowgrav; p->rgb = d_8to24rgbtable[67 + (rand() & 3)]; for (j = 0; j < 3; j++) p->org[j] = point[j] + ((rand() % 6) - 3); break; case TRACER1_TRAIL: case TRACER2_TRAIL: p->die = cl.time + 0.5; p->type = pt_static; if (type == TRACER1_TRAIL) p->rgb = d_8to24rgbtable[52 + ((tracercount & 4) << 1)]; else p->rgb = d_8to24rgbtable[230 + ((tracercount & 4) << 1)]; tracercount++; VectorCopy (point, p->org); if (tracercount & 1) { //the addition of /scale here counters dir being rescaled p->vel[0] = 30 * dir[1]; p->vel[1] = 30 * -dir[0]; } else { p->vel[0] = 30 * -dir[1]; p->vel[1] = 30 * dir[0]; } break; case VOOR_TRAIL: p->rgb = d_8to24rgbtable[9 * 16 + 8 + (rand() & 3)]; p->type = pt_static; p->die = cl.time + 0.3; for (j = 0; j < 3; j++) p->org[j] = point[j] + ((rand() & 15) - 8); break; case ALT_ROCKET_TRAIL: p->ramp = (rand() & 3); p->rgb = d_8to24rgbtable[ramp3[(int) p->ramp]]; p->type = pt_fire; for (j = 0; j < 3; j++) p->org[j] = point[j] + ((rand() % 6) - 3); break; case ROCKET_TRAIL: default: p->ramp = (rand() & 3); p->rgb = d_8to24rgbtable[ramp3[(int) p->ramp]]; p->type = pt_fire; for (j = 0; j < 3; j++) p->org[j] = point[j] + ((rand() % 6) - 3); break; } VectorAdd (point, step, point); } done: return leftover; } int PClassic_PointFile(int c, vec3_t point) { cparticle_t *p; if (!free_particles) return 0; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorClear (p->vel); p->die = 99999; p->rgb = d_8to24rgbtable[(-c) & 0xff]; p->type = pt_static; VectorCopy(point, p->org); return 1; } //builds a trail from here to there. The trail state can be used to remember how far you got last frame. static int PClassic_ParticleTrail (vec3_t startpos, vec3_t end, int type, int dlkey, vec3_t dlaxis[3], trailstate_t **tsk) { float leftover; if (type == P_INVALID) return 1; leftover = Classic_ParticleTrail(startpos, end, Classic_GetLeftover(tsk), type); Classic_SetLeftover(tsk, leftover); return 0; } //svc_particle support: add X particles with the given colour, velocity, and aproximate origin. static void PClassic_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count) { Classic_RunParticleEffect(org, dir, color, count, false); } static void PClassic_RunParticleEffectPalette (const char *nameprefix, vec3_t org, vec3_t dir, int color, int count) { Classic_RunParticleEffect(org, dir, color, count, false); } particleengine_t pe_classic = { "Classic", NULL, PClassic_FindParticleType, PClassic_Query, PClassic_RunParticleEffectTypeString, PClassic_ParticleTrail, PClassic_RunParticleEffectState, PClassic_RunParticleWeather, PClassic_RunParticleCube, PClassic_RunParticleEffect, PClassic_RunParticleEffect2, PClassic_RunParticleEffect3, PClassic_RunParticleEffect4, PClassic_RunParticleEffectPalette, PClassic_ParticleTrailIndex, PClassic_InitParticles, PClassic_ShutdownParticles, PClassic_DelinkTrailstate, PClassic_ClearParticles, PClassic_DrawParticles }; #endif