/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_light.c #include "quakedef.h" #ifdef RGLQUAKE #include "glquake.h" int r_dlightframecount; /* ================== R_AnimateLight ================== */ void GLR_AnimateLight (void) { int i,j; int v1, v2; float f; // // light animations // 'm' is normal light, 'a' is no light, 'z' is double bright f = (cl.time*r_lightstylespeed.value); if (f < 0) f = 0; i = (int)f; if (r_lightstylesmooth.value) f -= i; //this can require updates at 1000 times a second.. Depends on your framerate of course else f = 0; //only update them 10 times a second for (j=0 ; j=0 ; i--) { a = i/16.0 * M_PI*2; *bub_sin++ = sin(a); *bub_cos++ = cos(a); } } void R_RenderDlight (dlight_t *light) { int i, j; // float a; vec3_t v; float rad; float *bub_sin, *bub_cos; bub_sin = bubble_sintable; bub_cos = bubble_costable; rad = light->radius * 0.35; VectorSubtract (light->origin, r_origin, v); if (Length (v) < rad) { // view is inside the dlight AddLightBlend (1, 0.5, 0, light->radius * 0.0003); return; } qglBegin (GL_TRIANGLE_FAN); // qglColor3f (0.2,0.1,0.0); // qglColor3f (0.2,0.1,0.05); // changed dimlight effect qglColor4f (light->color[0]*2, light->color[1]*2, light->color[2]*2, 1);//light->color[3]); for (i=0 ; i<3 ; i++) v[i] = light->origin[i] - vpn[i]*rad/1.5; qglVertex3fv (v); qglColor3f (0,0,0); for (i=16 ; i>=0 ; i--) { // a = i/16.0 * M_PI*2; for (j=0 ; j<3 ; j++) v[j] = light->origin[j] + (vright[j]*(*bub_cos) + + vup[j]*(*bub_sin)) * rad; bub_sin++; bub_cos++; qglVertex3fv (v); } qglEnd (); } /* ============= R_RenderDlights ============= */ void R_RenderDlights (void) { int i; dlight_t *l; if (!r_flashblend.value) return; // r_dlightframecount = r_framecount + 1; // because the count hasn't // advanced yet for this frame qglDepthMask (0); qglDisable (GL_TEXTURE_2D); qglShadeModel (GL_SMOOTH); qglEnable (GL_BLEND); qglBlendFunc (GL_ONE, GL_ONE); l = cl_dlights; for (i=0 ; iradius || l->noflash) continue; R_RenderDlight (l); } qglColor3f (1,1,1); qglDisable (GL_BLEND); qglEnable (GL_TEXTURE_2D); qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); qglDepthMask (1); } /* ============================================================================= DYNAMIC LIGHTS ============================================================================= */ /* ============= R_MarkLights ============= */ /*void GLR_MarkLights (dlight_t *light, int bit, mnode_t *node) { mplane_t *splitplane; float dist; msurface_t *surf; int i; if (node->contents < 0) return; splitplane = node->plane; dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist; if (dist > light->radius) { GLR_MarkLights (light, bit, node->children[0]); return; } if (dist < -light->radius) { GLR_MarkLights (light, bit, node->children[1]); return; } // mark the polygons surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->dlightframe != r_dlightframecount) { surf->dlightbits = 0; surf->dlightframe = r_dlightframecount; } surf->dlightbits |= bit; } GLR_MarkLights (light, bit, node->children[0]); GLR_MarkLights (light, bit, node->children[1]); }*/ /*void Q2BSP_MarkLights (dlight_t *light, int bit, mnode_t *node) { mplane_t *splitplane; float dist; msurface_t *surf; int i; if (node->contents != -1) return; splitplane = node->plane; dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist; if (dist > light->radius) { Q2BSP_MarkLights (light, bit, node->children[0]); return; } if (dist < -light->radius) { Q2BSP_MarkLights (light, bit, node->children[1]); return; } // mark the polygons surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->dlightframe != r_dlightframecount) { surf->dlightbits = 0; surf->dlightframe = r_dlightframecount; } surf->dlightbits |= bit; } Q2BSP_MarkLights (light, bit, node->children[0]); Q2BSP_MarkLights (light, bit, node->children[1]); }*/ void GLR_MarkQ3Lights (dlight_t *light, int bit, mnode_t *node) { mplane_t *splitplane; float dist; msurface_t *surf; int i; return; //we need to get the texinfos right first. /* //mark all for (surf = cl.worldmodel->surfaces, i = 0; i < cl.worldmodel->numsurfaces; i++, surf++) { if (surf->dlightframe != r_dlightframecount) { surf->dlightbits = 0; surf->dlightframe = r_dlightframecount; } surf->dlightbits |= bit; } return; */ if (node->contents != -1) { msurface_t **mark; mleaf_t *leaf; // mark the polygons leaf = (mleaf_t *)node; mark = leaf->firstmarksurface; for (i=0 ; inummarksurfaces ; i++, surf++) { surf = *mark++; if (surf->dlightframe != r_dlightframecount) { surf->dlightbits = 0; surf->dlightframe = r_dlightframecount; } surf->dlightbits |= bit; } return; } splitplane = node->plane; dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist; if (dist > light->radius) { GLR_MarkQ3Lights (light, bit, node->children[0]); return; } if (dist < -light->radius) { GLR_MarkQ3Lights (light, bit, node->children[1]); return; } GLR_MarkQ3Lights (light, bit, node->children[0]); GLR_MarkQ3Lights (light, bit, node->children[1]); } /* ============= R_PushDlights ============= */ void GLR_PushDlights (void) { int i; dlight_t *l; r_dlightframecount = r_framecount + 1; // because the count hasn't // advanced yet for this frame if (!r_dynamic.value) return; // if (!cl.worldmodel->nodes) // return; l = cl_dlights; for (i=0 ; iradius || l->nodynamic) continue; cl.worldmodel->funcs.MarkLights( l, 1<nodes ); } } /* ============================================================================= LIGHT SAMPLING ============================================================================= */ mplane_t *lightplane; vec3_t lightspot; void GLQ3_LightGrid(vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir) { q3lightgridinfo_t *lg = (q3lightgridinfo_t *)cl.worldmodel->lightgrid; int index[8]; int vi[3]; int i, j; float t[8], direction_uv[3]; vec3_t vf, vf2; vec3_t ambient, diffuse; if (res_dir) { res_dir[0] = 1; res_dir[1] = 1; res_dir[2] = 0.1; } if (!lg || !lg->lightgrid) { if(res_ambient) { res_ambient[0] = 64; res_ambient[1] = 64; res_ambient[2] = 64; } if (res_diffuse) { res_diffuse[0] = 192; res_diffuse[1] = 192; res_diffuse[2] = 192; } return; } //If in doubt, steal someone else's code... //Thanks QFusion. for ( i = 0; i < 3; i++ ) { vf[i] = (point[i] - lg->gridMins[i]) / lg->gridSize[i]; vi[i] = (int)(vf[i]); vf[i] = vf[i] - floor(vf[i]); vf2[i] = 1.0f - vf[i]; } index[0] = vi[2]*lg->gridBounds[3] + vi[1]*lg->gridBounds[0] + vi[0]; index[1] = index[0] + lg->gridBounds[0]; index[2] = index[0] + lg->gridBounds[3]; index[3] = index[2] + lg->gridBounds[0]; index[4] = index[0]+(index[0]<(lg->numlightgridelems-1)); index[5] = index[1]+(index[1]<(lg->numlightgridelems-1)); index[6] = index[2]+(index[2]<(lg->numlightgridelems-1)); index[7] = index[3]+(index[3]<(lg->numlightgridelems-1)); /* qglDisable(GL_TEXTURE_2D); qglDisable(GL_DEPTH_TEST); qglDisable(GL_CULL_FACE); qglColor4f(1,1,1,1); qglBegin(GL_QUADS); for ( i = 0; i < 8; i++ ) { vec3_t pos; for(j=0;j<3;j++) pos[j] = (vi[j] +((i&1)/1*(j==0)) +((i&2)/2*(j==1)) +((i&4)/4*(j==2)) )*lg->gridSize[j] + lg->gridMins[j]; qglVertex3fv(pos); } qglEnd(); */ for ( i = 0; i < 8; i++ ) { if ( index[i] < 0 || index[i] >= (lg->numlightgridelems) ) { res_ambient[0] = 255; //out of the map res_ambient[1] = 255; res_ambient[2] = 255; return; } } t[0] = vf2[0] * vf2[1] * vf2[2]; t[1] = vf[0] * vf2[1] * vf2[2]; t[2] = vf2[0] * vf[1] * vf2[2]; t[3] = vf[0] * vf[1] * vf2[2]; t[4] = vf2[0] * vf2[1] * vf[2]; t[5] = vf[0] * vf2[1] * vf[2]; t[6] = vf2[0] * vf[1] * vf[2]; t[7] = vf[0] * vf[1] * vf[2]; for ( j = 0; j < 3; j++ ) { ambient[j] = 0; diffuse[j] = 0; for ( i = 0; i < 4; i++ ) { ambient[j] += t[i*2] * lg->lightgrid[ index[i]].ambient[j]; ambient[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].ambient[j]; diffuse[j] += t[i*2] * lg->lightgrid[ index[i]].diffuse[j]; diffuse[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].diffuse[j]; } } for ( j = 0; j < 2; j++ ) { direction_uv[j] = 0; for ( i = 0; i < 4; i++ ) { direction_uv[j] += t[i*2] * lg->lightgrid[ index[i]].direction[j]; direction_uv[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].direction[j]; } direction_uv[j] = anglemod ( direction_uv[j] ); } VectorCopy(ambient, res_ambient); if (res_diffuse) VectorCopy(diffuse, res_diffuse); if (res_dir) { vec3_t right, left; direction_uv[2] = 0; AngleVectors(direction_uv, res_dir, right, left); } } int GLRecursiveLightPoint (mnode_t *node, vec3_t start, vec3_t end) { int r; float front, back, frac; int side; mplane_t *plane; vec3_t mid; msurface_t *surf; int s, t, ds, dt; int i; mtexinfo_t *tex; qbyte *lightmap; unsigned scale; int maps; if (cl.worldmodel->fromgame == fg_quake2) { if (node->contents != -1) return -1; // solid } else if (node->contents < 0) return -1; // didn't hit anything // calculate mid point // FIXME: optimize for axial plane = node->plane; front = DotProduct (start, plane->normal) - plane->dist; back = DotProduct (end, plane->normal) - plane->dist; side = front < 0; if ( (back < 0) == side) return GLRecursiveLightPoint (node->children[side], start, end); frac = front / (front-back); mid[0] = start[0] + (end[0] - start[0])*frac; mid[1] = start[1] + (end[1] - start[1])*frac; mid[2] = start[2] + (end[2] - start[2])*frac; // go down front side r = GLRecursiveLightPoint (node->children[side], start, mid); if (r >= 0) return r; // hit something if ( (back < 0) == side ) return -1; // didn't hit anuthing // check for impact on this node VectorCopy (mid, lightspot); lightplane = plane; surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->flags & SURF_DRAWTILED) continue; // no lightmaps tex = surf->texinfo; s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3]; t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];; if (s < surf->texturemins[0] || t < surf->texturemins[1]) continue; ds = s - surf->texturemins[0]; dt = t - surf->texturemins[1]; if ( ds > surf->extents[0] || dt > surf->extents[1] ) continue; if (!surf->samples) return 0; ds >>= 4; dt >>= 4; lightmap = surf->samples; r = 0; if (lightmap) { if (cl.worldmodel->rgblighting) { lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]; r += (lightmap[0]+lightmap[1]+lightmap[2]) * scale / 3; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1)*3; } } else { lightmap += dt * ((surf->extents[0]>>4)+1) + ds; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]; r += *lightmap * scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1); } } r >>= 8; } return r; } // go down back side return GLRecursiveLightPoint (node->children[!side], mid, end); } int GLR_LightPoint (vec3_t p) { vec3_t end; int r; if (r_refdef.flags & 1) return 255; if (!cl.worldmodel || !cl.worldmodel->lightdata) return 255; if (cl.worldmodel->fromgame == fg_quake3) { GLQ3_LightGrid(p, NULL, end, NULL); return (end[0] + end[1] + end[2])/3; } end[0] = p[0]; end[1] = p[1]; end[2] = p[2] - 2048; r = GLRecursiveLightPoint (cl.worldmodel->nodes, p, end); if (r == -1) r = 0; return r; } #ifdef PEXT_LIGHTSTYLECOL float *GLRecursiveLightPoint3C (mnode_t *node, vec3_t start, vec3_t end) { static float l[6]; float *r; float front, back, frac; int side; mplane_t *plane; vec3_t mid; msurface_t *surf; int s, t, ds, dt; int i; mtexinfo_t *tex; qbyte *lightmap, *deluxmap; float scale; int maps; if (cl.worldmodel->fromgame == fg_quake2) { if (node->contents != -1) return NULL; // solid } else if (node->contents < 0) return NULL; // didn't hit anything // calculate mid point // FIXME: optimize for axial plane = node->plane; front = DotProduct (start, plane->normal) - plane->dist; back = DotProduct (end, plane->normal) - plane->dist; side = front < 0; if ( (back < 0) == side) return GLRecursiveLightPoint3C (node->children[side], start, end); frac = front / (front-back); mid[0] = start[0] + (end[0] - start[0])*frac; mid[1] = start[1] + (end[1] - start[1])*frac; mid[2] = start[2] + (end[2] - start[2])*frac; // go down front side r = GLRecursiveLightPoint3C (node->children[side], start, mid); if (r && r[0]+r[1]+r[2] >= 0) return r; // hit something if ( (back < 0) == side ) return NULL; // didn't hit anuthing // check for impact on this node VectorCopy (mid, lightspot); lightplane = plane; surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->flags & SURF_DRAWTILED) continue; // no lightmaps tex = surf->texinfo; s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3]; t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3]; if (s < surf->texturemins[0] || t < surf->texturemins[1]) continue; ds = s - surf->texturemins[0]; dt = t - surf->texturemins[1]; if ( ds > surf->extents[0] || dt > surf->extents[1] ) continue; if (!surf->samples) { l[0]=0;l[1]=0;l[2]=0; l[3]=0;l[4]=1;l[5]=1; return l; } ds >>= 4; dt >>= 4; lightmap = surf->samples; l[0]=0;l[1]=0;l[2]=0; l[3]=0;l[4]=0;l[5]=0; if (lightmap) { if (cl.worldmodel->deluxdata) { if (cl.worldmodel->rgblighting) { deluxmap = surf->samples - cl.worldmodel->lightdata + cl.worldmodel->deluxdata; lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; deluxmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]/256.0f; if (cl_lightstyle[surf->styles[maps]].colour & 1) l[0] += lightmap[0] * scale; if (cl_lightstyle[surf->styles[maps]].colour & 2) l[1] += lightmap[1] * scale; if (cl_lightstyle[surf->styles[maps]].colour & 4) l[2] += lightmap[2] * scale; l[3] += (deluxmap[0]-127)*scale; l[4] += (deluxmap[1]-127)*scale; l[5] += (deluxmap[2]-127)*scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1) * 3; deluxmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1) * 3; } } else { deluxmap = (surf->samples - cl.worldmodel->lightdata)*3 + cl.worldmodel->deluxdata; lightmap += (dt * ((surf->extents[0]>>4)+1) + ds); deluxmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]/256.0f; if (cl_lightstyle[surf->styles[maps]].colour & 1) l[0] += *lightmap * scale; if (cl_lightstyle[surf->styles[maps]].colour & 2) l[1] += *lightmap * scale; if (cl_lightstyle[surf->styles[maps]].colour & 4) l[2] += *lightmap * scale; l[3] += deluxmap[0]*scale; l[4] += deluxmap[1]*scale; l[5] += deluxmap[2]*scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1); deluxmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1) * 3; } } } else { if (cl.worldmodel->rgblighting) { lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3; for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]/256.0f; if (cl_lightstyle[surf->styles[maps]].colour & 1) l[0] += lightmap[0] * scale; if (cl_lightstyle[surf->styles[maps]].colour & 2) l[1] += lightmap[1] * scale; if (cl_lightstyle[surf->styles[maps]].colour & 4) l[2] += lightmap[2] * scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1) * 3; } } else { lightmap += (dt * ((surf->extents[0]>>4)+1) + ds); for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]/256.0f; if (cl_lightstyle[surf->styles[maps]].colour & 1) l[0] += *lightmap * scale; if (cl_lightstyle[surf->styles[maps]].colour & 2) l[1] += *lightmap * scale; if (cl_lightstyle[surf->styles[maps]].colour & 4) l[2] += *lightmap * scale; lightmap += ((surf->extents[0]>>4)+1) * ((surf->extents[1]>>4)+1); } } } } return l; } // go down back side return GLRecursiveLightPoint3C (node->children[!side], mid, end); } #endif void GLQ1BSP_LightPointValues(vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir) { vec3_t end; float *r; end[0] = point[0]; end[1] = point[1]; end[2] = point[2] - 2048; r = GLRecursiveLightPoint3C(cl.worldmodel->nodes, point, end); if (r == NULL) { res_diffuse[0] = 0; res_diffuse[1] = 0; res_diffuse[2] = 0; res_ambient[0] = 0; res_ambient[1] = 0; res_ambient[2] = 0; res_dir[0] = 0; res_dir[1] = 1; res_dir[2] = 1; } else { res_diffuse[0] = r[0]; res_diffuse[1] = r[1]; res_diffuse[2] = r[2]; res_ambient[0] = r[0]; res_ambient[1] = r[1]; res_ambient[2] = r[2]; res_dir[0] = r[3]; res_dir[1] = r[4]; res_dir[2] = -r[5]; VectorNormalize(res_dir); if (!res_dir[0] && !res_dir[1] && !res_dir[2]) res_dir[1] = res_dir[2] = 1; } } #endif