#include "quakedef.h"

#include "com_mesh.h"

extern model_t *loadmodel;
extern char loadname[];
qboolean		r_loadbumpmapping;
extern cvar_t dpcompat_psa_ungroup;

//Common loader function.
void Mod_DoCRC(model_t *mod, char *buffer, int buffersize)
{
#ifndef SERVERONLY
	//we've got to have this bit
	if (loadmodel->engineflags & MDLF_DOCRC)
	{
		unsigned short crc;
		qbyte *p;
		int len;
		char st[40];

		QCRC_Init(&crc);
		for (len = buffersize, p = buffer; len; len--, p++)
			QCRC_ProcessByte(&crc, *p);

		sprintf(st, "%d", (int) crc);
		Info_SetValueForKey (cls.userinfo[0],
			(loadmodel->engineflags & MDLF_PLAYER) ? pmodel_name : emodel_name,
			st, sizeof(cls.userinfo[0]));

		if (cls.state >= ca_connected)
		{
			CL_SendClientCommand(true, "setinfo %s %d",
				(loadmodel->engineflags & MDLF_PLAYER) ? pmodel_name : emodel_name,
				(int)crc);
		}

		if (!(loadmodel->engineflags & MDLF_PLAYER))
		{	//eyes
			loadmodel->tainted = (crc != 6967);
		}
	}
#endif
}



#if 1

#ifdef _WIN32
#include <malloc.h>
#else
#include <alloca.h>
#endif

extern cvar_t gl_part_flame, r_fullbrightSkins, r_fb_models;
extern cvar_t r_noaliasshadows;
extern cvar_t r_skin_overlays;
extern cvar_t mod_md3flags;



typedef struct
{
	char *name;
	float furthestallowedextremety;	//this field is the combined max-min square, added together
									//note that while this allows you to move models about a little, you cannot resize the visible part
} clampedmodel_t;

//these should be rounded up slightly.
//really this is only to catch spiked models. This doesn't prevent more visible models, just bigger ones.
clampedmodel_t clampedmodel[] = {
	{"maps/b_bh100.bsp", 3440},
	{"progs/player.mdl", 22497},
	{"progs/eyes.mdl", 755},
	{"progs/gib1.mdl", 374},
	{"progs/gib2.mdl", 1779},
	{"progs/gib3.mdl", 2066},
	{"progs/bolt2.mdl", 1160},
	{"progs/end1.mdl", 764},
	{"progs/end2.mdl", 981},
	{"progs/end3.mdl", 851},
	{"progs/end4.mdl", 903},
	{"progs/g_shot.mdl", 3444},
	{"progs/g_nail.mdl", 2234},
	{"progs/g_nail2.mdl", 3660},
	{"progs/g_rock.mdl", 3441},
	{"progs/g_rock2.mdl", 3660},
	{"progs/g_light.mdl", 2698},
	{"progs/invisibl.mdl", 196},
	{"progs/quaddama.mdl", 2353},
	{"progs/invulner.mdl", 2746},
	{"progs/suit.mdl", 3057},
	{"progs/missile.mdl", 416},
	{"progs/grenade.mdl", 473},
	{"progs/spike.mdl", 112},
	{"progs/s_spike.mdl", 112},
	{"progs/backpack.mdl", 1117},
	{"progs/armor.mdl", 2919},
	{"progs/s_bubble.spr", 100},
	{"progs/s_explod.spr", 1000},

	//and now TF models
#ifdef warningmsg
#pragma warningmsg("FIXME: these are placeholders")
#endif
	{"progs/disp.mdl", 3000},
	{"progs/tf_flag.mdl", 3000},
	{"progs/tf_stan.mdl", 3000},
	{"progs/turrbase.mdl", 3000},
	{"progs/turrgun.mdl", 3000}
};









void Mod_AccumulateTextureVectors(vecV_t *vc, vec2_t *tc, vec3_t *nv, vec3_t *sv, vec3_t *tv, index_t *idx, int numidx)
{
	int i;
	float *v0, *v1, *v2;
	float *tc0, *tc1, *tc2;

	vec3_t d1, d2;
	float td1, td2;

	vec3_t norm, t, s;
	vec3_t temp;

	for (i = 0; i < numidx; i += 3)
	{
		//this is the stuff we're working from
		v0 = vc[idx[i+0]];
		v1 = vc[idx[i+1]];
		v2 = vc[idx[i+2]];
		tc0 = tc[idx[i+0]];
		tc1 = tc[idx[i+1]];
		tc2 = tc[idx[i+2]];

		//calc perpendicular directions
		VectorSubtract(v1, v0, d1);
		VectorSubtract(v2, v0, d2);

		//calculate s as the pependicular of the t dir
		td1 = tc1[1] - tc0[1];
		td2 = tc2[1] - tc0[1];
		s[0] = td1 * d2[0] - td2 * d1[0];
		s[1] = td1 * d2[1] - td2 * d1[1];
		s[2] = td1 * d2[2] - td2 * d1[2];

		//calculate t as the pependicular of the s dir
		td1 = tc1[0] - tc0[0];
		td2 = tc2[0] - tc0[0];
		t[0] = td1 * d2[0] - td2 * d1[0];
		t[1] = td1 * d2[1] - td2 * d1[1];
		t[2] = td1 * d2[2] - td2 * d1[2];

		//the surface might be a back face and thus textured backwards
		//calc the normal twice and compare.
		norm[0] = d2[1] * d1[2] - d2[2] * d1[1];
		norm[1] = d2[2] * d1[0] - d2[0] * d1[2];
		norm[2] = d2[0] * d1[1] - d2[1] * d1[0];
		CrossProduct(t, s, temp);
		if (DotProduct(temp, norm) < 0)
		{
			VectorNegate(s, s);
			VectorNegate(t, t);
		}

		//and we're done, accumulate the result
		VectorAdd(sv[idx[i+0]], s, sv[idx[i+0]]);
		VectorAdd(sv[idx[i+1]], s, sv[idx[i+1]]);
		VectorAdd(sv[idx[i+2]], s, sv[idx[i+2]]);

		VectorAdd(tv[idx[i+0]], t, tv[idx[i+0]]);
		VectorAdd(tv[idx[i+1]], t, tv[idx[i+1]]);
		VectorAdd(tv[idx[i+2]], t, tv[idx[i+2]]);
	}
}

void Mod_AccumulateMeshTextureVectors(mesh_t *m)
{
	Mod_AccumulateTextureVectors(m->xyz_array, m->st_array, m->normals_array, m->snormals_array, m->tnormals_array, m->indexes, m->numindexes);
}

void Mod_NormaliseTextureVectors(vec3_t *n, vec3_t *s, vec3_t *t, int v)
{
	int i;
	float f;
	vec3_t tmp;

	for (i = 0; i < v; i++)
	{
		f = -DotProduct(s[i], n[i]);
		VectorMA(s[i], f, n[i], tmp);
		VectorNormalize2(tmp, s[i]);

		f = -DotProduct(t[i], n[i]);
		VectorMA(t[i], f, n[i], tmp);
		VectorNormalize2(tmp, t[i]);
	}
}



#ifdef SKELETALMODELS

static void GenMatrixPosQuat4Scale(vec3_t pos, vec4_t quat, vec3_t scale, float result[12])
{
	   float xx, xy, xz, xw, yy, yz, yw, zz, zw;
	   float x2, y2, z2;
	   float s;
	   x2 = quat[0] + quat[0];
	   y2 = quat[1] + quat[1];
	   z2 = quat[2] + quat[2];

	   xx = quat[0] * x2;   xy = quat[0] * y2;   xz = quat[0] * z2;
	   yy = quat[1] * y2;   yz = quat[1] * z2;   zz = quat[2] * z2;
	   xw = quat[3] * x2;   yw = quat[3] * y2;   zw = quat[3] * z2;

	   s = scale[0];
	   result[0*4+0] = s*(1.0f - (yy + zz));
	   result[1*4+0] = s*(xy + zw);
	   result[2*4+0] = s*(xz - yw);

	   s = scale[1];
	   result[0*4+1] = s*(xy - zw);
	   result[1*4+1] = s*(1.0f - (xx + zz));
	   result[2*4+1] = s*(yz + xw);

	   s = scale[2];
	   result[0*4+2] = s*(xz + yw);
	   result[1*4+2] = s*(yz - xw);
	   result[2*4+2] = s*(1.0f - (xx + yy));

	   result[0*4+3]  =     pos[0];
	   result[1*4+3]  =     pos[1];
	   result[2*4+3]  =     pos[2];
}
/*like above, but guess the quat.w*/
static void GenMatrixPosQuat3Scale(vec3_t pos, vec3_t quat3, vec3_t scale, float result[12])
{
	vec4_t quat4;
	float term = 1 - DotProduct(quat3, quat3);
	if (term < 0)
		quat4[3] = 0;
	else
		quat4[3] = - (float) sqrt(term);
	VectorCopy(quat3, quat4);
	GenMatrixPosQuat4Scale(pos, quat4, scale, result);
}

static void GenMatrix(float x, float y, float z, float qx, float qy, float qz, float result[12])
{
	float qw;
	{	//figure out qw
		float term = 1 - (qx*qx) - (qy*qy) - (qz*qz);
		if (term < 0)
			qw = 0;
		else
			qw = - (float) sqrt(term);
	}

	{	//generate the matrix
		/*
		float xx      = qx * qx;
		float xy      = qx * qy;
		float xz      = qx * qz;
		float xw      = qx * qw;
		float yy      = qy * qy;
		float yz      = qy * qz;
		float yw      = qy * qw;
		float zz      = qz * qz;
		float zw      = qz * qw;
		result[0*4+0]  = 1 - 2 * ( yy + zz );
		result[0*4+1]  =     2 * ( xy - zw );
		result[0*4+2]  =     2 * ( xz + yw );
		result[0*4+3]  =     x;
		result[1*4+0]  =     2 * ( xy + zw );
		result[1*4+1]  = 1 - 2 * ( xx + zz );
		result[1*4+2]  =     2 * ( yz - xw );
		result[1*4+3]  =     y;
		result[2*4+0]  =     2 * ( xz - yw );
		result[2*4+1]  =     2 * ( yz + xw );
		result[2*4+2] = 1 - 2 * ( xx + yy );
		result[2*4+3]  =     z;
		*/

		   float xx, xy, xz, xw, yy, yz, yw, zz, zw;
		   float x2, y2, z2;
		   x2 = qx + qx;
		   y2 = qy + qy;
		   z2 = qz + qz;

		   xx = qx * x2;   xy = qx * y2;   xz = qx * z2;
		   yy = qy * y2;   yz = qy * z2;   zz = qz * z2;
		   xw = qw * x2;   yw = qw * y2;   zw = qw * z2;

		   result[0*4+0] = 1.0f - (yy + zz);
		   result[1*4+0] = xy + zw;
		   result[2*4+0] = xz - yw;

		   result[0*4+1] = xy - zw;
		   result[1*4+1] = 1.0f - (xx + zz);
		   result[2*4+1] = yz + xw;

		   result[0*4+2] = xz + yw;
		   result[1*4+2] = yz - xw;
		   result[2*4+2] = 1.0f - (xx + yy);

		   result[0*4+3]  =     x;
		   result[1*4+3]  =     y;
		   result[2*4+3]  =     z;
	}
}

static void PSKGenMatrix(float x, float y, float z, float qx, float qy, float qz, float qw, float result[12])
{
	float xx, xy, xz, xw, yy, yz, yw, zz, zw;
	float x2, y2, z2;
	x2 = qx + qx;
	y2 = qy + qy;
	z2 = qz + qz;

	xx = qx * x2;   xy = qx * y2;   xz = qx * z2;
	yy = qy * y2;   yz = qy * z2;   zz = qz * z2;
	xw = qw * x2;   yw = qw * y2;   zw = qw * z2;

	result[0*4+0] = 1.0f - (yy + zz);
	result[1*4+0] = xy + zw;
	result[2*4+0] = xz - yw;

	result[0*4+1] = xy - zw;
	result[1*4+1] = 1.0f - (xx + zz);
	result[2*4+1] = yz + xw;

	result[0*4+2] = xz + yw;
	result[1*4+2] = yz - xw;
	result[2*4+2] = 1.0f - (xx + yy);

	result[0*4+3]  =     x;
	result[1*4+3]  =     y;
	result[2*4+3]  =     z;
}

#if 0
/*transforms some skeletal vecV_t values*/
static void Alias_TransformVerticies_V(float *bonepose, int vertcount, qbyte *bidx, float *weights, float *xyzin, float *fte_restrict xyzout)
{
	int i;
	float *matrix;
	for (i = 0; i < vertcount; i++, xyzout+=sizeof(vecV_t)/sizeof(vec_t), xyzin+=sizeof(vecV_t)/sizeof(vec_t), bidx+=4, weights+=4)
	{
		matrix = &bonepose[12*bidx[0]];
		xyzout[0] = weights[0] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]);
		xyzout[1] = weights[0] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]);
		xyzout[2] = weights[0] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]);

		if (bidx[1] != ~(qbyte)0)
		{
			matrix = &bonepose[12*bidx[1]];
			xyzout[0] += weights[1] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]);
			xyzout[1] += weights[1] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]);
			xyzout[2] += weights[1] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]);

			if (bidx[2] != ~(qbyte)0)
			{
				matrix = &bonepose[12*bidx[2]];
				xyzout[0] += weights[2] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]);
				xyzout[1] += weights[2] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]);
				xyzout[2] += weights[2] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]);

				if (bidx[3] != ~(qbyte)0)
				{
					matrix = &bonepose[12*bidx[3]];
					xyzout[0] += weights[3] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]);
					xyzout[1] += weights[3] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]);
					xyzout[2] += weights[3] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]);
				}
			}
		}
	}
}
#endif

/*transforms some skeletal vecV_t values*/
static void Alias_TransformVerticies_VN(float *bonepose, int vertcount, qbyte *bidx, float *weights,
										float *xyzin, float *fte_restrict xyzout,
										float *normin, float *fte_restrict normout)
{
	int i, j;
	float *matrix;
	float mat[12];
	for (i = 0; i < vertcount; i++, 
		xyzout+=sizeof(vecV_t)/sizeof(vec_t), xyzin+=sizeof(vecV_t)/sizeof(vec_t),
		normout+=sizeof(vec3_t)/sizeof(vec_t), normin+=sizeof(vec3_t)/sizeof(vec_t),
		bidx+=4, weights+=4)
	{
		matrix = &bonepose[12*bidx[0]];
		for (j = 0; j < 12; j++)
			mat[j] = weights[0] * matrix[j];
		if (weights[1])
		{
			matrix = &bonepose[12*bidx[1]];
			for (j = 0; j < 12; j++)
				mat[j] += weights[1] * matrix[j];
			if (weights[2])
			{
				matrix = &bonepose[12*bidx[2]];
				for (j = 0; j < 12; j++)
					mat[j] += weights[2] * matrix[j];
				if (weights[3])
				{
					matrix = &bonepose[12*bidx[3]];
					for (j = 0; j < 12; j++)
						mat[j] += weights[3] * matrix[j];
				}
			}
		}

		matrix = mat;
		xyzout[0] = (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + matrix[ 3]);
		xyzout[1] = (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + matrix[ 7]);
		xyzout[2] = (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + matrix[11]);

		normout[0] = (normin[0] * matrix[0] + normin[1] * matrix[1] + normin[2] * matrix[ 2]);
		normout[1] = (normin[0] * matrix[4] + normin[1] * matrix[5] + normin[2] * matrix[ 6]);
		normout[2] = (normin[0] * matrix[8] + normin[1] * matrix[9] + normin[2] * matrix[10]);
	}
}

#if 0
/*transforms some skeletal vec3_t values*/
static void Alias_TransformVerticies_3(float *fte_restrict bonepose, int vertcount, qbyte *bidx, float *weights, float *xyzin, float *fte_restrict xyzout)
{
	int i;
	float *matrix;
	for (i = 0; i < vertcount; i++, xyzout+=sizeof(vec3_t)/sizeof(vec_t), xyzin+=sizeof(vec3_t)/sizeof(vec_t), bidx+=4, weights+=4)
	{
		matrix = &bonepose[12*bidx[0]];
		xyzout[0] = weights[0] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]);
		xyzout[1] = weights[0] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]);
		xyzout[2] = weights[0] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]);

		if (bidx[1] != ~(qbyte)0)
		{
			matrix = &bonepose[12*bidx[1]];
			xyzout[0] += weights[1] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]);
			xyzout[1] += weights[1] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]);
			xyzout[2] += weights[1] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]);

			if (bidx[2] != ~(qbyte)0)
			{
				matrix = &bonepose[12*bidx[2]];
				xyzout[0] += weights[2] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]);
				xyzout[1] += weights[2] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]);
				xyzout[2] += weights[2] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]);

				if (bidx[3] != ~(qbyte)0)
				{
					matrix = &bonepose[12*bidx[3]];
					xyzout[0] += weights[3] * (xyzin[0] * matrix[0] + xyzin[1] * matrix[1] + xyzin[2] * matrix[ 2] + xyzin[3] * matrix[ 3]);
					xyzout[1] += weights[3] * (xyzin[0] * matrix[4] + xyzin[1] * matrix[5] + xyzin[2] * matrix[ 6] + xyzin[3] * matrix[ 7]);
					xyzout[2] += weights[3] * (xyzin[0] * matrix[8] + xyzin[1] * matrix[9] + xyzin[2] * matrix[10] + xyzin[3] * matrix[11]);
				}
			}
		}
	}
}
#endif

static void Alias_TransformVerticies_SW(float *bonepose, galisskeletaltransforms_t *weights, int numweights, vecV_t *xyzout, vec3_t *normout)
{
	int i;
	float *out, *matrix;
	galisskeletaltransforms_t *v = weights;
#ifndef SERVERONLY
	float *normo;
	if (normout)
	{
		for (i = 0;i < numweights;i++, v++)
		{
			out = xyzout[v->vertexindex];
			normo = normout[v->vertexindex];
			matrix = bonepose+v->boneindex*12;
			// FIXME: this can very easily be optimized with SSE or 3DNow
			out[0] += v->org[0] * matrix[0] + v->org[1] * matrix[1] + v->org[2] * matrix[ 2] + v->org[3] * matrix[ 3];
			out[1] += v->org[0] * matrix[4] + v->org[1] * matrix[5] + v->org[2] * matrix[ 6] + v->org[3] * matrix[ 7];
			out[2] += v->org[0] * matrix[8] + v->org[1] * matrix[9] + v->org[2] * matrix[10] + v->org[3] * matrix[11];

			normo[0] += v->normal[0] * matrix[0] + v->normal[1] * matrix[1] + v->normal[2] * matrix[ 2];
			normo[1] += v->normal[0] * matrix[4] + v->normal[1] * matrix[5] + v->normal[2] * matrix[ 6];
			normo[2] += v->normal[0] * matrix[8] + v->normal[1] * matrix[9] + v->normal[2] * matrix[10];
		}
	}
	else
#elif defined(_DEBUG)
	if (normout)
		Sys_Error("norms error");
#endif
	{
		for (i = 0;i < numweights;i++, v++)
		{
			out = xyzout[v->vertexindex];
			matrix = bonepose+v->boneindex*12;
			// FIXME: this can very easily be optimized with SSE or 3DNow
			out[0] += v->org[0] * matrix[0] + v->org[1] * matrix[1] + v->org[2] * matrix[ 2] + v->org[3] * matrix[ 3];
			out[1] += v->org[0] * matrix[4] + v->org[1] * matrix[5] + v->org[2] * matrix[ 6] + v->org[3] * matrix[ 7];
			out[2] += v->org[0] * matrix[8] + v->org[1] * matrix[9] + v->org[2] * matrix[10] + v->org[3] * matrix[11];
		}
	}
}

static float Alias_CalculateSkeletalNormals(galiasinfo_t *model)
{
#ifndef SERVERONLY
	//servers don't need normals. except maybe for tracing... but hey. The normal is calculated on a per-triangle basis.

#define TriangleNormal(a,b,c,n) ( \
	(n)[0] = ((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1]), \
	(n)[1] = ((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2]), \
	(n)[2] = ((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0]) \
	)
	int i, j;
	vecV_t *xyz;
	vec3_t *normals;
	int *mvert;
	float *inversepose;
	galiasinfo_t *next;
	vec3_t tn;
	vec3_t d1, d2;
	index_t *idx;
	float *bonepose = NULL;
	float angle;
	float maxvdist = 0, d, maxbdist = 0;
	float absmatrix[MAX_BONES*12];
	float bonedist[MAX_BONES];
	int modnum = 0;
	int bcmodnum = -1;
	int vcmodnum = -1;

	while (model)
	{
		int numbones = model->numbones;
		galisskeletaltransforms_t *v = (galisskeletaltransforms_t*)((char*)model+model->ofsswtransforms);
		int numweights = model->numswtransforms;
		int numverts = model->numverts;

		if (model->nextsurf)
			next = (galiasinfo_t*)((char*)model + model->nextsurf);
		else
			next = NULL;

		xyz = Z_Malloc(numverts*sizeof(vecV_t));
		normals = Z_Malloc(numverts*sizeof(vec3_t));
		inversepose = Z_Malloc(numbones*sizeof(float)*9);
		mvert = Z_Malloc(numverts*sizeof(*mvert));

		if (bcmodnum != model->shares_bones)
		{
			galiasgroup_t *g;
			galiasbone_t *bones = (galiasbone_t *)((char*)model + model->ofsbones);
			bcmodnum = model->shares_bones;
			if (model->baseframeofs)
				bonepose = (float*)((char*)model + model->baseframeofs);
			else
			{
				if (!model->groups)
					return 0;
				g = (galiasgroup_t*)((char*)model+model->groupofs);
				if (g->numposes < 1)
					return 0;
				bonepose = (float*)((char*)g+g->poseofs);
				if (g->isheirachical)
				{
					/*needs to be an absolute skeleton*/
					for (i = 0; i < model->numbones; i++)
					{
						if (bones[i].parent >= 0)
							R_ConcatTransforms((void*)(absmatrix + bones[i].parent*12), (void*)(bonepose+i*12), (void*)(absmatrix+i*12));
						else
							for (j = 0;j < 12;j++)	//parentless
								absmatrix[i*12+j] = (bonepose)[i*12+j];
					}
					bonepose = absmatrix;
				}
			}
			/*calculate the bone sizes (assuming the bones are strung up and hanging or such)*/
			for (i = 0; i < model->numbones; i++)
			{
				vec3_t d;
				float *b;
				b = bonepose + i*12;
				d[0] = b[3];
				d[1] = b[7];
				d[2] = b[11];
				if (bones[i].parent >= 0)
				{
					b = bonepose + bones[i].parent*12;
					d[0] -= b[3];
					d[1] -= b[7];
					d[2] -= b[11];
				}
				bonedist[i] = Length(d);
				if (bones[i].parent >= 0)
					bonedist[i] += bonedist[bones[i].parent];
				if (maxbdist < bonedist[i])
					maxbdist = bonedist[i];
			}
			for (i = 0; i < numbones; i++)
				Matrix3x4_InvertTo3x3(bonepose+i*12, inversepose+i*9);
		}

		for (i = 0; i < numweights; i++)
		{
			d = Length(v[i].org);
			if (maxvdist < d)
				maxvdist = d;
		}

		//build the actual base pose positions
		Alias_TransformVerticies_SW(bonepose, v, numweights, xyz, NULL);

		//work out which verticies are identical
		//this is needed as two verts can have same origin but different tex coords
		//without this, we end up with a seam that splits the normals each side on arms, etc
		for (i = 0; i < numverts; i++)
		{
			mvert[i] = i;
			for (j = 0; j < i; j++)
			{
				if (	xyz[i][0] == xyz[j][0]
					&&	xyz[i][1] == xyz[j][1]
					&&	xyz[i][2] == xyz[j][2])
				{
					mvert[i] = j;
					break;
				}
			}
		}

		//use that base pose to calculate the normals
		memset(normals, 0, numverts*sizeof(vec3_t));
		vcmodnum = modnum;
		idx = (index_t*)((char*)model + model->ofs_indexes);

		//calculate the triangle normal and accumulate them
		for (i = 0; i < model->numindexes; i+=3, idx+=3)
		{
			TriangleNormal(xyz[idx[0]], xyz[idx[1]], xyz[idx[2]], tn);
			//note that tn is relative to the size of the triangle

			//Imagine a cube, each side made of two triangles

			VectorSubtract(xyz[idx[1]], xyz[idx[0]], d1);
			VectorSubtract(xyz[idx[2]], xyz[idx[0]], d2);
			angle = acos(DotProduct(d1, d2)/(Length(d1)*Length(d2)));
			VectorMA(normals[mvert[idx[0]]], angle, tn, normals[mvert[idx[0]]]);

			VectorSubtract(xyz[idx[0]], xyz[idx[1]], d1);
			VectorSubtract(xyz[idx[2]], xyz[idx[1]], d2);
			angle = acos(DotProduct(d1, d2)/(Length(d1)*Length(d2)));
			VectorMA(normals[mvert[idx[1]]], angle, tn, normals[mvert[idx[1]]]);

			VectorSubtract(xyz[idx[0]], xyz[idx[2]], d1);
			VectorSubtract(xyz[idx[1]], xyz[idx[2]], d2);
			angle = acos(DotProduct(d1, d2)/(Length(d1)*Length(d2)));
			VectorMA(normals[mvert[idx[2]]], angle, tn, normals[mvert[idx[2]]]);
		}

		/*skip over each additional surface that shares the same verts*/
		for(;;)
		{
			if (next && next->shares_verts == vcmodnum)
			{
				modnum++;
				model = next;
				if (model->nextsurf)
					next = (galiasinfo_t*)((char*)model + model->nextsurf);
				else
					next = NULL;
			}
			else
				break;
		}

		//the normals are not normalized yet.
		for (i = 0; i < numverts; i++)
		{
			VectorNormalize(normals[i]);
		}

		for (i = 0; i < numweights; i++, v++)
		{
			v->normal[0] = DotProduct(normals[mvert[v->vertexindex]], inversepose+9*v->boneindex+0) * v->org[3];
			v->normal[1] = DotProduct(normals[mvert[v->vertexindex]], inversepose+9*v->boneindex+3) * v->org[3];
			v->normal[2] = DotProduct(normals[mvert[v->vertexindex]], inversepose+9*v->boneindex+6) * v->org[3];
		}

		if (model->ofs_skel_norm)
			memcpy((char*)model + model->ofs_skel_norm, normals, numverts*sizeof(vec3_t));

		//FIXME: save off the xyz+normals for this base pose as an optimisation for world objects.
		Z_Free(inversepose);
		Z_Free(normals);
		Z_Free(xyz);
		Z_Free(mvert);

		model = next;
		modnum++;
	}
	return maxvdist+maxbdist;
#else
	return 0;
#endif
}

static int Alias_BuildLerps(float plerp[4], float *pose[4], int numbones, galiasgroup_t *g1, galiasgroup_t *g2, float lerpfrac, float fg1time, float fg2time)
{
	int frame1;
	int frame2;
	float mlerp;	//minor lerp, poses within a group.
	int l = 0;
	if (g1 == g2)
		lerpfrac = 0;
	if (fg1time < 0)
		fg1time = 0;
	mlerp = (fg1time)*g1->rate;
	frame1=mlerp;
	frame2=frame1+1;
	mlerp-=frame1;
	if (g1->loop)
	{
		frame1=frame1%g1->numposes;
		frame2=frame2%g1->numposes;
	}
	else
	{
		frame1=(frame1>g1->numposes-1)?g1->numposes-1:frame1;
		frame2=(frame2>g1->numposes-1)?g1->numposes-1:frame2;
	}

	if (frame1 == frame2)
		mlerp = 0;
	plerp[l] = (1-mlerp)*(1-lerpfrac);
	if (plerp[l]>0)
		pose[l++] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*numbones*12*frame1);
	plerp[l] = (mlerp)*(1-lerpfrac);
	if (plerp[l]>0)
		pose[l++] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*numbones*12*frame2);

	if (lerpfrac)
	{
		if (fg2time < 0)
			fg2time = 0;
		mlerp = (fg2time)*g2->rate;
		frame1=mlerp;
		frame2=frame1+1;
		mlerp-=frame1;
		if (g2->loop)
		{
			frame1=frame1%g2->numposes;
			frame2=frame2%g2->numposes;
		}
		else
		{
			frame1=(frame1>g2->numposes-1)?g2->numposes-1:frame1;
			frame2=(frame2>g2->numposes-1)?g2->numposes-1:frame2;
		}
		if (frame1 == frame2)
			mlerp = 0;
		plerp[l] = (1-mlerp)*(lerpfrac);
		if (plerp[l]>0)
			pose[l++] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*numbones*12*frame1);
		plerp[l] = (mlerp)*(lerpfrac);
		if (plerp[l]>0)
			pose[l++] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*numbones*12*frame2);
	}

	return l;
}

//ignores any skeletal objects
int Alias_GetBoneRelations(galiasinfo_t *inf, framestate_t *fstate, float *result, int firstbone, int lastbones)
{
#ifdef SKELETALMODELS
	if (inf->numbones)
	{
		galiasbone_t *bone;
		galiasgroup_t *g1, *g2;

		float *matrix;	//the matrix for a single bone in a single pose.
		int b, k;	//counters

		float *pose[4];	//the per-bone matricies (one for each pose)
		float plerp[4];	//the ammount of that pose to use (must combine to 1)
		int numposes = 0;

		int frame1, frame2;
		float f1time, f2time;
		float f2ness;

		int bonegroup;
		int cbone = 0;
		int endbone;

		if (lastbones > inf->numbones)
			lastbones = inf->numbones;
		if (!lastbones)
			return 0;

		for (bonegroup = 0; bonegroup < FS_COUNT; bonegroup++)
		{
			endbone = fstate->g[bonegroup].endbone;
			if (bonegroup == FS_COUNT-1 || endbone > lastbones)
				endbone = lastbones;

			if (endbone == cbone)
				continue;

			frame1 = fstate->g[bonegroup].frame[0];
			frame2 = fstate->g[bonegroup].frame[1];
			f1time = fstate->g[bonegroup].frametime[0];
			f2time = fstate->g[bonegroup].frametime[1];
			f2ness = fstate->g[bonegroup].lerpfrac;

			//FIXME: fixup these framestates earlier, because this just isn't nice
			if (frame1 < 0 || frame1 >= inf->groups)
			{
				if (frame2 < 0 || frame2 >= inf->groups || f2ness == 0)
				{
					if (bonegroup != FS_COUNT-1)
						continue;	//just ignore this group

					//there's no escaping it, both are bad. use the base pose
					f2ness = 0;
					frame1 = frame2 = 0;
				}
				else
				{
					//kill it, just use frame2
					f2ness = 1;
					frame1 = frame2;
				}
			}
			else
			{
				if (frame2 < 0 || frame2 >= inf->groups)
				{
					//kill this anim
					f2ness = 0;
					frame2 = frame1;
				}
			}

			bone = (galiasbone_t*)((char*)inf + inf->ofsbones);
	//the higher level merges old/new anims, but we still need to blend between automated frame-groups.
			g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame1);
			g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame2);

			if (!g1->isheirachical)
				return 0;
			if (!g2->isheirachical)
				g2 = g1;

			numposes = Alias_BuildLerps(plerp, pose, inf->numbones, g1, g2, f2ness, f1time, f2time);

			if (numposes == 1)
			{
				memcpy(result, pose[0]+cbone*12, (lastbones-cbone)*12*sizeof(float));
				result += (lastbones-cbone)*12;
				cbone = lastbones;
			}
			else
			{
				//set up the identity matrix
				for (; cbone < lastbones; cbone++)
				{
					//set up the per-bone transform matrix
					for (k = 0;k < 12;k++)
						result[k] = 0;
					for (b = 0;b < numposes;b++)
					{
						matrix = pose[b] + cbone*12;

						for (k = 0;k < 12;k++)
							result[k] += matrix[k] * plerp[b];
					}
					result += 12;
				}
			}
		}
		return cbone;
	}
#endif
	return 0;
}

//_may_ write into bonepose, return value is the real result. obtains absolute values
float *Alias_GetBonePositions(galiasinfo_t *inf, framestate_t *fstate, float *buffer, int buffersize, qboolean renderable)
{
#ifdef SKELETALMODELS
	float relationsbuf[MAX_BONES][12];
	float *relations = NULL;
	galiasbone_t *bones = (galiasbone_t *)((char*)inf+inf->ofsbones);
	int numbones;

	if (buffersize < inf->numbones)
		numbones = 0;
	else if (fstate->bonestate && fstate->bonecount >= inf->numbones)
	{
		relations = fstate->bonestate;
		numbones = inf->numbones;
		if (fstate->boneabs)
		{
			/*we may need to invert by the inverse of the base pose to get the bones into the proper positions*/
			if (!inf->numswtransforms && renderable)
			{
				int i;
				for (i = 0; i < inf->numbones; i++)
				{
					R_ConcatTransforms((void*)(relations + i*12), (void*)(bones[i].inverse), (void*)(buffer + i*12));
				}
				return buffer;
			}
			return relations;
		}
	}
	else
	{
		numbones = Alias_GetBoneRelations(inf, fstate, (float*)relationsbuf, 0, inf->numbones);
		if (numbones == inf->numbones)
			relations = (float*)relationsbuf;
	}
	if (relations)
	{
		int i, k;

		if (!inf->numswtransforms && renderable)
		{
			float absbuf[MAX_BONES][12];
			for (i = 0; i < numbones; i++)
			{
				if (bones[i].parent >= 0)
					R_ConcatTransforms((void*)(absbuf[bones[i].parent]), (void*)((float*)relations+i*12), (void*)absbuf[i]);
				else
					for (k = 0;k < 12;k++)	//parentless
						absbuf[i][k] = ((float*)relations)[i*12+k];

				R_ConcatTransforms((void*)absbuf[i], (void*)bones[i].inverse, (void*)(buffer+i*12));
			}
		}
		else
		{
			for (i = 0; i < numbones; i++)
			{
				if (bones[i].parent >= 0)
					R_ConcatTransforms((void*)(buffer + bones[i].parent*12), (void*)((float*)relations+i*12), (void*)(buffer+i*12));
				else
					for (k = 0;k < 12;k++)	//parentless
						buffer[i*12+k] = ((float*)relations)[i*12+k];
			}
		}
		return buffer;
	}
	else
	{
		int i, k;

		int l=0;
		float plerp[4];
		float *pose[4];

		int numposes;
		int f;
		float lerpfrac = fstate->g[FS_REG].lerpfrac;

		galiasgroup_t *g1, *g2;

		//galiasbone_t *bones = (galiasbone_t *)((char*)inf+inf->ofsbones); //unsed variable

		if (buffersize < inf->numbones)
			return NULL;

		f = fstate->g[FS_REG].frame[0];
		if (f < 0 || f >= inf->groups)
			f = 0;
		g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*bound(0, f, inf->groups-1));
		f = fstate->g[FS_REG].frame[1];
		if (f < 0 || f >= inf->groups)
			g2 = g1;
		else
			g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*bound(0, f, inf->groups-1));

		if (g2->isheirachical)
			g2 = g1;


		numposes = Alias_BuildLerps(plerp, pose, inf->numbones, g1, g2, lerpfrac, fstate->g[FS_REG].frametime[0], fstate->g[FS_REG].frametime[1]);

		{
			//this is not hierachal, using base frames is not a good idea.
			//just blend the poses here
			if (numposes == 1)
				return pose[0];
			else if (numposes == 2)
			{
				for (i = 0; i < inf->numbones*12; i++)
				{
					((float*)buffer)[i] = pose[0][i]*plerp[0] + pose[1][i]*plerp[1];
				}
			}
			else
			{
				for (i = 0; i < inf->numbones; i++)
				{
					for (l = 0; l < 12; l++)
						buffer[i*12+l] = 0;
					for (k = 0; k < numposes; k++)
					{
						for (l = 0; l < 12; l++)
							buffer[i*12+l] += pose[k][i*12+l] * plerp[k];
					}
				}
			}
		}
		return buffer;
	}
#endif
	return NULL;
}










static void R_LerpBones(float *plerp, float **pose, int poses, galiasbone_t *bones, int bonecount, float bonepose[MAX_BONES][12])
{
	int i, k, b;
	float *matrix, m[12];

	if (poses == 1)
	{
		// vertex weighted skeletal
		// interpolate matrices and concatenate them to their parents
		for (i = 0;i < bonecount;i++)
		{
			matrix = pose[0] + i*12;

			if (bones[i].parent >= 0)
				R_ConcatTransforms((void*)bonepose[bones[i].parent], (void*)matrix, (void*)bonepose[i]);
			else
				for (k = 0;k < 12;k++)	//parentless
					bonepose[i][k] = matrix[k];
		}
	}
	else
	{
		// vertex weighted skeletal
		// interpolate matrices and concatenate them to their parents
		for (i = 0;i < bonecount;i++)
		{
			for (k = 0;k < 12;k++)
				m[k] = 0;
			for (b = 0;b < poses;b++)
			{
				matrix = pose[b] + i*12;

				for (k = 0;k < 12;k++)
					m[k] += matrix[k] * plerp[b];
			}
			if (bones[i].parent >= 0)
				R_ConcatTransforms((void*)bonepose[bones[i].parent], (void*)m, (void*)bonepose[i]);
			else
				for (k = 0;k < 12;k++)	//parentless
					bonepose[i][k] = m[k];
		}
	}
}
#endif





#if defined(D3DQUAKE) || defined(GLQUAKE)

struct
{
	int numcolours;
	avec4_t *colours;

	int numcoords;
	vecV_t *coords;

	int numnorm;
	vec3_t *norm;

	int surfnum;
	entity_t *ent;

#ifdef SKELETALMODELS
	float bonepose[MAX_BONES*12];
	float *usebonepose;
	int bonecount;
#endif

	vecV_t *acoords1;
	vecV_t *acoords2;
	vec3_t *anorm;
	vec3_t *anorms;
	vec3_t *anormt;
} meshcache;

//#define SSE_INTRINSICS
#ifdef SSE_INTRINSICS
#include <xmmintrin.h>
#endif

void R_LightArraysByte_BGR(const entity_t *entity, vecV_t *coords, byte_vec4_t *colours, int vertcount, vec3_t *normals)
{
	int i;
	int c;
	float l;

	byte_vec4_t ambientlightb;
	byte_vec4_t shadelightb;
	const float *lightdir = entity->light_dir;

	for (i = 0; i < 3; i++)
	{
		l = entity->light_avg[2-i]*255;
		ambientlightb[i] = bound(0, l, 255);
		l = entity->light_range[2-i]*255;
		shadelightb[i] = bound(0, l, 255);
	}

	if (ambientlightb[0] == shadelightb[0] && ambientlightb[1] == shadelightb[1] && ambientlightb[2] == shadelightb[2])
	{
		for (i = vertcount-1; i >= 0; i--)
		{
			*(int*)colours[i] = *(int*)ambientlightb;
//			colours[i][0] = ambientlightb[0];
//			colours[i][1] = ambientlightb[1];
//			colours[i][2] = ambientlightb[2];
		}
	}
	else
	{
		for (i = vertcount-1; i >= 0; i--)
		{
			l = DotProduct(normals[i], lightdir);
			c = l*shadelightb[0];
			c += ambientlightb[0];
			colours[i][0] = bound(0, c, 255);
			c = l*shadelightb[1];
			c += ambientlightb[1];
			colours[i][1] = bound(0, c, 255);
			c = l*shadelightb[2];
			c += ambientlightb[2];
			colours[i][2] = bound(0, c, 255);
		}
	}
}

void R_LightArrays(const entity_t *entity, vecV_t *coords, avec4_t *colours, int vertcount, vec3_t *normals, float scale)
{
	extern cvar_t r_vertexdlights;
	int i;
	float l;

	//float *lightdir = currententity->light_dir; //unused variable

	if (!entity->light_range[0] && !entity->light_range[1] && !entity->light_range[2])
	{
		for (i = vertcount-1; i >= 0; i--)
		{
			colours[i][0] = entity->light_avg[0];
			colours[i][1] = entity->light_avg[1];
			colours[i][2] = entity->light_avg[2];
		}
	}
	else
	{
		vec3_t la, lr;
		VectorScale(entity->light_avg, scale, la);
		VectorScale(entity->light_range, scale, lr);
#ifdef SSE_INTRINSICS
		__m128 va, vs, vl, vr;
		va = _mm_load_ps(ambientlight);
		vs = _mm_load_ps(shadelight);
		va.m128_f32[3] = 0;
		vs.m128_f32[3] = 1;
#endif
		/*dotproduct will return a value between 1 and -1, so increase the ambient to be correct for normals facing away from the light*/
		for (i = vertcount-1; i >= 0; i--)
		{
			l = DotProduct(normals[i], entity->light_dir);
	#ifdef SSE_INTRINSICS
			vl = _mm_load1_ps(&l);
			vr = _mm_mul_ss(va,vl);
			vr = _mm_add_ss(vr,vs);

			_mm_storeu_ps(colours[i], vr);
			//stomp on colour[i][3] (will be set to 1)
	#else
			colours[i][0] = l*lr[0]+la[0];
			colours[i][1] = l*lr[1]+la[1];
			colours[i][2] = l*lr[2]+la[2];
	#endif
		}
	}

	if (r_vertexdlights.ival && r_dynamic.ival)
	{
		unsigned int lno, v;
		vec3_t dir, rel;
		float dot, d, a;
		//don't include world lights
		for (lno = rtlights_first; lno < RTL_FIRST; lno++)
		{
			if (cl_dlights[lno].radius)
			{
				VectorSubtract (cl_dlights[lno].origin,
								entity->origin,
								dir);
				if (Length(dir)>cl_dlights[lno].radius+256)	//far out man!
					continue;

				rel[0] = -DotProduct(dir, entity->axis[0]);
				rel[1] = -DotProduct(dir, entity->axis[1]);
				rel[2] = -DotProduct(dir, entity->axis[2]);

				for (v = 0; v < vertcount; v++)
				{
					VectorSubtract(coords[v], rel, dir);
					dot = DotProduct(dir, normals[v]);
					if (dot>0)
					{
						d = DotProduct(dir, dir);
						a = 1/d;
						if (a>0)
						{
							a *= 10000000*dot/sqrt(d);
							colours[v][0] += a*cl_dlights[lno].color[0];
							colours[v][1] += a*cl_dlights[lno].color[1];
							colours[v][2] += a*cl_dlights[lno].color[2];
						}
					}
				}
			}
		}
	}
}

static void R_LerpFrames(mesh_t *mesh, galiaspose_t *p1, galiaspose_t *p2, float lerp, float expand)
{
	extern cvar_t r_nolerp; // r_nolightdir is unused
	float blerp = 1-lerp;
	int i;
	vecV_t *p1v, *p2v;
	vec3_t *p1n, *p2n;
	vec3_t *p1s, *p2s;
	vec3_t *p1t, *p2t;

	p1v = (vecV_t *)((char *)p1 + p1->ofsverts);
	p2v = (vecV_t *)((char *)p2 + p2->ofsverts);

	p1n = (vec3_t *)((char *)p1 + p1->ofsnormals);
	p2n = (vec3_t *)((char *)p2 + p2->ofsnormals);

	p1s = (vec3_t *)((char *)p1 + p1->ofssvector);
	p2s = (vec3_t *)((char *)p2 + p2->ofssvector);

	p1t = (vec3_t *)((char *)p1 + p1->ofstvector);
	p2t = (vec3_t *)((char *)p2 + p2->ofstvector);

	mesh->normals_array = p1n;
	mesh->snormals_array = p1s;
	mesh->tnormals_array = p1t;
	mesh->colors4f_array = NULL;

	if (p1v == p2v || r_nolerp.value)
	{
		mesh->normals_array = p1n;
		mesh->snormals_array = p1s;
		mesh->tnormals_array = p1t;

		if (expand)
		{
			for (i = 0; i < mesh->numvertexes; i++)
			{
				mesh->xyz_array[i][0] = p1v[i][0] + p1n[i][0]*expand;
				mesh->xyz_array[i][1] = p1v[i][1] + p1n[i][1]*expand;
				mesh->xyz_array[i][2] = p1v[i][2] + p1n[i][2]*expand;
			}
			return;
		}
		else
			mesh->xyz_array = p1v;
	}
	else
	{
		for (i = 0; i < mesh->numvertexes; i++)
		{
			mesh->normals_array[i][0] = p1n[i][0]*lerp + p2n[i][0]*blerp;
			mesh->normals_array[i][1] = p1n[i][1]*lerp + p2n[i][1]*blerp;
			mesh->normals_array[i][2] = p1n[i][2]*lerp + p2n[i][2]*blerp;

			mesh->xyz_array[i][0] = p1v[i][0]*lerp + p2v[i][0]*blerp;
			mesh->xyz_array[i][1] = p1v[i][1]*lerp + p2v[i][1]*blerp;
			mesh->xyz_array[i][2] = p1v[i][2]*lerp + p2v[i][2]*blerp;
		}

		if (expand)
		{
			for (i = 0; i < mesh->numvertexes; i++)
			{
				mesh->xyz_array[i][0] += mesh->normals_array[i][0]*expand;
				mesh->xyz_array[i][1] += mesh->normals_array[i][1]*expand;
				mesh->xyz_array[i][2] += mesh->normals_array[i][2]*expand;
			}
		}
	}
}

#ifdef SKELETALMODELS
#ifndef SERVERONLY
static void Alias_BuildSkeletalMesh(mesh_t *mesh, float *bonepose, galiasinfo_t *inf)
{
	galisskeletaltransforms_t *weights = (galisskeletaltransforms_t *)((char*)inf+inf->ofsswtransforms);
	int numweights = inf->numswtransforms;

	if (inf->ofs_skel_idx)
	{
		float *fte_restrict xyzout = mesh->xyz_array[0];
		float *fte_restrict normout = mesh->normals_array[0];
		qbyte *fte_restrict bidx = (qbyte*)((char*)inf + inf->ofs_skel_idx);
		float *fte_restrict xyzin = (float*)((char*)inf + inf->ofs_skel_xyz);
		float *fte_restrict normin = (float*)((char*)inf + inf->ofs_skel_norm);
		float *fte_restrict svect = (float*)((char*)inf + inf->ofs_skel_svect);
		float *fte_restrict tvect = (float*)((char*)inf + inf->ofs_skel_tvect);
		float *fte_restrict weight = (float*)((char*)inf + inf->ofs_skel_weight);

		Alias_TransformVerticies_VN(bonepose, inf->numverts, bidx, weight, xyzin, xyzout, normin, normout);
//		Alias_TransformVerticies_3(bonepose, inf->numverts, bidx, weight, svect, mesh->snormals_array[0]);
//		Alias_TransformVerticies_3(bonepose, inf->numverts, bidx, weight, tvect, mesh->tnormals_array[0]);

	}
	else
	{
		memset(mesh->xyz_array, 0, mesh->numvertexes*sizeof(vecV_t));
		memset(mesh->normals_array, 0, mesh->numvertexes*sizeof(vec3_t));
		Alias_TransformVerticies_SW(bonepose, weights, numweights, mesh->xyz_array, mesh->normals_array);
	}
}

#ifdef GLQUAKE
#include "glquake.h"
static void Alias_GLDrawSkeletalBones(galiasbone_t *bones, float *bonepose, int bonecount)
{
	PPL_RevertToKnownState();
	BE_SelectEntity(currententity);
	qglColor3f(1, 0, 0);
	{
		int i;
		int p;
		vec3_t org, dest;

		qglBegin(GL_LINES);
		for (i = 0; i < bonecount; i++)
		{
			p = bones[i].parent;
			if (p < 0)
				p = 0;
			qglVertex3f(bonepose[i*12+3], bonepose[i*12+7], bonepose[i*12+11]);
			qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]);
		}
		qglEnd();
		qglColor3f(1, 1, 1);
		qglBegin(GL_LINES);
		for (i = 0; i < bonecount; i++)
		{
			p = bones[i].parent;
			if (p < 0)
				p = 0;
			org[0] = bonepose[i*12+3]; org[1] = bonepose[i*12+7]; org[2] = bonepose[i*12+11];
			qglVertex3fv(org);
			qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]);

			dest[0] = org[0]+bonepose[i*12+0];dest[1] = org[1]+bonepose[i*12+1];dest[2] = org[2]+bonepose[i*12+2];
			qglVertex3fv(org);
			qglVertex3fv(dest);

			qglVertex3fv(dest);
			qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]);

			dest[0] = org[0]+bonepose[i*12+4];dest[1] = org[1]+bonepose[i*12+5];dest[2] = org[2]+bonepose[i*12+6];
			qglVertex3fv(org);
			qglVertex3fv(dest);

			qglVertex3fv(dest);
			qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]);

			dest[0] = org[0]+bonepose[i*12+8];dest[1] = org[1]+bonepose[i*12+9];dest[2] = org[2]+bonepose[i*12+10];
			qglVertex3fv(org);
			qglVertex3fv(dest);

			qglVertex3fv(dest);
			qglVertex3f(bonepose[p*12+3], bonepose[p*12+7], bonepose[p*12+11]);
		}
		qglEnd();

//		mesh->numindexes = 0;	//don't draw this mesh, as that would obscure the bones. :(
	}
}
#endif	//GLQUAKE
#endif	//!SERVERONLY
#endif	//SKELETALMODELS

void Alias_FlushCache(void)
{
	meshcache.ent = NULL;
}

void Alias_Shutdown(void)
{
	if (meshcache.colours)
		BZ_Free(meshcache.colours);
	meshcache.colours = NULL;
	meshcache.numcolours = 0;

	if (meshcache.norm)
		BZ_Free(meshcache.norm);
	meshcache.norm = NULL;
	meshcache.numnorm = 0;

	if (meshcache.coords)
		BZ_Free(meshcache.coords);
	meshcache.coords = NULL;
	meshcache.numcoords = 0;
}

qboolean Alias_GAliasBuildMesh(mesh_t *mesh, galiasinfo_t *inf, int surfnum, entity_t *e, qboolean usebones)
{
	extern cvar_t r_nolerp;
	galiasgroup_t *g1, *g2;

	int frame1;
	int frame2;
	float lerp;
	float fg1time;
	float fg2time;

	if (!inf->groups)
	{
		Con_DPrintf("Model with no frames (%s)\n", e->model->name);
		return false;
	}

	if (meshcache.numcolours < inf->numverts)
	{
		if (meshcache.colours)
			BZ_Free(meshcache.colours);
		meshcache.colours = BZ_Malloc(sizeof(*meshcache.colours)*inf->numverts);
		meshcache.numcolours = inf->numverts;
	}
	if (meshcache.numnorm < inf->numverts)
	{
		if (meshcache.norm)
			BZ_Free(meshcache.norm);
		meshcache.norm = BZ_Malloc(sizeof(*meshcache.norm)*inf->numverts*3);
		meshcache.numnorm = inf->numverts;
	}
	if (meshcache.numcoords < inf->numverts)
	{
		if (meshcache.coords)
			BZ_Free(meshcache.coords);
		meshcache.coords = BZ_Malloc(sizeof(*meshcache.coords)*inf->numverts);
		meshcache.numcoords = inf->numverts;
	}

	mesh->numvertexes = inf->numverts;
	mesh->indexes = (index_t*)((char *)inf + inf->ofs_indexes);
	mesh->numindexes = inf->numindexes;

	mesh->st_array = (vec2_t*)((char *)inf + inf->ofs_st_array);
	mesh->trneighbors = (int *)((char *)inf + inf->ofs_trineighbours);
	mesh->colors4f_array = meshcache.colours;

	if (meshcache.surfnum == inf->shares_verts && meshcache.ent == e)
	{
		mesh->xyz_array = meshcache.acoords1;
		mesh->xyz2_array = meshcache.acoords2;
		mesh->normals_array = meshcache.anorm;
		mesh->snormals_array = meshcache.anorms;
		mesh->tnormals_array = meshcache.anormt;

#ifdef SKELETALMODELS
		if (meshcache.usebonepose)
		{
			mesh->bonenums = (byte_vec4_t*)((char*)inf + inf->ofs_skel_idx);
			mesh->boneweights = (vec4_t*)((char*)inf + inf->ofs_skel_weight);
			mesh->bones = meshcache.usebonepose;
			mesh->numbones = inf->numbones;
		}
#endif
		return false;	//don't generate the new vertex positions. We still have them all.
	}
	meshcache.surfnum = inf->shares_verts;
	meshcache.ent = e;


#ifndef SERVERONLY
	mesh->st_array = (vec2_t*)((char *)inf + inf->ofs_st_array);
	mesh->trneighbors = (int *)((char *)inf + inf->ofs_trineighbours);
	mesh->normals_array = meshcache.norm;
	mesh->snormals_array = meshcache.norm+meshcache.numnorm;
	mesh->tnormals_array = meshcache.norm+meshcache.numnorm*2;
#endif
	mesh->xyz_array = meshcache.coords;

//we don't support meshes with one pose skeletal and annother not.
//we don't support meshes with one group skeletal and annother not.

#ifdef SKELETALMODELS
	meshcache.usebonepose = NULL;
	if (inf->ofs_skel_xyz && !inf->ofs_skel_weight)
	{
		//if we have skeletal xyz info, but no skeletal weights, then its a partial model that cannot possibly be animated.
		meshcache.usebonepose = NULL;
		mesh->xyz_array = (vecV_t*)((char*)inf + inf->ofs_skel_xyz);
		mesh->xyz2_array = NULL;
		mesh->normals_array = (vec3_t*)((char*)inf + inf->ofs_skel_norm);
		mesh->snormals_array = (vec3_t*)((char*)inf + inf->ofs_skel_svect);
		mesh->tnormals_array = (vec3_t*)((char*)inf + inf->ofs_skel_tvect);
	}
	else if (inf->numbones)
	{
		mesh->xyz2_array = NULL;
		meshcache.usebonepose = Alias_GetBonePositions(inf, &e->framestate, meshcache.bonepose, MAX_BONES, true);

		if (e->fatness || !inf->ofs_skel_idx || !usebones || inf->numswtransforms)
		{
			//software bone animation
			//there are two ways to animate a skeleton, one is to transform 
			Alias_BuildSkeletalMesh(mesh, meshcache.usebonepose, inf);

#ifdef PEXT_FATNESS
			if (e->fatness)
			{
				int i;
				for (i = 0; i < mesh->numvertexes; i++)
				{
					VectorMA(mesh->xyz_array[i], e->fatness, mesh->normals_array[i], meshcache.coords[i]);
				}

				mesh->xyz_array = meshcache.coords;
			}
#endif

#ifdef GLQUAKE
			if (!inf->numswtransforms && qrenderer == QR_OPENGL)
			{
				Alias_GLDrawSkeletalBones((galiasbone_t*)((char*)inf + inf->ofsbones), (float *)meshcache.usebonepose, inf->numbones);
			}
#endif
			meshcache.usebonepose = NULL;
		}
		else
		{
			//hardware bone animation
			mesh->xyz_array = (vecV_t*)((char*)inf + inf->ofs_skel_xyz);
			mesh->normals_array = (vec3_t*)((char*)inf + inf->ofs_skel_norm);
			mesh->snormals_array = (vec3_t*)((char*)inf + inf->ofs_skel_svect);
			mesh->tnormals_array = (vec3_t*)((char*)inf + inf->ofs_skel_tvect);
		}
	}
	else
#endif
	{
		frame1 = e->framestate.g[FS_REG].frame[0];
		frame2 = e->framestate.g[FS_REG].frame[1];
		lerp = e->framestate.g[FS_REG].lerpfrac;
		fg1time = e->framestate.g[FS_REG].frametime[0];
		fg2time = e->framestate.g[FS_REG].frametime[1];

		if (frame1 < 0)
		{
			Con_DPrintf("Negative frame (%s)\n", e->model->name);
			frame1 = 0;
		}
		if (frame2 < 0)
		{
			Con_DPrintf("Negative frame (%s)\n", e->model->name);
			frame2 = frame1;
		}
		if (frame1 >= inf->groups)
		{
			Con_DPrintf("Too high frame %i (%s)\n", frame1, e->model->name);
			frame1 %= inf->groups;
		}
		if (frame2 >= inf->groups)
		{
 			Con_DPrintf("Too high frame %i (%s)\n", frame2, e->model->name);
			frame2 = frame1;
		}

		if (lerp <= 0)
			frame2 = frame1;
		else  if (lerp >= 1)
			frame1 = frame2;

		g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame1);
		g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame2);

		if (g1 == g2)	//lerping within group is only done if not changing group
		{
			lerp = fg1time*g1->rate;
			if (lerp < 0) lerp = 0;	//hrm
			frame1=lerp;
			frame2=frame1+1;
			lerp-=frame1;
			if (g1->loop)
			{
				frame1=frame1%g1->numposes;
				frame2=frame2%g1->numposes;
			}
			else
			{
				frame1=(frame1>g1->numposes-1)?g1->numposes-1:frame1;
				frame2=(frame2>g1->numposes-1)?g1->numposes-1:frame2;
			}
		}
		else	//don't bother with a four way lerp. Yeah, this will produce jerkyness with models with just framegroups.
		{
			frame1=0;
			frame2=0;
		}


		if (r_shadow_realtime_world.ival || r_shadow_realtime_dlight.ival || qrenderer != QR_OPENGL)
		{
			mesh->xyz2_array = NULL;
			mesh->xyz_blendw[0] = 1;
			mesh->xyz_blendw[1] = 0;
			R_LerpFrames(mesh,	(galiaspose_t *)((char *)g1 + g1->poseofs + sizeof(galiaspose_t)*frame1),
							(galiaspose_t *)((char *)g2 + g2->poseofs + sizeof(galiaspose_t)*frame2),
							1-lerp, e->fatness);
		}
		else
		{
			galiaspose_t *p1 = (galiaspose_t *)((char *)g1 + g1->poseofs + sizeof(galiaspose_t)*frame1);
			galiaspose_t *p2 = (galiaspose_t *)((char *)g2 + g2->poseofs + sizeof(galiaspose_t)*frame2);

			mesh->normals_array = (vec3_t *)((char *)p1 + p1->ofsnormals);
			mesh->snormals_array = (vec3_t *)((char *)p1 + p1->ofssvector);
			mesh->tnormals_array = (vec3_t *)((char *)p1 + p1->ofstvector);

			if (p1 == p2 || r_nolerp.ival)
			{
				mesh->xyz_array = (vecV_t *)((char *)p1 + p1->ofsverts);
				mesh->xyz2_array = NULL;
			}
			else
			{
				mesh->xyz_blendw[0] = 1-lerp;
				mesh->xyz_blendw[1] = lerp;
				mesh->xyz_array = (vecV_t *)((char *)p1 + p1->ofsverts);
				mesh->xyz2_array = (vecV_t *)((char *)p2 + p2->ofsverts);
			}
		}
	}

	meshcache.acoords1 = mesh->xyz_array;
	meshcache.acoords2 = mesh->xyz2_array;
	meshcache.anorm = mesh->normals_array;
	meshcache.anorms = mesh->snormals_array;
	meshcache.anormt = mesh->tnormals_array;

#ifdef SKELETALMODELS
	if (meshcache.usebonepose)
	{
		mesh->bonenums = (byte_vec4_t*)((char*)inf + inf->ofs_skel_idx);
		mesh->boneweights = (vec4_t*)((char*)inf + inf->ofs_skel_weight);
		mesh->bones = meshcache.usebonepose;
		mesh->numbones = inf->numbones;
	}
#endif

	return true;	//to allow the mesh to be dlighted.
}

#endif











//The whole reason why model loading is supported in the server.
qboolean Mod_Trace(model_t *model, int forcehullnum, int frame, vec3_t axis[3], vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, unsigned int contentsmask, trace_t *trace)
{
	galiasinfo_t *mod = Mod_Extradata(model);
	galiasgroup_t *group;
	galiaspose_t *pose;
	int i;

	float *p1, *p2, *p3;
	vec3_t edge1, edge2, edge3;
	vec3_t normal;
	vec3_t edgenormal;

	float planedist;
	float diststart, distend;

	float frac;
//	float temp;

	vec3_t impactpoint;

	vecV_t *posedata;
	index_t *indexes;
	int surfnum = 0;
	int cursurfnum = -1;

	while(mod)
	{
		indexes = (index_t*)((char*)mod + mod->ofs_indexes);
		group = (galiasgroup_t*)((char*)mod + mod->groupofs);
		pose = (galiaspose_t*)((char*)&group[0] + group[0].poseofs);
		posedata = (vecV_t*)((char*)pose + pose->ofsverts);
#ifdef SKELETALMODELS
		if (mod->numbones && mod->shares_verts != cursurfnum)
		{
			float bonepose[MAX_BONES][12];
			posedata = alloca(mod->numverts*sizeof(vecV_t));
			frac = 1;
			if (group->isheirachical)
			{
				if (mod->shares_bones != cursurfnum)
					R_LerpBones(&frac, (float**)posedata, 1, (galiasbone_t*)((char*)mod + mod->ofsbones), mod->numbones, bonepose);
				Alias_TransformVerticies_SW((float*)bonepose, (galisskeletaltransforms_t*)((char*)mod + mod->ofsswtransforms), mod->numswtransforms, posedata, NULL);
			}
			else
				Alias_TransformVerticies_SW((float*)posedata, (galisskeletaltransforms_t*)((char*)mod + mod->ofsswtransforms), mod->numswtransforms, posedata, NULL);

			cursurfnum = mod->shares_verts;
		}
#endif

		for (i = 0; i < mod->numindexes; i+=3)
		{
			p1 = posedata[indexes[i+0]];
			p2 = posedata[indexes[i+1]];
			p3 = posedata[indexes[i+2]];

			VectorSubtract(p1, p2, edge1);
			VectorSubtract(p3, p2, edge2);
			CrossProduct(edge1, edge2, normal);

			planedist = DotProduct(p1, normal);
			diststart = DotProduct(start, normal);
			if (diststart <= planedist)
				continue;	//start on back side.
			distend = DotProduct(end, normal);
			if (distend >= planedist)
				continue;	//end on front side (as must start - doesn't cross).

			frac = (diststart - planedist) / (diststart-distend);

			if (frac >= trace->fraction)	//already found one closer.
				continue;

			impactpoint[0] = start[0] + frac*(end[0] - start[0]);
			impactpoint[1] = start[1] + frac*(end[1] - start[1]);
			impactpoint[2] = start[2] + frac*(end[2] - start[2]);

//			temp = DotProduct(impactpoint, normal)-planedist;

			CrossProduct(edge1, normal, edgenormal);
//			temp = DotProduct(impactpoint, edgenormal)-DotProduct(p2, edgenormal);
			if (DotProduct(impactpoint, edgenormal) > DotProduct(p2, edgenormal))
				continue;

			CrossProduct(normal, edge2, edgenormal);
			if (DotProduct(impactpoint, edgenormal) > DotProduct(p3, edgenormal))
				continue;

			VectorSubtract(p1, p3, edge3);
			CrossProduct(normal, edge3, edgenormal);
			if (DotProduct(impactpoint, edgenormal) > DotProduct(p1, edgenormal))
				continue;

			trace->fraction = frac;
			VectorCopy(impactpoint, trace->endpos);
			VectorCopy(normal, trace->plane.normal);
		}

		if (mod->nextsurf)
			mod = (galiasinfo_t*)((char*)mod + mod->nextsurf);
		else
			mod = NULL;
		surfnum++;
	}

	trace->allsolid = false;

	return trace->fraction != 1;
}


static void Mod_ClampModelSize(model_t *mod)
{
#ifndef SERVERONLY
	int i;

	float rad=0, axis;
	axis = (mod->maxs[0] - mod->mins[0]);
	rad += axis*axis;
	axis = (mod->maxs[1] - mod->mins[1]);
	rad += axis*axis;
	axis = (mod->maxs[2] - mod->mins[2]);
	rad += axis*axis;

	mod->tainted = false;
	if (mod->engineflags & MDLF_DOCRC)
	{
		if (!strcmp(mod->name, "progs/eyes.mdl"))
		{       //this is checked elsewhere to make sure the crc matches (this is to make sure the crc check was actually called)
			if (mod->type != mod_alias || mod->fromgame != fg_quake || mod->flags)
				mod->tainted = true;
		}
	}

	mod->clampscale = 1;
	for (i = 0; i < sizeof(clampedmodel)/sizeof(clampedmodel[0]); i++)
	{
		if (!strcmp(mod->name, clampedmodel[i].name))
		{
			if (rad > clampedmodel[i].furthestallowedextremety)
			{
				axis = clampedmodel[i].furthestallowedextremety;
				mod->clampscale = axis/rad;
				Con_DPrintf("\"%s\" will be clamped.\n", mod->name);
			}
			return;
		}
	}

	Con_DPrintf("Don't know what size to clamp \"%s\" to (size:%f).\n", mod->name, rad);
#endif
}

#ifdef GLQUAKE
static int R_FindTriangleWithEdge (index_t *indexes, int numtris, int start, int end, int ignore)
{
	int i;
	int match, count;

	count = 0;
	match = -1;

	for (i = 0; i < numtris; i++, indexes += 3)
	{
		if ( (indexes[0] == start && indexes[1] == end)
			|| (indexes[1] == start && indexes[2] == end)
			|| (indexes[2] == start && indexes[0] == end) ) {
			if (i != ignore)
				match = i;
			count++;
		} else if ( (indexes[1] == start && indexes[0] == end)
			|| (indexes[2] == start && indexes[1] == end)
			|| (indexes[0] == start && indexes[2] == end) ) {
			count++;
		}
	}

	// detect edges shared by three triangles and make them seams
	if (count > 2)
		match = -1;

	return match;
}
static void Mod_BuildTriangleNeighbours ( int *neighbours, index_t *indexes, int numtris )
{
	int i, *n;
	index_t *index;

	for (i = 0, index = indexes, n = neighbours; i < numtris; i++, index += 3, n += 3)
	{
		n[0] = R_FindTriangleWithEdge (indexes, numtris, index[1], index[0], i);
		n[1] = R_FindTriangleWithEdge (indexes, numtris, index[2], index[1], i);
		n[2] = R_FindTriangleWithEdge (indexes, numtris, index[0], index[2], i);
	}
}
#endif
void Mod_CompileTriangleNeighbours(galiasinfo_t *galias)
{
#ifdef GLQUAKE
	if (qrenderer != QR_OPENGL)
		return;
	if (r_shadow_realtime_dlight_shadows.ival || r_shadow_realtime_world_shadows.ival)
	{
		int *neighbours;
		neighbours = Hunk_Alloc(sizeof(int)*galias->numindexes/3*3);
		galias->ofs_trineighbours = (qbyte *)neighbours - (qbyte *)galias;
		Mod_BuildTriangleNeighbours(neighbours, (index_t*)((char*)galias + galias->ofs_indexes), galias->numindexes/3);
	}
#endif
}

typedef struct
{
	int firstpose;
	int posecount;
	float fps;
	qboolean loop;
	char name[MAX_QPATH];
} frameinfo_t;
static frameinfo_t *ParseFrameInfo(char *modelname, int *numgroups)
{
	int count = 0;
	int maxcount = 0;
	char *line, *file;
	frameinfo_t *frames = NULL;
	line = file = FS_LoadMallocFile(va("%s.framegroups", modelname));
	if (!file)
		return NULL;
	while(line && *line)
	{
		line = Cmd_TokenizeString(line, false, false);
		if (Cmd_Argc())
		{
			if (count == maxcount)
			{
				maxcount += 32;
				frames = realloc(frames, sizeof(*frames)*maxcount);
			}

			frames[count].firstpose = atoi(Cmd_Argv(0));
			frames[count].posecount = atoi(Cmd_Argv(1));
			frames[count].fps = atof(Cmd_Argv(2));
			frames[count].loop = !!atoi(Cmd_Argv(3));
			Q_strncpyz(frames[count].name, Cmd_Argv(4), sizeof(frames[count].name));
			count++;
		}
	}
	BZ_Free(file);

	*numgroups = count;
	return frames;
}

void Mod_BuildTextureVectors(galiasinfo_t *galias)
//vec3_t *vc, vec2_t *tc, vec3_t *nv, vec3_t *sv, vec3_t *tv, index_t *idx, int numidx, int numverts)
{
#ifndef SERVERONLY
	int i, p;
	galiasgroup_t *group;
	galiaspose_t *pose;
	vecV_t *vc;
	vec3_t *nv, *sv, *tv;
	vec2_t *tc;
	index_t *idx;

	idx = (index_t*)((char*)galias + galias->ofs_indexes);
	tc = (vec2_t*)((char*)galias + galias->ofs_st_array);
	group = (galiasgroup_t*)((char*)galias + galias->groupofs);
	for (i = 0; i < galias->groups; i++, group++)
	{
		pose = (galiaspose_t*)((char*)group + group->poseofs);
		for (p = 0; p < group->numposes; p++, pose++)
		{
			vc = (vecV_t *)((char*)pose + pose->ofsverts);
			nv = (vec3_t *)((char*)pose + pose->ofsnormals);
			if (pose->ofssvector == 0)
				continue;
			if (pose->ofstvector == 0)
				continue;
			sv = (vec3_t *)((char*)pose + pose->ofssvector);
			tv = (vec3_t *)((char*)pose + pose->ofstvector);

			Mod_AccumulateTextureVectors(vc, tc, nv, sv, tv, idx, galias->numindexes);
			Mod_NormaliseTextureVectors(nv, sv, tv, galias->numverts);
		}
	}
#endif
}

#if defined(D3DQUAKE) || defined(GLQUAKE)
/*
=================
Mod_FloodFillSkin

Fill background pixels so mipmapping doesn't have haloes - Ed
=================
*/

typedef struct
{
	short		x, y;
} floodfill_t;

// must be a power of 2
#define FLOODFILL_FIFO_SIZE 0x1000
#define FLOODFILL_FIFO_MASK (FLOODFILL_FIFO_SIZE - 1)

#define FLOODFILL_STEP( off, dx, dy ) \
{ \
	if (pos[off] == fillcolor) \
	{ \
		pos[off] = 255; \
		fifo[inpt].x = x + (dx), fifo[inpt].y = y + (dy); \
		inpt = (inpt + 1) & FLOODFILL_FIFO_MASK; \
	} \
	else if (pos[off] != 255) fdc = pos[off]; \
}

void Mod_FloodFillSkin( qbyte *skin, int skinwidth, int skinheight )
{
	qbyte				fillcolor = *skin; // assume this is the pixel to fill
	floodfill_t			fifo[FLOODFILL_FIFO_SIZE];
	int					inpt = 0, outpt = 0;
	int					filledcolor = -1;
	int					i;

	if (filledcolor == -1)
	{
		filledcolor = 0;
		// attempt to find opaque black
		for (i = 0; i < 256; ++i)
			if (d_8to24rgbtable[i] == (255 << 0)) // alpha 1.0
			{
				filledcolor = i;
				break;
			}
	}

	// can't fill to filled color or to transparent color (used as visited marker)
	if ((fillcolor == filledcolor) || (fillcolor == 255))
	{
		//printf( "not filling skin from %d to %d\n", fillcolor, filledcolor );
		return;
	}

	fifo[inpt].x = 0, fifo[inpt].y = 0;
	inpt = (inpt + 1) & FLOODFILL_FIFO_MASK;

	while (outpt != inpt)
	{
		int			x = fifo[outpt].x, y = fifo[outpt].y;
		int			fdc = filledcolor;
		qbyte		*pos = &skin[x + skinwidth * y];

		outpt = (outpt + 1) & FLOODFILL_FIFO_MASK;

		if (x > 0)				FLOODFILL_STEP( -1, -1, 0 );
		if (x < skinwidth - 1)	FLOODFILL_STEP( 1, 1, 0 );
		if (y > 0)				FLOODFILL_STEP( -skinwidth, 0, -1 );
		if (y < skinheight - 1)	FLOODFILL_STEP( skinwidth, 0, 1 );
		skin[x + skinwidth * y] = fdc;
	}
}
#endif

//additional skin loading
char ** skinfilelist;
int skinfilecount;

static qboolean VARGS Mod_TryAddSkin(const char *skinname, ...)
{
	va_list		argptr;
	char		string[MAX_QPATH];

	//make sure we don't add it twice
	int i;


	va_start (argptr, skinname);
	vsnprintf (string,sizeof(string)-1, skinname,argptr);
	va_end (argptr);
	string[MAX_QPATH-1] = '\0';

	for (i = 0; i < skinfilecount; i++)
	{
		if (!strcmp(skinfilelist[i], string))
			return true;	//already added
	}

	if (!COM_FCheckExists(string))
		return false;

	skinfilelist = BZ_Realloc(skinfilelist, sizeof(*skinfilelist)*(skinfilecount+1));
	skinfilelist[skinfilecount] = Z_Malloc(strlen(string)+1);
	strcpy(skinfilelist[skinfilecount], string);
	skinfilecount++;
	return true;
}

int Mod_EnumerateSkins(const char *name, int size, void *param)
{
	Mod_TryAddSkin(name);
	return true;
}

int Mod_BuildSkinFileList(char *modelname)
{
	int i;
	char skinfilename[MAX_QPATH];

	//flush the old list
	for (i = 0; i < skinfilecount; i++)
	{
		Z_Free(skinfilelist[i]);
		skinfilelist[i] = NULL;
	}
	skinfilecount=0;

	COM_StripExtension(modelname, skinfilename, sizeof(skinfilename));

	//try and add numbered skins, and then try fixed names.
	for (i = 0; ; i++)
	{
		if (!Mod_TryAddSkin("%s_%i.skin", modelname, i))
		{
			if (i == 0)
			{
				if (!Mod_TryAddSkin("%s_default.skin", skinfilename, i))
					break;
			}
			else if (i == 1)
			{
				if (!Mod_TryAddSkin("%s_blue.skin", skinfilename, i))
					break;
			}
			else if (i == 2)
			{
				if (!Mod_TryAddSkin("%s_red.skin", skinfilename, i))
					break;
			}
			else if (i == 3)
			{
				if (!Mod_TryAddSkin("%s_green.skin", skinfilename, i))
					break;
			}
			else if (i == 4)
			{
				if (!Mod_TryAddSkin("%s_yellow.skin", skinfilename, i))
					break;
			}
			else
				break;
		}
	}

//	if (strstr(modelname, "lower") || strstr(modelname, "upper") || strstr(modelname, "head"))
//	{
		COM_EnumerateFiles(va("%s_*.skin", modelname), Mod_EnumerateSkins, NULL);
		COM_EnumerateFiles(va("%s_*.skin", skinfilename), Mod_EnumerateSkins, NULL);
//	}
//	else
//		COM_EnumerateFiles("*.skin", Mod_EnumerateSkins, NULL);

	return skinfilecount;
}


//This is a hack. It uses an assuption about q3 player models.
void Mod_ParseQ3SkinFile(char *out, char *surfname, char *modelname, int skinnum, char *skinfilename)
{
	const char *f = NULL, *p;
	int len;

	if (skinnum >= skinfilecount)
		return;

	if (skinfilename)
		strcpy(skinfilename, skinfilelist[skinnum]);

	f = COM_LoadTempMoreFile(skinfilelist[skinnum]);

	while(f)
	{
		f = COM_ParseToken(f,NULL);
		if (!f)
			return;
		if (!strcmp(com_token, "replace"))
		{
			f = COM_ParseToken(f, NULL);

			len = strlen(com_token);

			//copy surfname -> out, until we meet the part we need to replace
			while(*surfname)
			{
				if (!strncmp(com_token, surfname, len))
					//found it
				{
					surfname+=len;
					f = COM_ParseToken(f, NULL);
					p = com_token;
					while(*p)	//copy the replacement
						*out++ = *p++;

					while(*surfname)	//copy the remaining
						*out++ = *surfname++;
					*out++ = '\0';	//we didn't find it.
					return;
				}
				*out++ = *surfname++;
			}
			*out++ = '\0';	//we didn't find it.
			return;
		}
		else
		{
			while(*f == ' ' || *f == '\t')
				f++;
			if (*f == ',')
			{
				if (!strcmp(com_token, surfname))
				{
					f++;
					COM_ParseToken(f, NULL);
					strcpy(out, com_token);
					return;
				}
			}
		}

		p = strchr(f, '\n');
		if (!p)
			f = f+strlen(f);
		else
			f = p+1;
		if (!*f)
			break;
	}
}

#if defined(D3DQUAKE) || defined(GLQUAKE)
shader_t *Mod_LoadSkinFile(shader_t **shaders, char *surfacename, int skinnumber, unsigned char *rawdata, int width, int height, unsigned char *palette)
{
	shader_t *shader;
	char shadername[MAX_QPATH];
	Q_strncpyz(shadername, surfacename, sizeof(shadername));

	Mod_ParseQ3SkinFile(shadername, surfacename, loadmodel->name, skinnumber, NULL);

	shader = R_RegisterSkin(shadername, loadmodel->name);

	R_BuildDefaultTexnums(&shader->defaulttextures, shader);
	if (shader->flags & SHADER_NOIMAGE)
		Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", shader->name, loadmodel->name);

	return shader;
}
#endif












//Q1 model loading
#if 1
static galiasinfo_t *galias;
static dmdl_t *pq1inmodel;
#define NUMVERTEXNORMALS	162
extern float	r_avertexnormals[NUMVERTEXNORMALS][3];
// mdltype 0 = q1, 1 = qtest, 2 = rapo/h2

static void Alias_LoadPose(vecV_t *verts, vec3_t *normals, vec3_t *svec, vec3_t *tvec, dtrivertx_t *pinframe, int *seamremaps, int mdltype)
{
	int j;
	if (mdltype == 2)
	{
		for (j = 0; j < galias->numverts; j++)
		{
			verts[j][0] = pinframe[seamremaps[j]].v[0]*pq1inmodel->scale[0]+pq1inmodel->scale_origin[0];
			verts[j][1] = pinframe[seamremaps[j]].v[1]*pq1inmodel->scale[1]+pq1inmodel->scale_origin[1];
			verts[j][2] = pinframe[seamremaps[j]].v[2]*pq1inmodel->scale[2]+pq1inmodel->scale_origin[2];
#ifndef SERVERONLY
			VectorCopy(r_avertexnormals[pinframe[seamremaps[j]].lightnormalindex], normals[j]);
#endif
		}
	}
	else
	{
		for (j = 0; j < pq1inmodel->numverts; j++)
		{
			verts[j][0] = pinframe[j].v[0]*pq1inmodel->scale[0]+pq1inmodel->scale_origin[0];
			verts[j][1] = pinframe[j].v[1]*pq1inmodel->scale[1]+pq1inmodel->scale_origin[1];
			verts[j][2] = pinframe[j].v[2]*pq1inmodel->scale[2]+pq1inmodel->scale_origin[2];
#ifndef SERVERONLY
			VectorCopy(r_avertexnormals[pinframe[j].lightnormalindex], normals[j]);
#endif
			if (seamremaps[j] != j)
			{
				VectorCopy(verts[j], verts[seamremaps[j]]);
#ifndef SERVERONLY
				VectorCopy(normals[j], normals[seamremaps[j]]);
#endif
			}
		}
	}
}
static void *Alias_LoadFrameGroup (daliasframetype_t *pframetype, int *seamremaps, int mdltype)
{
	galiaspose_t *pose;
	galiasgroup_t *frame = (galiasgroup_t*)((char *)galias + galias->groupofs);
	dtrivertx_t		*pinframe;
	daliasframe_t *frameinfo;
	int				i, k;
	daliasgroup_t *ingroup;
	daliasinterval_t *intervals;
	float sinter;

	vec3_t *normals, *svec, *tvec;
	vecV_t *verts;
	int aliasframesize = (mdltype == 1) ? sizeof(daliasframe_t)-16 : sizeof(daliasframe_t);

#ifdef SERVERONLY
	normals = NULL;
	svec = NULL;
	tvec = NULL;
#endif

	for (i = 0; i < pq1inmodel->numframes; i++)
	{
		switch(LittleLong(pframetype->type))
		{
		case ALIAS_SINGLE:
			frameinfo = (daliasframe_t*)((char *)(pframetype+1)); // qtest aliasframe is a subset
			pinframe = (dtrivertx_t*)((char*)frameinfo+aliasframesize);
#ifndef SERVERONLY
			pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + (sizeof(vecV_t)+sizeof(vec3_t)*3)*galias->numverts);
#else
			pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + (sizeof(vecV_t))*galias->numverts);
#endif
			frame->poseofs = (char *)pose - (char *)frame;
			frame->numposes = 1;
			galias->groups++;

			if (mdltype == 1)
				frame->name[0] = '\0';
			else
				Q_strncpyz(frame->name, frameinfo->name, sizeof(frame->name));

			verts = (vecV_t *)(pose+1);
			pose->ofsverts = (char *)verts - (char *)pose;
#ifndef SERVERONLY
			normals = (vec3_t*)&verts[galias->numverts];
			svec = &normals[galias->numverts];
			tvec = &svec[galias->numverts];
			pose->ofsnormals = (char *)normals - (char *)pose;
			pose->ofssvector = (char *)svec - (char *)pose;
			pose->ofstvector = (char *)tvec - (char *)pose;
#endif

			Alias_LoadPose(verts, normals, svec, tvec, pinframe, seamremaps, mdltype);

//			GL_GenerateNormals((float*)verts, (float*)normals, (int *)((char *)galias + galias->ofs_indexes), galias->numindexes/3, galias->numverts);

			pframetype = (daliasframetype_t *)&pinframe[pq1inmodel->numverts];
			break;

		case ALIAS_GROUP:
		case ALIAS_GROUP_SWAPPED: // prerelease
			ingroup = (daliasgroup_t *)(pframetype+1);

			frame->numposes = LittleLong(ingroup->numframes);
#ifdef SERVERONLY
			pose = (galiaspose_t *)Hunk_Alloc(frame->numposes*(sizeof(galiaspose_t) + sizeof(vecV_t)*galias->numverts));
			verts = (vecV_t *)(pose+frame->numposes);
#else
			pose = (galiaspose_t *)Hunk_Alloc(frame->numposes*(sizeof(galiaspose_t) + (sizeof(vecV_t)+sizeof(vec3_t)*3)*galias->numverts));
			verts = (vecV_t *)(pose+frame->numposes);
			normals = (vec3_t*)&verts[galias->numverts];
			svec = &normals[galias->numverts];
			tvec = &svec[galias->numverts];
#endif

			frame->poseofs = (char *)pose - (char *)frame;
			frame->loop = true;
			galias->groups++;

			intervals = (daliasinterval_t *)(ingroup+1);
			sinter = LittleFloat(intervals->interval);
			if (sinter <= 0)
				sinter = 0.1;
			frame->rate = 1/sinter;

			pinframe = (dtrivertx_t *)(intervals+frame->numposes);
			for (k = 0; k < frame->numposes; k++)
			{
				pose->ofsverts = (char *)verts - (char *)pose;
#ifndef SERVERONLY
				pose->ofsnormals = (char *)normals - (char *)pose;
				pose->ofssvector = (char *)svec - (char *)pose;
				pose->ofstvector = (char *)tvec - (char *)pose;
#endif

				frameinfo = (daliasframe_t*)pinframe;
				pinframe = (dtrivertx_t *)((char *)frameinfo + aliasframesize);

				if (k == 0)
				{
					if (mdltype == 1)
						frame->name[0] = '\0';
					else
						Q_strncpyz(frame->name, frameinfo->name, sizeof(frame->name));
				}

				Alias_LoadPose(verts, normals, svec, tvec, pinframe, seamremaps, mdltype);

#ifndef SERVERONLY
				verts = (vecV_t*)&tvec[galias->numverts];
				normals = (vec3_t*)&verts[galias->numverts];
				svec = &normals[galias->numverts];
				tvec = &svec[galias->numverts];
#else
				verts = &verts[galias->numverts];
#endif
				pose++;

				pinframe += pq1inmodel->numverts;
			}

//			GL_GenerateNormals((float*)verts, (float*)normals, (int *)((char *)galias + galias->ofs_indexes), galias->numindexes/3, galias->numverts);

			pframetype = (daliasframetype_t *)pinframe;
			break;
		default:
			Con_Printf(CON_ERROR "Bad frame type in %s\n", loadmodel->name);
			return NULL;
		}
		frame++;
	}
	return pframetype;
}

//greatly reduced version of Q1_LoadSkins
//just skips over the data
static void *Q1_LoadSkins_SV (daliasskintype_t *pskintype, qboolean alpha)
{
	int i;
	int s;
	int *count;
	float *intervals;
	qbyte *data;

	s = pq1inmodel->skinwidth*pq1inmodel->skinheight;
	for (i = 0; i < pq1inmodel->numskins; i++)
	{
		switch(LittleLong(pskintype->type))
		{
		case ALIAS_SKIN_SINGLE:
			pskintype = (daliasskintype_t *)((char *)(pskintype+1)+s);
			break;

		default:
			count = (int *)(pskintype+1);
			intervals = (float *)(count+1);
			data = (qbyte *)(intervals + LittleLong(*count));
			data += s*LittleLong(*count);
			pskintype = (daliasskintype_t *)data;
			break;
		}
	}
	galias->numskins=pq1inmodel->numskins;
	return pskintype;
}

#if defined(GLQUAKE) || defined(D3DQUAKE)
static void *Q1_LoadSkins_GL (daliasskintype_t *pskintype, unsigned int skintranstype)
{
	shader_t **shaders;
	int *ofstexels;
	char skinname[MAX_QPATH];
	int i;
	int s, t;
	float sinter;
	daliasskingroup_t *count;
	daliasskininterval_t *intervals;
	qbyte *data, *saved;
	galiasskin_t *outskin = (galiasskin_t *)((char *)galias + galias->ofsskins);

	texid_t texture;
	texid_t fbtexture;
	texid_t bumptexture;

	s = pq1inmodel->skinwidth*pq1inmodel->skinheight;
	for (i = 0; i < pq1inmodel->numskins; i++)
	{
		switch(LittleLong(pskintype->type))
		{
		case ALIAS_SKIN_SINGLE:
			outskin->skinwidth = pq1inmodel->skinwidth;
			outskin->skinheight = pq1inmodel->skinheight;

			//LH's naming scheme ("models" is likly to be ignored)
			fbtexture = r_nulltex;
			bumptexture = r_nulltex;
			snprintf(skinname, sizeof(skinname), "%s_%i", loadmodel->name, i);
			texture = R_LoadReplacementTexture(skinname, "models", IF_NOALPHA);
			if (TEXVALID(texture))
			{
				if (TEXVALID(texture) && r_fb_models.ival)
				{
					snprintf(skinname, sizeof(skinname), "%s_%i_luma", loadmodel->name, i);
					fbtexture = R_LoadReplacementTexture(skinname, "models", 0);
				}
				if (r_loadbumpmapping)
				{
					snprintf(skinname, sizeof(skinname), "%s_%i_bump", loadmodel->name, i);
					bumptexture = R_LoadBumpmapTexture(skinname, "models");
				}
			}
			else
			{
				snprintf(skinname, sizeof(skinname), "%s_%i", loadname, i);
				texture = R_LoadReplacementTexture(skinname, "models", IF_NOALPHA);
				if (TEXVALID(texture) && r_fb_models.ival)
				{
					snprintf(skinname, sizeof(skinname), "%s_%i_luma", loadname, i);
					fbtexture = R_LoadReplacementTexture(skinname, "models", 0);
				}
				if (TEXVALID(texture) && r_loadbumpmapping)
				{
					snprintf(skinname, sizeof(skinname), "%s_%i_bump", loadname, i);
					bumptexture = R_LoadBumpmapTexture(skinname, "models");
				}
			}

//but only preload it if we have no replacement.
			if (!TEXVALID(texture) || (loadmodel->engineflags & MDLF_NOTREPLACEMENTS))
			{
				//we're not using 24bits
				shaders = Hunk_Alloc(sizeof(*shaders)+sizeof(*ofstexels)+s);
				ofstexels = (int*)(shaders+1);
				saved = (qbyte*)(ofstexels+1);
				outskin->ofstexels = (qbyte *)ofstexels - (qbyte *)outskin;
				ofstexels[0] = (qbyte *)saved - (qbyte *)ofstexels;
				memcpy(saved, pskintype+1, s);
				Mod_FloodFillSkin(saved, outskin->skinwidth, outskin->skinheight);

//the extra underscore is to stop replacement matches
				if (!TEXVALID(texture))
				{
					snprintf(skinname, sizeof(skinname), "%s__%i", loadname, i);
					switch (skintranstype)
					{
					default:
						texture = R_LoadTexture(skinname,outskin->skinwidth,outskin->skinheight, TF_SOLID8, saved, IF_NOALPHA|IF_NOGAMMA);
						if (r_fb_models.ival)
						{
							snprintf(skinname, sizeof(skinname), "%s__%i_luma", loadname, i);
							fbtexture = R_LoadTextureFB(skinname, outskin->skinwidth, outskin->skinheight, saved, IF_NOGAMMA);
						}
						if (r_loadbumpmapping)
						{
							snprintf(skinname, sizeof(skinname), "%s__%i_bump", loadname, i);
							bumptexture = R_LoadTexture8BumpPal(skinname, outskin->skinwidth, outskin->skinheight, saved, IF_NOGAMMA);
						}
						break;
					case 2:
						texture = R_LoadTexture(skinname,outskin->skinwidth,outskin->skinheight, TF_H2_T7G1, saved, IF_NOGAMMA);
						break;
					case 3:
						texture = R_LoadTexture(skinname,outskin->skinwidth,outskin->skinheight, TF_H2_TRANS8_0, saved, IF_NOGAMMA);
						break;
					case 4:
						texture = R_LoadTexture(skinname,outskin->skinwidth,outskin->skinheight, TF_H2_T4A4, saved, IF_NOGAMMA);
						break;
					}
				}
			}
			else
				shaders = Hunk_Alloc(sizeof(*shaders));
			outskin->numshaders=1;

			outskin->ofsshaders = (char *)shaders - (char *)outskin;



			Q_snprintfz(skinname, sizeof(skinname), "%s_%i", loadname, i);
			if (skintranstype == 4)
				shaders[0] = R_RegisterShader(skinname,
					"{\n"
						"{\n"
							"map $diffuse\n"
							"blendfunc gl_one_minus_src_alpha gl_src_alpha\n"
							"rgbgen lightingDiffuse\n"
							"cull disable\n"
							"depthwrite\n"
						"}\n"
					"}\n");
			else if (skintranstype == 3)
				shaders[0] = R_RegisterShader(skinname,
					"{\n"
						"{\n"
							"map $diffuse\n"
							"alphafunc ge128\n"
							"rgbgen lightingDiffuse\n"
							"depthwrite\n"
						"}\n"
					"}\n");
			else if (skintranstype)
				shaders[0] = R_RegisterShader(skinname,
					"{\n"
						"{\n"
							"map $diffuse\n"
							"blendfunc gl_src_alpha gl_one_minus_src_alpha\n"
							"rgbgen lightingDiffuse\n"
							"depthwrite\n"
						"}\n"
					"}\n");
			else
				shaders[0] = R_RegisterSkin(skinname, loadmodel->name);

			shaders[0]->defaulttextures.base = texture;
			shaders[0]->defaulttextures.fullbright = fbtexture;
			shaders[0]->defaulttextures.bump = bumptexture;

			//13/4/08 IMPLEMENTME
			if (r_skin_overlays.ival)
			{
				snprintf(skinname, sizeof(skinname), "%s_%i_pants", loadname, i);
				shaders[0]->defaulttextures.loweroverlay = R_LoadReplacementTexture(skinname, "models", 0);

				snprintf(skinname, sizeof(skinname), "%s_%i_shirt", loadname, i);
				shaders[0]->defaulttextures.upperoverlay = R_LoadReplacementTexture(skinname, "models", 0);
			}

			R_BuildDefaultTexnums(&shaders[0]->defaulttextures, shaders[0]);

			pskintype = (daliasskintype_t *)((char *)(pskintype+1)+s);
			break;

		default:
			outskin->skinwidth = pq1inmodel->skinwidth;
			outskin->skinheight = pq1inmodel->skinheight;
			count = (daliasskingroup_t*)(pskintype+1);
			intervals = (daliasskininterval_t *)(count+1);
			outskin->numshaders = LittleLong(count->numskins);
			data = (qbyte *)(intervals + outskin->numshaders);
			shaders = Hunk_Alloc(sizeof(*shaders)*outskin->numshaders + sizeof(*ofstexels)*outskin->numshaders);
			ofstexels = (int*)(shaders+outskin->numshaders);
			outskin->ofsshaders = (char *)shaders - (char *)outskin;
			outskin->ofstexels = (char *)ofstexels - (char *)outskin;
			sinter = LittleFloat(intervals[0].interval);
			if (sinter <= 0)
				sinter = 0.1;
			outskin->skinspeed = 1/sinter;

			for (t = 0; t < outskin->numshaders; t++,data+=s)
			{
				texture = r_nulltex;
				fbtexture = r_nulltex;

				//LH naming scheme
				if (!TEXVALID(texture))
				{
					Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i", loadmodel->name, i, t);
					texture = R_LoadReplacementTexture(skinname, "models", IF_NOALPHA);
				}
				if (!TEXVALID(fbtexture) && r_fb_models.ival)
				{
					Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i_luma", loadmodel->name, i, t);
					fbtexture = R_LoadReplacementTexture(skinname, "models", 0);
				}

				//Fuhquake naming scheme
				if (!TEXVALID(texture))
				{
					Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i", loadname, i, t);
					texture = R_LoadReplacementTexture(skinname, "models", IF_NOALPHA);
				}
				if (!TEXVALID(fbtexture) && r_fb_models.ival)
				{
					Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i_luma", loadname, i, t);
					fbtexture = R_LoadReplacementTexture(skinname, "models", 0);
				}

				if (!TEXVALID(texture) || (!TEXVALID(fbtexture) && r_fb_models.ival))
				{
					saved = Hunk_Alloc(s);
					ofstexels[t] = (qbyte *)(saved) - (qbyte *)ofstexels;
					memcpy(saved, data, s);
					Mod_FloodFillSkin(saved, outskin->skinwidth, outskin->skinheight);
					if (!TEXVALID(texture))
					{
						Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i", loadname, i, t);
						texture = R_LoadTexture8(skinname, outskin->skinwidth, outskin->skinheight, saved, (skintranstype?0:IF_NOALPHA)|IF_NOGAMMA, skintranstype);
					}


					if (!TEXVALID(fbtexture) && r_fb_models.value)
					{
						Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i_luma", loadname, i, t);
						fbtexture = R_LoadTextureFB(skinname, outskin->skinwidth, outskin->skinheight, saved, IF_NOGAMMA);
					}
				}

				Q_snprintfz(skinname, sizeof(skinname), "%s_%i_%i", loadname, i, t);
				shaders[t] = R_RegisterSkin(skinname, loadmodel->name);

				TEXASSIGN(shaders[t]->defaulttextures.base, texture);
				TEXASSIGN(shaders[t]->defaulttextures.fullbright, fbtexture);
				TEXASSIGN(shaders[t]->defaulttextures.loweroverlay, r_nulltex);
				TEXASSIGN(shaders[t]->defaulttextures.upperoverlay, r_nulltex);

				R_BuildDefaultTexnums(&shaders[t]->defaulttextures, shaders[t]);
			}
			pskintype = (daliasskintype_t *)data;
			break;
		}
		outskin++;
	}
	galias->numskins=pq1inmodel->numskins;
	return pskintype;
}
#endif

qboolean Mod_LoadQ1Model (model_t *mod, void *buffer)
{
#ifndef SERVERONLY
	vec2_t *st_array;
	int j;
#endif
	int hunkstart, hunkend, hunktotal;
	int version;
	int i, onseams;
	dstvert_t *pinstverts;
	dtriangle_t *pinq1triangles;
	dh2triangle_t *pinh2triangles;
	int *seamremap;
	index_t *indexes;
	daliasskintype_t *skinstart;
	int skintranstype;

	int size;
	unsigned int hdrsize;
	void *end;
	qboolean qtest = false;
	qboolean rapo = false;

	loadmodel=mod;

	hunkstart = Hunk_LowMark ();

	pq1inmodel = (dmdl_t *)buffer;

	hdrsize = sizeof(dmdl_t) - sizeof(int);

	loadmodel->engineflags |= MDLF_NEEDOVERBRIGHT;

	version = LittleLong(pq1inmodel->version);
	if (version == QTESTALIAS_VERSION)
	{
		hdrsize = (size_t)&((dmdl_t*)NULL)->flags;
		qtest = true;
	}
	else if (version == 50)
	{
		hdrsize = sizeof(dmdl_t);
		rapo = true;
	}
	else if (version != ALIAS_VERSION)
	{
		Con_Printf (CON_ERROR "%s has wrong version number (%i should be %i)\n",
				 mod->name, version, ALIAS_VERSION);
		return false;
	}

	seamremap = (int*)pq1inmodel;	//I like overloading locals.

	i = hdrsize/4 - 1;

	for (; i >= 0; i--)
		seamremap[i] = LittleLong(seamremap[i]);

	if (pq1inmodel->numframes < 1 ||
		pq1inmodel->numskins < 1 ||
		pq1inmodel->numtris < 1 ||
		pq1inmodel->numverts < 3 ||
		pq1inmodel->skinheight < 1 ||
		pq1inmodel->skinwidth < 1)
	{
		Con_Printf(CON_ERROR "Model %s has an invalid quantity\n", mod->name);
		return false;
	}

	if (qtest)
		mod->flags = 0; // Qtest has no flags in header
	else
		mod->flags = pq1inmodel->flags;

	size = sizeof(galiasinfo_t)
#ifndef SERVERONLY
		+ pq1inmodel->numskins*sizeof(galiasskin_t)
#endif
		+ pq1inmodel->numframes*sizeof(galiasgroup_t);

	galias = Hunk_Alloc(size);
	galias->groupofs = sizeof(*galias);
#ifndef SERVERONLY
	galias->ofsskins = sizeof(*galias)+pq1inmodel->numframes*sizeof(galiasgroup_t);
#endif
	galias->nextsurf = 0;

	loadmodel->numframes = pq1inmodel->numframes;

//skins
	skinstart = (daliasskintype_t *)((char*)pq1inmodel+hdrsize);

	if( mod->flags & MFH2_HOLEY )
		skintranstype = 3;	//hexen2
	else if( mod->flags & MFH2_TRANSPARENT )
		skintranstype = 2;	//hexen2
	else if( mod->flags & MFH2_SPECIAL_TRANS )
		skintranstype = 4;	//hexen2
	else
		skintranstype = 0;

	switch(qrenderer)
	{
	default:
#ifndef SERVERONLY
		pinstverts = (dstvert_t *)Q1_LoadSkins_GL(skinstart, skintranstype);
		break;
#endif
	case QR_NONE:
		pinstverts = (dstvert_t *)Q1_LoadSkins_SV(skinstart, skintranstype);
		break;
	}

	if (rapo)
	{
		/*each triangle can use one coord and one st, for each vert, that's a lot of combinations*/
#ifdef SERVERONLY
		/*separate st + vert lists*/
		pinh2triangles = (dh2triangle_t *)&pinstverts[pq1inmodel->num_st];

		seamremap = BZ_Malloc(sizeof(*seamremap)*pq1inmodel->numtris*3);

		galias->numverts = pq1inmodel->numverts;
		galias->numindexes = pq1inmodel->numtris*3;
		indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes));
		galias->ofs_indexes = (char *)indexes - (char *)galias;
		for (i = 0; i < pq1inmodel->numverts; i++)
			seamremap[i] = i;
		for (i = 0; i < pq1inmodel->numtris; i++)
		{
			indexes[i*3+0] = LittleShort(pinh2triangles[i].vertindex[0]);
			indexes[i*3+1] = LittleShort(pinh2triangles[i].vertindex[1]);
			indexes[i*3+2] = LittleShort(pinh2triangles[i].vertindex[2]);
		}
#else
		int t, v, k;
		int *stremap;
		/*separate st + vert lists*/
		pinh2triangles = (dh2triangle_t *)&pinstverts[pq1inmodel->num_st];

		seamremap = BZ_Malloc(sizeof(int)*pq1inmodel->numtris*6);
		stremap = seamremap + pq1inmodel->numtris*3;

		/*output the indicies as we figure out which verts we want*/
		galias->numindexes = pq1inmodel->numtris*3;
		indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes));
		galias->ofs_indexes = (char *)indexes - (char *)galias;
		for (i = 0; i < pq1inmodel->numtris; i++)
		{
			for (j = 0; j < 3; j++)
			{
				v = LittleShort(pinh2triangles[i].vertindex[j]);
				t = LittleShort(pinh2triangles[i].stindex[j]);
				if (pinstverts[t].onseam && !pinh2triangles[i].facesfront)
					t += pq1inmodel->num_st;
			 	for (k = 0; k < galias->numverts; k++) /*big fatoff slow loop*/
				{
					if (stremap[k] == t && seamremap[k] == v)
						break;
				}
				if (k == galias->numverts)
				{
					galias->numverts++;
					stremap[k] = t;
					seamremap[k] = v;
				}
				indexes[i*3+j] = k;
			}
		}

		st_array = Hunk_Alloc(sizeof(*st_array)*(galias->numverts));
		galias->ofs_st_array = (char *)st_array - (char *)galias;
		/*generate our st_array now we know which vertexes we want*/
		for (k = 0; k < galias->numverts; k++)
		{
			if (stremap[k] > pq1inmodel->num_st)
			{	/*onseam verts? shrink the index, and add half a texture width to the s coord*/
				st_array[k][0] = 0.5+(LittleLong(pinstverts[stremap[k]-pq1inmodel->num_st].s)+0.5)/(float)pq1inmodel->skinwidth;
				st_array[k][1] = (LittleLong(pinstverts[stremap[k]-pq1inmodel->num_st].t)+0.5)/(float)pq1inmodel->skinheight;
			}
			else
			{
				st_array[k][0] = (LittleLong(pinstverts[stremap[k]].s)+0.5)/(float)pq1inmodel->skinwidth;
				st_array[k][1] = (LittleLong(pinstverts[stremap[k]].t)+0.5)/(float)pq1inmodel->skinheight;
			}
		}
#endif
		end = &pinh2triangles[pq1inmodel->numtris];

		if (Alias_LoadFrameGroup((daliasframetype_t *)end, seamremap, 2) == NULL)
		{
			BZ_Free(seamremap);
			Hunk_FreeToLowMark (hunkstart);
			return false;
		}

		BZ_Free(seamremap);
	}
	else
	{
		/*onseam means +=skinwidth/2
		verticies that are marked as onseam potentially generate two output verticies.
		the triangle chooses which side based upon its 'onseam' field.
		*/

		//count number of verts that are onseam.
		for (onseams=0,i = 0; i < pq1inmodel->numverts; i++)
		{
			if (pinstverts[i].onseam)
				onseams++;
		}
		seamremap = BZ_Malloc(sizeof(*seamremap)*pq1inmodel->numverts);

		galias->numverts = pq1inmodel->numverts+onseams;

		//st
#ifndef SERVERONLY
		st_array = Hunk_Alloc(sizeof(*st_array)*(pq1inmodel->numverts+onseams));
		galias->ofs_st_array = (char *)st_array - (char *)galias;
		for (j=pq1inmodel->numverts,i = 0; i < pq1inmodel->numverts; i++)
		{
			st_array[i][0] = (LittleLong(pinstverts[i].s)+0.5)/(float)pq1inmodel->skinwidth;
			st_array[i][1] = (LittleLong(pinstverts[i].t)+0.5)/(float)pq1inmodel->skinheight;

			if (pinstverts[i].onseam)
			{
				st_array[j][0] = st_array[i][0]+0.5;
				st_array[j][1] = st_array[i][1];
				seamremap[i] = j;
				j++;
			}
			else
				seamremap[i] = i;
		}
#else
		for (i = 0; i < pq1inmodel->numverts; i++)
		{
			seamremap[i] = i;
		}
#endif

		//trianglelists;
		pinq1triangles = (dtriangle_t *)&pinstverts[pq1inmodel->numverts];

		galias->numindexes = pq1inmodel->numtris*3;
		indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes));
		galias->ofs_indexes = (char *)indexes - (char *)galias;
		for (i=0 ; i<pq1inmodel->numtris ; i++)
		{
			if (!pinq1triangles[i].facesfront)
			{
				indexes[i*3+0] = seamremap[LittleLong(pinq1triangles[i].vertindex[0])];
				indexes[i*3+1] = seamremap[LittleLong(pinq1triangles[i].vertindex[1])];
				indexes[i*3+2] = seamremap[LittleLong(pinq1triangles[i].vertindex[2])];
			}
			else
			{
				indexes[i*3+0] = LittleLong(pinq1triangles[i].vertindex[0]);
				indexes[i*3+1] = LittleLong(pinq1triangles[i].vertindex[1]);
				indexes[i*3+2] = LittleLong(pinq1triangles[i].vertindex[2]);
			}
		}
		end = &pinq1triangles[pq1inmodel->numtris];

		//frames
		if (Alias_LoadFrameGroup((daliasframetype_t *)end, seamremap, qtest ? 1 : 0) == NULL)
		{
			BZ_Free(seamremap);
			Hunk_FreeToLowMark (hunkstart);
			return false;
		}
		BZ_Free(seamremap);
	}


	Mod_CompileTriangleNeighbours(galias);
	Mod_BuildTextureVectors(galias);

	VectorCopy (pq1inmodel->scale_origin, mod->mins);
	VectorMA (mod->mins, 255, pq1inmodel->scale, mod->maxs);

	mod->type = mod_alias;
	Mod_ClampModelSize(mod);
//
// move the complete, relocatable alias model to the cache
//
	hunkend = Hunk_LowMark ();
	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, galias, hunktotal);

	Hunk_FreeToLowMark (hunkstart);

	mod->funcs.NativeTrace = Mod_Trace;

	return true;
}
#endif


int Mod_ReadFlagsFromMD1(char *name, int md3version)
{
	dmdl_t				*pinmodel;
	char fname[MAX_QPATH];
	COM_StripExtension(name, fname, sizeof(fname));
	COM_DefaultExtension(fname, ".mdl", sizeof(fname));

	if (strcmp(name, fname))	//md3 renamed as mdl
	{
		COM_StripExtension(name, fname, sizeof(fname));	//seeing as the md3 is named over the mdl,
		COM_DefaultExtension(fname, ".md1", sizeof(fname));//read from a file with md1 (one, not an ell)
		return 0;
	}

	pinmodel = (dmdl_t *)COM_LoadTempFile(fname);

	if (!pinmodel)	//not found
		return 0;

	if (LittleLong(pinmodel->ident) != IDPOLYHEADER)
		return 0;
	if (LittleLong(pinmodel->version) != ALIAS_VERSION)
		return 0;
	return LittleLong(pinmodel->flags);
}

#ifdef MD2MODELS

////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//Q2 model loading

typedef struct
{
	float		scale[3];	// multiply qbyte verts by this
	float		translate[3];	// then add this
	char		name[16];	// frame name from grabbing
	dtrivertx_t	verts[1];	// variable sized
} dmd2aliasframe_t;

//static galiasinfo_t *galias;
//static md2_t *pq2inmodel;
#define Q2NUMVERTEXNORMALS	162
extern vec3_t	bytedirs[Q2NUMVERTEXNORMALS];

static void Q2_LoadSkins(md2_t *pq2inmodel, char *skins)
{
#ifndef SERVERONLY
	int i;
	shader_t **shaders;
	galiasskin_t *outskin = (galiasskin_t *)((char *)galias + galias->ofsskins);

	for (i = 0; i < LittleLong(pq2inmodel->num_skins); i++, outskin++)
	{
		shaders = Hunk_Alloc(sizeof(*shaders));
		outskin->ofsshaders = (char *)shaders - (char *)outskin;
		outskin->numshaders=1;

		COM_CleanUpPath(skins);	//blooming tanks.
		shaders[0] = R_RegisterSkin(skins, loadmodel->name);
		TEXASSIGN(shaders[0]->defaulttextures.base, R_LoadReplacementTexture(skins, "models", IF_NOALPHA));
		R_BuildDefaultTexnums(NULL, shaders[0]);

		outskin->skinwidth = 0;
		outskin->skinheight = 0;
		outskin->skinspeed = 0;

		skins += MD2MAX_SKINNAME;
	}
#endif
	galias->numskins = LittleLong(pq2inmodel->num_skins);

	/*
#ifndef SERVERONLY
	outskin = (galiasskin_t *)((char *)galias + galias->ofsskins);
	outskin += galias->numskins - 1;
	if (galias->numskins)
	{
		if (*(shader_t**)((char *)outskin + outskin->ofstexnums))
			return;

		galias->numskins--;
	}
#endif
	*/
}

#define MD2_MAX_TRIANGLES 4096
qboolean Mod_LoadQ2Model (model_t *mod, void *buffer)
{
#ifndef SERVERONLY
	dmd2stvert_t *pinstverts;
	vec2_t *st_array;
	vec3_t *normals;
#endif
	md2_t *pq2inmodel;

	int hunkstart, hunkend, hunktotal;
	int version;
	int i, j;
	dmd2triangle_t *pintri;
	index_t *indexes;
	int numindexes;

	vec3_t min;
	vec3_t max;

	galiaspose_t *pose;
	galiasgroup_t *poutframe;
	dmd2aliasframe_t *pinframe;
	int framesize;
	vecV_t *verts;

	int		indremap[MD2_MAX_TRIANGLES*3];
	unsigned short		ptempindex[MD2_MAX_TRIANGLES*3], ptempstindex[MD2_MAX_TRIANGLES*3];

	int numverts;

	int size;


	loadmodel=mod;

	loadmodel->engineflags |= MDLF_NEEDOVERBRIGHT;

	hunkstart = Hunk_LowMark ();

	pq2inmodel = (md2_t *)buffer;

	version = LittleLong (pq2inmodel->version);
	if (version != MD2ALIAS_VERSION)
	{
		Con_Printf (CON_ERROR "%s has wrong version number (%i should be %i)\n",
				 mod->name, version, MD2ALIAS_VERSION);
		return false;
	}

	if (LittleLong(pq2inmodel->num_frames) < 1 ||
		LittleLong(pq2inmodel->num_skins) < 0 ||
		LittleLong(pq2inmodel->num_tris) < 1 ||
		LittleLong(pq2inmodel->num_xyz) < 3 ||
		LittleLong(pq2inmodel->num_st) < 3 ||
		LittleLong(pq2inmodel->skinheight) < 1 ||
		LittleLong(pq2inmodel->skinwidth) < 1)
	{
		Con_Printf(CON_ERROR "Model %s has an invalid quantity\n", mod->name);
		return false;
	}

	mod->flags = 0;

	loadmodel->numframes = LittleLong(pq2inmodel->num_frames);

	size = sizeof(galiasinfo_t)
#ifndef SERVERONLY
		+ LittleLong(pq2inmodel->num_skins)*sizeof(galiasskin_t)
#endif
		+ LittleLong(pq2inmodel->num_frames)*sizeof(galiasgroup_t);

	galias = Hunk_Alloc(size);
	galias->groupofs = sizeof(*galias);
#ifndef SERVERONLY
	galias->ofsskins = sizeof(*galias)+LittleLong(pq2inmodel->num_frames)*sizeof(galiasgroup_t);
#endif
	galias->nextsurf = 0;

//skins
	Q2_LoadSkins(pq2inmodel, ((char *)pq2inmodel+LittleLong(pq2inmodel->ofs_skins)));

	//trianglelists;
	pintri = (dmd2triangle_t *)((char *)pq2inmodel + LittleLong(pq2inmodel->ofs_tris));


	for (i=0 ; i<LittleLong(pq2inmodel->num_tris) ; i++, pintri++)
	{
		for (j=0 ; j<3 ; j++)
		{
			ptempindex[i*3+j] = ( unsigned short )LittleShort ( pintri->xyz_index[j] );
			ptempstindex[i*3+j] = ( unsigned short )LittleShort ( pintri->st_index[j] );
		}
	}

	numindexes = galias->numindexes = LittleLong(pq2inmodel->num_tris)*3;
	indexes = Hunk_Alloc(galias->numindexes*sizeof(*indexes));
	galias->ofs_indexes = (char *)indexes - (char *)galias;
	memset ( indremap, -1, sizeof(indremap) );
	numverts=0;

	for ( i = 0; i < numindexes; i++ )
	{
		if ( indremap[i] != -1 ) {
			continue;
		}

		for ( j = 0; j < numindexes; j++ )
		{
			if ( j == i ) {
				continue;
			}

			if ( (ptempindex[i] == ptempindex[j]) && (ptempstindex[i] == ptempstindex[j]) ) {
				indremap[j] = i;
			}
		}
	}

	// count unique vertexes
	for ( i = 0; i < numindexes; i++ )
	{
		if ( indremap[i] != -1 ) {
			continue;
		}

		indexes[i] = numverts++;
		indremap[i] = i;
	}

	Con_DPrintf ( "%s: remapped %i verts to %i\n", mod->name, LittleLong(pq2inmodel->num_xyz), numverts );

	galias->numverts = numverts;

	// remap remaining indexes
	for ( i = 0; i < numindexes; i++ )
	{
		if ( indremap[i] != i ) {
			indexes[i] = indexes[indremap[i]];
		}
	}

// s and t vertices
#ifndef SERVERONLY
	pinstverts = ( dmd2stvert_t * ) ( ( qbyte * )pq2inmodel + LittleLong (pq2inmodel->ofs_st) );
	st_array = Hunk_Alloc(sizeof(*st_array)*(numverts));
	galias->ofs_st_array = (char *)st_array - (char *)galias;

	for (j=0 ; j<numindexes; j++)
	{
		st_array[indexes[j]][0] = (float)(((double)LittleShort (pinstverts[ptempstindex[indremap[j]]].s) + 0.5f) /LittleLong(pq2inmodel->skinwidth));
		st_array[indexes[j]][1] = (float)(((double)LittleShort (pinstverts[ptempstindex[indremap[j]]].t) + 0.5f) /LittleLong(pq2inmodel->skinheight));
	}
#endif

	//frames
	ClearBounds ( mod->mins, mod->maxs );

	poutframe = (galiasgroup_t*)((char *)galias + galias->groupofs);
	framesize = LittleLong (pq2inmodel->framesize);
	for (i=0 ; i<LittleLong(pq2inmodel->num_frames) ; i++)
	{
		pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + sizeof(vecV_t)*numverts
#ifndef SERVERONLY
			+ 3*sizeof(vec3_t)*numverts
#endif
			);
		poutframe->poseofs = (char *)pose - (char *)poutframe;
		poutframe->numposes = 1;
		galias->groups++;

		verts = (vecV_t *)(pose+1);
		pose->ofsverts = (char *)verts - (char *)pose;
#ifndef SERVERONLY
		normals = (vec3_t*)&verts[galias->numverts];
		pose->ofsnormals = (char *)normals - (char *)pose;

		pose->ofssvector = (char *)&normals[galias->numverts] - (char *)pose;
		pose->ofstvector = (char *)&normals[galias->numverts*2] - (char *)pose;
#endif


		pinframe = ( dmd2aliasframe_t * )( ( qbyte * )pq2inmodel + LittleLong (pq2inmodel->ofs_frames) + i * framesize );
		Q_strncpyz(poutframe->name, pinframe->name, sizeof(poutframe->name));

		for (j=0 ; j<3 ; j++)
		{
			pose->scale[j] = LittleFloat (pinframe->scale[j]);
			pose->scale_origin[j] = LittleFloat (pinframe->translate[j]);
		}

		for (j=0 ; j<numindexes; j++)
		{
			// verts are all 8 bit, so no swapping needed
			verts[indexes[j]][0] = pose->scale_origin[0]+pose->scale[0]*pinframe->verts[ptempindex[indremap[j]]].v[0];
			verts[indexes[j]][1] = pose->scale_origin[1]+pose->scale[1]*pinframe->verts[ptempindex[indremap[j]]].v[1];
			verts[indexes[j]][2] = pose->scale_origin[2]+pose->scale[2]*pinframe->verts[ptempindex[indremap[j]]].v[2];
#ifndef SERVERONLY
			VectorCopy(bytedirs[pinframe->verts[ptempindex[indremap[j]]].lightnormalindex], normals[indexes[j]]);
#endif
		}

//		Mod_AliasCalculateVertexNormals ( numindexes, poutindex, numverts, poutvertex, qfalse );

		VectorCopy ( pose->scale_origin, min );
		VectorMA ( pose->scale_origin, 255, pose->scale, max );

//		poutframe->radius = RadiusFromBounds ( min, max );

//		mod->radius = max ( mod->radius, poutframe->radius );
		AddPointToBounds ( min, mod->mins, mod->maxs );
		AddPointToBounds ( max, mod->mins, mod->maxs );

//		GL_GenerateNormals((float*)verts, (float*)normals, indexes, numindexes/3, numverts);

		poutframe++;
	}



	Mod_CompileTriangleNeighbours(galias);
	Mod_BuildTextureVectors(galias);
	/*
	VectorCopy (pq2inmodel->scale_origin, mod->mins);
	VectorMA (mod->mins, 255, pq2inmodel->scale, mod->maxs);
	*/

	Mod_ClampModelSize(mod);
//
// move the complete, relocatable alias model to the cache
//
	hunkend = Hunk_LowMark ();
	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	mod->type = mod_alias;
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, galias, hunktotal);

	Hunk_FreeToLowMark (hunkstart);

	mod->funcs.NativeTrace = Mod_Trace;

	return true;
}

#endif









int Mod_GetNumBones(model_t *model, qboolean allowtags)
{
	galiasinfo_t *inf;


	if (!model || model->type != mod_alias)
		return 0;

	inf = Mod_Extradata(model);

#ifdef SKELETALMODELS
	if (inf->numbones)
		return inf->numbones;
	else
#endif
		if (allowtags)
		return inf->numtags;
	else
		return 0;
}

int Mod_GetBoneRelations(model_t *model, int firstbone, int lastbone, framestate_t *fstate, float *result)
{
#ifdef SKELETALMODELS
	galiasinfo_t *inf;


	if (!model || model->type != mod_alias)
		return false;

	inf = Mod_Extradata(model);
	return Alias_GetBoneRelations(inf, fstate, result, firstbone, lastbone);
#endif
	return 0;
}

galiasbone_t *Mod_GetBoneInfo(model_t *model)
{
#ifdef SKELETALMODELS
	galiasbone_t *bone;
	galiasinfo_t *inf;


	if (!model || model->type != mod_alias)
		return NULL;

	inf = Mod_Extradata(model);

	bone = (galiasbone_t*)((char*)inf + inf->ofsbones);
	return bone;
#else
	return NULL;
#endif
}

int Mod_GetBoneParent(model_t *model, int bonenum)
{
#ifdef SKELETALMODELS
	galiasbone_t *bone;
	galiasinfo_t *inf;


	if (!model || model->type != mod_alias)
		return 0;

	inf = Mod_Extradata(model);


	bonenum--;
	if ((unsigned int)bonenum >= inf->numbones)
		return 0;	//no parent
	bone = (galiasbone_t*)((char*)inf + inf->ofsbones);
	return bone[bonenum].parent+1;
#endif
	return 0;
}

char *Mod_GetBoneName(model_t *model, int bonenum)
{
#ifdef SKELETALMODELS
	galiasbone_t *bone;
	galiasinfo_t *inf;


	if (!model || model->type != mod_alias)
		return 0;

	inf = Mod_Extradata(model);


	bonenum--;
	if ((unsigned int)bonenum >= inf->numbones)
		return 0;	//no parent
	bone = (galiasbone_t*)((char*)inf + inf->ofsbones);
	return bone[bonenum].name;
#endif
	return 0;
}


typedef struct {
	char name[MAX_QPATH];
	vec3_t org;
	float ang[3][3];
} md3tag_t;

qboolean Mod_GetTag(model_t *model, int tagnum, framestate_t *fstate, float *result)
{
	galiasinfo_t *inf;


	if (!model || model->type != mod_alias)
		return false;

	inf = Mod_Extradata(model);
#ifdef SKELETALMODELS
	if (inf->numbones)
	{
		galiasbone_t *bone;
		galiasgroup_t *g1, *g2;

		float tempmatrix[12];			//flipped between this and bonematrix
		float *matrix;	//the matrix for a single bone in a single pose.
		float m[12];	//combined interpolated version of 'matrix'.
		int b, k;	//counters

		float *pose[4];	//the per-bone matricies (one for each pose)
		float plerp[4];	//the ammount of that pose to use (must combine to 1)
		int numposes = 0;

		int frame1, frame2;
		float f1time, f2time;
		float f2ness;

#ifdef warningmsg
#pragma warningmsg("fixme: no base info")
#endif

		if (tagnum <= 0 || tagnum > inf->numbones)
			return false;
		tagnum--;	//tagnum 0 is 'use my angles/org'

		bone = (galiasbone_t*)((char*)inf + inf->ofsbones);

		if (fstate->bonestate)
		{
			if (tagnum >= fstate->bonecount)
				return false;

			if (fstate->boneabs)
			{
				memcpy(result, fstate->bonestate + 12 * tagnum, 12*sizeof(*result));
				return true;
			}

			pose[0] = fstate->bonestate;
			plerp[0] = 1;
			numposes = 1;
		}
		else
		{
			frame1 = fstate->g[FS_REG].frame[0];
			frame2 = fstate->g[FS_REG].frame[1];
			f1time = fstate->g[FS_REG].frametime[0];
			f2time = fstate->g[FS_REG].frametime[1];
			f2ness = fstate->g[FS_REG].lerpfrac;

			if (frame1 < 0 || frame1 >= inf->groups)
				return false;
			if (frame2 < 0 || frame2 >= inf->groups)
			{
				f2ness = 0;
				frame2 = frame1;
			}

	//the higher level merges old/new anims, but we still need to blend between automated frame-groups.
			g1 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame1);
			g2 = (galiasgroup_t*)((char *)inf + inf->groupofs + sizeof(galiasgroup_t)*frame2);

			if (f2ness != 1)
			{
				f1time *= g1->rate;
				frame1 = (int)f1time%g1->numposes;
				frame2 = ((int)f1time+1)%g1->numposes;
				f1time = f1time - (int)f1time;
				pose[numposes] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*inf->numbones*12*frame1);
				plerp[numposes] = (1-f1time) * (1-f2ness);
				numposes++;
				if (frame1 != frame2)
				{
					pose[numposes] = (float *)((char *)g1 + g1->poseofs + sizeof(float)*inf->numbones*12*frame2);
					plerp[numposes] = f1time * (1-f2ness);
					numposes++;
				}
			}
			if (f2ness)
			{
				f2time *= g2->rate;
				frame1 = (int)f2time%g2->numposes;
				frame2 = ((int)f2time+1)%g2->numposes;
				f2time = f2time - (int)f2time;
				pose[numposes] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*inf->numbones*12*frame1);
				plerp[numposes] = (1-f2time) * f2ness;
				numposes++;
				if (frame1 != frame2)
				{
					pose[numposes] = (float *)((char *)g2 + g2->poseofs + sizeof(float)*inf->numbones*12*frame2);
					plerp[numposes] = f2time * f2ness;
					numposes++;
				}
			}
		}

		//set up the identity matrix
		for (k = 0;k < 12;k++)
			result[k] = 0;
		result[0] = 1;
		result[5] = 1;
		result[10] = 1;
		while(tagnum >= 0)
		{
			//set up the per-bone transform matrix
			for (k = 0;k < 12;k++)
				m[k] = 0;
			for (b = 0;b < numposes;b++)
			{
				matrix = pose[b] + tagnum*12;

				for (k = 0;k < 12;k++)
					m[k] += matrix[k] * plerp[b];
			}

			memcpy(tempmatrix, result, sizeof(tempmatrix));
			R_ConcatTransforms((void*)m, (void*)tempmatrix, (void*)result);

			tagnum = bone[tagnum].parent;
		}

		return true;
	}
#endif
	if (inf->numtags)
	{
		md3tag_t *t1, *t2;

		int frame1, frame2;
		float f1time, f2time;
		float f2ness;

		frame1 = fstate->g[FS_REG].frame[0];
		frame2 = fstate->g[FS_REG].frame[1];
		f1time = fstate->g[FS_REG].frametime[0];
		f2time = fstate->g[FS_REG].frametime[1];
		f2ness = fstate->g[FS_REG].lerpfrac;

		if (tagnum <= 0 || tagnum > inf->numtags)
			return false;
		if (frame1 < 0)
			return false;
		if (frame1 >= inf->numtagframes)
			frame1 = inf->numtagframes - 1;
		if (frame2 < 0 || frame2 >= inf->numtagframes)
			frame2 = frame1;
		tagnum--;	//tagnum 0 is 'use my angles/org'

		t1 = (md3tag_t*)((char*)inf + inf->ofstags);
		t1 += tagnum;
		t1 += inf->numtags*frame1;

		t2 = (md3tag_t*)((char*)inf + inf->ofstags);
		t2 += tagnum;
		t2 += inf->numtags*frame2;

		if (t1 == t2)
		{
			result[0]	= t1->ang[0][0];
			result[1]	= t1->ang[0][1];
			result[2]	= t1->ang[0][2];
			result[3]	= t1->org[0];
			result[4]	= t1->ang[1][0];
			result[5]	= t1->ang[1][1];
			result[6]	= t1->ang[1][2];
			result[7]	= t1->org[1];
			result[8]	= t1->ang[2][0];
			result[9]	= t1->ang[2][1];
			result[10]	= t1->ang[2][2];
			result[11]	= t1->org[2];
		}
		else
		{
			float f1ness = 1-f2ness;
			result[0]	= t1->ang[0][0]*f1ness	+ t2->ang[0][0]*f2ness;
			result[1]	= t1->ang[0][1]*f1ness	+ t2->ang[0][1]*f2ness;
			result[2]	= t1->ang[0][2]*f1ness	+ t2->ang[0][2]*f2ness;
			result[3]	= t1->org[0]*f1ness		+ t2->org[0]*f2ness;
			result[4]	= t1->ang[1][0]*f1ness	+ t2->ang[1][0]*f2ness;
			result[5]	= t1->ang[1][1]*f1ness	+ t2->ang[1][1]*f2ness;
			result[6]	= t1->ang[1][2]*f1ness	+ t2->ang[1][2]*f2ness;
			result[7]	= t1->org[1]*f1ness		+ t2->org[1]*f2ness;
			result[8]	= t1->ang[2][0]*f1ness	+ t2->ang[2][0]*f2ness;
			result[9]	= t1->ang[2][1]*f1ness	+ t2->ang[2][1]*f2ness;
			result[10]	= t1->ang[2][2]*f1ness	+ t2->ang[2][2]*f2ness;
			result[11]	= t1->org[2]*f1ness		+ t2->org[2]*f2ness;
		}

		VectorNormalize(result);
		VectorNormalize(result+4);
		VectorNormalize(result+8);

		return true;
	}
	return false;
}

int Mod_TagNumForName(model_t *model, char *name)
{
	int i;
	galiasinfo_t *inf;
	md3tag_t *t;

	if (!model)
		return 0;
#ifdef HALFLIFEMODELS
	if (model->type == mod_halflife)
		return HLMod_BoneForName(model, name);
#endif
	if (model->type != mod_alias)
		return 0;
	inf = Mod_Extradata(model);

#ifdef SKELETALMODELS
	if (inf->numbones)
	{
		galiasbone_t *b;
		b = (galiasbone_t*)((char*)inf + inf->ofsbones);
		for (i = 0; i < inf->numbones; i++)
		{
			if (!strcmp(b[i].name, name))
				return i+1;
		}
	}
#endif
	t = (md3tag_t*)((char*)inf + inf->ofstags);
	for (i = 0; i < inf->numtags; i++)
	{
		if (!strcmp(t[i].name, name))
			return i+1;
	}

	return 0;
}

int Mod_FrameNumForName(model_t *model, char *name)
{
	galiasgroup_t *group;
	galiasinfo_t *inf;
	int i;

	if (!model)
		return -1;
#ifdef HALFLIFEMODELS
	if (model->type == mod_halflife)
		return HLMod_FrameForName(model, name);
#endif
	if (model->type != mod_alias)
		return 0;

	inf = Mod_Extradata(model);

	group = (galiasgroup_t*)((char*)inf + inf->groupofs);
	for (i = 0; i < inf->groups; i++, group++)
	{
		if (!strcmp(group->name, name))
			return i;
	}
	return -1;
}

#ifndef SERVERONLY
int Mod_SkinNumForName(model_t *model, char *name)
{
	int i;
	galiasinfo_t *inf;
	galiasskin_t *skin;

	if (!model || model->type != mod_alias)
		return -1;
	inf = Mod_Extradata(model);

	skin = (galiasskin_t*)((char*)inf+inf->ofsskins);
	for (i = 0; i < inf->numskins; i++, skin++)
	{
		if (!strcmp(skin->name, name))
			return i;
	}

	return -1;
}
#endif

const char *Mod_FrameNameForNum(model_t *model, int num)
{
	galiasgroup_t *group;
	galiasinfo_t *inf;

	if (!model)
		return NULL;
	if (model->type != mod_alias)
		return NULL;

	inf = Mod_Extradata(model);

	if (num >= inf->groups)
		return NULL;
	group = (galiasgroup_t*)((char*)inf + inf->groupofs);
	return group[num].name;
}

const char *Mod_SkinNameForNum(model_t *model, int num)
{
#ifdef SERVERONLY
	return NULL;
#else
	galiasinfo_t *inf;
	galiasskin_t *skin;

	if (!model || model->type != mod_alias)
		return NULL;
	inf = Mod_Extradata(model);

	if (num >= inf->numskins)
		return NULL;
	skin = (galiasskin_t*)((char*)inf+inf->ofsskins);
	return skin[num].name;
#endif
}

float Mod_FrameDuration(model_t *model, int frameno)
{
	galiasinfo_t *inf;
	galiasgroup_t *group;

	if (!model || model->type != mod_alias)
		return 0;
	inf = Mod_Extradata(model);

	group = (galiasgroup_t*)((char*)inf + inf->groupofs);
	if (frameno < 0 || frameno >= inf->groups)
		return 0;
	group += frameno;
	return group->numposes/group->rate;
}


#ifdef MD3MODELS

//structures from Tenebrae
typedef struct {
	int			ident;
	int			version;

	char		name[MAX_QPATH];

	int			flags;	//Does anyone know what these are?

	int			numFrames;
	int			numTags;
	int			numSurfaces;

	int			numSkins;

	int			ofsFrames;
	int			ofsTags;
	int			ofsSurfaces;
	int			ofsEnd;
} md3Header_t;

//then has header->numFrames of these at header->ofs_Frames
typedef struct md3Frame_s {
	vec3_t		bounds[2];
	vec3_t		localOrigin;
	float		radius;
	char		name[16];
} md3Frame_t;

//there are header->numSurfaces of these at header->ofsSurfaces, following from ofsEnd
typedef struct {
	int		ident;				//

	char	name[MAX_QPATH];	// polyset name

	int		flags;
	int		numFrames;			// all surfaces in a model should have the same

	int		numShaders;			// all surfaces in a model should have the same
	int		numVerts;

	int		numTriangles;
	int		ofsTriangles;

	int		ofsShaders;			// offset from start of md3Surface_t
	int		ofsSt;				// texture coords are common for all frames
	int		ofsXyzNormals;		// numVerts * numFrames

	int		ofsEnd;				// next surface follows
} md3Surface_t;

//at surf+surf->ofsXyzNormals
typedef struct {
	short		xyz[3];
	qbyte		latlong[2];
} md3XyzNormal_t;

//surf->numTriangles at surf+surf->ofsTriangles
typedef struct {
	int			indexes[3];
} md3Triangle_t;

//surf->numVerts at surf+surf->ofsSt
typedef struct {
	float		s;
	float		t;
} md3St_t;

typedef struct {
	char			name[MAX_QPATH];
	int				shaderIndex;
} md3Shader_t;
//End of Tenebrae 'assistance'

qboolean Mod_LoadQ3Model(model_t *mod, void *buffer)
{
#ifndef SERVERONLY
	galiasskin_t	*skin;
	shader_t	**shaders;
	float lat, lng;
	md3St_t			*inst;
	vec3_t *normals;
	vec3_t *svector;
	vec3_t *tvector;
	vec2_t *st_array;
	md3Shader_t		*inshader;
#endif
	int hunkstart, hunkend, hunktotal;
//	int version;
	int s, i, j, d;

	index_t *indexes;

	vec3_t min;
	vec3_t max;

	galiaspose_t *pose;
	galiasinfo_t *parent, *root;
	galiasgroup_t *group;

	vecV_t *verts;

	md3Triangle_t	*intris;
	md3XyzNormal_t	*invert;


	int size;
	int externalskins;

	md3Header_t		*header;
	md3Surface_t	*surf;


	loadmodel=mod;

	hunkstart = Hunk_LowMark ();

	header = buffer;

//	if (header->version != sdfs)
//		Sys_Error("GL_LoadQ3Model: Bad version\n");

	parent = NULL;
	root = NULL;

#ifndef SERVERONLY
	externalskins = Mod_BuildSkinFileList(mod->name);
#else
	externalskins = 0;
#endif

	min[0] = min[1] = min[2] = 0;
	max[0] = max[1] = max[2] = 0;

	surf = (md3Surface_t *)((qbyte *)header + LittleLong(header->ofsSurfaces));
	for (s = 0; s < LittleLong(header->numSurfaces); s++)
	{
		if (LittleLong(surf->ident) != MD3_IDENT)
			Con_Printf(CON_WARNING "Warning: md3 sub-surface doesn't match ident\n");
		size = sizeof(galiasinfo_t) + sizeof(galiasgroup_t)*LittleLong(header->numFrames);
		galias = Hunk_Alloc(size);
		galias->groupofs = sizeof(*galias);	//frame groups
		galias->groups = LittleLong(header->numFrames);
		galias->numverts = LittleLong(surf->numVerts);
		galias->numindexes = LittleLong(surf->numTriangles)*3;
		galias->shares_verts = s;
		if (parent)
			parent->nextsurf = (qbyte *)galias - (qbyte *)parent;
		else
			root = galias;
		parent = galias;

#ifndef SERVERONLY
		st_array = Hunk_Alloc(sizeof(vec2_t)*galias->numindexes);
		galias->ofs_st_array = (qbyte*)st_array - (qbyte*)galias;
		inst = (md3St_t*)((qbyte*)surf + LittleLong(surf->ofsSt));
		for (i = 0; i < galias->numverts; i++)
		{
			st_array[i][0] = LittleFloat(inst[i].s);
			st_array[i][1] = LittleFloat(inst[i].t);
		}
#endif

		indexes = Hunk_Alloc(sizeof(*indexes)*galias->numindexes);
		galias->ofs_indexes = (qbyte*)indexes - (qbyte*)galias;
		intris = (md3Triangle_t *)((qbyte*)surf + LittleLong(surf->ofsTriangles));
		for (i = 0; i < LittleLong(surf->numTriangles); i++)
		{
			indexes[i*3+0] = LittleLong(intris[i].indexes[0]);
			indexes[i*3+1] = LittleLong(intris[i].indexes[1]);
			indexes[i*3+2] = LittleLong(intris[i].indexes[2]);
		}

		group = (galiasgroup_t *)(galias+1);
		invert = (md3XyzNormal_t *)((qbyte*)surf + LittleLong(surf->ofsXyzNormals));
		for (i = 0; i < LittleLong(surf->numFrames); i++)
		{
			pose = (galiaspose_t *)Hunk_Alloc(sizeof(galiaspose_t) + sizeof(vecV_t)*LittleLong(surf->numVerts)
#ifndef SERVERONLY
				+ 3*sizeof(vec3_t)*LittleLong(surf->numVerts)
#endif
				);

			verts = (vecV_t*)(pose+1);
			pose->ofsverts = (qbyte*)verts - (qbyte*)pose;
#ifndef SERVERONLY
			normals = (vec3_t*)(verts + LittleLong(surf->numVerts));
			pose->ofsnormals = (qbyte*)normals - (qbyte*)pose;
			svector = normals + LittleLong(surf->numVerts);
			pose->ofssvector = (qbyte*)svector - (qbyte*)pose;
			tvector = svector + LittleLong(surf->numVerts);
			pose->ofstvector = (qbyte*)tvector - (qbyte*)pose;
#endif

			for (j = 0; j < LittleLong(surf->numVerts); j++)
			{
#ifndef SERVERONLY
				lat = (float)invert[j].latlong[0] * (2 * M_PI)*(1.0 / 255.0);
				lng = (float)invert[j].latlong[1] * (2 * M_PI)*(1.0 / 255.0);
				normals[j][0] = cos ( lng ) * sin ( lat );
				normals[j][1] = sin ( lng ) * sin ( lat );
				normals[j][2] = cos ( lat );
#endif
				for (d = 0; d < 3; d++)
				{
					verts[j][d] = LittleShort(invert[j].xyz[d])/64.0f;
					if (verts[j][d]<min[d])
						min[d] = verts[j][d];
					if (verts[j][d]>max[d])
						max[d] = verts[j][d];
				}
			}

			pose->scale[0] = 1;
			pose->scale[1] = 1;
			pose->scale[2] = 1;

			pose->scale_origin[0] = 0;
			pose->scale_origin[1] = 0;
			pose->scale_origin[2] = 0;

			snprintf(group->name, sizeof(group->name)-1, "frame%i", i);

			group->numposes = 1;
			group->rate = 1;
			group->poseofs = (qbyte*)pose - (qbyte*)group;

			group++;
			invert += LittleLong(surf->numVerts);
		}

#ifndef SERVERONLY
		if (externalskins<LittleLong(surf->numShaders))
			externalskins = LittleLong(surf->numShaders);
		if (externalskins)
		{
			char shadname[1024];

			skin = Hunk_Alloc((LittleLong(surf->numShaders)+externalskins)*((sizeof(galiasskin_t)+sizeof(shader_t*))));
			galias->ofsskins = (qbyte *)skin - (qbyte *)galias;
			shaders = (shader_t **)(skin + LittleLong(surf->numShaders)+externalskins);
			inshader = (md3Shader_t *)((qbyte *)surf + LittleLong(surf->ofsShaders));
			for (i = 0; i < externalskins; i++)
			{
				skin->numshaders = 1;
				skin->ofsshaders = (qbyte *)&shaders[i] - (qbyte *)skin;
				skin->ofstexels = 0;
				skin->skinwidth = 0;
				skin->skinheight = 0;
				skin->skinspeed = 0;

				shadname[0] = '\0';

				Mod_ParseQ3SkinFile(shadname, surf->name, loadmodel->name, i, skin->name);

				if (!*shadname)
				{
					if (i >= LittleLong(surf->numShaders) || !*inshader->name)
						strcpy(shadname, "missingskin");	//this shouldn't be possible
					else
						strcpy(shadname, inshader->name);

					Q_strncpyz(skin->name, shadname, sizeof(skin->name));
				}

				if (qrenderer != QR_NONE)
				{
					shaders[i] = R_RegisterSkin(shadname, mod->name);
					R_BuildDefaultTexnums(NULL, shaders[i]);

					if (shaders[i]->flags & SHADER_NOIMAGE)
						Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", shaders[i]->name, loadmodel->name);
				}

				inshader++;
				skin++;
			}
			galias->numskins = i;
		}
#endif

		VectorCopy(min, loadmodel->mins);
		VectorCopy(max, loadmodel->maxs);


		Mod_CompileTriangleNeighbours (galias);
		Mod_BuildTextureVectors(galias);

		surf = (md3Surface_t *)((qbyte *)surf + LittleLong(surf->ofsEnd));
	}

	if (!root)
		root = Hunk_Alloc(sizeof(galiasinfo_t));

	root->numtagframes = LittleLong(header->numFrames);
	root->numtags = LittleLong(header->numTags);
	root->ofstags = (char*)Hunk_Alloc(LittleLong(header->numTags)*sizeof(md3tag_t)*LittleLong(header->numFrames)) - (char*)root;

	{
		md3tag_t *src;
		md3tag_t *dst;

		src = (md3tag_t *)((char*)header+LittleLong(header->ofsTags));
		dst = (md3tag_t *)((char*)root+root->ofstags);
		for(i=0;i<LittleLong(header->numTags)*LittleLong(header->numFrames);i++)
		{
			memcpy(dst->name, src->name, sizeof(dst->name));
			for(j=0;j<3;j++)
			{
				dst->org[j] = LittleFloat(src->org[j]);
			}

			for(j=0;j<3;j++)
			{
				for(s=0;s<3;s++)
				{
					dst->ang[j][s] = LittleFloat(src->ang[j][s]);
				}
			}

			src++;
			dst++;
		}
	}

//
// move the complete, relocatable alias model to the cache
//

	hunkend = Hunk_LowMark ();
#ifndef SERVERONLY
	if (mod_md3flags.value)
		mod->flags = LittleLong(header->flags);
	else
#endif
		mod->flags = 0;
	if (!mod->flags)
		mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0);

	Mod_ClampModelSize(mod);

	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	mod->type = mod_alias;
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, root, hunktotal);

	Hunk_FreeToLowMark (hunkstart);

	mod->funcs.NativeTrace = Mod_Trace;

	return true;
}
#endif



#ifdef ZYMOTICMODELS


typedef struct zymlump_s
{
	int start;
	int length;
} zymlump_t;

typedef struct zymtype1header_s
{
	char id[12]; // "ZYMOTICMODEL", length 12, no termination
	int type; // 0 (vertex morph) 1 (skeletal pose) or 2 (skeletal scripted)
	int filesize; // size of entire model file
	float mins[3], maxs[3], radius; // for clipping uses
	int numverts;
	int numtris;
	int numsurfaces;
	int numbones; // this may be zero in the vertex morph format (undecided)
	int numscenes; // 0 in skeletal scripted models

// skeletal pose header
	// lump offsets are relative to the file
	zymlump_t lump_scenes; // zymscene_t scene[numscenes]; // name and other information for each scene (see zymscene struct)
	zymlump_t lump_poses; // float pose[numposes][numbones][6]; // animation data
	zymlump_t lump_bones; // zymbone_t bone[numbones];
	zymlump_t lump_vertbonecounts; // int vertbonecounts[numvertices]; // how many bones influence each vertex (separate mainly to make this compress better)
	zymlump_t lump_verts; // zymvertex_t vert[numvertices]; // see vertex struct
	zymlump_t lump_texcoords; // float texcoords[numvertices][2];
	zymlump_t lump_render; // int renderlist[rendersize]; // sorted by shader with run lengths (int count), shaders are sequentially used, each run can be used with glDrawElements (each triangle is 3 int indices)
	zymlump_t lump_surfnames; // char shadername[numsurfaces][32]; // shaders used on this model
	zymlump_t lump_trizone; // byte trizone[numtris]; // see trizone explanation
} zymtype1header_t;

typedef struct zymbone_s
{
	char name[32];
	int flags;
	int parent; // parent bone number
} zymbone_t;

typedef struct zymscene_s
{
	char name[32];
	float mins[3], maxs[3], radius; // for clipping
	float framerate; // the scene will animate at this framerate (in frames per second)
	int flags;
	int start, length; // range of poses
} zymscene_t;
#define ZYMSCENEFLAG_NOLOOP 1

typedef struct zymvertex_s
{
	int bonenum;
	float origin[3];
} zymvertex_t;

//this can generate multiple meshes (one for each shader).
//but only one set of transforms are ever generated.
qboolean Mod_LoadZymoticModel(model_t *mod, void *buffer)
{
#ifndef SERVERONLY
	galiasskin_t *skin;
	shader_t **shaders;
	int skinfiles;
	int j;
#endif

	int i;
	int hunkstart, hunkend, hunktotal;

	zymtype1header_t *header;
	galiasinfo_t *root;

	galisskeletaltransforms_t *transforms;
	zymvertex_t	*intrans;

	galiasbone_t *bone;
	zymbone_t *inbone;
	int v;
	float multiplier;
	float *matrix, *inmatrix;

	vec2_t *stcoords;
	vec2_t *inst;

	int *vertbonecounts;

	galiasgroup_t *grp;
	zymscene_t *inscene;

	int *renderlist, count;
	index_t *indexes;

	char *surfname;


	loadmodel=mod;

	hunkstart = Hunk_LowMark ();

	header = buffer;

	if (memcmp(header->id, "ZYMOTICMODEL", 12))
	{
		Con_Printf("Mod_LoadZymoticModel: %s, doesn't appear to BE a zymotic!\n", mod->name);
		return false;
	}

	if (BigLong(header->type) != 1)
	{
		Con_Printf("Mod_LoadZymoticModel: %s, only type 1 is supported\n", mod->name);
		return false;
	}

	for (i = 0; i < sizeof(zymtype1header_t)/4; i++)
		((int*)header)[i] = BigLong(((int*)header)[i]);

	if (!header->numverts)
	{
		Con_Printf("Mod_LoadZymoticModel: %s, no vertexes\n", mod->name);
		return false;
	}

	if (!header->numsurfaces)
	{
		Con_Printf("Mod_LoadZymoticModel: %s, no surfaces\n", mod->name);
		return false;
	}

	VectorCopy(header->mins, mod->mins);
	VectorCopy(header->maxs, mod->maxs);

	root = Hunk_AllocName(sizeof(galiasinfo_t)*header->numsurfaces, loadname);

	root->numswtransforms = header->lump_verts.length/sizeof(zymvertex_t);
	transforms = Hunk_Alloc(root->numswtransforms*sizeof(*transforms));
	root->ofsswtransforms = (char*)transforms - (char*)root;

	vertbonecounts = (int *)((char*)header + header->lump_vertbonecounts.start);
	intrans = (zymvertex_t *)((char*)header + header->lump_verts.start);

	vertbonecounts[0] = BigLong(vertbonecounts[0]);
	multiplier = 1.0f / vertbonecounts[0];
	for (i = 0, v=0; i < root->numswtransforms; i++)
	{
		while(!vertbonecounts[v])
		{
			v++;
			if (v == header->numverts)
			{
				Con_Printf("Mod_LoadZymoticModel: %s, too many transformations\n", mod->name);
				Hunk_FreeToLowMark(hunkstart);
				return false;
			}
			vertbonecounts[v] = BigLong(vertbonecounts[v]);
			multiplier = 1.0f / vertbonecounts[v];
		}
		transforms[i].vertexindex = v;
		transforms[i].boneindex = BigLong(intrans[i].bonenum);
		transforms[i].org[0] = multiplier*BigFloat(intrans[i].origin[0]);
		transforms[i].org[1] = multiplier*BigFloat(intrans[i].origin[1]);
		transforms[i].org[2] = multiplier*BigFloat(intrans[i].origin[2]);
		transforms[i].org[3] = multiplier*1;
		vertbonecounts[v]--;
	}
	if (intrans != (zymvertex_t *)((char*)header + header->lump_verts.start))
	{
		Con_Printf(CON_ERROR "%s, Vertex transforms list appears corrupt.\n", mod->name);
		Hunk_FreeToLowMark(hunkstart);
		return false;
	}
	if (vertbonecounts != (int *)((char*)header + header->lump_vertbonecounts.start))
	{
		Con_Printf(CON_ERROR "%s, Vertex bone counts list appears corrupt.\n", mod->name);
		Hunk_FreeToLowMark(hunkstart);
		return false;
	}

	root->numverts = v+1;

	root->numbones = header->numbones;
	bone = Hunk_Alloc(root->numswtransforms*sizeof(*transforms));
	inbone = (zymbone_t*)((char*)header + header->lump_bones.start);
	for (i = 0; i < root->numbones; i++)
	{
		Q_strncpyz(bone[i].name, inbone[i].name, sizeof(bone[i].name));
		bone[i].parent = BigLong(inbone[i].parent);
	}
	root->ofsbones = (char *)bone - (char *)root;

	renderlist = (int*)((char*)header + header->lump_render.start);
	for (i = 0;i < header->numsurfaces; i++)
	{
		count = BigLong(*renderlist++);
		count *= 3;
		indexes = Hunk_Alloc(count*sizeof(*indexes));
		root[i].ofs_indexes = (char *)indexes - (char*)&root[i];
		root[i].numindexes = count;
		while(count)
		{	//invert
			indexes[count-1] = BigLong(renderlist[count-3]);
			indexes[count-2] = BigLong(renderlist[count-2]);
			indexes[count-3] = BigLong(renderlist[count-1]);
			count-=3;
		}
		renderlist += root[i].numindexes;
	}
	if (renderlist != (int*)((char*)header + header->lump_render.start + header->lump_render.length))
	{
		Con_Printf(CON_ERROR "%s, render list appears corrupt.\n", mod->name);
		Hunk_FreeToLowMark(hunkstart);
		return false;
	}

	grp = Hunk_Alloc(sizeof(*grp)*header->numscenes*header->numsurfaces);
	matrix = Hunk_Alloc(header->lump_poses.length);
	inmatrix = (float*)((char*)header + header->lump_poses.start);
	for (i = 0; i < header->lump_poses.length/4; i++)
		matrix[i] = BigFloat(inmatrix[i]);
	inscene = (zymscene_t*)((char*)header + header->lump_scenes.start);
	surfname = ((char*)header + header->lump_surfnames.start);

	stcoords = Hunk_Alloc(root[0].numverts*sizeof(vec2_t));
	inst = (vec2_t *)((char *)header + header->lump_texcoords.start);
	for (i = 0; i < header->lump_texcoords.length/8; i++)
	{
		stcoords[i][0] = BigFloat(inst[i][0]);
		stcoords[i][1] = 1-BigFloat(inst[i][1]);	//hmm. upside down skin coords?
	}

#ifndef SERVERONLY
	skinfiles = Mod_BuildSkinFileList(loadmodel->name);
	if (skinfiles < 1)
		skinfiles = 1;
#endif

	for (i = 0; i < header->numsurfaces; i++, surfname+=32)
	{
		root[i].groups = header->numscenes;
		root[i].groupofs = (char*)grp - (char*)&root[i];

#ifdef SERVERONLY
		root[i].numskins = 1;
#else
		root[i].ofs_st_array = (char*)stcoords - (char*)&root[i];
		root[i].numskins = skinfiles;

		skin = Hunk_Alloc((sizeof(galiasskin_t)+sizeof(shader_t*))*skinfiles);
		shaders = (shader_t**)(skin+skinfiles);
		for (j = 0; j < skinfiles; j++, shaders++)
		{
			skin[j].numshaders = 1;	//non-sequenced skins.
			skin[j].ofsshaders = (char *)shaders - (char *)&skin[j];

			Mod_LoadSkinFile(shaders, surfname, j, NULL, 0, 0, NULL);
		}

		root[i].ofsskins = (char *)skin - (char *)&root[i];
#endif
	}


	for (i = 0; i < header->numscenes; i++, grp++, inscene++)
	{
		Q_strncpyz(grp->name, inscene->name, sizeof(grp->name));

		grp->isheirachical = 1;
		grp->rate = BigFloat(inscene->framerate);
		grp->loop = !(BigLong(inscene->flags) & ZYMSCENEFLAG_NOLOOP);
		grp->numposes = BigLong(inscene->length);
		grp->poseofs = (char*)matrix  - (char*)grp;
		grp->poseofs += BigLong(inscene->start)*12*sizeof(float)*root->numbones;
	}

	if (inscene != (zymscene_t*)((char*)header + header->lump_scenes.start+header->lump_scenes.length))
	{
		Con_Printf(CON_ERROR "%s, scene list appears corrupt.\n", mod->name);
		Hunk_FreeToLowMark(hunkstart);
		return false;
	}

	for (i = 0; i < header->numsurfaces-1; i++)
		root[i].nextsurf = sizeof(galiasinfo_t);
	for (i = 1; i < header->numsurfaces; i++)
	{
		root[i].shares_verts = 0;
		root[i].numbones = root[0].numbones;
		root[i].numverts = root[0].numverts;

		root[i].ofsbones = root[0].ofsbones;

		root[i-1].nextsurf = sizeof(*root);
	}

	Alias_CalculateSkeletalNormals(root);

//
// move the complete, relocatable alias model to the cache
//

	hunkend = Hunk_LowMark ();

	mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0);	//file replacement - inherit flags from any defunc mdl files.

	Mod_ClampModelSize(mod);

	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	mod->type = mod_alias;
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, root, hunktotal);

	Hunk_FreeToLowMark (hunkstart);


	mod->funcs.NativeTrace = Mod_Trace;

	return true;
}
#endif //ZYMOTICMODELS


///////////////////////////////////////////////////////////////
//psk
#ifdef PSKMODELS
/*Typedefs copied from DarkPlaces*/

typedef struct pskchunk_s
{
	// id is one of the following:
	// .psk:
	// ACTRHEAD (recordsize = 0, numrecords = 0)
	// PNTS0000 (recordsize = 12, pskpnts_t)
	// VTXW0000 (recordsize = 16, pskvtxw_t)
	// FACE0000 (recordsize = 12, pskface_t)
	// MATT0000 (recordsize = 88, pskmatt_t)
	// REFSKELT (recordsize = 120, pskboneinfo_t)
	// RAWWEIGHTS (recordsize = 12, pskrawweights_t)
	// .psa:
	// ANIMHEAD (recordsize = 0, numrecords = 0)
	// BONENAMES (recordsize = 120, pskboneinfo_t)
	// ANIMINFO (recordsize = 168, pskaniminfo_t)
	// ANIMKEYS (recordsize = 32, pskanimkeys_t)
	char id[20];
	// in .psk always 0x1e83b9
	// in .psa always 0x2e
	int version;
	int recordsize;
	int numrecords;
} pskchunk_t;

typedef struct pskpnts_s
{
	float origin[3];
} pskpnts_t;

typedef struct pskvtxw_s
{
	unsigned short pntsindex; // index into PNTS0000 chunk
	unsigned char unknown1[2]; // seems to be garbage
	float texcoord[2];
	unsigned char mattindex; // index into MATT0000 chunk
	unsigned char unknown2; // always 0?
	unsigned char unknown3[2]; // seems to be garbage
} pskvtxw_t;

typedef struct pskface_s
{
	unsigned short vtxwindex[3]; // triangle
	unsigned char mattindex; // index into MATT0000 chunk
	unsigned char unknown; // seems to be garbage
	unsigned int group; // faces seem to be grouped, possibly for smoothing?
} pskface_t;

typedef struct pskmatt_s
{
	char name[64];
	int unknown[6]; // observed 0 0 0 0 5 0
} pskmatt_t;

typedef struct pskpose_s
{
	float quat[4];
	float origin[3];
	float unknown; // probably a float, always seems to be 0
	float size[3];
} pskpose_t;

typedef struct pskboneinfo_s
{
	char name[64];
	int unknown1;
	int numchildren;
	int parent; // root bones have 0 here
	pskpose_t basepose;
} pskboneinfo_t;

typedef struct pskrawweights_s
{
	float weight;
	int pntsindex;
	int boneindex;
} pskrawweights_t;

typedef struct pskaniminfo_s
{
	char name[64];
	char group[64];
	int numbones;
	int unknown1;
	int unknown2;
	int unknown3;
	float unknown4;
	float playtime; // not really needed
	float fps; // frames per second
	int unknown5;
	int firstframe;
	int numframes;
	// firstanimkeys = (firstframe + frameindex) * numbones
} pskaniminfo_t;

typedef struct pskanimkeys_s
{
	float origin[3];
	float quat[4];
	float frametime;
} pskanimkeys_t;


qboolean Mod_LoadPSKModel(model_t *mod, void *buffer)
{
	pskchunk_t *chunk;
	unsigned int pos = 0;
	unsigned int i, j;
	qboolean fail = false;
	char basename[MAX_QPATH];

	galiasinfo_t *gmdl;
#ifndef SERVERONLY
	float *stcoord;
	galiasskin_t *skin;
	shader_t **gshaders;
#endif
	galiasbone_t *bones;
	galiasgroup_t *group;
	float *animmatrix, *basematrix;
	index_t *indexes;
	float vrad;
	int bonemap[MAX_BONES];
	char *e;

	pskpnts_t *pnts = NULL;
	pskvtxw_t *vtxw = NULL;
	pskface_t *face = NULL;
	pskmatt_t *matt = NULL;
	pskboneinfo_t *boneinfo = NULL;
	pskrawweights_t *rawweights = NULL;
	unsigned int num_pnts, num_vtxw=0, num_face=0, num_matt = 0, num_boneinfo=0, num_rawweights=0;

	pskaniminfo_t *animinfo = NULL;
	pskanimkeys_t *animkeys = NULL;
	unsigned int num_animinfo=0, num_animkeys=0;

	int hunkstart, hunkend, hunktotal;

//#define PSK_GPU
#ifndef PSK_GPU
	unsigned int num_trans;
	galisskeletaltransforms_t *trans;
#else
	vecV_t *skel_xyz;
	vec3_t *skel_norm;
	byte_vec4_t *skel_idx;
	vec4_t *skel_weights;
#endif

	/*load the psk*/
	while (pos < com_filesize && !fail)
	{
		chunk = (pskchunk_t*)((char*)buffer + pos);
		chunk->version = LittleLong(chunk->version);
		chunk->recordsize = LittleLong(chunk->recordsize);
		chunk->numrecords = LittleLong(chunk->numrecords);

		pos += sizeof(*chunk);

		if (!strcmp("ACTRHEAD", chunk->id) && chunk->recordsize == 0 && chunk->numrecords == 0)
		{
		}
		else if (!strcmp("PNTS0000", chunk->id) && chunk->recordsize == sizeof(pskpnts_t))
		{
			num_pnts = chunk->numrecords;
			pnts = (pskpnts_t*)((char*)buffer + pos);
			pos += chunk->recordsize * chunk->numrecords;

			for (i = 0; i < num_pnts; i++)
			{
				pnts[i].origin[0] = LittleFloat(pnts[i].origin[0]);
				pnts[i].origin[1] = LittleFloat(pnts[i].origin[1]);
				pnts[i].origin[2] = LittleFloat(pnts[i].origin[2]);
			}
		}
		else if (!strcmp("VTXW0000", chunk->id) && chunk->recordsize == sizeof(pskvtxw_t))
		{
			num_vtxw = chunk->numrecords;
			vtxw = (pskvtxw_t*)((char*)buffer + pos);
			pos += chunk->recordsize * chunk->numrecords;

			for (i = 0; i < num_vtxw; i++)
			{
				vtxw[i].pntsindex = LittleShort(vtxw[i].pntsindex);
				vtxw[i].texcoord[0] = LittleFloat(vtxw[i].texcoord[0]);
				vtxw[i].texcoord[1] = LittleFloat(vtxw[i].texcoord[1]);
			}
		}
		else if (!strcmp("FACE0000", chunk->id) && chunk->recordsize == sizeof(pskface_t))
		{
			num_face = chunk->numrecords;
			face = (pskface_t*)((char*)buffer + pos);
			pos += chunk->recordsize * chunk->numrecords;

			for (i = 0; i < num_face; i++)
			{
				face[i].vtxwindex[0] = LittleShort(face[i].vtxwindex[0]);
				face[i].vtxwindex[1] = LittleShort(face[i].vtxwindex[1]);
				face[i].vtxwindex[2] = LittleShort(face[i].vtxwindex[2]);
			}
		}
		else if (!strcmp("MATT0000", chunk->id) && chunk->recordsize == sizeof(pskmatt_t))
		{
			num_matt = chunk->numrecords;
			matt = (pskmatt_t*)((char*)buffer + pos);
			pos += chunk->recordsize * chunk->numrecords;
		}
		else if (!strcmp("REFSKELT", chunk->id) && chunk->recordsize == sizeof(pskboneinfo_t))
		{
			num_boneinfo = chunk->numrecords;
			boneinfo = (pskboneinfo_t*)((char*)buffer + pos);
			pos += chunk->recordsize * chunk->numrecords;

			for (i = 0; i < num_boneinfo; i++)
			{
				boneinfo[i].parent = LittleLong(boneinfo[i].parent);
				boneinfo[i].basepose.origin[0] = LittleFloat(boneinfo[i].basepose.origin[0]);
				boneinfo[i].basepose.origin[1] = LittleFloat(boneinfo[i].basepose.origin[1]);
				boneinfo[i].basepose.origin[2] = LittleFloat(boneinfo[i].basepose.origin[2]);
				boneinfo[i].basepose.quat[0] = LittleFloat(boneinfo[i].basepose.quat[0]);
				boneinfo[i].basepose.quat[1] = LittleFloat(boneinfo[i].basepose.quat[1]);
				boneinfo[i].basepose.quat[2] = LittleFloat(boneinfo[i].basepose.quat[2]);
				boneinfo[i].basepose.quat[3] = LittleFloat(boneinfo[i].basepose.quat[3]);
				boneinfo[i].basepose.size[0] = LittleFloat(boneinfo[i].basepose.size[0]);
				boneinfo[i].basepose.size[1] = LittleFloat(boneinfo[i].basepose.size[1]);
				boneinfo[i].basepose.size[2] = LittleFloat(boneinfo[i].basepose.size[2]);

				/*not sure if this is needed, but mimic DP*/
				if (i)
				{
					boneinfo[i].basepose.quat[0] *= -1;
					boneinfo[i].basepose.quat[2] *= -1;
				}
				boneinfo[i].basepose.quat[1] *= -1;
			}
		}
		else if (!strcmp("RAWWEIGHTS", chunk->id) && chunk->recordsize == sizeof(pskrawweights_t))
		{
			num_rawweights = chunk->numrecords;
			rawweights = (pskrawweights_t*)((char*)buffer + pos);
			pos += chunk->recordsize * chunk->numrecords;

			for (i = 0; i < num_rawweights; i++)
			{
				rawweights[i].boneindex = LittleLong(rawweights[i].boneindex);
				rawweights[i].pntsindex = LittleLong(rawweights[i].pntsindex);
				rawweights[i].weight = LittleFloat(rawweights[i].weight);
			}
		}
		else
		{
			Con_Printf(CON_ERROR "%s has unsupported chunk %s of %i size with version %i.\n", mod->name, chunk->id, chunk->recordsize, chunk->version);
			fail = true;
		}
	}

	if (!num_matt)
		fail = true;

	if (!pnts || !vtxw || !face || !matt || !boneinfo || !rawweights)
		fail = true;

	/*attempt to load a psa file. don't die if we can't find one*/
	COM_StripExtension(mod->name, basename, sizeof(basename));
	buffer = COM_LoadTempMoreFile(va("%s.psa", basename));
	if (buffer)
	{
		pos = 0;
		while (pos < com_filesize && !fail)
		{
			chunk = (pskchunk_t*)((char*)buffer + pos);
			chunk->version = LittleLong(chunk->version);
			chunk->recordsize = LittleLong(chunk->recordsize);
			chunk->numrecords = LittleLong(chunk->numrecords);

			pos += sizeof(*chunk);

			if (!strcmp("ANIMHEAD", chunk->id) && chunk->recordsize == 0 && chunk->numrecords == 0)
			{
			}
			else if (!strcmp("BONENAMES", chunk->id) && chunk->recordsize == sizeof(pskboneinfo_t))
			{
				/*parsed purely to ensure that the bones match the main model*/
				pskboneinfo_t *animbones = (pskboneinfo_t*)((char*)buffer + pos);
				pos += chunk->recordsize * chunk->numrecords;
				if (num_boneinfo != chunk->numrecords)
				{
					fail = true;
					Con_Printf("PSK/PSA bone counts do not match\n");
				}
				else
				{
					for (i = 0; i < num_boneinfo; i++)
					{
						/*assumption: 1:1 mapping will be common*/
						if (!strcmp(boneinfo[i].name, animbones[i].name))
							bonemap[i] = i;
						else
						{
							/*non 1:1 mapping*/
							for (j = 0; j < chunk->numrecords; j++)
							{
								if (!strcmp(boneinfo[i].name, animbones[j].name))
								{
									bonemap[i] = j;
									break;
								}
							}
							if (j == chunk->numrecords)
							{
								fail = true;
								Con_Printf("PSK bone %s does not exist in PSA %s\n", boneinfo[i].name);
								break;
							}
						}
					}
				}
			}
			else if (!strcmp("ANIMINFO", chunk->id) && chunk->recordsize == sizeof(pskaniminfo_t))
			{
				num_animinfo = chunk->numrecords;
				animinfo = (pskaniminfo_t*)((char*)buffer + pos);
				pos += chunk->recordsize * chunk->numrecords;

				for (i = 0; i < num_animinfo; i++)
				{
					animinfo[i].firstframe = LittleLong(animinfo[i].firstframe);
					animinfo[i].numframes = LittleLong(animinfo[i].numframes);
					animinfo[i].numbones = LittleLong(animinfo[i].numbones);
					animinfo[i].fps = LittleFloat(animinfo[i].fps);
					animinfo[i].playtime = LittleFloat(animinfo[i].playtime);
				}
			}
			else if (!strcmp("ANIMKEYS", chunk->id) && chunk->recordsize == sizeof(pskanimkeys_t))
			{
				num_animkeys = chunk->numrecords;
				animkeys = (pskanimkeys_t*)((char*)buffer + pos);
				pos += chunk->recordsize * chunk->numrecords;

				for (i = 0; i < num_animkeys; i++)
				{
					animkeys[i].origin[0] = LittleFloat(animkeys[i].origin[0]);
					animkeys[i].origin[1] = LittleFloat(animkeys[i].origin[1]);
					animkeys[i].origin[2] = LittleFloat(animkeys[i].origin[2]);
					animkeys[i].quat[0] = LittleFloat(animkeys[i].quat[0]);
					animkeys[i].quat[1] = LittleFloat(animkeys[i].quat[1]);
					animkeys[i].quat[2] = LittleFloat(animkeys[i].quat[2]);
					animkeys[i].quat[3] = LittleFloat(animkeys[i].quat[3]);

					/*not sure if this is needed, but mimic DP*/
					if (i%num_boneinfo)
					{
						animkeys[i].quat[0] *= -1;
						animkeys[i].quat[2] *= -1;
					}
					animkeys[i].quat[1] *= -1;
				}
			}
			else if (!strcmp("SCALEKEYS", chunk->id) && chunk->recordsize == 16)
			{
				pos += chunk->recordsize * chunk->numrecords;
			}
			else
			{
				Con_Printf(CON_ERROR "%s has unsupported chunk %s of %i size with version %i.\n", va("%s.psa", basename), chunk->id, chunk->recordsize, chunk->version);
				fail = true;
			}
		}
		if (fail)
		{
			animinfo = NULL;
			num_animinfo = 0;
			animkeys = NULL;
			num_animkeys = 0;
			fail = false;
		}
	}

	if (fail)
	{
		return false;
	}

	hunkstart = Hunk_LowMark ();

	gmdl = Hunk_Alloc(sizeof(*gmdl)*num_matt);

	/*bones!*/
	bones = Hunk_Alloc(sizeof(galiasbone_t) * num_boneinfo);
	for (i = 0; i < num_boneinfo; i++)
	{
		Q_strncpyz(bones[i].name, boneinfo[i].name, sizeof(bones[i].name));
		e = bones[i].name + strlen(bones[i].name);
		while(e > bones[i].name && e[-1] == ' ')
			*--e = 0;
		bones[i].parent = boneinfo[i].parent;
		if (i == 0 && bones[i].parent == 0)
			bones[i].parent = -1;
		else if (bones[i].parent >= i || bones[i].parent < -1)
		{
			Con_Printf("Invalid bones\n");
			break;
		}
	}

	basematrix = Hunk_Alloc(num_boneinfo*sizeof(float)*12);
	for (i = 0; i < num_boneinfo; i++)
	{
		float tmp[12];
		PSKGenMatrix(
			boneinfo[i].basepose.origin[0], boneinfo[i].basepose.origin[1], boneinfo[i].basepose.origin[2],
			boneinfo[i].basepose.quat[0],   boneinfo[i].basepose.quat[1],   boneinfo[i].basepose.quat[2], boneinfo[i].basepose.quat[3],
			tmp);
		if (bones[i].parent < 0)
			memcpy(basematrix + i*12, tmp, sizeof(float)*12);
		else
			R_ConcatTransforms((void*)(basematrix + bones[i].parent*12), (void*)tmp, (void*)(basematrix+i*12));
	}

	for (i = 0; i < num_boneinfo; i++)
	{
		Matrix3x4_Invert_Simple(basematrix+i*12, bones[i].inverse);
	}

	
#ifndef PSK_GPU
	/*expand the translations*/
	num_trans = 0;
	for (i = 0; i < num_vtxw; i++)
	{
		for (j = 0; j < num_rawweights; j++)
		{
			if (rawweights[j].pntsindex == vtxw[i].pntsindex)
			{
				num_trans++;
			}
		}
	}
	trans = Hunk_Alloc(sizeof(*trans)*num_trans);
	num_trans = 0;
	for (i = 0; i < num_vtxw; i++)
	{
//		first_trans = num_trans;
		for (j = 0; j < num_rawweights; j++)
		{
			if (rawweights[j].pntsindex == vtxw[i].pntsindex)
			{
				vec3_t tmp;
				trans[num_trans].vertexindex = i;
				trans[num_trans].boneindex = rawweights[j].boneindex;
				VectorTransform(pnts[rawweights[j].pntsindex].origin, (void*)bones[rawweights[j].boneindex].inverse, tmp);
				VectorScale(tmp, rawweights[j].weight, trans[num_trans].org);
				trans[num_trans].org[3] = rawweights[j].weight;
				num_trans++;
			}
		}
	}
#else
	skel_xyz = Hunk_Alloc(sizeof(*skel_xyz) * num_vtxw);
	skel_norm = Hunk_Alloc(sizeof(*skel_norm) * num_vtxw);
	skel_idx = Hunk_Alloc(sizeof(*skel_idx) * num_vtxw);
	skel_weights = Hunk_Alloc(sizeof(*skel_weights) * num_vtxw);
	for (i = 0; i < num_vtxw; i++)
	{
		float t;
		*(unsigned int*)skel_idx[i] = ~0;
		for (j = 0; j < num_rawweights; j++)
		{
			if (rawweights[j].pntsindex == vtxw[i].pntsindex)
			{
				int in, lin = -1;
				float liv = rawweights[j].weight;
				for (in = 0; in < 4; in++)
				{
					if (liv > skel_weights[i][in])
					{
						liv = skel_weights[i][in];
						lin = in;
						if (!liv)
							break;
					}
				}
				if (lin >= 0)
				{
					skel_idx[i][lin] = rawweights[j].boneindex;
					skel_weights[i][lin] = rawweights[j].weight;
				}
			}
		}
		t = 0;
		for (j = 0; j < 4; j++)
			t += skel_weights[i][j];
		if (t != 1)
			for (j = 0; j < 4; j++)
				skel_weights[i][j] *= 1/t;


		skel_xyz[i][0] = pnts[vtxw[i].pntsindex].origin[0];
		skel_xyz[i][1] = pnts[vtxw[i].pntsindex].origin[1];
		skel_xyz[i][2] = pnts[vtxw[i].pntsindex].origin[2];
	}
#endif

#ifndef SERVERONLY
	/*st coords, all share the same list*/
	stcoord = Hunk_Alloc(sizeof(vec2_t)*num_vtxw);
	for (i = 0; i < num_vtxw; i++)
	{
		stcoord[i*2+0] = vtxw[i].texcoord[0];
		stcoord[i*2+1] = vtxw[i].texcoord[1];
	}
#endif

	/*allocate faces in a single block, as we at least know an upper bound*/
	indexes = Hunk_Alloc(sizeof(index_t)*num_face*3);

	if (animinfo && animkeys)
	{
		int numgroups = 0;
		frameinfo_t *frameinfo = ParseFrameInfo(mod->name, &numgroups);
		if (numgroups)
		{
			/*externally supplied listing of frames. ignore all framegroups in the model and use only the pose info*/
			group = Hunk_Alloc(sizeof(galiasgroup_t)*numgroups + num_animkeys*sizeof(float)*12);
			animmatrix = (float*)(group+numgroups);
			for (j = 0; j < numgroups; j++)
			{
				//FIXME: bound check
				group[j].poseofs = ((char*)animmatrix - (char*)&group[j]) + sizeof(float)*12*num_boneinfo*frameinfo[j].firstpose;
				group[j].numposes = frameinfo[j].posecount;
				if (*frameinfo[j].name)
					snprintf(group[j].name, sizeof(group[j].name), "%s", frameinfo[j].name);
				else
					snprintf(group[j].name, sizeof(group[j].name), "frame_%i", j);
				group[j].loop = frameinfo[j].loop;
				group[j].rate = frameinfo[j].fps;
				group[j].isheirachical = true;
			}
			num_animinfo = numgroups;
		}
		else if (dpcompat_psa_ungroup.ival)
		{
			/*unpack each frame of each animation to be a separate framegroup*/
			unsigned int iframe;	/*individual frame count*/
			iframe = 0;
			for (i = 0; i < num_animinfo; i++)
				iframe += animinfo[i].numframes;
			group = Hunk_Alloc(sizeof(galiasgroup_t)*iframe + num_animkeys*sizeof(float)*12);
			animmatrix = (float*)(group+iframe);
			iframe = 0;
			for (j = 0; j < num_animinfo; j++)
			{
				for (i = 0; i < animinfo[j].numframes; i++)
				{
					group[iframe].poseofs = ((char*)animmatrix - (char*)&group[iframe]) + sizeof(float)*12*num_boneinfo*(animinfo[j].firstframe+i);
					group[iframe].numposes = 1;
					snprintf(group[iframe].name, sizeof(group[iframe].name), "%s_%i", animinfo[j].name, i);
					group[iframe].loop = true;
					group[iframe].rate = animinfo[j].fps;
					group[iframe].isheirachical = true;
					iframe++;
				}
			}
			num_animinfo = iframe;
		}
		else
		{
			/*keep each framegroup as a group*/
			group = Hunk_Alloc(sizeof(galiasgroup_t)*num_animinfo + num_animkeys*sizeof(float)*12);
			animmatrix = (float*)(group+num_animinfo);
			for (i = 0; i < num_animinfo; i++)
			{
				group[i].poseofs = (char*)animmatrix - (char*)&group[i] + sizeof(float)*12*num_boneinfo*animinfo[i].firstframe;
				group[i].numposes = animinfo[i].numframes;
				Q_strncpyz(group[i].name, animinfo[i].name, sizeof(group[i].name));
				group[i].loop = true;
				group[i].rate = animinfo[i].fps;
				group[i].isheirachical = true;
			}
		}
		for (j = 0; j < num_animkeys; j += num_boneinfo)
		{
			pskanimkeys_t *sb;
			for (i = 0; i < num_boneinfo; i++)
			{
				sb = &animkeys[j + bonemap[i]];
				PSKGenMatrix(
					sb->origin[0], sb->origin[1], sb->origin[2],
					sb->quat[0],   sb->quat[1],   sb->quat[2],   sb->quat[3],
					animmatrix + (j+i)*12);
			}
		}
	}
	else
	{
		num_animinfo = 1;
		/*build a base pose*/
		group = Hunk_Alloc(sizeof(galiasgroup_t) + num_boneinfo*sizeof(float)*12);
		animmatrix = basematrix;
		group->poseofs = (char*)animmatrix - (char*)group;
		group->numposes = 1;
		strcpy(group->name, "base");
		group->loop = true;
		group->rate = 10;
		group->isheirachical = false;
	}

#ifndef SERVERONLY
	skin = Hunk_Alloc(num_matt * (sizeof(galiasskin_t) + sizeof(shader_t*)));
	gshaders = (shader_t**)(skin + num_matt);
	for (i = 0; i < num_matt; i++, skin++)
	{
		skin->ofsshaders = (char*)&gshaders[i] - (char*)skin;
		skin->numshaders = 1;
		skin->skinspeed = 10;
		Q_strncpyz(skin->name, matt[i].name, sizeof(skin->name));
		gshaders[i] = R_RegisterSkin(matt[i].name, mod->name);
		R_BuildDefaultTexnums(NULL, gshaders[i]);
		if (gshaders[i]->flags & SHADER_NOIMAGE)
			Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", gshaders[i]->name, loadmodel->name);

		gmdl[i].ofsskins = (char*)skin - (char*)&gmdl[i];
		gmdl[i].numskins = 1;

		gmdl[i].ofs_st_array = (char*)stcoord - (char*)&gmdl[i];
		gmdl[i].numverts = num_vtxw;
#else
	for (i = 0; i < num_matt; i++)
	{
#endif

		gmdl[i].groupofs = (char*)group - (char*)&gmdl[i];
		gmdl[i].groups = num_animinfo;
		gmdl[i].baseframeofs = (char*)basematrix - (char*)&gmdl[i];

		gmdl[i].numindexes = 0;
		for (j = 0; j < num_face; j++)
		{
			if (face[j].mattindex%num_matt == i)
			{
				indexes[gmdl[i].numindexes+0] = face[j].vtxwindex[0];
				indexes[gmdl[i].numindexes+1] = face[j].vtxwindex[1];
				indexes[gmdl[i].numindexes+2] = face[j].vtxwindex[2];
				gmdl[i].numindexes += 3;
			}
		}
		gmdl[i].ofs_indexes = (char*)indexes - (char*)&gmdl[i];
		indexes += gmdl[i].numindexes;

		gmdl[i].ofsbones = (char*)bones - (char*)&gmdl[i];
		gmdl[i].numbones = num_boneinfo;

#ifndef PSK_GPU
		gmdl[i].ofsswtransforms = (char*)trans - (char*)&gmdl[i];
		gmdl[i].numswtransforms = num_trans;
#else
		gmdl[i].ofs_skel_idx = (char*)skel_idx - (char*)&gmdl[i];
		gmdl[i].ofs_skel_weight = (char*)skel_weights - (char*)&gmdl[i];
		gmdl[i].ofs_skel_xyz = (char*)skel_xyz - (char*)&gmdl[i];
		gmdl[i].ofs_skel_norm = (char*)skel_norm - (char*)&gmdl[i];
#endif

		gmdl[i].shares_verts = 0;
		gmdl[i].shares_bones = 0;
		gmdl[i].nextsurf = (i != num_matt-1)?sizeof(*gmdl):0;
	}

	if (fail)
	{
		return false;
	}


	vrad = Alias_CalculateSkeletalNormals(gmdl);

	mod->mins[0] = mod->mins[1] = mod->mins[2] = -vrad;
	mod->maxs[0] = mod->maxs[1] = mod->maxs[2] = vrad;
	mod->radius = vrad;
//
// move the complete, relocatable alias model to the cache
//
	hunkend = Hunk_LowMark ();

	mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0);	//file replacement - inherit flags from any defunc mdl files.

	Mod_ClampModelSize(mod);

	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	mod->type = mod_alias;
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, gmdl, hunktotal);

	Hunk_FreeToLowMark (hunkstart);


	mod->funcs.NativeTrace = Mod_Trace;
	return true;
}

#endif





//////////////////////////////////////////////////////////////
//dpm
#ifdef DPMMODELS

// header for the entire file
typedef struct dpmheader_s
{
	char id[16]; // "DARKPLACESMODEL\0", length 16
	unsigned int type; // 2 (hierarchical skeletal pose)
	unsigned int filesize; // size of entire model file
	float mins[3], maxs[3], yawradius, allradius; // for clipping uses

	// these offsets are relative to the file
	unsigned int num_bones;
	unsigned int num_meshs;
	unsigned int num_frames;
	unsigned int ofs_bones; // dpmbone_t bone[num_bones];
	unsigned int ofs_meshs; // dpmmesh_t mesh[num_meshs];
	unsigned int ofs_frames; // dpmframe_t frame[num_frames];
} dpmheader_t;

// there may be more than one of these
typedef struct dpmmesh_s
{
	// these offsets are relative to the file
	char shadername[32]; // name of the shader to use
	unsigned int num_verts;
	unsigned int num_tris;
	unsigned int ofs_verts; // dpmvertex_t vert[numvertices]; // see vertex struct
	unsigned int ofs_texcoords; // float texcoords[numvertices][2];
	unsigned int ofs_indices; // unsigned int indices[numtris*3]; // designed for glDrawElements (each triangle is 3 unsigned int indices)
	unsigned int ofs_groupids; // unsigned int groupids[numtris]; // the meaning of these values is entirely up to the gamecode and modeler
} dpmmesh_t;

// if set on a bone, it must be protected from removal
#define DPMBONEFLAG_ATTACHMENT 1

// one per bone
typedef struct dpmbone_s
{
	// name examples: upperleftarm leftfinger1 leftfinger2 hand, etc
	char name[32];
	// parent bone number
	signed int parent;
	// flags for the bone
	unsigned int flags;
} dpmbone_t;

// a bonepose matrix is intended to be used like this:
// (n = output vertex, v = input vertex, m = matrix, f = influence)
// n[0] = v[0] * m[0][0] + v[1] * m[0][1] + v[2] * m[0][2] + f * m[0][3];
// n[1] = v[0] * m[1][0] + v[1] * m[1][1] + v[2] * m[1][2] + f * m[1][3];
// n[2] = v[0] * m[2][0] + v[1] * m[2][1] + v[2] * m[2][2] + f * m[2][3];
typedef struct dpmbonepose_s
{
	float matrix[3][4];
} dpmbonepose_t;

// immediately followed by bone positions for the frame
typedef struct dpmframe_s
{
	// name examples: idle_1 idle_2 idle_3 shoot_1 shoot_2 shoot_3, etc
	char name[32];
	float mins[3], maxs[3], yawradius, allradius;
	int ofs_bonepositions; // dpmbonepose_t bonepositions[bones];
} dpmframe_t;

// one or more of these per vertex
typedef struct dpmbonevert_s
{
	float origin[3]; // vertex location (these blend)
	float influence; // influence fraction (these must add up to 1)
	float normal[3]; // surface normal (these blend)
	unsigned int bonenum; // number of the bone
} dpmbonevert_t;

// variable size, parsed sequentially
typedef struct dpmvertex_s
{
	unsigned int numbones;
	// immediately followed by 1 or more dpmbonevert_t structures
} dpmvertex_t;

qboolean Mod_LoadDarkPlacesModel(model_t *mod, void *buffer)
{
#ifndef SERVERONLY
	galiasskin_t *skin;
	shader_t **shaders;
	int skinfiles;
	float *inst;
	float *outst;
#endif

	int i, j, k;
	int hunkstart, hunkend, hunktotal;

	dpmheader_t *header;
	galiasinfo_t *root, *m;
	dpmmesh_t *mesh;
	dpmvertex_t *vert;
	dpmbonevert_t *bonevert;

	galisskeletaltransforms_t *transforms;

	galiasbone_t *outbone;
	dpmbone_t *inbone;

	float *outposedata;
	galiasgroup_t *outgroups;
	float *inposedata;
	dpmframe_t *inframes;

	unsigned int *index;	index_t *outdex;	// groan...

	int numtransforms;
	int numverts;


	loadmodel=mod;

	hunkstart = Hunk_LowMark ();

	header = buffer;

	if (memcmp(header->id, "DARKPLACESMODEL\0", 16))
	{
		Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, doesn't appear to be a darkplaces model!\n", mod->name);
		return false;
	}

	if (BigLong(header->type) != 2)
	{
		Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, only type 2 is supported\n", mod->name);
		return false;
	}

	for (i = 0; i < sizeof(dpmheader_t)/4; i++)
		((int*)header)[i] = BigLong(((int*)header)[i]);

	if (!header->num_bones)
	{
		Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, no bones\n", mod->name);
		return false;
	}
	if (!header->num_frames)
	{
		Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, no frames\n", mod->name);
		return false;
	}
	if (!header->num_meshs)
	{
		Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: %s, no surfaces\n", mod->name);
		return false;
	}


	VectorCopy(header->mins, mod->mins);
	VectorCopy(header->maxs, mod->maxs);

	root = Hunk_AllocName(sizeof(galiasinfo_t)*header->num_meshs, loadname);

	mesh = (dpmmesh_t*)((char*)buffer + header->ofs_meshs);
	for (i = 0; i < header->num_meshs; i++, mesh++)
	{
		//work out how much memory we need to allocate

		mesh->num_verts = BigLong(mesh->num_verts);
		mesh->num_tris = BigLong(mesh->num_tris);
		mesh->ofs_verts = BigLong(mesh->ofs_verts);
		mesh->ofs_texcoords = BigLong(mesh->ofs_texcoords);
		mesh->ofs_indices = BigLong(mesh->ofs_indices);
		mesh->ofs_groupids = BigLong(mesh->ofs_groupids);


		numverts = mesh->num_verts;
		numtransforms = 0;
		//count and byteswap the transformations
		vert = (dpmvertex_t*)((char *)buffer+mesh->ofs_verts);
		for (j = 0; j < mesh->num_verts; j++)
		{
			vert->numbones = BigLong(vert->numbones);
			numtransforms += vert->numbones;
			bonevert = (dpmbonevert_t*)(vert+1);
			vert = (dpmvertex_t*)(bonevert+vert->numbones);
		}

		m = &root[i];
#ifdef SERVERONLY
		transforms = Hunk_AllocName(numtransforms*sizeof(galisskeletaltransforms_t) + mesh->num_tris*3*sizeof(index_t), loadname);
#else
		outst = Hunk_AllocName(numverts*sizeof(vec2_t) + numtransforms*sizeof(galisskeletaltransforms_t) + mesh->num_tris*3*sizeof(index_t), loadname);
		m->ofs_st_array = (char*)outst - (char*)m;
		m->numverts = mesh->num_verts;
		inst = (float*)((char*)buffer + mesh->ofs_texcoords);
		for (j = 0; j < numverts; j++, outst+=2, inst+=2)
		{
			outst[0] = BigFloat(inst[0]);
			outst[1] = BigFloat(inst[1]);
		}

		transforms = (galisskeletaltransforms_t*)outst;
#endif

		//build the transform list.
		m->ofsswtransforms = (char*)transforms - (char*)m;
		m->numswtransforms = numtransforms;
		vert = (dpmvertex_t*)((char *)buffer+mesh->ofs_verts);
		for (j = 0; j < mesh->num_verts; j++)
		{
			bonevert = (dpmbonevert_t*)(vert+1);
			for (k = 0; k < vert->numbones; k++, bonevert++, transforms++)
			{
				transforms->boneindex = BigLong(bonevert->bonenum);
				transforms->vertexindex = j;
				transforms->org[0] = BigFloat(bonevert->origin[0]);
				transforms->org[1] = BigFloat(bonevert->origin[1]);
				transforms->org[2] = BigFloat(bonevert->origin[2]);
				transforms->org[3] = BigFloat(bonevert->influence);
				//do nothing with the normals. :(
			}
			vert = (dpmvertex_t*)bonevert;
		}

		index = (unsigned int*)((char*)buffer + mesh->ofs_indices);
		outdex = (index_t *)transforms;
		m->ofs_indexes = (char*)outdex - (char*)m;
		m->numindexes = mesh->num_tris*3;
		for (j = 0; j < m->numindexes; j++)
		{
			*outdex++ = BigLong(*index++);
		}
	}

	outbone = Hunk_Alloc(sizeof(galiasbone_t)*header->num_bones);
	inbone = (dpmbone_t*)((char*)buffer + header->ofs_bones);
	for (i = 0; i < header->num_bones; i++)
	{
		outbone[i].parent = BigLong(inbone[i].parent);
		if (outbone[i].parent >= i || outbone[i].parent < -1)
		{
			Con_Printf(CON_ERROR "Mod_LoadDarkPlacesModel: bad bone index in %s\n", mod->name);
			Hunk_FreeToLowMark(hunkstart);
			return false;
		}

		Q_strncpyz(outbone[i].name, inbone[i].name, sizeof(outbone[i].name));
		//throw away the flags.
	}

	outgroups = Hunk_Alloc(sizeof(galiasgroup_t)*header->num_frames + sizeof(float)*header->num_frames*header->num_bones*12);
	outposedata = (float*)(outgroups+header->num_frames);

	inframes = (dpmframe_t*)((char*)buffer + header->ofs_frames);
	for (i = 0; i < header->num_frames; i++)
	{
		inframes[i].ofs_bonepositions = BigLong(inframes[i].ofs_bonepositions);
		inframes[i].allradius = BigLong(inframes[i].allradius);
		inframes[i].yawradius = BigLong(inframes[i].yawradius);
		inframes[i].mins[0] = BigLong(inframes[i].mins[0]);
		inframes[i].mins[1] = BigLong(inframes[i].mins[1]);
		inframes[i].mins[2] = BigLong(inframes[i].mins[2]);
		inframes[i].maxs[0] = BigLong(inframes[i].maxs[0]);
		inframes[i].maxs[1] = BigLong(inframes[i].maxs[1]);
		inframes[i].maxs[2] = BigLong(inframes[i].maxs[2]);

		Q_strncpyz(outgroups[i].name, inframes[i].name, sizeof(outgroups[i].name));

		outgroups[i].rate = 10;
		outgroups[i].numposes = 1;
		outgroups[i].isheirachical = true;
		outgroups[i].poseofs = (char*)outposedata - (char*)&outgroups[i];

		inposedata = (float*)((char*)buffer + inframes[i].ofs_bonepositions);
		for (j = 0; j < header->num_bones*12; j++)
			*outposedata++ = BigFloat(*inposedata++);
	}

#ifndef SERVERONLY
	skinfiles = Mod_BuildSkinFileList(loadmodel->name);
	if (skinfiles < 1)
		skinfiles = 1;
#endif

	mesh = (dpmmesh_t*)((char*)buffer + header->ofs_meshs);
	for (i = 0; i < header->num_meshs; i++, mesh++)
	{
		m = &root[i];
		if (i < header->num_meshs-1)
			m->nextsurf = sizeof(galiasinfo_t);
		m->shares_bones = 0;

		m->ofsbones = (char*)outbone-(char*)m;
		m->numbones = header->num_bones;

		m->groups = header->num_frames;
		m->groupofs = (char*)outgroups - (char*)m;



#ifdef SERVERONLY
		m->numskins = 1;
#else
		m->numskins = skinfiles;

		skin = Hunk_Alloc((sizeof(galiasskin_t)+sizeof(shader_t*))*skinfiles);
		shaders = (shader_t**)(skin+skinfiles);
		for (j = 0; j < skinfiles; j++, shaders++)
		{
			skin[j].numshaders = 1;	//non-sequenced skins.
			skin[j].ofsshaders = (char *)shaders - (char *)&skin[j];

			Mod_LoadSkinFile(shaders, mesh->shadername, j, NULL, 0, 0, NULL);
		}

		m->ofsskins = (char *)skin - (char *)m;
#endif
	}


	Alias_CalculateSkeletalNormals(root);

//
// move the complete, relocatable alias model to the cache
//
	hunkend = Hunk_LowMark ();

	mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0);	//file replacement - inherit flags from any defunc mdl files.

	Mod_ClampModelSize(mod);

	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	mod->type = mod_alias;
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, root, hunktotal);

	Hunk_FreeToLowMark (hunkstart);


	mod->funcs.NativeTrace = Mod_Trace;

	return true;
}
#endif	//DPMMODELS


#ifdef INTERQUAKEMODELS
#define IQM_MAGIC "INTERQUAKEMODEL"
#define IQM_VERSION1 1
#define IQM_VERSION2 2

struct iqmheader
{
    char magic[16];
    unsigned int version;
    unsigned int filesize;
    unsigned int flags;
    unsigned int num_text, ofs_text;
    unsigned int num_meshes, ofs_meshes;
    unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
    unsigned int num_triangles, ofs_triangles, ofs_adjacency;
    unsigned int num_joints, ofs_joints;
    unsigned int num_poses, ofs_poses;
    unsigned int num_anims, ofs_anims;
    unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
    unsigned int num_comment, ofs_comment;
    unsigned int num_extensions, ofs_extensions;
};

struct iqmmesh
{
    unsigned int name;
    unsigned int material;
    unsigned int first_vertex, num_vertexes;
    unsigned int first_triangle, num_triangles;
};

enum
{
    IQM_POSITION     = 0,
    IQM_TEXCOORD     = 1,
    IQM_NORMAL       = 2,
    IQM_TANGENT      = 3,
    IQM_BLENDINDEXES = 4,
    IQM_BLENDWEIGHTS = 5,
    IQM_COLOR        = 6,
    IQM_CUSTOM       = 0x10
};

enum
{
    IQM_BYTE   = 0,
    IQM_UBYTE  = 1,
    IQM_SHORT  = 2,
    IQM_USHORT = 3,
    IQM_INT    = 4,
    IQM_UINT   = 5,
    IQM_HALF   = 6,
    IQM_FLOAT  = 7,
    IQM_DOUBLE = 8,
};

struct iqmtriangle
{
    unsigned int vertex[3];
};

struct iqmjoint1
{
    unsigned int name;
    int parent;
    float translate[3], rotate[3], scale[3];
};
struct iqmjoint2
{
    unsigned int name;
    int parent;
    float translate[3], rotate[4], scale[3];
};

struct iqmpose1
{
    int parent;
    unsigned int mask;
    float channeloffset[9];
    float channelscale[9];
};
struct iqmpose2
{
    int parent;
    unsigned int mask;
    float channeloffset[10];
    float channelscale[10];
};

struct iqmanim
{
    unsigned int name;
    unsigned int first_frame, num_frames;
    float framerate;
    unsigned int flags;
};

enum
{
    IQM_LOOP = 1<<0
};

struct iqmvertexarray
{
    unsigned int type;
    unsigned int flags;
    unsigned int format;
    unsigned int size;
    unsigned int offset;
};

struct iqmbounds
{
    float bbmin[3], bbmax[3];
    float xyradius, radius;
};

/*
galisskeletaltransforms_t *IQM_ImportTransforms(int *resultcount, int inverts, float *vpos, float *tcoord, float *vnorm, float *vtang, unsigned char *vbone, unsigned char *vweight)
{
	galisskeletaltransforms_t *t, *r;
	unsigned int num_t = 0;
	unsigned int v, j;
	for (v = 0; v < inverts*4; v++)
	{
		if (vweight[v])
			num_t++;
	}
	t = r = Hunk_Alloc(sizeof(*r)*num_t);
	for (v = 0; v < inverts; v++)
	{
		for (j = 0; j < 4; j++)
		{
			if (vweight[(v<<2)+j])
			{
				t->boneindex = vbone[(v<<2)+j];
				t->vertexindex = v;
				VectorScale(vpos, vweight[(v<<2)+j]/255.0, t->org);
				VectorScale(vnorm, vweight[(v<<2)+j]/255.0, t->normal);
				t++;
			}
		}
	}
	return r;
}
*/

galiasinfo_t *Mod_ParseIQMMeshModel(model_t *mod, char *buffer)
{
	struct iqmheader *h = (struct iqmheader *)buffer;
	struct iqmmesh *mesh;
	struct iqmvertexarray *varray;
	struct iqmtriangle *tris;
	struct iqmanim *anim;
	unsigned int i, j, t, nt;

	char *strings;

	float *vpos = NULL, *tcoord = NULL, *vnorm = NULL, *vtang = NULL;
	unsigned char *vbone = NULL, *vweight = NULL;
	unsigned int type, fmt, size, offset;
	unsigned short *framedata;

	vecV_t *opos;
	vec3_t *onorm1, *onorm2, *onorm3;
	vec4_t *oweight;
	byte_vec4_t *oindex;
	float *opose,*oposebase;
	vec2_t *otcoords;


	galiasinfo_t *gai;
#ifndef SERVERONLY
	galiasskin_t *skin;
	shader_t **shaders;
#endif
	galiasgroup_t *fgroup;
	galiasbone_t *bones;
	index_t *idx;
	float basepose[12 * MAX_BONES];
	qboolean noweights;
	frameinfo_t *framegroups;
	int numgroups;

	if (memcmp(h->magic, IQM_MAGIC, sizeof(h->magic)))
	{
		Con_Printf("%s: format not recognised\n", mod->name);
		return NULL;
	}
	if (h->version != IQM_VERSION1 && h->version != IQM_VERSION2)
	{
		Con_Printf("%s: unsupported IQM version\n", mod->name);
		return NULL;
	}
	if (h->filesize != com_filesize)
	{
		Con_Printf("%s: size (%u != %u)\n", mod->name, h->filesize, com_filesize);
		return NULL;
	}

	varray = (struct iqmvertexarray*)(buffer + h->ofs_vertexarrays);
	for (i = 0; i < h->num_vertexarrays; i++)
	{
		type = LittleLong(varray[i].type);
		fmt = LittleLong(varray[i].format);
		size = LittleLong(varray[i].size);
		offset = LittleLong(varray[i].offset);
		if (type == IQM_POSITION && fmt == IQM_FLOAT && size == 3)
			vpos = (float*)(buffer + offset);
		else if (type == IQM_TEXCOORD && fmt == IQM_FLOAT && size == 2)
			tcoord = (float*)(buffer + offset);
		else if (type == IQM_NORMAL && fmt == IQM_FLOAT && size == 3)
			vnorm = (float*)(buffer + offset);
		else if (type == IQM_TANGENT && fmt == IQM_FLOAT && size == 4) /*yup, 4*/
			vtang = (float*)(buffer + offset);
		else if (type == IQM_BLENDINDEXES && fmt == IQM_UBYTE && size == 4)
			vbone = (unsigned char *)(buffer + offset);
		else if (type == IQM_BLENDWEIGHTS && fmt == IQM_UBYTE && size == 4)
			vweight = (unsigned char *)(buffer + offset);
		else
			Con_Printf("Unrecognised iqm info\n");
	}

	if (!h->num_meshes)
		return NULL;

	//a mesh must contain vertex coords or its not much of a mesh.
	//we also require texcoords because we can.
	//we don't require normals
	//we don't require weights, but such models won't animate.
	if (h->num_vertexes > 0 && (!vpos || !tcoord))
	{
		Con_Printf("%s is missing vertex array data\n", loadmodel->name);
		return NULL;
	}
	noweights = !vbone || !vweight;
	if (noweights)
	{
		if (h->num_frames || h->num_anims || h->num_joints)
			return NULL;
	}

	strings = buffer + h->ofs_text;

	/*try to completely disregard all the info the creator carefully added to their model...*/
	numgroups = 0;
	framegroups = NULL;
	if (!numgroups)
		framegroups = ParseFrameInfo(loadmodel->name, &numgroups);
	if (!numgroups && h->num_anims)
	{
		/*use the model's framegroups*/
		numgroups = h->num_anims;
		framegroups = malloc(sizeof(*framegroups)*numgroups);

		anim = (struct iqmanim*)(buffer + h->ofs_anims);
		for (i = 0; i < numgroups; i++)
		{
			framegroups[i].firstpose = LittleLong(anim[i].first_frame);
			framegroups[i].posecount = LittleLong(anim[i].num_frames);
			framegroups[i].fps = LittleFloat(anim[i].framerate);
			framegroups[i].loop = !!(LittleLong(anim[i].flags) & IQM_LOOP);
			Q_strncpyz(framegroups[i].name, strings+anim[i].name, sizeof(fgroup[i].name));
		}
	}
	if (!numgroups)
	{	/*base frame only*/
		numgroups = 1;
		framegroups = malloc(sizeof(*framegroups));
		framegroups->firstpose = -1;
		framegroups->posecount = 1;
		framegroups->fps = 10;
		framegroups->loop = 1;
		strcpy(framegroups->name, "base");
	}

	mesh = (struct iqmmesh*)(buffer + h->ofs_meshes);

	/*allocate a nice big block of memory and figure out where stuff is*/
	gai = Hunk_Alloc(sizeof(*gai)*h->num_meshes +
#ifndef SERVERONLY
		sizeof(*skin)*h->num_meshes + sizeof(*shaders)*h->num_meshes + 
#endif
		sizeof(*fgroup)*numgroups + sizeof(float)*12*(h->num_joints + (h->num_poses*h->num_frames)) + sizeof(*bones)*h->num_joints +
		(sizeof(*opos) + sizeof(*onorm1) + sizeof(*onorm2) + sizeof(*onorm3) + sizeof(*otcoords) + (noweights?0:(sizeof(*oindex)+sizeof(*oweight)))) * h->num_vertexes);
	bones = (galiasbone_t*)(gai + h->num_meshes);
	opos = (vecV_t*)(bones + h->num_joints);
	onorm3 = (vec3_t*)(opos + h->num_vertexes);
	onorm2 = (vec3_t*)(onorm3 + h->num_vertexes);
	onorm1 = (vec3_t*)(onorm2 + h->num_vertexes);
	if (noweights)
	{
		oindex = NULL;
		oweight = NULL;
		otcoords = (vec2_t*)(onorm1 + h->num_vertexes);
	}
	else
	{
		oindex = (byte_vec4_t*)(onorm1 + h->num_vertexes);
		oweight = (vec4_t*)(oindex + h->num_vertexes);
		otcoords = (vec2_t*)(oweight + h->num_vertexes);
	}
	fgroup = (galiasgroup_t*)(otcoords + h->num_vertexes);
	oposebase = (float*)(fgroup + numgroups);
	opose = oposebase + 12*h->num_joints;
#ifndef SERVERONLY
	skin = (galiasskin_t*)(opose + 12*(h->num_poses*h->num_frames));
	shaders = (shader_t**)(skin + h->num_meshes);
#endif

//no code to load animations or bones
	framedata = (unsigned short*)(buffer + h->ofs_frames);

	/*Version 1 supports only normalized quaternions, version 2 uses complete quaternions. Some struct sizes change for this, otherwise functionally identical.*/
	if (h->version == IQM_VERSION1)
	{
		struct iqmpose1 *p, *ipose = (struct iqmpose1*)(buffer + h->ofs_poses);
		struct iqmjoint1 *ijoint = (struct iqmjoint1*)(buffer + h->ofs_joints);
		vec3_t pos;
		vec4_t quat;
		vec3_t scale;
		float mat[12];

		//joint info (mesh)
		for (i = 0; i < h->num_joints; i++)
		{
			Q_strncpyz(bones[i].name, strings+ijoint[i].name, sizeof(bones[i].name));
			bones[i].parent = ijoint[i].parent;

			GenMatrixPosQuat3Scale(ijoint[i].translate, ijoint[i].rotate, ijoint[i].scale, mat);

			if (ijoint[i].parent >= 0)
				Matrix3x4_Multiply(mat, &basepose[ijoint[i].parent*12], &basepose[i*12]);
			else
				memcpy(&basepose[i*12], mat, sizeof(mat));
			Matrix3x4_Invert_Simple(&basepose[i*12], bones[i].inverse);
		}

		//pose info (anim)
		for (i = 0; i < h->num_frames; i++)
		{
			for (j = 0, p = ipose; j < h->num_poses; j++, p++)
			{
				pos[0]   = p->channeloffset[0]; if (p->mask &   1) pos[0]   += *framedata++ * p->channelscale[0];
				pos[1]   = p->channeloffset[1]; if (p->mask &   2) pos[1]   += *framedata++ * p->channelscale[1];
				pos[2]   = p->channeloffset[2]; if (p->mask &   4) pos[2]   += *framedata++ * p->channelscale[2];
				quat[0]  = p->channeloffset[3]; if (p->mask &   8) quat[0]  += *framedata++ * p->channelscale[3];
				quat[1]  = p->channeloffset[4]; if (p->mask &  16) quat[1]  += *framedata++ * p->channelscale[4];
				quat[2]  = p->channeloffset[5]; if (p->mask &  32) quat[2]  += *framedata++ * p->channelscale[5];
				scale[0] = p->channeloffset[6]; if (p->mask &  64) scale[0] += *framedata++ * p->channelscale[6];
				scale[1] = p->channeloffset[7]; if (p->mask & 128) scale[1] += *framedata++ * p->channelscale[7];
				scale[2] = p->channeloffset[8]; if (p->mask & 256) scale[2] += *framedata++ * p->channelscale[8];

				quat[3] = -sqrt(max(1.0 - pow(VectorLength(quat),2), 0.0));

				GenMatrixPosQuat3Scale(pos, quat, scale, &opose[(i*h->num_poses+j)*12]);
			}
		}
	}
	else
	{
		struct iqmpose2 *p, *ipose = (struct iqmpose2*)(buffer + h->ofs_poses);
		struct iqmjoint2 *ijoint = (struct iqmjoint2*)(buffer + h->ofs_joints);
		vec3_t pos;
		vec4_t quat;
		vec3_t scale;
		float mat[12];

		//joint info (mesh)
		for (i = 0; i < h->num_joints; i++)
		{
			Q_strncpyz(bones[i].name, strings+ijoint[i].name, sizeof(bones[i].name));
			bones[i].parent = ijoint[i].parent;

			GenMatrixPosQuat4Scale(ijoint[i].translate, ijoint[i].rotate, ijoint[i].scale, mat);

			if (ijoint[i].parent >= 0)
				Matrix3x4_Multiply(mat, &basepose[ijoint[i].parent*12], &basepose[i*12]);
			else
				memcpy(&basepose[i*12], mat, sizeof(mat));
			Matrix3x4_Invert_Simple(&basepose[i*12], bones[i].inverse);
		}

		//pose info (anim)
		for (i = 0; i < h->num_frames; i++)
		{
			for (j = 0, p = ipose; j < h->num_poses; j++, p++)
			{
				pos[0]   = p->channeloffset[0]; if (p->mask &   1) pos[0]   += *framedata++ * p->channelscale[0];
				pos[1]   = p->channeloffset[1]; if (p->mask &   2) pos[1]   += *framedata++ * p->channelscale[1];
				pos[2]   = p->channeloffset[2]; if (p->mask &   4) pos[2]   += *framedata++ * p->channelscale[2];
				quat[0]  = p->channeloffset[3]; if (p->mask &   8) quat[0]  += *framedata++ * p->channelscale[3];
				quat[1]  = p->channeloffset[4]; if (p->mask &  16) quat[1]  += *framedata++ * p->channelscale[4];
				quat[2]  = p->channeloffset[5]; if (p->mask &  32) quat[2]  += *framedata++ * p->channelscale[5];
				quat[3]  = p->channeloffset[6]; if (p->mask &  64) quat[3]  += *framedata++ * p->channelscale[6];
				scale[0] = p->channeloffset[7]; if (p->mask & 128) scale[0] += *framedata++ * p->channelscale[7];
				scale[1] = p->channeloffset[8]; if (p->mask & 256) scale[1] += *framedata++ * p->channelscale[8];
				scale[2] = p->channeloffset[9]; if (p->mask & 512) scale[2] += *framedata++ * p->channelscale[9];

				GenMatrixPosQuat4Scale(pos, quat, scale, &opose[(i*h->num_poses+j)*12]);
			}
		}
	}
	//basepose
	memcpy(oposebase, basepose, sizeof(float)*12 * h->num_joints);

	//now generate the animations.
	for (i = 0; i < numgroups; i++)
	{
		if ((unsigned)framegroups[i].firstpose >= h->num_frames)
		{
			//invalid/basepose
			fgroup[i].isheirachical = false;
			fgroup[i].poseofs = (char*)oposebase - (char*)&fgroup[i];
			fgroup[i].numposes = 1;
		}
		else
		{
			fgroup[i].isheirachical = true;
			fgroup[i].poseofs = (char*)(opose + framegroups[i].firstpose*12*h->num_poses) - (char*)&fgroup[i];
			fgroup[i].numposes = framegroups[i].posecount;
		}
		fgroup[i].loop = framegroups[i].loop;
		fgroup[i].rate = framegroups[i].fps;
		Q_strncpyz(fgroup[i].name, framegroups[i].name, sizeof(fgroup[i].name));
	
		if (fgroup[i].rate <= 0)
			fgroup[i].rate = 10;
	}
	free(framegroups);

	for (i = 0; i < h->num_meshes; i++)
	{
		gai[i].nextsurf = (i == (h->num_meshes-1))?0:sizeof(*gai);

		/*animation info*/
		gai[i].shares_bones = 0;
		gai[i].numbones = h->num_joints;
		gai[i].ofsbones = (char*)bones - (char*)&gai[i];
		gai[i].groups = numgroups;
		gai[i].groupofs = (char*)fgroup - (char*)&gai[i];
		
		offset = LittleLong(mesh[i].first_vertex);

#ifndef SERVERONLY
		/*skins*/
		gai[i].numskins = 1;
		gai[i].ofsskins = (char*)&skin[i] - (char*)&gai[i];
		Q_strncpyz(skin[i].name, strings+mesh[i].material, sizeof(skin[i].name));
		skin[i].skinwidth = 1;
		skin[i].skinheight = 1;
		skin[i].ofstexels = 0; /*doesn't support 8bit colourmapping*/
		skin[i].skinspeed = 10; /*something to avoid div by 0*/
		skin[i].numshaders = 1;
		skin[i].ofsshaders = (char*)&shaders[i] - (char*)&skin[i];
		shaders[i] = R_RegisterSkin(skin[i].name, mod->name);
		R_BuildDefaultTexnums(NULL, shaders[i]);
		if (shaders[i]->flags & SHADER_NOIMAGE)
			Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", shaders[i]->name, loadmodel->name);
		gai[i].ofs_st_array = (char*)(otcoords+offset) - (char*)&gai[i];
#endif

		nt = LittleLong(mesh[i].num_triangles);
		tris = (struct iqmtriangle*)(buffer + LittleLong(h->ofs_triangles));
		tris += LittleLong(mesh[i].first_triangle);
		gai[i].numindexes = nt*3;
		idx = Hunk_Alloc(sizeof(*idx)*gai[i].numindexes);
		gai[i].ofs_indexes = (char*)idx - (char*)&gai[i];
		for (t = 0; t < nt; t++)
		{
			*idx++ = LittleShort(tris[t].vertex[0]) - offset;
			*idx++ = LittleShort(tris[t].vertex[1]) - offset;
			*idx++ = LittleShort(tris[t].vertex[2]) - offset;
		}

		/*verts*/
		gai[i].shares_verts = i;
		gai[i].numverts = LittleLong(mesh[i].num_vertexes);
		gai[i].ofs_skel_xyz = (char*)(opos+offset) - (char*)&gai[i];
		gai[i].ofs_skel_norm = vnorm?(char*)(onorm1+offset) - (char*)&gai[i]:0;
		gai[i].ofs_skel_svect = (vnorm&&vtang)?(char*)(onorm2+offset) - (char*)&gai[i]:0;
		gai[i].ofs_skel_tvect = (vnorm&&vtang)?(char*)(onorm3+offset) - (char*)&gai[i]:0;
		gai[i].ofs_skel_idx = oindex?(char*)(oindex+offset) - (char*)&gai[i]:0;
		gai[i].ofs_skel_weight = oweight?(char*)(oweight+offset) - (char*)&gai[i]:0;
	}
	if (!noweights)
	{
		for (i = 0; i < h->num_vertexes; i++)
		{
			Vector4Copy(vbone+i*4, oindex[i]);
			Vector4Scale(vweight+i*4, 1/255.0, oweight[i]);

			//FIXME: should we be normalising?
			if (!oweight[i][0] && !oweight[i][1] && !oweight[i][2] && !oweight[i][3])
				oweight[i][0] = 1;
		}
	}
	for (i = 0; i < h->num_vertexes; i++)
	{
		Vector2Copy(tcoord+i*2, otcoords[i]);
		VectorCopy(vpos+i*3, opos[i]);
		if (vnorm)
		{
			VectorCopy(vnorm+i*3, onorm1[i]);
		}
		if (vnorm && vtang)
		{
			VectorCopy(vtang+i*4, onorm2[i]);
			if(LittleFloat(vtang[i*4 + 3]) < 0)
				CrossProduct(onorm2[i], onorm1[i], onorm3[i]);
			else
				CrossProduct(onorm1[i], onorm2[i], onorm3[i]);
		}
	}
	return gai;
}

qboolean Mod_ParseIQMAnim(char *buffer, galiasinfo_t *prototype, void**poseofs, galiasgroup_t *gat)
{
	return false;
}



qboolean Mod_LoadInterQuakeModel(model_t *mod, void *buffer)
{
	int i;
	unsigned int hunkstart, hunkend, hunktotal;
	galiasinfo_t *root;
	struct iqmheader *h = (struct iqmheader *)buffer;

	hunkstart = Hunk_LowMark();
	root = Mod_ParseIQMMeshModel(mod, buffer);
	if (!root)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	hunkend = Hunk_LowMark();

	mod->flags = h->flags;

	ClearBounds(mod->mins, mod->maxs);
	for (i = 0; i < root->numverts; i++)
		AddPointToBounds((float*)((char*)root + root->ofs_skel_xyz + i*sizeof(vecV_t)), mod->mins, mod->maxs);

	Mod_ClampModelSize(mod);

	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	mod->type = mod_alias;
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, root, hunktotal);

	Hunk_FreeToLowMark (hunkstart);
	return true;
}
#endif





#ifdef MD5MODELS

qboolean Mod_ParseMD5Anim(char *buffer, galiasinfo_t *prototype, void**poseofs, galiasgroup_t *gat)
{
#define MD5ERROR0PARAM(x) { Con_Printf(CON_ERROR x "\n"); return false; }
#define MD5ERROR1PARAM(x, y) { Con_Printf(CON_ERROR x "\n", y); return false; }
#define EXPECT(x) buffer = COM_Parse(buffer); if (strcmp(com_token, x)) MD5ERROR1PARAM("MD5ANIM: expected %s", x);
	unsigned int i, j;

	galiasgroup_t grp;

	unsigned int parent;
	unsigned int numframes;
	unsigned int numjoints;
	float framespersecond;
	unsigned int numanimatedparts;
	galiasbone_t *bonelist;

	unsigned char *boneflags;
	unsigned int *firstanimatedcomponents;

	float *animatedcomponents;
	float *baseframe;	//6 components.
	float *posedata;
	float tx, ty, tz, qx, qy, qz;
	int fac, flags;
	float f;
	char com_token[8192];

	EXPECT("MD5Version");
	EXPECT("10");

	EXPECT("commandline");
	buffer = COM_Parse(buffer);

	EXPECT("numFrames");
	buffer = COM_Parse(buffer);
	numframes = atoi(com_token);

	EXPECT("numJoints");
	buffer = COM_Parse(buffer);
	numjoints = atoi(com_token);

	EXPECT("frameRate");
	buffer = COM_Parse(buffer);
	framespersecond = atof(com_token);

	EXPECT("numAnimatedComponents");
	buffer = COM_Parse(buffer);
	numanimatedparts = atoi(com_token);

	firstanimatedcomponents = BZ_Malloc(sizeof(int)*numjoints);
	animatedcomponents = BZ_Malloc(sizeof(float)*numanimatedparts);
	boneflags = BZ_Malloc(sizeof(unsigned char)*numjoints);
	baseframe = BZ_Malloc(sizeof(float)*12*numjoints);

	*poseofs = posedata = Hunk_Alloc(sizeof(float)*12*numjoints*numframes);

	if (prototype->numbones)
	{
		if (prototype->numbones != numjoints)
			MD5ERROR0PARAM("MD5ANIM: number of bones doesn't match");
		bonelist = (galiasbone_t *)((char*)prototype + prototype->ofsbones);
	}
	else
	{
		bonelist = Hunk_Alloc(sizeof(galiasbone_t)*numjoints);
		prototype->ofsbones = (char*)bonelist - (char*)prototype;
	}

	EXPECT("hierarchy");
	EXPECT("{");
	for (i = 0; i < numjoints; i++, bonelist++)
	{
		buffer = COM_Parse(buffer);
		if (prototype->numbones)
		{
			if (strcmp(bonelist->name, com_token))
				MD5ERROR1PARAM("MD5ANIM: bone name doesn't match (%s)", com_token);
		}
		else
			Q_strncpyz(bonelist->name, com_token, sizeof(bonelist->name));
		buffer = COM_Parse(buffer);
		parent = atoi(com_token);
		if (prototype->numbones)
		{
			if (bonelist->parent != parent)
				MD5ERROR1PARAM("MD5ANIM: bone name doesn't match (%s)", com_token);
		}
		else
			bonelist->parent = parent;

		buffer = COM_Parse(buffer);
		boneflags[i] = atoi(com_token);
		buffer = COM_Parse(buffer);
		firstanimatedcomponents[i] = atoi(com_token);
	}
	EXPECT("}");

	if (!prototype->numbones)
		prototype->numbones = numjoints;

	EXPECT("bounds");
	EXPECT("{");
	for (i = 0; i < numframes; i++)
	{
		EXPECT("(");
		buffer = COM_Parse(buffer);f=atoi(com_token);
		if (f < loadmodel->mins[0]) loadmodel->mins[0] = f;
		buffer = COM_Parse(buffer);f=atoi(com_token);
		if (f < loadmodel->mins[1]) loadmodel->mins[1] = f;
		buffer = COM_Parse(buffer);f=atoi(com_token);
		if (f < loadmodel->mins[2]) loadmodel->mins[2] = f;
		EXPECT(")");
		EXPECT("(");
		buffer = COM_Parse(buffer);f=atoi(com_token);
		if (f > loadmodel->maxs[0]) loadmodel->maxs[0] = f;
		buffer = COM_Parse(buffer);f=atoi(com_token);
		if (f > loadmodel->maxs[1]) loadmodel->maxs[1] = f;
		buffer = COM_Parse(buffer);f=atoi(com_token);
		if (f > loadmodel->maxs[2]) loadmodel->maxs[2] = f;
		EXPECT(")");
	}
	EXPECT("}");

	EXPECT("baseframe");
	EXPECT("{");
	for (i = 0; i < numjoints; i++)
	{
		EXPECT("(");
		buffer = COM_Parse(buffer);
		baseframe[i*6+0] = atof(com_token);
		buffer = COM_Parse(buffer);
		baseframe[i*6+1] = atof(com_token);
		buffer = COM_Parse(buffer);
		baseframe[i*6+2] = atof(com_token);
		EXPECT(")");
		EXPECT("(");
		buffer = COM_Parse(buffer);
		baseframe[i*6+3] = atof(com_token);
		buffer = COM_Parse(buffer);
		baseframe[i*6+4] = atof(com_token);
		buffer = COM_Parse(buffer);
		baseframe[i*6+5] = atof(com_token);
		EXPECT(")");
	}
	EXPECT("}");

	for (i = 0; i < numframes; i++)
	{
		EXPECT("frame");
		EXPECT(va("%i", i));
		EXPECT("{");
		for (j = 0; j < numanimatedparts; j++)
		{
			buffer = COM_Parse(buffer);
			animatedcomponents[j] = atof(com_token);
		}
		EXPECT("}");

		for (j = 0; j < numjoints; j++)
		{
			fac = firstanimatedcomponents[j];
			flags = boneflags[j];

			if (flags&1)
				tx = animatedcomponents[fac++];
			else
				tx = baseframe[j*6+0];
			if (flags&2)
				ty = animatedcomponents[fac++];
			else
				ty = baseframe[j*6+1];
			if (flags&4)
				tz = animatedcomponents[fac++];
			else
				tz = baseframe[j*6+2];
			if (flags&8)
				qx = animatedcomponents[fac++];
			else
				qx = baseframe[j*6+3];
			if (flags&16)
				qy = animatedcomponents[fac++];
			else
				qy = baseframe[j*6+4];
			if (flags&32)
				qz = animatedcomponents[fac++];
			else
				qz = baseframe[j*6+5];

			GenMatrix(tx, ty, tz, qx, qy, qz, posedata+12*(j+numjoints*i));
		}
	}

	BZ_Free(firstanimatedcomponents);
	BZ_Free(animatedcomponents);
	BZ_Free(boneflags);
	BZ_Free(baseframe);

	Q_strncpyz(grp.name, "", sizeof(grp.name));
	grp.isheirachical = true;
	grp.numposes = numframes;
	grp.rate = framespersecond;
	grp.loop = true;

	*gat = grp;
	return true;
#undef MD5ERROR0PARAM
#undef MD5ERROR1PARAM
#undef EXPECT
}

galiasinfo_t *Mod_ParseMD5MeshModel(char *buffer, char *modname)
{
#define MD5ERROR0PARAM(x) { Con_Printf(CON_ERROR x "\n"); return NULL; }
#define MD5ERROR1PARAM(x, y) { Con_Printf(CON_ERROR x "\n", y); return NULL; }
#define EXPECT(x) buffer = COM_Parse(buffer); if (strcmp(com_token, x)) Sys_Error("MD5MESH: expected %s", x);
	int numjoints = 0;
	int nummeshes = 0;
	qboolean foundjoints = false;
	int i;

	galiasbone_t *bones = NULL;
	galiasgroup_t *pose = NULL;
	galiasinfo_t *inf, *root, *lastsurf;
	float *posedata;
#ifndef SERVERONLY
	galiasskin_t *skin;
	shader_t **shaders;
#endif
	char *filestart = buffer;

	float x, y, z, qx, qy, qz;

	buffer = COM_Parse(buffer);
	if (strcmp(com_token, "MD5Version"))
		MD5ERROR0PARAM("MD5 model without MD5Version identifier first");

	buffer = COM_Parse(buffer);
	if (atoi(com_token) != 10)
		MD5ERROR0PARAM("MD5 model with unsupported MD5Version");


	root = Hunk_Alloc(sizeof(galiasinfo_t));
	lastsurf = NULL;

	for(;;)
	{
		buffer = COM_Parse(buffer);
		if (!buffer)
			break;

		if (!strcmp(com_token, "numFrames"))
		{
			void *poseofs;
			galiasgroup_t *grp = Hunk_Alloc(sizeof(galiasgroup_t));
			Mod_ParseMD5Anim(filestart, root, &poseofs, grp);
			root->groupofs = (char*)grp - (char*)root;
			root->groups = 1;
			grp->poseofs = (char*)poseofs - (char*)grp;
			return root;
		}
		else if (!strcmp(com_token, "commandline"))
		{	//we don't need this
			buffer = strchr(buffer, '\"');
			buffer = strchr((char*)buffer+1, '\"')+1;
//			buffer = COM_Parse(buffer);
		}
		else if (!strcmp(com_token, "numJoints"))
		{
			if (numjoints)
				MD5ERROR0PARAM("MD5MESH: numMeshes was already declared");
			buffer = COM_Parse(buffer);
			numjoints = atoi(com_token);
			if (numjoints <= 0)
				MD5ERROR0PARAM("MD5MESH: Needs some joints");
		}
		else if (!strcmp(com_token, "numMeshes"))
		{
			if (nummeshes)
				MD5ERROR0PARAM("MD5MESH: numMeshes was already declared");
			buffer = COM_Parse(buffer);
			nummeshes = atoi(com_token);
			if (nummeshes <= 0)
				MD5ERROR0PARAM("MD5MESH: Needs some meshes");
		}
		else if (!strcmp(com_token, "joints"))
		{
			if (foundjoints)
				MD5ERROR0PARAM("MD5MESH: Duplicate joints section");
			foundjoints=true;
			if (!numjoints)
				MD5ERROR0PARAM("MD5MESH: joints section before (or without) numjoints");

			bones = Hunk_Alloc(sizeof(*bones) * numjoints);
			pose = Hunk_Alloc(sizeof(galiasgroup_t));
			posedata = Hunk_Alloc(sizeof(float)*12 * numjoints);
			pose->isheirachical = false;
			pose->rate = 1;
			pose->numposes = 1;
			pose->poseofs = (char*)posedata - (char*)pose;

			Q_strncpyz(pose->name, "base", sizeof(pose->name));

			EXPECT("{");
			//"name" parent (x y z) (s t u)
			//stu are a normalized quaternion, which we will convert to a 3*4 matrix for no apparent reason

			for (i = 0; i < numjoints; i++)
			{
				buffer = COM_Parse(buffer);
				Q_strncpyz(bones[i].name, com_token, sizeof(bones[i].name));
				buffer = COM_Parse(buffer);
				bones[i].parent = atoi(com_token);
				if (bones[i].parent >= i)
					MD5ERROR0PARAM("MD5MESH: joints parent's must be lower");
				if ((bones[i].parent < 0 && i) || (!i && bones[i].parent!=-1))
					MD5ERROR0PARAM("MD5MESH: Only the root joint may have a negative parent");

				EXPECT("(");
				buffer = COM_Parse(buffer);
				x = atof(com_token);
				buffer = COM_Parse(buffer);
				y = atof(com_token);
				buffer = COM_Parse(buffer);
				z = atof(com_token);
				EXPECT(")");
				EXPECT("(");
				buffer = COM_Parse(buffer);
				qx = atof(com_token);
				buffer = COM_Parse(buffer);
				qy = atof(com_token);
				buffer = COM_Parse(buffer);
				qz = atof(com_token);
				EXPECT(")");
				GenMatrix(x, y, z, qx, qy, qz, posedata+i*12);
			}
			EXPECT("}");
		}
		else if (!strcmp(com_token, "mesh"))
		{
			int numverts = 0;
			int numweights = 0;
			int numtris = 0;

			int num;
			int vnum;

			int numusableweights = 0;
			int *firstweightlist = NULL;
			int *numweightslist = NULL;

			galisskeletaltransforms_t *trans;
#ifndef SERVERONLY
			float *stcoord = NULL;
#endif
			int *indexes = NULL;
			float w;

			vec4_t *rawweight = NULL;
			int *rawweightbone = NULL;


			if (!nummeshes)
				MD5ERROR0PARAM("MD5MESH: mesh section before (or without) nummeshes");
			if (!foundjoints || !bones || !pose)
				MD5ERROR0PARAM("MD5MESH: mesh must come after joints");

			if (!lastsurf)
			{
				lastsurf = root;
				inf = root;
			}
			else
			{
				inf = Hunk_Alloc(sizeof(*inf));
				lastsurf->nextsurf = (char*)inf - (char*)lastsurf;
				lastsurf = inf;
			}

			inf->ofsbones = (char*)bones - (char*)inf;
			inf->numbones = numjoints;
			inf->groups = 1;
			inf->groupofs = (char*)pose - (char*)inf;
			inf->baseframeofs = inf->groupofs + pose->poseofs;

#ifndef SERVERONLY
			skin = Hunk_Alloc(sizeof(*skin));
			shaders = Hunk_Alloc(sizeof(*shaders));
			inf->numskins = 1;
			inf->ofsskins = (char*)skin - (char*)inf;
			skin->numshaders = 1;
			skin->skinspeed = 1;
			skin->ofsshaders = (char*)shaders - (char*)skin;
#endif
			EXPECT("{");
			for(;;)
			{
				buffer = COM_Parse(buffer);
				if (!buffer)
					MD5ERROR0PARAM("MD5MESH: unexpected eof");

				if (!strcmp(com_token, "shader"))
				{
					buffer = COM_Parse(buffer);
#ifndef SERVERONLY
					//FIXME: we probably want to support multiple skins some time
					shaders[0] = R_RegisterSkin(com_token, modname);
					R_BuildDefaultTexnums(NULL, shaders[0]);
					if (shaders[0]->flags & SHADER_NOIMAGE)
						Con_Printf("Unable to load texture for shader \"%s\" for model \"%s\"\n", shaders[0]->name, loadmodel->name);
#endif
				}
				else if (!strcmp(com_token, "numverts"))
				{
					if (numverts)
						MD5ERROR0PARAM("MD5MESH: numverts was already specified");
					buffer = COM_Parse(buffer);
					numverts = atoi(com_token);
					if (numverts < 0)
						MD5ERROR0PARAM("MD5MESH: numverts cannot be negative");

					firstweightlist = Z_Malloc(sizeof(*firstweightlist) * numverts);
					numweightslist = Z_Malloc(sizeof(*numweightslist) * numverts);
#ifndef SERVERONLY
					stcoord = Hunk_Alloc(sizeof(float)*2*numverts);
					inf->ofs_st_array = (char*)stcoord - (char*)inf;
					inf->numverts = numverts;
#endif
				}
				else if (!strcmp(com_token, "vert"))
				{	//vert num ( s t ) firstweight numweights

					buffer = COM_Parse(buffer);
					num = atoi(com_token);
					if (num < 0 || num >= numverts)
						MD5ERROR0PARAM("MD5MESH: vertex out of range");

					EXPECT("(");
					buffer = COM_Parse(buffer);
#ifndef SERVERONLY
					if (!stcoord)
						MD5ERROR0PARAM("MD5MESH: vertex out of range");
					stcoord[num*2+0] = atof(com_token);
#endif
					buffer = COM_Parse(buffer);
#ifndef SERVERONLY
					stcoord[num*2+1] = atof(com_token);
#endif
					EXPECT(")");
					buffer = COM_Parse(buffer);
					firstweightlist[num] = atoi(com_token);
					buffer = COM_Parse(buffer);
					numweightslist[num] = atoi(com_token);

					numusableweights += numweightslist[num];
				}
				else if (!strcmp(com_token, "numtris"))
				{
					if (numtris)
						MD5ERROR0PARAM("MD5MESH: numtris was already specified");
					buffer = COM_Parse(buffer);
					numtris = atoi(com_token);
					if (numtris < 0)
						MD5ERROR0PARAM("MD5MESH: numverts cannot be negative");

					indexes = Hunk_Alloc(sizeof(int)*3*numtris);
					inf->ofs_indexes = (char*)indexes - (char*)inf;
					inf->numindexes = numtris*3;
				}
				else if (!strcmp(com_token, "tri"))
				{
					buffer = COM_Parse(buffer);
					num = atoi(com_token);
					if (num < 0 || num >= numtris)
						MD5ERROR0PARAM("MD5MESH: vertex out of range");

					buffer = COM_Parse(buffer);
					indexes[num*3+0] = atoi(com_token);
					buffer = COM_Parse(buffer);
					indexes[num*3+1] = atoi(com_token);
					buffer = COM_Parse(buffer);
					indexes[num*3+2] = atoi(com_token);
				}
				else if (!strcmp(com_token, "numweights"))
				{
					if (numweights)
						MD5ERROR0PARAM("MD5MESH: numweights was already specified");
					buffer = COM_Parse(buffer);
					numweights = atoi(com_token);

					rawweight = Z_Malloc(sizeof(*rawweight)*numweights);
					rawweightbone = Z_Malloc(sizeof(*rawweightbone)*numweights);
				}
				else if (!strcmp(com_token, "weight"))
				{
					//weight num bone scale ( x y z )
					buffer = COM_Parse(buffer);
					num = atoi(com_token);
					if (num < 0 || num >= numweights)
						MD5ERROR0PARAM("MD5MESH: weight out of range");

					buffer = COM_Parse(buffer);
					rawweightbone[num] = atoi(com_token);
					if (rawweightbone[num] < 0 || rawweightbone[num] >= numjoints)
						MD5ERROR0PARAM("MD5MESH: weight specifies bad bone");
					buffer = COM_Parse(buffer);
					w = atof(com_token);

					EXPECT("(");
					buffer = COM_Parse(buffer);
					rawweight[num][0] = w*atof(com_token);
					buffer = COM_Parse(buffer);
					rawweight[num][1] = w*atof(com_token);
					buffer = COM_Parse(buffer);
					rawweight[num][2] = w*atof(com_token);
					EXPECT(")");
					rawweight[num][3] = w;
				}
				else if (!strcmp(com_token, "}"))
					break;
				else
					MD5ERROR1PARAM("MD5MESH: Unrecognised token inside mesh (%s)", com_token);

			}

			trans = Hunk_Alloc(sizeof(*trans)*numusableweights);
			inf->ofsswtransforms = (char*)trans - (char*)inf;

			for (num = 0, vnum = 0; num < numverts; num++)
			{
				if (numweightslist[num] <= 0)
					MD5ERROR0PARAM("MD5MESH: weights not set on vertex");
				while(numweightslist[num])
				{
					trans[vnum].vertexindex = num;
					trans[vnum].boneindex = rawweightbone[firstweightlist[num]];
					trans[vnum].org[0] = rawweight[firstweightlist[num]][0];
					trans[vnum].org[1] = rawweight[firstweightlist[num]][1];
					trans[vnum].org[2] = rawweight[firstweightlist[num]][2];
					trans[vnum].org[3] = rawweight[firstweightlist[num]][3];
					vnum++;
					firstweightlist[num]++;
					numweightslist[num]--;
				}
			}
			inf->numswtransforms = vnum;

			if (firstweightlist)
				Z_Free(firstweightlist);
			if (numweightslist)
				Z_Free(numweightslist);
			if (rawweight)
				Z_Free(rawweight);
			if (rawweightbone)
				Z_Free(rawweightbone);
		}
		else
			MD5ERROR1PARAM("Unrecognised token in MD5 model (%s)", com_token);
	}

	if (!lastsurf)
		MD5ERROR0PARAM("MD5MESH: No meshes");

	Alias_CalculateSkeletalNormals(root);

	return root;
#undef MD5ERROR0PARAM
#undef MD5ERROR1PARAM
#undef EXPECT
}

qboolean Mod_LoadMD5MeshModel(model_t *mod, void *buffer)
{
	galiasinfo_t *root;
	int hunkstart, hunkend, hunktotal;


	loadmodel=mod;

	hunkstart = Hunk_LowMark ();

	root = Mod_ParseMD5MeshModel(buffer, mod->name);
	if (root == NULL)
	{
		Hunk_FreeToLowMark(hunkstart);
		return false;
	}


	hunkend = Hunk_LowMark ();

	mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0);	//file replacement - inherit flags from any defunc mdl files.

	Mod_ClampModelSize(mod);

	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	mod->type = mod_alias;
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, root, hunktotal);

	Hunk_FreeToLowMark (hunkstart);


	mod->funcs.NativeTrace = Mod_Trace;
	return true;
}

/*
EXTERNALANIM

//File that specifies md5 model/anim stuff.

model test/imp.md5mesh

group test/idle1.md5anim
clampgroup test/idle1.md5anim
frames test/idle1.md5anim

*/
qboolean Mod_LoadCompositeAnim(model_t *mod, void *buffer)
{
	int i;

	char *file;
	galiasinfo_t *root = NULL, *surf;
	int numgroups = 0;
	galiasgroup_t *grouplist = NULL;
	galiasgroup_t *newgroup = NULL;
	void **poseofs;
	int hunkstart, hunkend, hunktotal;
	char com_token[8192];


	loadmodel=mod;

	hunkstart = Hunk_LowMark ();




	buffer = COM_Parse(buffer);
	if (strcmp(com_token, "EXTERNALANIM"))
	{
		Con_Printf (CON_ERROR "EXTERNALANIM: header is not compleate (%s)\n", mod->name);
		return false;
	}

	buffer = COM_Parse(buffer);
	if (!strcmp(com_token, "model"))
	{
		buffer = COM_Parse(buffer);
		file = COM_LoadTempMoreFile(com_token);

		if (!file)	//FIXME: make non fatal somehow..
		{
			Con_Printf(CON_ERROR "Couldn't open %s (from %s)\n", com_token, mod->name);
			Hunk_FreeToLowMark(hunkstart);
			return false;
		}

		root = Mod_ParseMD5MeshModel(file, mod->name);
		if (root == NULL)
		{
			Hunk_FreeToLowMark(hunkstart);
			return false;
		}
		newgroup = (galiasgroup_t*)((char*)root + root->groupofs);

		grouplist = BZ_Malloc(sizeof(galiasgroup_t)*(numgroups+root->groups));
		memcpy(grouplist, newgroup, sizeof(galiasgroup_t)*(numgroups+root->groups));
		poseofs = BZ_Malloc(sizeof(galiasgroup_t)*(numgroups+root->groups));
		for (i = 0; i < root->groups; i++)
		{
			grouplist[numgroups] = newgroup[i];
			poseofs[numgroups] = (char*)&newgroup[i] + newgroup[i].poseofs;
			numgroups++;
		}
	}
	else
	{
		Con_Printf (CON_ERROR "EXTERNALANIM: model must be defined immediatly after the header\n");
		return false;
	}

	for (;;)
	{
		buffer = COM_Parse(buffer);
		if (!buffer)
			break;

		if (!strcmp(com_token, "group"))
		{
			grouplist = BZ_Realloc(grouplist, sizeof(galiasgroup_t)*(numgroups+1));
			poseofs = BZ_Realloc(poseofs, sizeof(*poseofs)*(numgroups+1));
			buffer = COM_Parse(buffer);
			file = COM_LoadTempMoreFile(com_token);
			if (file)	//FIXME: make non fatal somehow..
			{
				char namebkup[MAX_QPATH];
				Q_strncpyz(namebkup, com_token, sizeof(namebkup));
				if (!Mod_ParseMD5Anim(file, root, &poseofs[numgroups], &grouplist[numgroups]))
				{
					Hunk_FreeToLowMark(hunkstart);
					return false;
				}
				Q_strncpyz(grouplist[numgroups].name, namebkup, sizeof(grouplist[numgroups].name));
				numgroups++;
			}
		}
		else if (!strcmp(com_token, "clampgroup"))
		{
			grouplist = BZ_Realloc(grouplist, sizeof(galiasgroup_t)*(numgroups+1));
			poseofs = BZ_Realloc(poseofs, sizeof(*poseofs)*(numgroups+1));
			buffer = COM_Parse(buffer);
			file = COM_LoadTempMoreFile(com_token);
			if (file)	//FIXME: make non fatal somehow..
			{
				char namebkup[MAX_QPATH];
				Q_strncpyz(namebkup, com_token, sizeof(namebkup));
				if (!Mod_ParseMD5Anim(file, root, &poseofs[numgroups], &grouplist[numgroups]))
				{
					Hunk_FreeToLowMark(hunkstart);
					return false;
				}
				Q_strncpyz(grouplist[numgroups].name, namebkup, sizeof(grouplist[numgroups].name));
				grouplist[numgroups].loop = false;
				numgroups++;
			}
		}
		else if (!strcmp(com_token, "frames"))
		{
			galiasgroup_t ng;
			void *np;

			buffer = COM_Parse(buffer);
			file = COM_LoadTempMoreFile(com_token);
			if (file)	//FIXME: make non fatal somehow..
			{
				char namebkup[MAX_QPATH];
				Q_strncpyz(namebkup, com_token, sizeof(namebkup));
				if (!Mod_ParseMD5Anim(file, root, &np, &ng))
				{
					Hunk_FreeToLowMark(hunkstart);
					return false;
				}

				grouplist = BZ_Realloc(grouplist, sizeof(galiasgroup_t)*(numgroups+ng.numposes));
				poseofs = BZ_Realloc(poseofs, sizeof(*poseofs)*(numgroups+ng.numposes));

				//pull out each frame individually
				for (i = 0; i < ng.numposes; i++)
				{
					grouplist[numgroups].isheirachical = ng.isheirachical;
					grouplist[numgroups].loop = false;
					grouplist[numgroups].numposes = 1;
					grouplist[numgroups].rate = 24;
					poseofs[numgroups] = (float*)np + i*12*root->numbones;
					Q_snprintfz(grouplist[numgroups].name, sizeof(grouplist[numgroups].name), "%s%i", namebkup, i);
					Q_strncpyz(grouplist[numgroups].name, namebkup, sizeof(grouplist[numgroups].name));
					grouplist[numgroups].loop = false;
					numgroups++;
				}
			}
		}
		else
		{
			Con_Printf(CON_ERROR "EXTERNALANIM: unrecognised token (%s)\n", mod->name);
			Hunk_FreeToLowMark(hunkstart);
			return false;
		}
	}

	newgroup = grouplist;
	grouplist = Hunk_Alloc(sizeof(galiasgroup_t)*numgroups);
	for(surf = root;;)
	{
		surf->groupofs = (char*)grouplist - (char*)surf;
		surf->groups = numgroups;
		if (!surf->nextsurf)
			break;
		surf = (galiasinfo_t*)((char*)surf + surf->nextsurf);
	}
	for (i = 0; i < numgroups; i++)
	{
		grouplist[i] = newgroup[i];
		grouplist[i].poseofs = (char*)poseofs[i] - (char*)&grouplist[i];
	}


	hunkend = Hunk_LowMark ();

	mod->flags = Mod_ReadFlagsFromMD1(mod->name, 0);	//file replacement - inherit flags from any defunc mdl files.

	Mod_ClampModelSize(mod);

	Hunk_Alloc(0);
	hunktotal = hunkend - hunkstart;

	Cache_Alloc (&mod->cache, hunktotal, loadname);
	mod->type = mod_alias;
	if (!mod->cache.data)
	{
		Hunk_FreeToLowMark (hunkstart);
		return false;
	}
	memcpy (mod->cache.data, root, hunktotal);

	Hunk_FreeToLowMark (hunkstart);


	mod->funcs.NativeTrace = Mod_Trace;
	return true;
}

#endif //MD5MODELS

#else
int Mod_TagNumForName(model_t *model, char *name)
{
	return 0;
}
qboolean Mod_GetTag(model_t *model, int tagnum, framestate_t *framestate, float *result)
{
	return false;
}

int Mod_GetNumBones(struct model_s *model, qboolean allowtags)
{
	return 0;
}
int Mod_GetBoneRelations(model_t *model, int firstbone, int lastbone, framestate_t *fstate, float *result)
{
	return 0;
}
int Mod_GetBoneParent(struct model_s *model, int bonenum)
{
	return 0;
}
char *Mod_GetBoneName(struct model_s *model, int bonenum)
{
	return "";
}
#endif //#if defined(D3DQUAKE) || defined(GLQUAKE)