#include "quakedef.h" #ifdef RGLQUAKE #include "glquake.h" #include "shader.h" #endif #define MAX_Q3MAP_INDICES 0x80000 #define MAX_Q3MAP_VERTEXES 0x80000 #define MAX_Q3MAP_BRUSHSIDES 0x30000 #define MAX_CM_BRUSHSIDES (MAX_Q3MAP_BRUSHSIDES << 1) #define MAX_CM_BRUSHES (MAX_Q2MAP_BRUSHES << 1) #define MAX_CM_PATCH_VERTS (4096) #define MAX_CM_FACES (MAX_Q2MAP_FACES) #define MAX_CM_PATCHES (0x10000) #define MAX_CM_LEAFFACES (MAX_Q2MAP_LEAFFACES) #define MAX_CM_AREAS MAX_Q2MAP_AREAS #define Q3SURF_NODRAW 0x80 // don't generate a drawsurface at all #define Q3SURF_SKIP 0x200 // completely ignore, allowing non-closed brushes #define Q3SURF_NONSOLID 0x4000 // don't collide against curves with this set #if Q3SURF_NODRAW != SURF_NODRAW #error "nodraw isn't constant" #endif #ifdef SWQUAKE extern qboolean r_usinglits; #endif extern cvar_t r_shadow_bumpscale_basetexture; //these are in model.c (or gl_model.c) qboolean GLMod_LoadVertexes (lump_t *l); qboolean GLMod_LoadEdges (lump_t *l); qboolean GLMod_LoadMarksurfaces (lump_t *l); qboolean GLMod_LoadSurfedges (lump_t *l); void GLMod_LoadLighting (lump_t *l); qboolean SWMod_LoadVertexes (lump_t *l); qboolean SWMod_LoadEdges (lump_t *l); qboolean SWMod_LoadMarksurfaces (lump_t *l); qboolean SWMod_LoadSurfedges (lump_t *l); void SWMod_LoadLighting (lump_t *l); void Q2BSP_SetHullFuncs(hull_t *hull); qboolean CM_Trace(model_t *model, int forcehullnum, int frame, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, trace_t *trace); qboolean CM_NativeTrace(model_t *model, int forcehullnum, int frame, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, unsigned int contents, trace_t *trace); unsigned int CM_NativeContents(struct model_s *model, int hulloverride, int frame, vec3_t p, vec3_t mins, vec3_t maxs); unsigned int Q2BSP_PointContents(model_t *mod, vec3_t p); qbyte areabits[MAX_Q2MAP_AREAS/8]; extern char loadname[32]; extern model_t *loadmodel; float RadiusFromBounds (vec3_t mins, vec3_t maxs) { int i; vec3_t corner; for (i=0 ; i<3 ; i++) { corner[i] = fabs(mins[i]) > fabs(maxs[i]) ? fabs(mins[i]) : fabs(maxs[i]); } return Length (corner); } void CalcSurfaceExtents (msurface_t *s) { float mins[2], maxs[2], val; int i,j, e; mvertex_t *v; mtexinfo_t *tex; int bmins[2], bmaxs[2]; mins[0] = mins[1] = 999999; maxs[0] = maxs[1] = -99999; tex = s->texinfo; for (i=0 ; inumedges ; i++) { e = loadmodel->surfedges[s->firstedge+i]; if (e >= 0) v = &loadmodel->vertexes[loadmodel->edges[e].v[0]]; else v = &loadmodel->vertexes[loadmodel->edges[-e].v[1]]; for (j=0 ; j<2 ; j++) { val = v->position[0] * tex->vecs[j][0] + v->position[1] * tex->vecs[j][1] + v->position[2] * tex->vecs[j][2] + tex->vecs[j][3]; if (val < mins[j]) mins[j] = val; if (val > maxs[j]) maxs[j] = val; } } for (i=0 ; i<2 ; i++) { bmins[i] = floor(mins[i]/16); bmaxs[i] = ceil(maxs[i]/16); s->texturemins[i] = bmins[i] * 16; s->extents[i] = (bmaxs[i] - bmins[i]) * 16; // if ( !(tex->flags & TEX_SPECIAL) && s->extents[i] > 512 ) //q2 uses 512. probably for skys. // Sys_Error ("Bad surface extents"); } } void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs) { int i; vec_t val; for (i=0 ; i<3 ; i++) { val = v[i]; if (val < mins[i]) mins[i] = val; if (val > maxs[i]) maxs[i] = val; } } void ClearBounds (vec3_t mins, vec3_t maxs) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } #ifdef Q2BSPS qbyte *ReadPCXPalette(qbyte *buf, int len, qbyte *out); #ifdef SERVERONLY #define Host_Error SV_Error #endif extern model_t *loadmodel; extern qbyte *mod_base; unsigned char d_q28to24table[1024]; /* typedef struct q2csurface_s { char name[16]; int flags; int value; } q2csurface_t; */ typedef struct q2mapsurface_s // used internally due to name len probs //ZOID { q2csurface_t c; char rname[32]; } q2mapsurface_t; typedef struct cmodel_s { vec3_t mins, maxs; vec3_t origin; // for sounds or lights int headnode; int numsurfaces; int firstsurface; int firstbrush; //q3 submodels are considered small enough that you will never need to walk any sort of tree. int num_brushes;//the brushes are checked instead. } q2cmodel_t; typedef struct { mplane_t *plane; q2mapsurface_t *surface; } q2cbrushside_t; typedef struct { int contents; int numsides; int firstbrushside; int checkcount; // to avoid repeated testings } q2cbrush_t; typedef struct { int numareaportals; int firstareaportal; int floodnum; // if two areas have equal floodnums, they are connected int floodvalid; } q2carea_t; typedef struct { int numareaportals[MAX_CM_AREAS]; } q3carea_t; typedef struct { vec3_t absmins, absmaxs; int numbrushes; q2cbrush_t *brushes; q2mapsurface_t *surface; int checkcount; // to avoid repeated testings } q3cpatch_t; typedef struct { int facetype; int numverts; int firstvert; int shadernum; int patch_cp[2]; } q3cface_t; int checkcount; //FIXME: Unlimit these. char map_name[MAX_QPATH]; int numbrushsides; q2cbrushside_t map_brushsides[MAX_Q2MAP_BRUSHSIDES]; int numtexinfo; q2mapsurface_t *map_surfaces; int numplanes; mplane_t map_planes[MAX_Q2MAP_PLANES+6]; // extra for box hull int numleafs = 1; // allow leaf funcs to be called without a map mleaf_t map_leafs[MAX_MAP_LEAFS]; int emptyleaf; int numleafbrushes; int map_leafbrushes[MAX_Q2MAP_LEAFBRUSHES]; int numcmodels; q2cmodel_t map_cmodels[MAX_Q2MAP_MODELS]; int numbrushes; q2cbrush_t map_brushes[MAX_Q2MAP_BRUSHES]; int numvisibility; qbyte map_visibility[MAX_Q2MAP_VISIBILITY]; q2dvis_t *map_q2vis = (q2dvis_t *)map_visibility; q3dvis_t *map_q3pvs = (q3dvis_t *)map_visibility; qbyte map_hearability[MAX_Q2MAP_VISIBILITY]; q3dvis_t *map_q3phs = (q3dvis_t *)map_hearability; int numentitychars; char *map_entitystring; int numareas = 1; q2carea_t map_q2areas[MAX_Q2MAP_AREAS]; q3carea_t map_q3areas[MAX_CM_AREAS]; int numareaportals; q2dareaportal_t map_areaportals[MAX_Q2MAP_AREAPORTALS]; q3cpatch_t map_patches[MAX_CM_PATCHES]; int numpatches; int map_leafpatches[MAX_CM_LEAFFACES]; int numleafpatches; int numclusters = 1; q2mapsurface_t nullsurface; int floodvalid; qbyte portalopen[MAX_Q2MAP_AREAPORTALS]; //memset will work if it's a qbyte, really it should be a qboolean static int mapisq3; cvar_t map_noareas = SCVAR("map_noareas", "1"); //1 for lack of mod support. cvar_t map_noCurves = SCVARF("map_noCurves", "0", CVAR_CHEAT); cvar_t map_autoopenportals = SCVAR("map_autoopenportals", "1"); //1 for lack of mod support. cvar_t r_subdivisions = SCVAR("r_subdivisions", "2"); int CM_NumInlineModels (model_t *model); q2cmodel_t *CM_InlineModel (char *name); void CM_InitBoxHull (void); void FloodAreaConnections (void); int c_pointcontents; int c_traces, c_brush_traces; vec3_t *map_verts; //3points int numvertexes; vec2_t *map_vertstmexcoords; vec2_t *map_vertlstmexcoords; byte_vec4_t *map_colors_array; vec3_t *map_normals_array; #ifdef Q3SHADERS typedef struct { char shader[MAX_QPATH]; int brushNum; int visibleSide; // the brush side that ray tests need to clip against (-1 == none) } dfog_t; mfog_t *map_fogs; int map_numfogs; #endif q3cface_t *map_faces; int numfaces; index_t *map_surfindexes; int map_numsurfindexes; int *map_leaffaces; int numleaffaces; int PlaneTypeForNormal ( vec3_t normal ) { vec_t ax, ay, az; // NOTE: should these have an epsilon around 1.0? if ( normal[0] >= 1.0) return PLANE_X; if ( normal[1] >= 1.0 ) return PLANE_Y; if ( normal[2] >= 1.0 ) return PLANE_Z; ax = fabs( normal[0] ); ay = fabs( normal[1] ); az = fabs( normal[2] ); if ( ax >= ay && ax >= az ) return PLANE_ANYX; if ( ay >= ax && ay >= az ) return PLANE_ANYY; return PLANE_ANYZ; } void CategorizePlane ( mplane_t *plane ) { int i; plane->signbits = 0; plane->type = PLANE_ANYZ; for (i = 0; i < 3; i++) { if (plane->normal[i] < 0) plane->signbits |= 1<normal[i] == 1.0f) plane->type = i; } plane->type = PlaneTypeForNormal(plane->normal); } void PlaneFromPoints ( vec3_t verts[3], mplane_t *plane ) { vec3_t v1, v2; VectorSubtract( verts[1], verts[0], v1 ); VectorSubtract( verts[2], verts[0], v2 ); CrossProduct( v2, v1, plane->normal ); VectorNormalize( plane->normal ); plane->dist = DotProduct( verts[0], plane->normal ); } qboolean BoundsIntersect (vec3_t mins1, vec3_t maxs1, vec3_t mins2, vec3_t maxs2) { return (mins1[0] <= maxs2[0] && mins1[1] <= maxs2[1] && mins1[2] <= maxs2[2] && maxs1[0] >= mins2[0] && maxs1[1] >= mins2[1] && maxs1[2] >= mins2[2]); } #define VectorAvg(a,b,c) ((c)[0]=((a)[0]+(b)[0])*0.5f,(c)[1]=((a)[1]+(b)[1])*0.5f, (c)[2]=((a)[2]+(b)[2])*0.5f) #define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3]) #define Vector4Scale(in,scale,out) ((out)[0]=(in)[0]*scale,(out)[1]=(in)[1]*scale,(out)[2]=(in)[2]*scale,(out)[3]=(in)[3]*scale) #define Vector4Add(a,b,c) ((c)[0]=(((a[0])+(b[0]))),(c)[1]=(((a[1])+(b[1]))),(c)[2]=(((a[2])+(b[2]))),(c)[3]=(((a[3])+(b[3])))) /* =============== Patch_FlatnessTest =============== */ static int Patch_FlatnessTest ( float maxflat, const vec3_t point0, const vec3_t point1, const vec3_t point2 ) { vec3_t v1, v2, v3; vec3_t t, n; float dist, d, l; int ft0, ft1; VectorSubtract ( point2, point0, n ); l = VectorNormalize ( n ); if ( !l ) { return 0; } VectorSubtract ( point1, point0, t ); d = -DotProduct ( t, n ); VectorMA ( t, d, n, t ); dist = VectorLength ( t ); if ( fabs(dist) <= maxflat ) { return 0; } VectorAvg ( point1, point0, v1 ); VectorAvg ( point2, point1, v2 ); VectorAvg ( v1, v2, v3 ); ft0 = Patch_FlatnessTest ( maxflat, point0, v1, v3 ); ft1 = Patch_FlatnessTest ( maxflat, v3, v2, point2 ); return 1 + (int)floor( max ( ft0, ft1 ) + 0.5f ); } /* =============== Patch_GetFlatness =============== */ void Patch_GetFlatness ( float maxflat, const vec3_t *points, int *patch_cp, int *flat ) { int i, p, u, v; flat[0] = flat[1] = 0; for (v = 0; v < patch_cp[1] - 1; v += 2) { for (u = 0; u < patch_cp[0] - 1; u += 2) { p = v * patch_cp[0] + u; i = Patch_FlatnessTest ( maxflat, points[p], points[p+1], points[p+2] ); flat[0] = max ( flat[0], i ); i = Patch_FlatnessTest ( maxflat, points[p+patch_cp[0]], points[p+patch_cp[0]+1], points[p+patch_cp[0]+2] ); flat[0] = max ( flat[0], i ); i = Patch_FlatnessTest ( maxflat, points[p+2*patch_cp[0]], points[p+2*patch_cp[0]+1], points[p+2*patch_cp[0]+2] ); flat[0] = max ( flat[0], i ); i = Patch_FlatnessTest ( maxflat, points[p], points[p+patch_cp[0]], points[p+2*patch_cp[0]] ); flat[1] = max ( flat[1], i ); i = Patch_FlatnessTest ( maxflat, points[p+1], points[p+patch_cp[0]+1], points[p+2*patch_cp[0]+1] ); flat[1] = max ( flat[1], i ); i = Patch_FlatnessTest ( maxflat, points[p+2], points[p+patch_cp[0]+2], points[p+2*patch_cp[0]+2] ); flat[1] = max ( flat[1], i ); } } } /* =============== Patch_Evaluate_QuadricBezier =============== */ static void Patch_Evaluate_QuadricBezier ( float t, vec4_t point0, vec4_t point1, vec3_t point2, vec4_t out ) { float qt = t * t; float dt = 2.0f * t, tt; vec4_t tvec4; tt = 1.0f - dt + qt; Vector4Scale ( point0, tt, out ); tt = dt - 2.0f * qt; Vector4Scale ( point1, tt, tvec4 ); Vector4Add ( out, tvec4, out ); Vector4Scale ( point2, qt, tvec4 ); Vector4Add ( out, tvec4, out ); } /* =============== Patch_Evaluate =============== */ void Patch_Evaluate ( const vec4_t *p, const int *numcp, const int *tess, vec4_t *dest ) { int num_patches[2], num_tess[2]; int index[3], dstpitch, i, u, v, x, y; float s, t, step[2]; vec4_t *tvec, pv[3][3], v1, v2, v3; num_patches[0] = numcp[0] / 2; num_patches[1] = numcp[1] / 2; dstpitch = num_patches[0] * tess[0] + 1; step[0] = 1.0f / (float)tess[0]; step[1] = 1.0f / (float)tess[1]; for ( v = 0; v < num_patches[1]; v++ ) { // last patch has one more row if ( v < num_patches[1] - 1 ) { num_tess[1] = tess[1]; } else { num_tess[1] = tess[1] + 1; } for ( u = 0; u < num_patches[0]; u++ ) { // last patch has one more column if ( u < num_patches[0] - 1 ) { num_tess[0] = tess[0]; } else { num_tess[0] = tess[0] + 1; } index[0] = (v * numcp[0] + u) * 2; index[1] = index[0] + numcp[0]; index[2] = index[1] + numcp[0]; // current 3x3 patch control points for ( i = 0; i < 3; i++ ) { Vector4Copy ( p[index[0]+i], pv[i][0] ); Vector4Copy ( p[index[1]+i], pv[i][1] ); Vector4Copy ( p[index[2]+i], pv[i][2] ); } t = 0.0f; tvec = dest + v * tess[1] * dstpitch + u * tess[0]; for ( y = 0; y < num_tess[1]; y++, t += step[1] ) { Patch_Evaluate_QuadricBezier ( t, pv[0][0], pv[0][1], pv[0][2], v1 ); Patch_Evaluate_QuadricBezier ( t, pv[1][0], pv[1][1], pv[1][2], v2 ); Patch_Evaluate_QuadricBezier ( t, pv[2][0], pv[2][1], pv[2][2], v3 ); s = 0.0f; for ( x = 0; x < num_tess[0]; x++, s += step[0] ) { Patch_Evaluate_QuadricBezier ( s, v1, v2, v3, tvec[x] ); } tvec += dstpitch; } } } } /* =============================================================================== PATCH LOADING =============================================================================== */ #define cm_subdivlevel 15 qboolean CM_CreateBrush ( q2cbrush_t *brush, vec3_t *verts, q2mapsurface_t *surface ) { int i, j, k, sign; vec3_t v1, v2; vec3_t absmins, absmaxs; q2cbrushside_t *side; mplane_t *plane; static mplane_t mainplane, patchplanes[20]; qboolean skip[20]; int numpatchplanes = 0; int matchplane; // calc absmins & absmaxs ClearBounds ( absmins, absmaxs ); for (i = 0; i < 3; i++) AddPointToBounds ( verts[i], absmins, absmaxs ); PlaneFromPoints ( verts, &mainplane ); // front plane plane = &patchplanes[numpatchplanes++]; *plane = mainplane; // back plane plane = &patchplanes[numpatchplanes++]; VectorNegate (mainplane.normal, plane->normal); plane->dist = -mainplane.dist; // axial planes for ( i = 0; i < 3; i++ ) { for (sign = -1; sign <= 1; sign += 2) { plane = &patchplanes[numpatchplanes++]; VectorClear ( plane->normal ); plane->normal[i] = sign; plane->dist = sign > 0 ? absmaxs[i] : -absmins[i]; } } // edge planes for ( i = 0; i < 3; i++ ) { vec3_t normal; VectorCopy (verts[i], v1); VectorCopy (verts[(i + 1) % 3], v2); for ( k = 0; k < 3; k++ ) { normal[k] = 0; normal[(k+1)%3] = v1[(k+2)%3] - v2[(k+2)%3]; normal[(k+2)%3] = -(v1[(k+1)%3] - v2[(k+1)%3]); if (VectorCompare (normal, vec3_origin)) continue; plane = &patchplanes[numpatchplanes++]; VectorNormalize ( normal ); VectorCopy ( normal, plane->normal ); plane->dist = DotProduct (plane->normal, v1); if ( DotProduct(verts[(i + 2) % 3], normal) - plane->dist > 0 ) { // invert VectorInverse ( plane->normal ); plane->dist = -plane->dist; } } } // set plane->type and mark duplicate planes for removal for (i = 0; i < numpatchplanes; i++) { CategorizePlane ( &patchplanes[i] ); skip[i] = false; for (j = i + 1; j < numpatchplanes; j++) if ( patchplanes[j].dist == patchplanes[i].dist && VectorCompare (patchplanes[j].normal, patchplanes[i].normal) ) { skip[i] = true; break; } } brush->numsides = 0; brush->firstbrushside = numbrushsides; for (k = 0; k < 2; k++) { for (i = 0; i < numpatchplanes; i++) { if (skip[i]) continue; // first, store all axially aligned planes // then store everything else // does it give a noticeable speedup? if (!k && patchplanes[i].type >= 3) continue; skip[i] = true; for (matchplane = 0; matchplane < numplanes; matchplane++) { if (!memcmp(&map_planes[matchplane], &patchplanes[i], sizeof(patchplanes[i]))) { plane = &map_planes[matchplane]; break; } } if (matchplane == numplanes) { if (numplanes == MAX_Q2MAP_PLANES) { Con_Printf (S_ERROR "CM_CreateBrush: numplanes == MAX_CM_PLANES"); return false; } plane = &map_planes[numplanes++]; *plane = patchplanes[i]; } if (numbrushsides == MAX_CM_BRUSHSIDES) { Con_Printf (S_ERROR "CM_CreateBrush: numbrushsides == MAX_CM_BRUSHSIDES\n"); return false; } side = &map_brushsides[numbrushsides++]; side->plane = plane; if (DotProduct(plane->normal, mainplane.normal) >= 0) side->surface = surface; else side->surface = NULL; // don't clip against this side brush->numsides++; } } return true; } qboolean CM_CreatePatch ( q3cpatch_t *patch, int numverts, const vec3_t *verts, int *patch_cp ) { int step[2], size[2], flat[2], i, u, v; vec4_t points[MAX_CM_PATCH_VERTS], pointss[MAX_CM_PATCH_VERTS]; vec3_t tverts[4], tverts2[4]; q2cbrush_t *brush; mplane_t mainplane; // find the degree of subdivision in the u and v directions Patch_GetFlatness ( cm_subdivlevel, verts, patch_cp, flat ); step[0] = (1 << flat[0]); step[1] = (1 << flat[1]); size[0] = (patch_cp[0] / 2) * step[0] + 1; size[1] = (patch_cp[1] / 2) * step[1] + 1; if ( size[0] * size[1] > MAX_CM_PATCH_VERTS ) { Con_Printf (S_ERROR "CM_CreatePatch: patch has too many vertices\n"); return false; } for (i = 0; i < numverts; i++) VectorCopy(verts[i], pointss[i]); // fill in //gcc warns without this cast Patch_Evaluate ( (const vec4_t *)pointss, patch_cp, step, points ); /* for (i = 0; i < numverts; i++) { points[i][0] = (int)(points[i][0]*20)/20.0f; points[i][1] = (int)(points[i][1]*20)/20.0f; points[i][2] = (int)(points[i][2]*20)/20.0f; } */ patch->brushes = brush = map_brushes + numbrushes; patch->numbrushes = 0; ClearBounds (patch->absmins, patch->absmaxs); // create a set of brushes for (v = 0; v < size[1]-1; v++) { for (u = 0; u < size[0]-1; u++) { if (numbrushes >= MAX_CM_BRUSHES) { Con_Printf (S_ERROR "CM_CreatePatch: too many patch brushes\n"); return false; } i = v * size[0] + u; VectorCopy (points[i], tverts[0]); VectorCopy (points[i + size[0]], tverts[1]); VectorCopy (points[i + 1], tverts[2]); VectorCopy (points[i + size[0] + 1], tverts[3]); for (i = 0; i < 4; i++) AddPointToBounds (tverts[i], patch->absmins, patch->absmaxs); PlaneFromPoints (tverts, &mainplane); // create two brushes if (!CM_CreateBrush (brush, tverts, patch->surface)) return false; brush->contents = patch->surface->c.value; brush++; numbrushes++; patch->numbrushes++; VectorCopy (tverts[2], tverts2[0]); VectorCopy (tverts[1], tverts2[1]); VectorCopy (tverts[3], tverts2[2]); if (!CM_CreateBrush (brush, tverts2, patch->surface)) return false; brush->contents = patch->surface->c.value; brush++; numbrushes++; patch->numbrushes++; } } return true; } //====================================================== /* ================= CM_CreatePatchesForLeafs ================= */ qboolean CM_CreatePatchesForLeafs (void) { int i, j, k; mleaf_t *leaf; q3cface_t *face; q2mapsurface_t *surf; q3cpatch_t *patch; int checkout[MAX_CM_FACES]; memset (checkout, -1, sizeof(int)*MAX_CM_FACES); for (i = 0, leaf = map_leafs; i < numleafs; i++, leaf++) { leaf->numleafpatches = 0; leaf->firstleafpatch = numleafpatches; if (leaf->cluster == -1 || map_noCurves.value) continue; for (j=0 ; jnumleaffaces ; j++) { k = leaf->firstleafface + j; if (k >= numleaffaces) { break; } k = map_leaffaces[k]; face = &map_faces[k]; if (face->facetype != MST_PATCH || face->numverts <= 0) continue; if (face->patch_cp[0] <= 0 || face->patch_cp[1] <= 0) continue; if (face->shadernum < 0 || face->shadernum >= numtexinfo) continue; surf = &map_surfaces[face->shadernum]; if ( !surf->c.value || (surf->c.flags & Q3SURF_NONSOLID) ) continue; if ( numleafpatches >= MAX_CM_LEAFFACES ) { Con_Printf (S_ERROR "CM_CreatePatchesForLeafs: map has too many faces\n"); return false; } // the patch was already built if (checkout[k] != -1) { map_leafpatches[numleafpatches] = checkout[k]; patch = &map_patches[checkout[k]]; } else { if (numpatches >= MAX_CM_PATCHES) { Con_Printf (S_ERROR "CM_CreatePatchesForLeafs: map has too many patches\n"); return false; } patch = &map_patches[numpatches]; patch->surface = surf; map_leafpatches[numleafpatches] = numpatches; checkout[k] = numpatches++; //gcc warns without this cast if (!CM_CreatePatch ( patch, face->numverts, (const vec3_t *)map_verts + face->firstvert, face->patch_cp )) return false; } leaf->contents |= patch->surface->c.value; leaf->numleafpatches++; numleafpatches++; } } return true; } /* =============================================================================== MAP LOADING =============================================================================== */ qbyte *cmod_base; /* ================= CMod_LoadSubmodels ================= */ qboolean CMod_LoadSubmodels (lump_t *l) { q2dmodel_t *in; q2cmodel_t *out; int i, j, count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no models\n"); return false; } if (count > MAX_Q2MAP_MODELS) { Con_Printf (S_ERROR "Map has too many models\n"); return false; } numcmodels = count; for ( i=0 ; imins[j] = LittleFloat (in->mins[j]) - 1; out->maxs[j] = LittleFloat (in->maxs[j]) + 1; out->origin[j] = LittleFloat (in->origin[j]); } out->headnode = LittleLong (in->headnode); out->firstsurface = LittleLong (in->firstface); out->numsurfaces = LittleLong (in->numfaces); } return true; } /* ================= CMod_LoadSurfaces ================= */ qboolean CMod_LoadSurfaces (lump_t *l) { q2texinfo_t *in; q2mapsurface_t *out; int i, count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no surfaces\n"); return false; } // if (count > MAX_Q2MAP_TEXINFO) // Host_Error ("Map has too many surfaces"); numtexinfo = count; out = map_surfaces = Hunk_Alloc(count * sizeof(*map_surfaces)); for ( i=0 ; ic.name, in->texture, sizeof(out->c.name)); Q_strncpyz (out->rname, in->texture, sizeof(out->rname)); out->c.flags = LittleLong (in->flags); out->c.value = LittleLong (in->value); } return true; } #ifndef SERVERONLY qbyte *ReadPCXFile(qbyte *buf, int length, int *width, int *height); qbyte *ReadTargaFile(qbyte *buf, int length, int *width, int *height, int asgrey); qbyte *ReadTargaFile(qbyte *buf, int length, int *width, int *height, int asgrey); qbyte *ReadPCXFile(qbyte *buf, int length, int *width, int *height); void *Mod_LoadWall(char *name) { qbyte *in, *oin; texture_t *tex; q2miptex_t *wal; int width, height; char ln[32]; COM_FileBase(name, ln, sizeof(ln)); wal = (void *)COM_LoadMallocFile (name); if (!wal) return NULL; wal->width = LittleLong(wal->width); wal->height = LittleLong(wal->height); { int i; for (i = 0; i < MIPLEVELS; i++) wal->offsets[i] = LittleLong(wal->offsets[i]); } wal->flags = LittleLong(wal->flags); wal->contents = LittleLong(wal->contents); wal->value = LittleLong(wal->value); //FIXME: Is this needed? oin = in = ReadPCXFile((qbyte *)wal, com_filesize, &width, &height); if (!in) oin = in = ReadTargaFile((qbyte *)wal, com_filesize, &width, &height, false); if (in) //this is a pcx. { #ifdef RGLQUAKE if (qrenderer == QR_OPENGL) { tex = Hunk_AllocName(sizeof(texture_t), ln); tex->offsets[0] = sizeof(*tex); tex->width = width; tex->height = height; texture_mode = GL_LINEAR_MIPMAP_NEAREST; //_LINEAR; if (!(tex->gl_texturenum = Mod_LoadReplacementTexture(name, loadname, true, false, true))) if (!(tex->gl_texturenum = Mod_LoadReplacementTexture(name, "bmodels", true, false, true))) tex->gl_texturenum = GL_LoadTexture32 (name, width, height, (unsigned int *)in, true, false); texture_mode = GL_LINEAR; } else #endif #ifdef SWQUAKE if (qrenderer == QR_SOFTWARE) { int i, j; qbyte *out; tex = Hunk_AllocName(sizeof(texture_t) + width*r_pixbytes*height/64*85, ln); tex->pixbytes = r_pixbytes; tex->width = width; tex->height = height; tex->offsets[0] = sizeof(*tex); tex->offsets[1] = tex->offsets[0] + width*height*r_pixbytes; tex->offsets[2] = tex->offsets[1] + (width*height*r_pixbytes)/4; tex->offsets[3] = tex->offsets[2] + (width*height*r_pixbytes)/(4*4); out = (qbyte *)(tex+1); if (tex->pixbytes == 4) { for (i = 0; i < width*height; i++) { *out++ = in[2]; *out++ = in[1]; *out++ = in[0]; *out++ = in[3]; in+=4; } } else { for (i=0; i < tex->width*tex->height; i++) //downgrade colour { *out++ = GetPaletteNoFB(in[0], in[1], in[2]); in+=4; } in = (qbyte *)tex+tex->offsets[0]; //shrink mips. for (j = 0; j < tex->height; j+=2) //we could convert mip[1], but shrinking is probably faster. for (i = 0; i < tex->width; i+=2) *out++ = in[i + tex->width*j]; for (j = 0; j < tex->height; j+=4) for (i = 0; i < tex->width; i+=4) *out++ = in[i + tex->width*j]; for (j = 0; j < tex->height; j+=8) for (i = 0; i < tex->width; i+=8) *out++ = in[i + tex->width*j]; } } else #endif { Sys_Error("Mod_LoadWall with bad renderer\n"); tex = NULL; } BZ_Free(oin); BZ_Free(wal); return tex; } #if defined(RGLQUAKE) if (qrenderer == QR_OPENGL) { int j; tex = Hunk_AllocName(sizeof(texture_t), ln); tex->offsets[0] = wal->offsets[0]; tex->width = wal->width; tex->height = wal->height; texture_mode = GL_LINEAR_MIPMAP_NEAREST; //_LINEAR; if (!(tex->gl_texturenum = Mod_LoadReplacementTexture(wal->name, loadname, true, false, true))) if (!(tex->gl_texturenum = Mod_LoadReplacementTexture(wal->name, "bmodels", true, false, true))) tex->gl_texturenum = GL_LoadTexture8Pal24 (wal->name, tex->width, tex->height, (qbyte *)wal+wal->offsets[0], d_q28to24table, true, false); in = Hunk_TempAllocMore(wal->width*wal->height); oin = (qbyte *)wal+wal->offsets[0]; for (j = 0; j < wal->width*wal->height; j++) in[j] = (d_q28to24table[oin[j]*3+0] + d_q28to24table[oin[j]*3+1] + d_q28to24table[oin[j]*3+2])/3; tex->gl_texturenumbumpmap = GL_LoadTexture8Bump (va("%s_bump", wal->name), tex->width, tex->height, in, true, r_shadow_bumpscale_basetexture.value); texture_mode = GL_LINEAR; } else #endif #if defined(SWQUAKE) if (qrenderer == QR_SOFTWARE) { int i, j; qbyte *out; tex = Hunk_AllocName(sizeof(texture_t) + wal->width*r_pixbytes*wal->height/64*85, ln); tex->width = wal->width; tex->height = wal->height; tex->pixbytes = r_pixbytes; for (i = 0; i < MIPLEVELS; i++) tex->offsets[i] = (wal->offsets[i] - sizeof(*wal))*tex->pixbytes + sizeof(*tex); out = (qbyte *)(tex+1); in = (qbyte *)wal+wal->offsets[0]; if (tex->pixbytes == 4) { for (i = 0; i < wal->width*wal->height/64*85; i++) { *out++ = d_q28to24table[*in*3+0]; *out++ = d_q28to24table[*in*3+1]; *out++ = d_q28to24table[*in*3+2]; *out++ = 255; in++; } } else { for (i=0; i < tex->width*tex->height; i++) //downgrade colour { *out++ = GetPaletteNoFB(d_q28to24table[*in*3+0], d_q28to24table[*in*3+1], d_q28to24table[*in*3+2]); in++; } in = (qbyte *)tex+tex->offsets[0]; //shrink mips. for (j = 0; j < tex->height; j+=2) //we could convert mip[1], but shrinking is probably faster. for (i = 0; i < tex->width; i+=2) *out++ = in[i + tex->width*j]; for (j = 0; j < tex->height; j+=4) for (i = 0; i < tex->width; i+=4) *out++ = in[i + tex->width*j]; for (j = 0; j < tex->height; j+=8) for (i = 0; i < tex->width; i+=8) *out++ = in[i + tex->width*j]; } } else #endif { Sys_Error("Mod_LoadWall with bad renderer\n"); tex = NULL; } BZ_Free(wal); return tex; } qboolean CMod_LoadTexInfo (lump_t *l) //yes I know these load from the same place { extern cvar_t gl_shadeq2; q2texinfo_t *in; mtexinfo_t *out; int i, j, count; char name[MAX_QPATH], *lwr; float len1, len2; int texcount; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf ("MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = Hunk_AllocName ( count*sizeof(*out), loadname); loadmodel->textures = Hunk_AllocName(sizeof(texture_t *)*count, loadname); texcount = 0; loadmodel->texinfo = out; loadmodel->numtexinfo = count; #if !defined(SERVERONLY) && defined(RGLQUAKE) skytexturenum = -1; #endif for ( i=0 ; iflags = LittleLong (in->flags); for (j=0 ; j<8 ; j++) out->vecs[0][j] = LittleFloat (in->vecs[0][j]); len1 = Length (out->vecs[0]); len2 = Length (out->vecs[1]); len1 = (len1 + len2)/2; if (len1 < 0.32) out->mipadjust = 4; else if (len1 < 0.49) out->mipadjust = 3; else if (len1 < 0.99) out->mipadjust = 2; else out->mipadjust = 1; //damn q2... for (j=0; j < texcount; j++) { if (!strcmp(in->texture, loadmodel->textures[j]->name)) { out->texture = loadmodel->textures[j]; break; } } if (j == texcount) //load a new one { for (lwr = in->texture; *lwr; lwr++) { if (*lwr >= 'A' && *lwr <= 'Z') *lwr = *lwr - 'A' + 'a'; } snprintf (name, sizeof(name), "textures/%s.wal", in->texture); out->texture = Mod_LoadWall (name); if (!out->texture || !out->texture->width || !out->texture->height) { out->texture = Hunk_Alloc(sizeof(texture_t) + 16*16+8*8+4*4+2*2); Con_Printf (S_WARNING "Couldn't load %s\n", name); memcpy(out->texture, r_notexture_mip, sizeof(texture_t) + 16*16+8*8+4*4+2*2); // out->texture = r_notexture_mip; // texture not found // out->flags = 0; } #ifdef RGLQUAKE if (qrenderer == QR_OPENGL) if (gl_shadeq2.value) out->texture->shader = R_RegisterCustom (name, NULL); #endif Q_strncpyz(out->texture->name, in->texture, sizeof(out->texture->name)); #if !defined(SERVERONLY) && defined(RGLQUAKE) if (out->flags & SURF_SKY) skytexturenum = texcount; #endif loadmodel->textures[texcount++] = out->texture; } #if !defined(SERVERONLY) && defined(RGLQUAKE) else if (out->flags & SURF_SKY && skytexturenum>=0) out->texture = loadmodel->textures[skytexturenum]; #endif } loadmodel->numtextures = texcount; // count animation frames /* for (i=0 ; itexinfo[i]; // out->numframes = 1; // for (step = out->next ; step && step != out ; step=step->next) // out->numframes++; } */ return true; } #endif /* void CalcSurfaceExtents (msurface_t *s) { float mins[2], maxs[2], val; int i,j, e; mvertex_t *v; mtexinfo_t *tex; int bmins[2], bmaxs[2]; mins[0] = mins[1] = 999999; maxs[0] = maxs[1] = -99999; tex = s->texinfo; for (i=0 ; inumedges ; i++) { e = loadmodel->surfedges[s->firstedge+i]; if (e >= 0) v = &loadmodel->vertexes[loadmodel->edges[e].v[0]]; else v = &loadmodel->vertexes[loadmodel->edges[-e].v[1]]; for (j=0 ; j<2 ; j++) { val = v->position[0] * tex->vecs[j][0] + v->position[1] * tex->vecs[j][1] + v->position[2] * tex->vecs[j][2] + tex->vecs[j][3]; if (val < mins[j]) mins[j] = val; if (val > maxs[j]) maxs[j] = val; } } for (i=0 ; i<2 ; i++) { bmins[i] = floor(mins[i]/16); bmaxs[i] = ceil(maxs[i]/16); s->texturemins[i] = bmins[i] * 16; s->extents[i] = (bmaxs[i] - bmins[i]) * 16; // if ( !(tex->flags & TEX_SPECIAL) && s->extents[i] > 512 )// 256 ) // Sys_Error ("Bad surface extents"); } }*/ /* ================= Mod_LoadFaces ================= */ #ifndef SERVERONLY qboolean CMod_LoadFaces (lump_t *l) { dface_t *in; msurface_t *out; int i, count, surfnum; int planenum, side; int ti; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf ("MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = Hunk_AllocName ( (count+6)*sizeof(*out), loadname); //spare for skybox loadmodel->surfaces = out; loadmodel->numsurfaces = count; for ( surfnum=0 ; surfnumfirstedge = LittleLong(in->firstedge); out->numedges = LittleShort(in->numedges); out->flags = 0; planenum = LittleShort(in->planenum); side = LittleShort(in->side); if (side) out->flags |= SURF_PLANEBACK; out->plane = loadmodel->planes + planenum; ti = LittleShort (in->texinfo); if (ti < 0 || ti >= loadmodel->numtexinfo) { Con_Printf (S_ERROR "MOD_LoadBmodel: bad texinfo number\n"); return false; } out->texinfo = loadmodel->texinfo + ti; #ifndef SERVERONLY if (out->texinfo->flags & SURF_SKY) { out->flags |= SURF_DRAWSKY; } if (out->texinfo->flags & SURF_WARP) { out->flags |= SURF_DRAWTURB|SURF_DRAWTILED; } #endif CalcSurfaceExtents (out); // lighting info for (i=0 ; istyles[i] = in->styles[i]; i = LittleLong(in->lightofs); if (i == -1) out->samples = NULL; #ifdef RGLQUAKE else if (qrenderer == QR_OPENGL) out->samples = loadmodel->lightdata + i; #endif #ifdef SWQUAKE else if (r_usinglits) out->samples = loadmodel->lightdata + i; #endif else out->samples = loadmodel->lightdata + i/3; // set the drawing flags if (out->texinfo->flags & SURF_WARP) { out->flags |= SURF_DRAWTURB; for (i=0 ; i<2 ; i++) { out->extents[i] = 16384; out->texturemins[i] = -8192; } } } return true; } #endif void CMod_SetParent (mnode_t *node, mnode_t *parent) { node->parent = parent; if (node->contents != -1) return; CMod_SetParent (node->children[0], node); CMod_SetParent (node->children[1], node); } /* ================= CMod_LoadNodes ================= */ qboolean CMod_LoadNodes (lump_t *l) { q2dnode_t *in; int child; mnode_t *out; int i, j, count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map has no nodes\n"); return false; } if (count > MAX_MAP_NODES) { Con_Printf (S_ERROR "Map has too many nodes\n"); return false; } out = Hunk_Alloc(sizeof(mnode_t)*count); loadmodel->nodes = out; loadmodel->numnodes = count; for (i=0 ; iminmaxs[j] = LittleShort (in->mins[j]); out->minmaxs[3+j] = LittleShort (in->maxs[j]); } out->plane = map_planes + LittleLong(in->planenum); out->firstsurface = LittleShort (in->firstface); out->numsurfaces = LittleShort (in->numfaces); out->contents = -1; // differentiate from leafs for (j=0 ; j<2 ; j++) { child = LittleLong (in->children[j]); out->childnum[j] = child; if (child < 0) out->children[j] = (mnode_t *)(map_leafs + -1-child); else out->children[j] = loadmodel->nodes + child; } } CMod_SetParent (loadmodel->nodes, NULL); // sets nodes and leafs return true; } /* ================= CMod_LoadBrushes ================= */ qboolean CMod_LoadBrushes (lump_t *l) { q2dbrush_t *in; q2cbrush_t *out; int i, count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q2MAP_BRUSHES) { Con_Printf (S_ERROR "Map has too many brushes"); return false; } out = map_brushes; numbrushes = count; for (i=0 ; ifirstbrushside = LittleLong(in->firstside); out->numsides = LittleLong(in->numsides); out->contents = LittleLong(in->contents); } return true; } /* ================= CMod_LoadLeafs ================= */ qboolean CMod_LoadLeafs (lump_t *l) { int i, j; mleaf_t *out; q2dleaf_t *in; int count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no leafs\n"); return false; } // need to save space for box planes if (count > MAX_Q2MAP_PLANES) { Con_Printf (S_ERROR "Map has too many planes\n"); return false; } out = map_leafs; numleafs = count; numclusters = 0; loadmodel->leafs = out; loadmodel->numleafs = count; for ( i=0 ; iminmaxs[j] = LittleShort (in->mins[j]); out->minmaxs[3+j] = LittleShort (in->maxs[j]); } out->contents = LittleLong (in->contents); out->cluster = LittleShort (in->cluster); out->area = LittleShort (in->area); out->firstleafbrush = LittleShort (in->firstleafbrush); out->numleafbrushes = LittleShort (in->numleafbrushes); out->firstmarksurface = loadmodel->marksurfaces + LittleShort(in->firstleafface); out->nummarksurfaces = LittleShort(in->numleaffaces); if (out->cluster >= numclusters) numclusters = out->cluster + 1; } if (map_leafs[0].contents != Q2CONTENTS_SOLID) { Con_Printf (S_ERROR "Map leaf 0 is not CONTENTS_SOLID\n"); return false; } emptyleaf = -1; for (i=1 ; ifileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no planes\n"); return false; } // need to save space for box planes if (count >= MAX_Q2MAP_PLANES) { Con_Printf (S_ERROR "Map has too many planes\n"); return false; } out = map_planes; numplanes = count; loadmodel->planes = out; loadmodel->numplanes = count; for ( i=0 ; inormal[j] = LittleFloat (in->normal[j]); if (out->normal[j] < 0) bits |= 1<dist = LittleFloat (in->dist); out->type = LittleLong (in->type); out->signbits = bits; } return true; } /* ================= CMod_LoadLeafBrushes ================= */ qboolean CMod_LoadLeafBrushes (lump_t *l) { int i; int *out; unsigned short *in; int count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no planes\n"); return false; } // need to save space for box planes if (count > MAX_Q2MAP_LEAFBRUSHES) { Con_Printf (S_ERROR "Map has too many leafbrushes\n"); return false; } out = map_leafbrushes; numleafbrushes = count; for ( i=0 ; ifileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); // need to save space for box planes if (count > MAX_Q2MAP_BRUSHSIDES) { Con_Printf (S_ERROR "Map has too many planes\n"); return false; } out = map_brushsides; numbrushsides = count; for ( i=0 ; iplanenum); out->plane = &map_planes[num]; j = LittleShort (in->texinfo); if (j >= numtexinfo) { Con_Printf (S_ERROR "Bad brushside texinfo\n"); return false; } out->surface = &map_surfaces[j]; } return true; } /* ================= CMod_LoadAreas ================= */ qboolean CMod_LoadAreas (lump_t *l) { int i; q2carea_t *out; q2darea_t *in; int count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q2MAP_AREAS) { Con_Printf (S_ERROR "Map has too many areas\n"); return false; } out = map_q2areas; numareas = count; for ( i=0 ; inumareaportals = LittleLong (in->numareaportals); out->firstareaportal = LittleLong (in->firstareaportal); out->floodvalid = 0; out->floodnum = 0; } return true; } /* ================= CMod_LoadAreaPortals ================= */ qboolean CMod_LoadAreaPortals (lump_t *l) { int i; q2dareaportal_t *out; q2dareaportal_t *in; int count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q2MAP_AREAS) { Con_Printf (S_ERROR "Map has too many areas\n"); return false; } out = map_areaportals; numareaportals = count; for ( i=0 ; iportalnum = LittleLong (in->portalnum); out->otherarea = LittleLong (in->otherarea); } return true; } /* ================= CMod_LoadVisibility ================= */ qboolean CMod_LoadVisibility (lump_t *l) { int i; numvisibility = l->filelen; if (l->filelen > MAX_Q2MAP_VISIBILITY) { Con_Printf (S_ERROR "Map has too large visibility lump\n"); return false; } memcpy (map_visibility, cmod_base + l->fileofs, l->filelen); loadmodel->vis = map_q2vis; map_q2vis->numclusters = LittleLong (map_q2vis->numclusters); for (i=0 ; inumclusters ; i++) { map_q2vis->bitofs[i][0] = LittleLong (map_q2vis->bitofs[i][0]); map_q2vis->bitofs[i][1] = LittleLong (map_q2vis->bitofs[i][1]); } return true; } /* ================= CMod_LoadEntityString ================= */ void CMod_LoadEntityString (lump_t *l) { numentitychars = l->filelen; // if (l->filelen > MAX_Q2MAP_ENTSTRING) // Host_Error ("Map has too large entity lump"); map_entitystring = Hunk_Alloc(l->filelen+1); memcpy (map_entitystring, cmod_base + l->fileofs, l->filelen); loadmodel->entities = map_entitystring; } qboolean CModQ3_LoadMarksurfaces (lump_t *l) { int i, j, count; int *in; msurface_t **out; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "CModQ3_LoadMarksurfaces: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = Hunk_AllocName ( count*sizeof(*out), loadname); loadmodel->marksurfaces = out; loadmodel->nummarksurfaces = count; for ( i=0 ; i= loadmodel->numsurfaces) { Con_Printf (S_ERROR "Mod_ParseMarksurfaces: bad surface number\n"); return false; } out[i] = loadmodel->surfaces + j; } return true; } qboolean CModQ3_LoadSubmodels (lump_t *l) { q3dmodel_t *in; q2cmodel_t *out; int i, j, count; int *leafbrush; mleaf_t *bleaf; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no models\n"); return false; } if (count > MAX_Q2MAP_MODELS) { Con_Printf (S_ERROR "Map has too many models\n"); return false; } numcmodels = count; mapisq3 = true; for ( i=0 ; imins[j] = LittleFloat (in->mins[j]) - 1; out->maxs[j] = LittleFloat (in->maxs[j]) + 1; out->origin[j] = (out->maxs[j] + out->mins[j])/2; } if (!i) out->headnode = 0; else { //create a new leaf to hold the bruses and be directly clipped out->headnode = -1 - numleafs; out->firstsurface = LittleLong (in->firstsurface); out->numsurfaces = LittleLong (in->num_surfaces); // out->firstbrush = LittleLong(in->firstbrush); // out->num_brushes = LittleLong(in->num_brushes); bleaf = &map_leafs[numleafs++]; bleaf->numleafbrushes = LittleLong ( in->num_brushes ); bleaf->firstleafbrush = numleafbrushes; bleaf->contents = 0; leafbrush = &map_leafbrushes[numleafbrushes]; for ( j = 0; j < bleaf->numleafbrushes; j++, leafbrush++ ) { *leafbrush = LittleLong ( in->firstbrush ) + j; bleaf->contents |= map_brushes[*leafbrush].contents; } numleafbrushes += bleaf->numleafbrushes; } //submodels } VectorCopy(map_cmodels[0].mins, loadmodel->mins); VectorCopy(map_cmodels[0].maxs, loadmodel->maxs); return true; } qboolean CModQ3_LoadShaders (lump_t *l, qboolean useshaders) { dq3shader_t *in; q2mapsurface_t *out; int i, count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no shaders\n"); return false; } // else if (count > MAX_Q2MAP_TEXINFO) // Host_Error ("Map has too many shaders"); numtexinfo = count; out = map_surfaces = Hunk_Alloc(count*sizeof(*out)); #if !defined(SERVERONLY) && defined(RGLQUAKE) skytexturenum = -1; #endif loadmodel->texinfo = Hunk_Alloc(sizeof(mtexinfo_t)*count); loadmodel->numtextures = count; loadmodel->textures = Hunk_Alloc(sizeof(texture_t*)*count); for ( i=0 ; itexinfo[i].texture = Hunk_Alloc(sizeof(texture_t)); Q_strncpyz(loadmodel->texinfo[i].texture->name, in->shadername, sizeof(loadmodel->texinfo[i].texture->name)); #ifdef RGLQUAKE if (qrenderer == QR_OPENGL && !useshaders) { loadmodel->texinfo[i].texture->gl_texturenum = Mod_LoadHiResTexture(in->shadername, loadname, true, false, true); if (!loadmodel->texinfo[i].texture->gl_texturenum) loadmodel->texinfo[i].texture->gl_texturenum = Mod_LoadHiResTexture(in->shadername, "bmodels", true, false, true); loadmodel->texinfo[i].texture->gl_texturenumfb = 0; loadmodel->texinfo[i].texture->gl_texturenumbumpmap = 0; if (!strncmp(in->shadername, "textures/skies/", 15)) { loadmodel->texinfo[i].flags |= SURF_SKY; skytexturenum = i; } } #endif loadmodel->textures[i] = loadmodel->texinfo[i].texture; out->c.flags = LittleLong ( in->surfflags ); out->c.value = LittleLong ( in->contents ); } return true; } qboolean CModQ3_LoadVertexes (lump_t *l) { q3dvertex_t *in; vec3_t *out; vec3_t *nout; int i, count, j; vec2_t *lmout, *stout; byte_vec4_t *cout; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "CMOD_LoadVertexes: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q3MAP_VERTEXES) { Con_Printf (S_ERROR "Map has too many vertexes\n"); return false; } out = Hunk_Alloc ( count*sizeof(*out) ); stout = Hunk_Alloc ( count*sizeof(*stout) ); lmout = Hunk_Alloc ( count*sizeof(*lmout) ); cout = Hunk_Alloc ( count*sizeof(*cout) ); nout = Hunk_Alloc ( count*sizeof(*nout) ); map_verts = out; map_vertstmexcoords = stout; map_vertlstmexcoords = lmout; map_colors_array = cout; map_normals_array = nout; numvertexes = count; for ( i=0 ; ipoint[j] ); nout[i][j] = LittleFloat (in->normal[j]); } for ( j=0 ; j < 2 ; j++) { stout[i][j] = LittleFloat ( ((float *)in->texcoords)[j] ); lmout[i][j] = LittleFloat ( ((float *)in->texcoords)[j+2] ); } for ( j=0 ; j < 4 ; j++) { cout[i][j] = in->color[j]; } } return true; } qboolean CModRBSP_LoadVertexes (lump_t *l) { rbspvertex_t *in; vec3_t *out; vec3_t *nout; int i, count, j; vec2_t *lmout, *stout; byte_vec4_t *cout; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "CMOD_LoadVertexes: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q3MAP_VERTEXES) { Con_Printf (S_ERROR "Map has too many vertexes\n"); return false; } out = Hunk_Alloc ( count*sizeof(*out) ); stout = Hunk_Alloc ( count*sizeof(*stout) ); lmout = Hunk_Alloc ( count*sizeof(*lmout) ); cout = Hunk_Alloc ( count*sizeof(*cout) ); nout = Hunk_Alloc ( count*sizeof(*nout) ); map_verts = out; map_vertstmexcoords = stout; map_vertlstmexcoords = lmout; map_colors_array = cout; map_normals_array = nout; numvertexes = count; for ( i=0 ; ipoint[j] ); nout[i][j] = LittleFloat (in->normal[j]); } for ( j=0 ; j < 2 ; j++) { stout[i][j] = LittleFloat ( ((float *)in->texcoords)[j] ); lmout[i][j] = LittleFloat ( ((float *)in->texcoords)[j+2] ); } for ( j=0 ; j < 4 ; j++) { cout[i][j] = in->color[0][j]; } } return true; } qboolean CModQ3_LoadIndexes (lump_t *l) { int i, count; int *in, *out; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); if (count < 1 || count >= MAX_Q3MAP_INDICES) { Con_Printf (S_ERROR "MOD_LoadBmodel: bad surfedges count in %s: %i\n", loadmodel->name, count); return false; } out = Hunk_AllocName ( count*sizeof(*out), loadmodel->name ); map_surfindexes = out; map_numsurfindexes = count; for ( i=0 ; ifileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_MAP_FACES) { Con_Printf (S_ERROR "Map has too many faces\n"); return false; } out = BZ_Malloc ( count*sizeof(*out) ); map_faces = out; numfaces = count; for ( i=0 ; ifacetype = LittleLong ( in->facetype ); out->shadernum = LittleLong ( in->shadernum ); out->numverts = LittleLong ( in->num_vertices ); out->firstvert = LittleLong ( in->firstvertex ); out->patch_cp[0] = LittleLong ( in->patchwidth ); out->patch_cp[1] = LittleLong ( in->patchheight ); } loadmodel->numsurfaces = i;\ return true; } qboolean CModRBSP_LoadFaces (lump_t *l) { rbspface_t *in; q3cface_t *out; int i, count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_MAP_FACES) { Con_Printf (S_ERROR "Map has too many faces\n"); return false; } out = BZ_Malloc ( count*sizeof(*out) ); map_faces = out; numfaces = count; for ( i=0 ; ifacetype = LittleLong ( in->facetype ); out->shadernum = LittleLong ( in->shadernum ); out->numverts = LittleLong ( in->num_vertices ); out->firstvert = LittleLong ( in->firstvertex ); out->patch_cp[0] = LittleLong ( in->patchwidth ); out->patch_cp[1] = LittleLong ( in->patchheight ); } loadmodel->numsurfaces = i; return true; } #ifdef RGLQUAKE /* ================= Mod_LoadFogs ================= */ #ifdef Q3SHADERS qboolean CModQ3_LoadFogs (lump_t *l) { dfog_t *in; mfog_t *out; q2cbrush_t *brush; q2cbrushside_t *visibleside, *brushsides; int i, j, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = Hunk_Alloc ( count*sizeof(*out) ); map_fogs = out; map_numfogs = count; for ( i=0 ; ivisibleSide ) == -1 ) { continue; } brush = map_brushes + LittleLong ( in->brushNum ); brushsides = map_brushsides + brush->firstbrushside; visibleside = brushsides + LittleLong ( in->visibleSide ); out->visibleplane = visibleside->plane; out->shader = R_RegisterShader ( in->shader ); out->numplanes = brush->numsides; out->planes = Hunk_Alloc ( out->numplanes*sizeof(cplane_t *) ); for ( j = 0; j < out->numplanes; j++ ) { out->planes[j] = brushsides[j].plane; } } if (count) GL_InitFogTexture(); return true; } mfog_t *CM_FogForOrigin(vec3_t org) { int i, j; mfog_t *ret = map_fogs; float dot; if (!cl.worldmodel || cl.worldmodel->fromgame != fg_quake3) return NULL; for ( i=0 ; inumplanes) continue; for (j = 0; j < ret->numplanes; j++) { dot = DotProduct(ret->planes[j]->normal, org); if (dot - ret->planes[j]->dist > 0) break; } if (j == ret->numplanes) { return ret; } } return NULL; } #endif //Convert a patch in to a list of glpolys #define MAX_ARRAY_VERTS 2048 glpoly_t *GL_MeshToGLPoly(mesh_t *mesh) { int polysize = sizeof(glpoly_t) - (VERTEXSIZE)*sizeof(float); int gv; int v; int rv; glpoly_t *p, *ret; int numindx; if (!mesh) return NULL; numindx = mesh->numindexes; ret = NULL; p = Hunk_Alloc(polysize * numindx/3); for (gv = 0; gv < numindx; ) { for (v = gv; v < gv+3; v++) { rv = mesh->indexes[v]; p->verts[v%3][0] = mesh->xyz_array[rv][0]; p->verts[v%3][1] = mesh->xyz_array[rv][1]; p->verts[v%3][2] = mesh->xyz_array[rv][2]; p->verts[v%3][3] = mesh->st_array[rv][0]; p->verts[v%3][4] = mesh->st_array[rv][1]; p->verts[v%3][5] = mesh->lmst_array[rv][0]; p->verts[v%3][6] = mesh->lmst_array[rv][1]; } gv+=3; p->next = ret; p->numverts = 3; ret = p; p = (glpoly_t *)((char *)p + polysize); } return ret; } #define Vector2Copy(a,b) {(b)[0]=(a)[0];(b)[1]=(a)[1];} index_t tempIndexesArray[MAX_ARRAY_VERTS*3]; vec4_t tempxyz_array[MAX_ARRAY_VERTS]; //structure is used only at load. vec3_t tempnormals_array[MAX_ARRAY_VERTS]; //so what harm is there in doing this? vec2_t tempst_array[MAX_ARRAY_VERTS]; vec2_t templmst_array[MAX_ARRAY_VERTS]; byte_vec4_t tempcolors_array[MAX_ARRAY_VERTS]; #ifdef Q3SHADERS #define Hunk_TempAllocMore Hunk_Alloc #endif //mesh_t *GL_CreateMeshForPatch ( model_t *mod, q3dface_t *surf ) mesh_t *GL_CreateMeshForPatch (model_t *mod, int patchwidth, int patchheight, int numverts, int firstvert) { int numindexes, patch_cp[2], step[2], size[2], flat[2], i, u, v, p; vec4_t colors[MAX_ARRAY_VERTS], points[MAX_ARRAY_VERTS], normals[MAX_ARRAY_VERTS], lm_st[MAX_ARRAY_VERTS], tex_st[MAX_ARRAY_VERTS]; vec4_t c, colors2[MAX_ARRAY_VERTS], points2[MAX_ARRAY_VERTS], normals2[MAX_ARRAY_VERTS], lm_st2[MAX_ARRAY_VERTS], tex_st2[MAX_ARRAY_VERTS]; mesh_t *mesh; index_t *indexes; float subdivlevel; patch_cp[0] = patchwidth; patch_cp[1] = patchheight; if ( !patch_cp[0] || !patch_cp[1] ) { return NULL; } subdivlevel = r_subdivisions.value; if ( subdivlevel < 1 ) subdivlevel = 1; for ( i = 0; i < numverts; i++ ) { VectorCopy ( map_verts[firstvert + i], points[i] ); VectorCopy ( map_normals_array[firstvert + i], normals[i] ); Vector4Scale ( map_colors_array[firstvert + i], (1.0 / 255.0), colors[i] ); Vector2Copy ( map_vertstmexcoords[firstvert + i], tex_st[i] ); Vector2Copy ( map_vertlstmexcoords[firstvert + i], lm_st[i] ); } // find the degree of subdivision in the u and v directions Patch_GetFlatness ( subdivlevel, (const vec3_t *)map_verts+firstvert, patch_cp, flat ); // allocate space for mesh step[0] = (1 << flat[0]); step[1] = (1 << flat[1]); size[0] = (patch_cp[0] / 2) * step[0] + 1; size[1] = (patch_cp[1] / 2) * step[1] + 1; numverts = size[0] * size[1]; if ( numverts > MAX_ARRAY_VERTS ) { return NULL; } mesh = (mesh_t *)Hunk_TempAllocMore ( sizeof(mesh_t)); mesh->numvertexes = numverts; mesh->xyz_array = Hunk_TempAllocMore ( numverts * sizeof(vec3_t)); mesh->normals_array = Hunk_TempAllocMore ( numverts * sizeof(vec3_t)); mesh->st_array = Hunk_TempAllocMore ( numverts * sizeof(vec2_t)); mesh->lmst_array = Hunk_TempAllocMore ( numverts * sizeof(vec2_t)); mesh->colors_array = Hunk_TempAllocMore ( numverts * sizeof(byte_vec4_t)); mesh->patchWidth = size[0]; mesh->patchHeight = size[1]; // fill in Patch_Evaluate ( (const vec4_t *)points, patch_cp, step, points2 ); Patch_Evaluate ( (const vec4_t *)colors, patch_cp, step, colors2 ); Patch_Evaluate ( (const vec4_t *)normals, patch_cp, step, normals2 ); Patch_Evaluate ( (const vec4_t *)lm_st, patch_cp, step, lm_st2 ); Patch_Evaluate ( (const vec4_t *)tex_st, patch_cp, step, tex_st2 ); for (i = 0; i < numverts; i++) { VectorCopy ( points2[i], mesh->xyz_array[i] ); VectorNormalize2 ( normals2[i], mesh->normals_array[i] ); ColorNormalize ( colors2[i], c ); Vector4Scale ( c, 255.0, mesh->colors_array[i] ); Vector2Copy ( tex_st2[i], mesh->st_array[i] ); Vector2Copy ( lm_st2[i], mesh->lmst_array[i] ); } // compute new indexes avoiding adding invalid triangles numindexes = 0; indexes = tempIndexesArray; for (v = 0, i = 0; v < size[1]-1; v++) { for (u = 0; u < size[0]-1; u++, i += 6) { indexes[0] = p = v * size[0] + u; indexes[1] = p + size[0]; indexes[2] = p + 1; if ( !VectorCompare(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[1]]) && !VectorCompare(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[2]]) && !VectorCompare(mesh->xyz_array[indexes[1]], mesh->xyz_array[indexes[2]]) ) { indexes += 3; numindexes += 3; } indexes[0] = p + 1; indexes[1] = p + size[0]; indexes[2] = p + size[0] + 1; if ( !VectorCompare(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[1]]) && !VectorCompare(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[2]]) && !VectorCompare(mesh->xyz_array[indexes[1]], mesh->xyz_array[indexes[2]]) ) { indexes += 3; numindexes += 3; } } } // allocate and fill index table mesh->numindexes = numindexes; mesh->indexes = (index_t *)Hunk_TempAllocMore ( numindexes * sizeof(index_t)); memcpy (mesh->indexes, tempIndexesArray, numindexes * sizeof(index_t) ); return mesh; } #ifdef Q3SHADERS #undef Hunk_TempAllocMore #endif void CModQ3_SortShaders(void) { texture_t *textemp; int i, j; //sort loadmodel->textures //correct pointers in loadmodel->texinfo for (i = 0; i < numtexinfo; i++) { for (j = i+1; j < numtexinfo; j++) { if ((loadmodel->textures[i]->shader && loadmodel->textures[j]->shader) && (loadmodel->textures[j]->shader->sort < loadmodel->textures[i]->shader->sort)) { textemp = loadmodel->textures[j]; loadmodel->textures[j] = loadmodel->textures[i]; loadmodel->textures[i] = textemp; if (skytexturenum==i) skytexturenum=j; else if (skytexturenum==j) skytexturenum=i; } } } } mesh_t nullmesh; qboolean CModQ3_LoadRFaces (lump_t *l, qboolean useshaders) { #ifndef Q3SHADERS int polysize = sizeof(glpoly_t) - VERTEXSIZE*sizeof(float); glpoly_t *p; int rv, fi; int gv, v; #endif q3dface_t *in; msurface_t *out; mplane_t *pl; int count; int surfnum; int numverts, numindexes; int fv; mesh_t *mesh; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = Hunk_AllocName ( count*sizeof(*out), loadmodel->name ); pl = Hunk_AllocName (count*sizeof(*pl), loadmodel->name);//create a new array of planes for speed. loadmodel->surfaces = out; loadmodel->numsurfaces = count; for (surfnum = 0; surfnum < count; surfnum++, out++, in++, pl++) { out->plane = pl; out->texinfo = loadmodel->texinfo + LittleLong(in->shadernum); out->lightmaptexturenum = LittleLong(in->lightmapnum); out->light_s = LittleLong(in->lightmap_x); out->light_t = LittleLong(in->lightmap_y); out->extents[0] = (LittleLong(in->lightmap_width)-1)<<4; out->extents[1] = (LittleLong(in->lightmap_height)-1)<<4; out->samples = loadmodel->lightdata + 3*(out->light_s + out->light_t*128 + out->lightmaptexturenum*128*128); if (out->lightmaptexturenum<0) out->samples=NULL; fv = LittleLong(in->firstvertex); { vec3_t v[3]; VectorCopy(map_verts[fv+0], v[0]); VectorCopy(map_verts[fv+1], v[1]); VectorCopy(map_verts[fv+2], v[2]); PlaneFromPoints(v, pl); CategorizePlane(pl); } /* if (in->fognum!=-1) continue; */ if (map_surfaces[LittleLong(in->shadernum)].c.value == 0 || map_surfaces[LittleLong(in->shadernum)].c.value & Q3CONTENTS_TRANSLUCENT) //q3dm10's thingie is 0 out->flags |= SURF_DRAWALPHA; if (loadmodel->texinfo[LittleLong(in->shadernum)].flags & SURF_SKY) out->flags |= SURF_DRAWSKY; #ifdef Q3SHADERS if (!out->texinfo->texture->shader && useshaders) { extern cvar_t r_vertexlight; if (LittleLong(in->facetype) == MST_FLARE) out->texinfo->texture->shader = R_RegisterShader_Flare (out->texinfo->texture->name); else if (LittleLong(in->facetype) == MST_TRIANGLE_SOUP || r_vertexlight.value) out->texinfo->texture->shader = R_RegisterShader_Vertex (out->texinfo->texture->name); else out->texinfo->texture->shader = R_RegisterShader(out->texinfo->texture->name); if (out->texinfo->texture->shader->flags & SHADER_SKY) { out->texinfo->flags |= SURF_SKY; skytexturenum = out->texinfo - loadmodel->texinfo; } } if (LittleLong(in->fognum) == -1 || !map_numfogs) out->fog = NULL; else out->fog = map_fogs + LittleLong(in->fognum); #endif if (map_surfaces[LittleLong(in->shadernum)].c.flags & (Q3SURF_NODRAW | Q3SURF_SKIP)) { out->mesh = &nullmesh; } else if (LittleLong(in->facetype) == MST_PATCH) { out->mesh = GL_CreateMeshForPatch(loadmodel, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex)); } else if (LittleLong(in->facetype) == MST_PLANAR || LittleLong(in->facetype) == MST_TRIANGLE_SOUP) { numindexes = LittleLong(in->num_indexes); numverts = LittleLong(in->num_vertices); if (numindexes%3) { Con_Printf(S_ERROR "mesh indexes should be multiples of 3\n"); return false; } out->mesh = Hunk_Alloc(sizeof(mesh_t) + (sizeof(vec3_t)) * numverts); out->mesh->normals_array= map_normals_array + LittleLong(in->firstvertex); out->mesh->colors_array = map_colors_array + LittleLong(in->firstvertex); out->mesh->indexes = map_surfindexes + LittleLong(in->firstindex); out->mesh->xyz_array = map_verts + LittleLong(in->firstvertex); out->mesh->st_array = map_vertstmexcoords + LittleLong(in->firstvertex); out->mesh->lmst_array = map_vertlstmexcoords + LittleLong(in->firstvertex); out->mesh->numindexes = numindexes; out->mesh->numvertexes = numverts; } else { // int r, g, b; extern index_t r_quad_indexes[6]; mesh = out->mesh = (mesh_t *)Hunk_Alloc ( sizeof(mesh_t)); mesh->xyz_array = (vec3_t *)Hunk_Alloc ( sizeof(vec3_t)); mesh->numvertexes = 1; mesh->indexes = r_quad_indexes; mesh->numindexes = 6; VectorCopy ( in->lightmap_origin, mesh->xyz_array[0] ); /* r = LittleFloat ( in->lightmapVecs[0][0] ) * 255.0f; r = bound ( 0, r, 255 ); g = LittleFloat ( in->lightmapVecs[0][1] ) * 255.0f; g = bound ( 0, g, 255 ); b = LittleFloat ( in->lightmapVecs[0][2] ) * 255.0f; b = bound ( 0, b, 255 ); out->dlightbits = (unsigned int)COLOR_RGB ( r, g, b ); */ } } if (useshaders) CModQ3_SortShaders(); return true; } qboolean CModRBSP_LoadRFaces (lump_t *l, qboolean useshaders) { #ifndef Q3SHADERS int polysize = sizeof(glpoly_t) - VERTEXSIZE*sizeof(float); glpoly_t *p; int rv, fi; int gv, v; #endif rbspface_t *in; msurface_t *out; mplane_t *pl; int count; int surfnum; int numverts, numindexes; int fv; mesh_t *mesh; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = Hunk_AllocName ( count*sizeof(*out), loadmodel->name ); pl = Hunk_AllocName (count*sizeof(*pl), loadmodel->name);//create a new array of planes for speed. loadmodel->surfaces = out; loadmodel->numsurfaces = count; for (surfnum = 0; surfnum < count; surfnum++, out++, in++, pl++) { out->plane = pl; out->texinfo = loadmodel->texinfo + LittleLong(in->shadernum); in->facetype = LittleLong(in->facetype); out->lightmaptexturenum = in->lightmapnum[0]; out->light_s = in->lightmap_offs[0][0]; out->light_t = in->lightmap_offs[0][0]; out->extents[0] = (in->lightmap_width-1)<<4; out->extents[1] = (in->lightmap_height-1)<<4; out->samples = loadmodel->lightdata + 3*(out->light_s + out->light_t*128 + out->lightmaptexturenum*128*128); if (out->lightmaptexturenum<0) out->samples=NULL; fv = LittleLong(in->firstvertex); { vec3_t v[3]; VectorCopy(map_verts[fv+0], v[0]); VectorCopy(map_verts[fv+1], v[1]); VectorCopy(map_verts[fv+2], v[2]); PlaneFromPoints(v, pl); CategorizePlane(pl); } /* if (in->fognum!=-1) continue; */ if (map_surfaces[in->shadernum].c.value == 0 || map_surfaces[in->shadernum].c.value & Q3CONTENTS_TRANSLUCENT) //q3dm10's thingie is 0 out->flags |= SURF_DRAWALPHA; if (loadmodel->texinfo[in->shadernum].flags & SURF_SKY) out->flags |= SURF_DRAWSKY; #ifdef Q3SHADERS if (!out->texinfo->texture->shader && useshaders) { extern cvar_t r_vertexlight; if (in->facetype == MST_FLARE) out->texinfo->texture->shader = R_RegisterShader_Flare (out->texinfo->texture->name); else if (in->facetype == MST_TRIANGLE_SOUP || r_vertexlight.value) out->texinfo->texture->shader = R_RegisterShader_Vertex (out->texinfo->texture->name); else out->texinfo->texture->shader = R_RegisterShader(out->texinfo->texture->name); } if (in->fognum < 0 || in->fognum >= map_numfogs) out->fog = NULL; else out->fog = map_fogs + in->fognum; #endif if (map_surfaces[in->shadernum].c.flags & (Q3SURF_NODRAW | Q3SURF_SKIP)) { if (map_surfaces[in->shadernum].c.flags & Q3SURF_SKIP) Con_Printf("Surface skip\n"); out->mesh = NULL; } else if (in->facetype == MST_PATCH) { out->mesh = GL_CreateMeshForPatch(loadmodel, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex)); } else if (in->facetype == MST_PLANAR || in->facetype == MST_TRIANGLE_SOUP) { numindexes = LittleLong(in->num_indexes); numverts = LittleLong(in->num_vertices); if (numindexes%3) { Con_Printf(S_ERROR "mesh indexes should be multiples of 3\n"); return false; } out->mesh = Hunk_Alloc(sizeof(mesh_t) + (sizeof(vec3_t)) * numverts); out->mesh->normals_array= map_normals_array + LittleLong(in->firstvertex); out->mesh->colors_array = map_colors_array + LittleLong(in->firstvertex); out->mesh->indexes = map_surfindexes + LittleLong(in->firstindex); out->mesh->xyz_array = map_verts + LittleLong(in->firstvertex); out->mesh->st_array = map_vertstmexcoords + LittleLong(in->firstvertex); out->mesh->lmst_array = map_vertlstmexcoords + LittleLong(in->firstvertex); out->mesh->numindexes = numindexes; out->mesh->numvertexes = numverts; } else { // int r, g, b; extern index_t r_quad_indexes[6]; mesh = out->mesh = (mesh_t *)Hunk_Alloc ( sizeof(mesh_t)); mesh->xyz_array = (vec3_t *)Hunk_Alloc ( sizeof(vec3_t)); mesh->numvertexes = 1; mesh->indexes = r_quad_indexes; mesh->numindexes = 6; // VectorCopy ( out->origin, mesh->xyz_array[0] ); /* r = LittleFloat ( in->lightmapVecs[0][0] ) * 255.0f; r = bound ( 0, r, 255 ); g = LittleFloat ( in->lightmapVecs[0][1] ) * 255.0f; g = bound ( 0, g, 255 ); b = LittleFloat ( in->lightmapVecs[0][2] ) * 255.0f; b = bound ( 0, b, 255 ); out->dlightbits = (unsigned int)COLOR_RGB ( r, g, b ); */ } } if (useshaders) CModQ3_SortShaders(); return true; } #endif qboolean CModQ3_LoadLeafFaces (lump_t *l) { int i, j, count; int *in; int *out; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q2MAP_LEAFFACES) { Con_Printf (S_ERROR "Map has too many leaffaces\n"); return false; } out = BZ_Malloc ( count*sizeof(*out) ); map_leaffaces = out; numleaffaces = count; for ( i=0 ; i= numfaces) { Con_Printf (S_ERROR "CMod_LoadLeafFaces: bad surface number\n"); return false; } out[i] = j; } return true; } qboolean CModQ3_LoadNodes (lump_t *l) { int i, j, count, p; q3dnode_t *in; mnode_t *out; //dnode_t in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = Hunk_AllocName ( count*sizeof(*out), loadname); if (count > MAX_MAP_NODES) { Con_Printf (S_ERROR "Too many nodes on map\n"); return false; } loadmodel->nodes = out; loadmodel->numnodes = count; for ( i=0 ; iminmaxs[j] = LittleLong (in->mins[j]); out->minmaxs[3+j] = LittleLong (in->maxs[j]); } p = LittleLong(in->plane); out->plane = loadmodel->planes + p; out->firstsurface = 0;//LittleShort (in->firstface); out->numsurfaces = 0;//LittleShort (in->numfaces); out->contents = -1; for (j=0 ; j<2 ; j++) { p = LittleLong (in->children[j]); out->childnum[j] = p; if (p >= 0) { out->children[j] = loadmodel->nodes + p; } else out->children[j] = (mnode_t *)(loadmodel->leafs + (-1 - p)); } } CMod_SetParent (loadmodel->nodes, NULL); // sets nodes and leafs return true; } qboolean CModQ3_LoadBrushes (lump_t *l) { q3dbrush_t *in; q2cbrush_t *out; int i, count; int shaderref; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q2MAP_BRUSHES) { Con_Printf (S_ERROR "Map has too many brushes"); return false; } out = map_brushes; numbrushes = count; for (i=0 ; ishadernum ); out->contents = map_surfaces[shaderref].c.value; out->firstbrushside = LittleLong ( in->firstside ); out->numsides = LittleLong ( in->num_sides ); } return true; } qboolean CModQ3_LoadLeafs (lump_t *l) { int i, j; mleaf_t *out; q3dleaf_t *in; int count; q2cbrush_t *brush; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no leafs\n"); return false; } // need to save space for box planes if (count > MAX_MAP_LEAFS) { Con_Printf (S_ERROR "Too many leaves on map"); return false; } out = map_leafs; numleafs = count; numclusters = 0; loadmodel->leafs = out; loadmodel->numleafs = count; emptyleaf = -1; for ( i=0 ; iminmaxs[0+j] = LittleLong(in->mins[j]); out->minmaxs[3+j] = LittleLong(in->maxs[j]); } out->cluster = LittleLong ( in->cluster ); out->area = LittleLong ( in->area ) + 1; out->firstleafface = LittleLong ( in->firstleafsurface ); out->numleaffaces = LittleLong ( in->num_leafsurfaces ); out->contents = 0; out->firstleafbrush = LittleLong ( in->firstleafbrush ); out->numleafbrushes = LittleLong ( in->num_leafbrushes ); out->firstmarksurface = loadmodel->marksurfaces + LittleLong(in->firstleafsurface); out->nummarksurfaces = LittleLong(in->num_leafsurfaces); if (out->minmaxs[0] > out->minmaxs[3+0] || out->minmaxs[1] > out->minmaxs[3+1] || out->minmaxs[2] > out->minmaxs[3+2] || VectorCompare (out->minmaxs, out->minmaxs+3)) { out->nummarksurfaces = 0; } for ( j=0 ; jnumleafbrushes ; j++) { brush = &map_brushes[map_leafbrushes[out->firstleafbrush + j]]; out->contents |= brush->contents; } if ( out->area >= numareas ) { numareas = out->area + 1; } if ( !out->contents ) { emptyleaf = i; } } // if map doesn't have an empty leaf - force one if ( emptyleaf == -1 ) { if (numleafs >= MAX_MAP_LEAFS-1) { Con_Printf (S_ERROR "Map does not have an empty leaf\n"); return false; } out->cluster = -1; out->area = -1; out->numleafbrushes = 0; out->contents = 0; out->firstleafbrush = 0; Con_DPrintf ( "Forcing an empty leaf: %i\n", numleafs ); emptyleaf = numleafs++; } return true; } qboolean CModQ3_LoadPlanes (lump_t *l) { int i, j; mplane_t *out; Q3PLANE_t *in; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = map_planes;//Hunk_AllocName ( count*2*sizeof(*out), loadname); if (count > MAX_MAP_PLANES) { Con_Printf (S_ERROR "Too many planes on map\n"); return false; } numplanes = count; loadmodel->planes = out; loadmodel->numplanes = count; for ( i=0 ; inormal[j] = LittleFloat (in->n[j]); } out->dist = LittleFloat (in->d); CategorizePlane(out); } return true; } qboolean CModQ3_LoadLeafBrushes (lump_t *l) { int i; int *out; int *in; int count; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (S_ERROR "Map with no leafbrushes\n"); return false; } // need to save space for box planes if (count > MAX_Q2MAP_LEAFBRUSHES) { Con_Printf (S_ERROR "Map has too many leafbrushes\n"); return false; } out = map_leafbrushes; numleafbrushes = count; for ( i=0 ; ifileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); // need to save space for box planes if (count > MAX_Q2MAP_BRUSHSIDES) { Con_Printf (S_ERROR "Map has too many planes\n"); return false; } out = map_brushsides; numbrushsides = count; for ( i=0 ; iplanenum); out->plane = &map_planes[num]; j = LittleLong (in->texinfo); if (j >= numtexinfo) { Con_Printf (S_ERROR "Bad brushside texinfo\n"); return false; } out->surface = &map_surfaces[j]; } return true; } qboolean CModRBSP_LoadBrushSides (lump_t *l) { int i, j; q2cbrushside_t *out; rbspbrushside_t *in; int count; int num; in = (void *)(cmod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); // need to save space for box planes if (count > MAX_Q2MAP_BRUSHSIDES) { Con_Printf (S_ERROR "Map has too many planes\n"); return false; } out = map_brushsides; numbrushsides = count; for ( i=0 ; iplanenum); out->plane = &map_planes[num]; j = LittleLong (in->texinfo); if (j >= numtexinfo) { Con_Printf (S_ERROR "Bad brushside texinfo\n"); return false; } out->surface = &map_surfaces[j]; } return true; } qboolean CModQ3_LoadVisibility (lump_t *l) { if (l->filelen == 0) { int i; numclusters = 0; for (i = 0; i < loadmodel->numleafs; i++) if (numclusters <= loadmodel->leafs[i].cluster) numclusters = loadmodel->leafs[i].cluster+1; numclusters++; memset (map_visibility, 0xff, sizeof(map_visibility)); map_q3pvs->numclusters = numclusters; numvisibility = 0; map_q3pvs->rowsize = (map_q3pvs->numclusters+7)/8; } else { numvisibility = l->filelen; if (l->filelen > MAX_Q2MAP_VISIBILITY) { Con_Printf (S_ERROR "Map has too large visibility lump\n"); return false; } loadmodel->vis = (q2dvis_t *)map_q3pvs; memcpy (map_visibility, cmod_base + l->fileofs, l->filelen); numclusters = map_q3pvs->numclusters = LittleLong (map_q3pvs->numclusters); map_q3pvs->rowsize = LittleLong (map_q3pvs->rowsize); } return true; } #ifndef SERVERONLY qboolean CModQ3_LoadLightgrid (lump_t *l) { dq3gridlight_t *in; dq3gridlight_t *out; q3lightgridinfo_t *grid; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); grid = Hunk_AllocName (sizeof(q3lightgridinfo_t) + count*sizeof(*out), loadmodel->name ); grid->lightgrid = (dq3gridlight_t*)(grid+1); out = grid->lightgrid; loadmodel->lightgrid = grid; grid->numlightgridelems = count; // lightgrid is all 8 bit memcpy ( out, in, count*sizeof(*out) ); return true; } qboolean CModRBSP_LoadLightgrid (lump_t *elements, lump_t *indexes) { unsigned short *iin; rbspgridlight_t *ein; unsigned short *iout; rbspgridlight_t *eout; q3lightgridinfo_t *grid; int ecount; int icount; int i; ein = (void *)(mod_base + elements->fileofs); iin = (void *)(mod_base + indexes->fileofs); if (indexes->filelen % sizeof(*iin) || elements->filelen % sizeof(*ein)) { Con_Printf (S_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } icount = indexes->filelen / sizeof(*iin); ecount = elements->filelen / sizeof(*ein); grid = Hunk_AllocName (sizeof(q3lightgridinfo_t) + ecount*sizeof(*eout) + icount*sizeof(*iout), loadmodel->name ); grid->rbspelements = (rbspgridlight_t*)((char *)grid); grid->rbspindexes = (unsigned short*)((char *)grid + ecount*sizeof(*eout)); eout = grid->rbspelements; iout = grid->rbspindexes; loadmodel->lightgrid = grid; grid->numlightgridelems = icount; // elements are all 8 bit memcpy ( eout, ein, ecount*sizeof(*eout) ); for (i = 0; i < icount; i++) iout[i] = LittleShort(iin[i]); return true; } #endif #ifndef SERVERONLY qbyte *ReadPCXPalette(qbyte *buf, int len, qbyte *out); int CM_GetQ2Palette (void) { char *f = (void *)COM_LoadMallocFile("pics/colormap.pcx"); if (!f) { Con_Printf (S_WARNING "Couldn't find pics/colormap.pcx\n"); return -1; } if (!ReadPCXPalette(f, com_filesize, d_q28to24table)) { Con_Printf (S_WARNING "Couldn't read pics/colormap.pcx\n"); BZ_Free(f); return -1; } BZ_Free(f); #ifdef RGLQUAKE { extern float vid_gamma; float f, inf; qbyte palette[768]; qbyte *pal; int i; pal = d_q28to24table; for (i=0 ; i<768 ; i++) { f = pow ( (pal[i]+1)/256.0 , vid_gamma ); inf = f*255 + 0.5; if (inf < 0) inf = 0; if (inf > 255) inf = 255; palette[i] = inf; } memcpy (d_q28to24table, palette, sizeof(palette)); } #endif return 0; } #endif void CM_OpenAllPortals(char *ents) //this is a compleate hack. About as compleate as possible. { //q2 levels contain a thingie called area portals. Basically, doors can seperate two areas and //the engine knows when this portal is open, and weather to send ents from both sides of the door //or not. It's not just ents, but also walls. We want to just open them by default and hope the //progs knows how to close them. char style[8]; char name[64]; if (!map_autoopenportals.value) return; while(*ents) { if (*ents == '{') //an entity { ents++; *style = '\0'; *name = '\0'; while (*ents) { ents = COM_Parse(ents); if (!strcmp(com_token, "classname")) { ents = COM_ParseOut(ents, name, sizeof(name)); } else if (!strcmp(com_token, "style")) { ents = COM_ParseOut(ents, style, sizeof(style)); } else if (*com_token == '}') break; else ents = COM_Parse(ents); //other field ents++; } if (!strcmp(name, "func_areaportal")) { CMQ2_SetAreaPortalState(atoi(style), true); } } ents++; } } #ifndef CLIENTONLY void CMQ3_CalcPHS (void) { int rowbytes, rowwords; int i, j, k, l, index; int bitbyte; unsigned *dest, *src; qbyte *scan; int count, vcount; int numclusters; Con_DPrintf ("Building PHS...\n"); rowwords = map_q3pvs->rowsize / sizeof(long); rowbytes = map_q3pvs->rowsize; memset ( map_q3phs, 0, MAX_Q2MAP_VISIBILITY ); map_q3phs->rowsize = map_q3pvs->rowsize; map_q3phs->numclusters = numclusters = map_q3pvs->numclusters; if (!numclusters) return; vcount = 0; for (i=0 ; i>3] & (1<<(j&7)) ) { vcount++; } } } count = 0; scan = (qbyte *)map_q3pvs->data; dest = (unsigned *)((qbyte *)map_q3phs + 8); for (i=0 ; i= numclusters) // Host_Error ("CM_CalcPHS: Bad bit in PVS"); // pad bits should be 0 src = (unsigned *)((qbyte*)map_q3pvs->data) + index*rowwords; for (l=0 ; l>3] & (1<<(j&7)) ) count++; } Con_Printf ("Average clusters visible / hearable / total: %i / %i / %i\n" , vcount/numclusters, count/numclusters, numclusters); } #endif qbyte *CM_LeafnumPVS (model_t *model, int leafnum, qbyte *buffer) { return CM_ClusterPVS(model, CM_LeafCluster(model, leafnum), buffer); } #ifndef SERVERONLY #define GLQ2BSP_LightPointValues GLQ1BSP_LightPointValues #define SWQ2BSP_LightPointValues SWQ1BSP_LightPointValues extern int r_dlightframecount; void Q2BSP_MarkLights (dlight_t *light, int bit, mnode_t *node) { mplane_t *splitplane; float dist; msurface_t *surf; int i; if (node->contents != -1) { mleaf_t *leaf = (mleaf_t *)node; msurface_t **mark; i = leaf->nummarksurfaces; mark = leaf->firstmarksurface; while(i--!=0) { surf = *mark++; if (surf->dlightframe != r_dlightframecount) { surf->dlightbits = 0; surf->dlightframe = r_dlightframecount; } surf->dlightbits |= bit; } return; } splitplane = node->plane; dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist; if (dist > light->radius) { Q2BSP_MarkLights (light, bit, node->children[0]); return; } if (dist < -light->radius) { Q2BSP_MarkLights (light, bit, node->children[1]); return; } // mark the polygons surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->dlightframe != r_dlightframecount) { surf->dlightbits = 0; surf->dlightframe = r_dlightframecount; } surf->dlightbits |= bit; } Q2BSP_MarkLights (light, bit, node->children[0]); Q2BSP_MarkLights (light, bit, node->children[1]); } #ifndef SERVERONLY #ifdef RGLQUAKE void GLR_StainSurf (msurface_t *surf, float *parms); void GLR_Q2BSP_StainNode (mnode_t *node, float *parms) { mplane_t *splitplane; float dist; msurface_t *surf; int i; if (node->contents != -1) return; splitplane = node->plane; dist = DotProduct ((parms+1), splitplane->normal) - splitplane->dist; if (dist > (*parms)) { GLR_Q2BSP_StainNode (node->children[0], parms); return; } if (dist < (-*parms)) { GLR_Q2BSP_StainNode (node->children[1], parms); return; } // mark the polygons surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->flags&~(SURF_DONTWARP|SURF_PLANEBACK)) continue; GLR_StainSurf(surf, parms); } GLR_Q2BSP_StainNode (node->children[0], parms); GLR_Q2BSP_StainNode (node->children[1], parms); } #endif #ifdef SWQUAKE void SWR_StainSurf (msurface_t *surf, float *parms); void SWR_Q2BSP_StainNode (mnode_t *node, float *parms) { mplane_t *splitplane; float dist; msurface_t *surf; int i; if (node->contents != -1) return; splitplane = node->plane; dist = DotProduct ((parms+1), splitplane->normal) - splitplane->dist; if (dist > (*parms)) { SWR_Q2BSP_StainNode (node->children[0], parms); return; } if (dist < (-*parms)) { SWR_Q2BSP_StainNode (node->children[1], parms); return; } // mark the polygons surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->flags&~(SURF_DONTWARP|SURF_PLANEBACK)) continue; SWR_StainSurf(surf, parms); } SWR_Q2BSP_StainNode (node->children[0], parms); SWR_Q2BSP_StainNode (node->children[1], parms); } #endif #endif #endif #ifndef CLIENTONLY void Q2BSP_FatPVS (model_t *mod, vec3_t org, qboolean add); qboolean Q2BSP_EdictInFatPVS(model_t *mod, edict_t *ent); void Q2BSP_FindTouchedLeafs(model_t *mod, edict_t *ent); #endif void GLQ2BSP_LightPointValues(vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir); void SWQ2BSP_LightPointValues(vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir); /* ================== CM_LoadMap Loads in the map and all submodels ================== */ q2cmodel_t *CM_LoadMap (char *name, char *filein, qboolean clientload, unsigned *checksum) { unsigned *buf; int i,j; q2dheader_t header; int length; static unsigned last_checksum; qboolean useshaders; qboolean noerrors = true; int start; // free old stuff numplanes = 0; numleafs = 0; numcmodels = 0; numvisibility = 0; numentitychars = 0; map_entitystring = NULL; map_name[0] = 0; loadmodel->type = mod_brush; if (!name || !name[0]) { numleafs = 1; numclusters = 1; numareas = 1; *checksum = 0; return &map_cmodels[0]; // cinematic servers won't have anything at all } // // load the file // buf = (unsigned *)filein; length = com_filesize; if (!buf) { Con_Printf (S_ERROR "Couldn't load %s\n", name); return NULL; } last_checksum = LittleLong (Com_BlockChecksum (buf, length)); *checksum = last_checksum; header = *(q2dheader_t *)(buf); header.ident = LittleLong(header.ident); header.version = LittleLong(header.version); cmod_base = mod_base = (qbyte *)buf; start = Hunk_LowMark(); switch(header.version) { default: Con_Printf (S_ERROR "Quake 2 or Quake 3 based BSP with unknown header (%i should be %i or %i)\n" , name, header.version, Q2BSPVERSION, Q3BSPVERSION); return NULL; break; #if 1 case 1: //rbsp case Q3BSPVERSION+1: //rtcw case Q3BSPVERSION: #ifdef Q3SHADERS { extern cvar_t gl_shadeq3; useshaders = gl_shadeq3.value; } #else useshaders = false; #endif mapisq3 = true; loadmodel->fromgame = fg_quake3; for (i=0 ; ifuncs.FatPVS = Q2BSP_FatPVS; loadmodel->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; loadmodel->funcs.FindTouchedLeafs_Q1 = Q2BSP_FindTouchedLeafs; #endif loadmodel->funcs.LeafPVS = CM_LeafnumPVS; loadmodel->funcs.LeafnumForPoint = CM_PointLeafnum; #if defined(RGLQUAKE) loadmodel->funcs.LightPointValues = GLQ3_LightGrid; loadmodel->funcs.StainNode = GLR_Q2BSP_StainNode; loadmodel->funcs.MarkLights = Q2BSP_MarkLights; #endif loadmodel->funcs.Trace = CM_Trace; loadmodel->funcs.PointContents = Q2BSP_PointContents; loadmodel->funcs.NativeTrace = CM_NativeTrace; loadmodel->funcs.NativeContents = CM_NativeContents; #ifndef SERVERONLY //light grid info if (loadmodel->lightgrid) { float maxs; q3lightgridinfo_t *lg = loadmodel->lightgrid; if ( lg->gridSize[0] < 1 || lg->gridSize[1] < 1 || lg->gridSize[2] < 1 ) { lg->gridSize[0] = 64; lg->gridSize[1] = 64; lg->gridSize[2] = 128; } for ( i = 0; i < 3; i++ ) { lg->gridMins[i] = lg->gridSize[i] * ceil( (map_cmodels->mins[i] + 1) / lg->gridSize[i] ); maxs = lg->gridSize[i] * floor( (map_cmodels->maxs[i] - 1) / lg->gridSize[i] ); lg->gridBounds[i] = (maxs - lg->gridMins[i])/lg->gridSize[i] + 1; } lg->gridBounds[3] = lg->gridBounds[1] * lg->gridBounds[0]; } #endif if (!CM_CreatePatchesForLeafs ()) //for clipping { BZ_Free(map_faces); BZ_Free(map_leaffaces); Hunk_FreeToLowMark(start); return NULL; } #ifndef CLIENTONLY CMQ3_CalcPHS(); #endif // BZ_Free(map_verts); BZ_Free(map_faces); BZ_Free(map_leaffaces); break; default: #ifdef SERVERONLY SV_Error("Cannot load q3bsps with the current renderer (only dedicated and opengl renderer)\n"); #else Con_Printf(S_ERROR "Cannot load q3bsps with the current renderer (only dedicated and opengl renderer)\n"); return NULL; #endif } break; #endif case Q2BSPVERSION: mapisq3 = false; for (i=0 ; ifuncs.FatPVS = Q2BSP_FatPVS; loadmodel->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; loadmodel->funcs.FindTouchedLeafs_Q1 = Q2BSP_FindTouchedLeafs; #endif loadmodel->funcs.LightPointValues = NULL; loadmodel->funcs.StainNode = NULL; loadmodel->funcs.MarkLights = NULL; loadmodel->funcs.LeafPVS = CM_LeafnumPVS; loadmodel->funcs.LeafnumForPoint = CM_PointLeafnum; loadmodel->funcs.Trace = CM_Trace; loadmodel->funcs.PointContents = Q2BSP_PointContents; loadmodel->funcs.NativeTrace = CM_NativeTrace; loadmodel->funcs.NativeContents = CM_NativeContents; break; #if defined(RGLQUAKE) case QR_OPENGL: // load into heap #ifndef SERVERONLY noerrors = noerrors && GLMod_LoadVertexes (&header.lumps[Q2LUMP_VERTEXES]); noerrors = noerrors && GLMod_LoadEdges (&header.lumps[Q2LUMP_EDGES]); noerrors = noerrors && GLMod_LoadSurfedges (&header.lumps[Q2LUMP_SURFEDGES]); if (noerrors) GLMod_LoadLighting (&header.lumps[Q2LUMP_LIGHTING]); #endif noerrors = noerrors && CMod_LoadSurfaces (&header.lumps[Q2LUMP_TEXINFO]); noerrors = noerrors && CMod_LoadLeafBrushes (&header.lumps[Q2LUMP_LEAFBRUSHES]); noerrors = noerrors && CMod_LoadPlanes (&header.lumps[Q2LUMP_PLANES]); #ifndef SERVERONLY noerrors = noerrors && CMod_LoadTexInfo (&header.lumps[Q2LUMP_TEXINFO]); noerrors = noerrors && CMod_LoadFaces (&header.lumps[Q2LUMP_FACES]); noerrors = noerrors && GLMod_LoadMarksurfaces (&header.lumps[Q2LUMP_LEAFFACES]); #endif noerrors = noerrors && CMod_LoadVisibility (&header.lumps[Q2LUMP_VISIBILITY]); noerrors = noerrors && CMod_LoadBrushes (&header.lumps[Q2LUMP_BRUSHES]); noerrors = noerrors && CMod_LoadBrushSides (&header.lumps[Q2LUMP_BRUSHSIDES]); noerrors = noerrors && CMod_LoadSubmodels (&header.lumps[Q2LUMP_MODELS]); noerrors = noerrors && CMod_LoadLeafs (&header.lumps[Q2LUMP_LEAFS]); noerrors = noerrors && CMod_LoadNodes (&header.lumps[Q2LUMP_NODES]); noerrors = noerrors && CMod_LoadAreas (&header.lumps[Q2LUMP_AREAS]); noerrors = noerrors && CMod_LoadAreaPortals (&header.lumps[Q2LUMP_AREAPORTALS]); if (noerrors) CMod_LoadEntityString (&header.lumps[Q2LUMP_ENTITIES]); if (!noerrors) { Hunk_FreeToLowMark(start); return NULL; } #ifndef CLIENTONLY loadmodel->funcs.FatPVS = Q2BSP_FatPVS; loadmodel->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; loadmodel->funcs.FindTouchedLeafs_Q1 = Q2BSP_FindTouchedLeafs; #endif loadmodel->funcs.LightPointValues = GLQ2BSP_LightPointValues; loadmodel->funcs.StainNode = GLR_Q2BSP_StainNode; loadmodel->funcs.MarkLights = Q2BSP_MarkLights; loadmodel->funcs.LeafPVS = CM_LeafnumPVS; loadmodel->funcs.LeafnumForPoint = CM_PointLeafnum; loadmodel->funcs.Trace = CM_Trace; loadmodel->funcs.PointContents = Q2BSP_PointContents; loadmodel->funcs.NativeTrace = CM_NativeTrace; loadmodel->funcs.NativeContents = CM_NativeContents; break; #endif #if defined(SWQUAKE) case QR_SOFTWARE: // load into heap #ifndef SERVERONLY noerrors = noerrors && SWMod_LoadVertexes (&header.lumps[Q2LUMP_VERTEXES]); noerrors = noerrors && SWMod_LoadEdges (&header.lumps[Q2LUMP_EDGES]); noerrors = noerrors && SWMod_LoadSurfedges (&header.lumps[Q2LUMP_SURFEDGES]); if (noerrors) SWMod_LoadLighting (&header.lumps[Q2LUMP_LIGHTING]); #endif noerrors = noerrors && CMod_LoadSurfaces (&header.lumps[Q2LUMP_TEXINFO]); noerrors = noerrors && CMod_LoadLeafBrushes (&header.lumps[Q2LUMP_LEAFBRUSHES]); noerrors = noerrors && CMod_LoadPlanes (&header.lumps[Q2LUMP_PLANES]); #ifndef SERVERONLY noerrors = noerrors && CMod_LoadTexInfo (&header.lumps[Q2LUMP_TEXINFO]); noerrors = noerrors && CMod_LoadFaces (&header.lumps[Q2LUMP_FACES]); noerrors = noerrors && SWMod_LoadMarksurfaces (&header.lumps[Q2LUMP_LEAFFACES]); #endif noerrors = noerrors && CMod_LoadVisibility (&header.lumps[Q2LUMP_VISIBILITY]); noerrors = noerrors && CMod_LoadBrushes (&header.lumps[Q2LUMP_BRUSHES]); noerrors = noerrors && CMod_LoadBrushSides (&header.lumps[Q2LUMP_BRUSHSIDES]); noerrors = noerrors && CMod_LoadSubmodels (&header.lumps[Q2LUMP_MODELS]); noerrors = noerrors && CMod_LoadLeafs (&header.lumps[Q2LUMP_LEAFS]); noerrors = noerrors && CMod_LoadNodes (&header.lumps[Q2LUMP_NODES]); noerrors = noerrors && CMod_LoadAreas (&header.lumps[Q2LUMP_AREAS]); noerrors = noerrors && CMod_LoadAreaPortals (&header.lumps[Q2LUMP_AREAPORTALS]); if (noerrors) CMod_LoadEntityString (&header.lumps[Q2LUMP_ENTITIES]); if (!noerrors) { Hunk_FreeToLowMark(start); return NULL; } loadmodel->funcs.FatPVS = Q2BSP_FatPVS; loadmodel->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; loadmodel->funcs.FindTouchedLeafs_Q1 = Q2BSP_FindTouchedLeafs; loadmodel->funcs.LightPointValues = SWQ2BSP_LightPointValues; loadmodel->funcs.StainNode = SWR_Q2BSP_StainNode; loadmodel->funcs.MarkLights = Q2BSP_MarkLights; loadmodel->funcs.LeafPVS = CM_LeafnumPVS; loadmodel->funcs.LeafnumForPoint = CM_PointLeafnum; loadmodel->funcs.Trace = CM_Trace; loadmodel->funcs.PointContents = Q2BSP_PointContents; loadmodel->funcs.NativeTrace = CM_NativeTrace; loadmodel->funcs.NativeContents = CM_NativeContents; break; #endif default: Sys_Error("Bad internal renderer on q2 map load\n"); } } #ifndef SERVERONLY Mod_ParseInfoFromEntityLump(loadmodel->entities); //only done for client's world model (or server if the server is loading it for client) #endif CM_InitBoxHull (); if (map_autoopenportals.value) memset (portalopen, 1, sizeof(portalopen)); //open them all. Used for progs that havn't got a clue. else memset (portalopen, 0, sizeof(portalopen)); //make them start closed. FloodAreaConnections (); strcpy (map_name, name); loadmodel->checksum = loadmodel->checksum2 = *checksum; loadmodel->numsubmodels = CM_NumInlineModels(loadmodel); { model_t *mod = loadmodel; mod->hulls[0].firstclipnode = map_cmodels[0].headnode; mod->hulls[0].available = true; Q2BSP_SetHullFuncs(&mod->hulls[0]); for (j=1 ; jhulls[j].firstclipnode = map_cmodels[0].headnode; mod->hulls[j].available = false; Q2BSP_SetHullFuncs(&mod->hulls[j]); } for (i=1 ; i< loadmodel->numsubmodels ; i++) { q2cmodel_t *bm; char name[10]; sprintf (name, "*%i", i); loadmodel = Mod_FindName (name); *loadmodel = *mod; strcpy (loadmodel->name, name); mod = loadmodel; bm = CM_InlineModel (name); mod->hulls[0].firstclipnode = bm->headnode; mod->hulls[j].available = true; mod->nummodelsurfaces = bm->numsurfaces; mod->firstmodelsurface = bm->firstsurface; Q2BSP_SetHullFuncs(&mod->hulls[0]); for (j=1 ; jhulls[j].firstclipnode = bm->headnode; mod->hulls[j].lastclipnode = mod->numclipnodes-1; mod->hulls[j].available = false; Q2BSP_SetHullFuncs(&mod->hulls[j]); } VectorCopy (bm->maxs, mod->maxs); VectorCopy (bm->mins, mod->mins); #ifndef SERVERONLY mod->radius = RadiusFromBounds (mod->mins, mod->maxs); P_DefaultTrail(mod); #endif } } return &map_cmodels[0]; } /* ================== CM_InlineModel ================== */ q2cmodel_t *CM_InlineModel (char *name) { int num; if (!name) Host_Error("Bad model\n"); else if (name[0] != '*') Host_Error("Bad model\n"); num = atoi (name+1); if (num < 1 || num >= numcmodels) Host_Error ("CM_InlineModel: bad number"); return &map_cmodels[num]; } int CM_NumClusters (model_t *model) { return numclusters; } int CM_ClusterSize (model_t *model) { return map_q3pvs->rowsize ? map_q3pvs->rowsize : MAX_MAP_LEAFS / 8; } int CM_NumInlineModels (model_t *model) { return numcmodels; } char *CM_EntityString (model_t *model) { return map_entitystring; } int CM_LeafContents (model_t *model, int leafnum) { if (leafnum < 0 || leafnum >= numleafs) Host_Error ("CM_LeafContents: bad number"); return map_leafs[leafnum].contents; } int CM_LeafCluster (model_t *model, int leafnum) { if (leafnum < 0 || leafnum >= numleafs) Host_Error ("CM_LeafCluster: bad number"); return map_leafs[leafnum].cluster; } int CM_LeafArea (model_t *model, int leafnum) { if (leafnum < 0 || leafnum >= numleafs) Host_Error ("CM_LeafArea: bad number"); return map_leafs[leafnum].area; } //======================================================================= mplane_t *box_planes; int box_headnode; q2cbrush_t *box_brush; mleaf_t *box_leaf; model_t box_model; /* =================== CM_InitBoxHull Set up the planes and nodes so that the six floats of a bounding box can just be stored out and get a proper clipping hull structure. =================== */ void CM_InitBoxHull (void) { int i; int side; mnode_t *c; mplane_t *p; q2cbrushside_t *s; #ifndef CLIENTONLY box_model.funcs.FatPVS = Q2BSP_FatPVS; box_model.funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; box_model.funcs.FindTouchedLeafs_Q1 = Q2BSP_FindTouchedLeafs; #endif #ifndef SERVERONLY box_model.funcs.MarkLights = Q2BSP_MarkLights; #endif box_model.funcs.LeafPVS = CM_LeafnumPVS; box_model.funcs.LeafnumForPoint = CM_PointLeafnum; box_model.funcs.Trace = CM_Trace; box_model.funcs.NativeContents = CM_NativeContents; box_model.funcs.NativeTrace = CM_NativeTrace; box_model.hulls[0].available = true; Q2BSP_SetHullFuncs(&box_model.hulls[0]); box_model.nodes = Hunk_Alloc(sizeof(mnode_t)*6); box_planes = &map_planes[numplanes]; if (numbrushes+1 > MAX_Q2MAP_BRUSHES || numleafbrushes+1 > MAX_Q2MAP_LEAFBRUSHES || numbrushsides+6 > MAX_Q2MAP_BRUSHSIDES || numplanes+12 > MAX_Q2MAP_PLANES) Host_Error ("Not enough room for box tree"); box_brush = &map_brushes[numbrushes]; box_brush->numsides = 6; box_brush->firstbrushside = numbrushsides; box_brush->contents = Q2CONTENTS_MONSTER; box_leaf = &map_leafs[numleafs]; box_leaf->contents = Q2CONTENTS_MONSTER; box_leaf->firstleafbrush = numleafbrushes; box_leaf->numleafbrushes = 1; map_leafbrushes[numleafbrushes] = numbrushes; for (i=0 ; i<6 ; i++) { side = i&1; // brush sides s = &map_brushsides[numbrushsides+i]; s->plane = map_planes + (numplanes+i*2+side); s->surface = &nullsurface; // nodes c = &box_model.nodes[i]; c->plane = map_planes + (numplanes+i*2); c->childnum[side] = -1 - emptyleaf; if (i != 5) c->childnum[side^1] = box_headnode+i + 1; else c->childnum[side^1] = -1 - numleafs; // planes p = &box_planes[i*2]; p->type = i>>1; p->signbits = 0; VectorClear (p->normal); p->normal[i>>1] = 1; p = &box_planes[i*2+1]; p->type = 3 + (i>>1); p->signbits = 0; VectorClear (p->normal); p->normal[i>>1] = -1; } } /* =================== CM_HeadnodeForBox To keep everything totally uniform, bounding boxes are turned into small BSP trees instead of being compared directly. =================== */ void CM_SetTempboxSize (vec3_t mins, vec3_t maxs) { box_planes[0].dist = maxs[0]; box_planes[1].dist = -maxs[0]; box_planes[2].dist = mins[0]; box_planes[3].dist = -mins[0]; box_planes[4].dist = maxs[1]; box_planes[5].dist = -maxs[1]; box_planes[6].dist = mins[1]; box_planes[7].dist = -mins[1]; box_planes[8].dist = maxs[2]; box_planes[9].dist = -maxs[2]; box_planes[10].dist = mins[2]; box_planes[11].dist = -mins[2]; } model_t *CM_TempBoxModel(vec3_t mins, vec3_t maxs) { if (box_planes == NULL) CM_InitBoxHull(); CM_SetTempboxSize(mins, maxs); return &box_model; } /* ================== CM_PointLeafnum_r ================== */ int CM_PointLeafnum_r (model_t *mod, vec3_t p, int num) { float d; mnode_t *node; mplane_t *plane; while (num >= 0) { node = mod->nodes + num; plane = node->plane; if (plane->type < 3) d = p[plane->type] - plane->dist; else d = DotProduct (plane->normal, p) - plane->dist; if (d < 0) num = node->childnum[1]; else num = node->childnum[0]; } c_pointcontents++; // optimize counter return -1 - num; } int CM_PointLeafnum (model_t *mod, vec3_t p) { if (!numplanes) return 0; // sound may call this without map loaded return CM_PointLeafnum_r (mod, p, 0); } /* ============= CM_BoxLeafnums Fills in a list of all the leafs touched ============= */ int leaf_count, leaf_maxcount; int *leaf_list; float *leaf_mins, *leaf_maxs; int leaf_topnode; void CM_BoxLeafnums_r (model_t *mod, int nodenum) { mplane_t *plane; mnode_t *node; int s; while (1) { if (nodenum < 0) { if (leaf_count >= leaf_maxcount) { // Com_Printf ("CM_BoxLeafnums_r: overflow\n"); return; } leaf_list[leaf_count++] = -1 - nodenum; return; } node = &mod->nodes[nodenum]; plane = node->plane; // s = BoxOnPlaneSide (leaf_mins, leaf_maxs, plane); s = BOX_ON_PLANE_SIDE(leaf_mins, leaf_maxs, plane); if (s == 1) nodenum = node->childnum[0]; else if (s == 2) nodenum = node->childnum[1]; else { // go down both if (leaf_topnode == -1) leaf_topnode = nodenum; CM_BoxLeafnums_r (mod, node->childnum[0]); nodenum = node->childnum[1]; } } } int CM_BoxLeafnums_headnode (model_t *mod, vec3_t mins, vec3_t maxs, int *list, int listsize, int headnode, int *topnode) { leaf_list = list; leaf_count = 0; leaf_maxcount = listsize; leaf_mins = mins; leaf_maxs = maxs; leaf_topnode = -1; CM_BoxLeafnums_r (mod, headnode); if (topnode) *topnode = leaf_topnode; return leaf_count; } int CM_BoxLeafnums (model_t *mod, vec3_t mins, vec3_t maxs, int *list, int listsize, int *topnode) { return CM_BoxLeafnums_headnode (mod, mins, maxs, list, listsize, mod->hulls[0].firstclipnode, topnode); } /* ================== CM_PointContents ================== */ #define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist) int CM_PointContents (model_t *mod, vec3_t p) { int i, j, contents; mleaf_t *leaf; q2cbrush_t *brush; q2cbrushside_t *brushside; if (!mod) // map not loaded return 0; i = CM_PointLeafnum_r (mod, p, mod->hulls[0].firstclipnode); if (!mapisq3) return map_leafs[i].contents; //q2 is simple. leaf = &map_leafs[i]; // if ( leaf->contents & CONTENTS_NODROP ) { // contents = CONTENTS_NODROP; // } else { contents = 0; // } for (i = 0; i < leaf->numleafbrushes; i++) { brush = &map_brushes[map_leafbrushes[leaf->firstleafbrush + i]]; // check if brush actually adds something to contents if ( (contents & brush->contents) == brush->contents ) { continue; } brushside = &map_brushsides[brush->firstbrushside]; for ( j = 0; j < brush->numsides; j++, brushside++ ) { if ( PlaneDiff (p, brushside->plane) > 0 ) break; } if (j == brush->numsides) contents |= brush->contents; } return contents; } unsigned int CM_NativeContents(struct model_s *model, int hulloverride, int frame, vec3_t p, vec3_t mins, vec3_t maxs) { int contents; if (!DotProduct(mins, mins) && !DotProduct(maxs, maxs)) return CM_PointContents(model, p); if (!model) // map not loaded return 0; { int i, j, k; mleaf_t *leaf; q2cbrush_t *brush; q2cbrushside_t *brushside; vec3_t absmin, absmax; int leaflist[64]; k = CM_BoxLeafnums (model, absmin, absmax, leaflist, 64, NULL); contents = 0; for (k--; k >= 0; k--) { leaf = &map_leafs[leaflist[k]]; if (mapisq3) { for (i = 0; i < leaf->numleafbrushes; i++) { brush = &map_brushes[map_leafbrushes[leaf->firstleafbrush + i]]; // check if brush actually adds something to contents if ( (contents & brush->contents) == brush->contents ) { continue; } brushside = &map_brushsides[brush->firstbrushside]; for ( j = 0; j < brush->numsides; j++, brushside++ ) { if ( PlaneDiff (p, brushside->plane) > 0 ) break; } if (j == brush->numsides) contents |= brush->contents; } } else contents |= leaf->contents; } } return contents; } /* ================== CM_TransformedPointContents Handles offseting and rotation of the end points for moving and rotating entities ================== */ int CM_TransformedPointContents (model_t *mod, vec3_t p, int headnode, vec3_t origin, vec3_t angles) { vec3_t p_l; vec3_t temp; vec3_t forward, right, up; // subtract origin offset VectorSubtract (p, origin, p_l); // rotate start and end into the models frame of reference if (headnode != box_headnode && (angles[0] || angles[1] || angles[2]) ) { AngleVectors (angles, forward, right, up); VectorCopy (p_l, temp); p_l[0] = DotProduct (temp, forward); p_l[1] = -DotProduct (temp, right); p_l[2] = DotProduct (temp, up); } return CM_PointContents(mod, p); } /* =============================================================================== BOX TRACING =============================================================================== */ // 1/32 epsilon to keep floating point happy #define DIST_EPSILON (0.03125) vec3_t trace_start, trace_end; vec3_t trace_mins, trace_maxs; vec3_t trace_extents; vec3_t trace_absmins, trace_absmaxs; float trace_truefraction; float trace_nearfraction; trace_t trace_trace; int trace_contents; qboolean trace_ispoint; // optimized case /* ================ CM_ClipBoxToBrush ================ */ void CM_ClipBoxToBrush (vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2, trace_t *trace, q2cbrush_t *brush) { int i, j; mplane_t *plane, *clipplane; float dist; float enterfrac, leavefrac; vec3_t ofs; float d1, d2; qboolean getout, startout; float f; q2cbrushside_t *side, *leadside; float nearfrac=0; enterfrac = -1; leavefrac = 2; clipplane = NULL; if (!brush->numsides) return; c_brush_traces++; getout = false; startout = false; leadside = NULL; for (i=0 ; inumsides ; i++) { side = &map_brushsides[brush->firstbrushside+i]; plane = side->plane; // FIXME: special case for axial if (!trace_ispoint) { // general box case // push the plane out apropriately for mins/maxs // FIXME: use signbits into 8 way lookup for each mins/maxs for (j=0 ; j<3 ; j++) { if (plane->normal[j] < 0) ofs[j] = maxs[j]; else ofs[j] = mins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; } else { // special point case dist = plane->dist; } d1 = DotProduct (p1, plane->normal) - dist; d2 = DotProduct (p2, plane->normal) - dist; if (d2 > 0) getout = true; // endpoint is not in solid if (d1 > 0) startout = true; // if completely in front of face, no intersection if (d1 > 0 && d2 >= d1) return; if (d1 <= 0 && d2 <= 0) continue; // crosses face if (d1 > d2) { // enter f = (d1) / (d1-d2); if (f > enterfrac) { enterfrac = f; nearfrac = (d1-DIST_EPSILON) / (d1-d2); clipplane = plane; leadside = side; } } else { // leave f = (d1) / (d1-d2); if (f < leavefrac) leavefrac = f; } } if (!startout) { // original point was inside brush trace->startsolid = true; if (!getout) trace->allsolid = true; return; } if (enterfrac <= leavefrac) { if (enterfrac > -1 && enterfrac <= trace_truefraction) { if (enterfrac < 0) enterfrac = 0; trace_nearfraction = nearfrac; trace_truefraction = enterfrac; trace->plane.dist = clipplane->dist; VectorCopy(clipplane->normal, trace->plane.normal); trace->surface = &(leadside->surface->c); trace->contents = brush->contents; } } } void CM_ClipBoxToPatch (vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2, trace_t *trace, q2cbrush_t *brush) { int i, j; mplane_t *plane, *clipplane; float enterfrac, leavefrac, nearfrac = 0; vec3_t ofs; float d1, d2; float dist; qboolean startout; float f; q2cbrushside_t *side, *leadside; if (!brush->numsides) return; c_brush_traces++; enterfrac = -1; leavefrac = 2; clipplane = NULL; startout = false; leadside = NULL; for (i=0 ; inumsides ; i++) { side = &map_brushsides[brush->firstbrushside+i]; plane = side->plane; if (!trace_ispoint) { // general box case // push the plane out apropriately for mins/maxs // FIXME: use signbits into 8 way lookup for each mins/maxs for (j=0 ; j<3 ; j++) { if (plane->normal[j] < 0) ofs[j] = maxs[j]; else ofs[j] = mins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; } else { // special point case dist = plane->dist; } d1 = DotProduct (p1, plane->normal) - dist; d2 = DotProduct (p2, plane->normal) - dist; // if completely in front of face, no intersection if (d1 > 0 && d2 >= d1) return; if (d1 > 0) startout = true; if (d1 <= 0 && d2 <= 0) continue; // crosses face if (d1 > d2) { // enter f = (d1) / (d1-d2); if (f > enterfrac) { enterfrac = f; nearfrac = (d1-DIST_EPSILON) / (d1-d2); clipplane = plane; leadside = side; } } else { // leave f = (d1) / (d1-d2); if (f < leavefrac) leavefrac = f; } } if (!startout) { trace->startsolid = true; return; // original point is inside the patch } if (nearfrac <= leavefrac) { if (leadside && leadside->surface && enterfrac <= trace_truefraction) { if (enterfrac < 0) enterfrac = 0; trace_truefraction = enterfrac; trace_nearfraction = nearfrac; trace->plane.dist = clipplane->dist; VectorCopy(clipplane->normal, trace->plane.normal); trace->surface = &leadside->surface->c; trace->contents = brush->contents; } else if (enterfrac < trace_truefraction) leavefrac=0; } } /* ================ CM_TestBoxInBrush ================ */ void CM_TestBoxInBrush (vec3_t mins, vec3_t maxs, vec3_t p1, trace_t *trace, q2cbrush_t *brush) { int i, j; mplane_t *plane; float dist; vec3_t ofs; float d1; q2cbrushside_t *side; if (!brush->numsides) return; for (i=0 ; inumsides ; i++) { side = &map_brushsides[brush->firstbrushside+i]; plane = side->plane; // FIXME: special case for axial // general box case // push the plane out apropriately for mins/maxs // FIXME: use signbits into 8 way lookup for each mins/maxs for (j=0 ; j<3 ; j++) { if (plane->normal[j] < 0) ofs[j] = maxs[j]; else ofs[j] = mins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; d1 = DotProduct (p1, plane->normal) - dist; // if completely in front of face, no intersection if (d1 > 0) return; } // inside this brush trace->startsolid = trace->allsolid = true; trace->fraction = 0; trace->contents |= brush->contents; } void CM_TestBoxInPatch (vec3_t mins, vec3_t maxs, vec3_t p1, trace_t *trace, q2cbrush_t *brush) { int i, j; mplane_t *plane; vec3_t ofs; float dist; float d1, maxdist; q2cbrushside_t *side; if (!brush->numsides) return; maxdist = -9999; for (i=0 ; inumsides ; i++) { side = &map_brushsides[brush->firstbrushside+i]; plane = side->plane; // general box case // push the plane out apropriately for mins/maxs // FIXME: use signbits into 8 way lookup for each mins/maxs for (j=0 ; j<3 ; j++) { if (plane->normal[j] < 0) ofs[j] = maxs[j]; else ofs[j] = mins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; d1 = DotProduct (p1, plane->normal) - dist; // if completely in front of face, no intersection if (d1 > 0) return; if (side->surface && d1 > maxdist) maxdist = d1; } // FIXME if (maxdist < -0.25) return; // deep inside the patch // inside this patch trace->startsolid = trace->allsolid = true; trace->fraction = 0; trace->contents = brush->contents; } /* ================ CM_TraceToLeaf ================ */ void CM_TraceToLeaf (int leafnum) { int k, j; int brushnum; mleaf_t *leaf; q2cbrush_t *b; int patchnum; q3cpatch_t *patch; leaf = &map_leafs[leafnum]; if ( !(leaf->contents & trace_contents)) return; // trace line against all brushes in the leaf for (k=0 ; knumleafbrushes ; k++) { brushnum = map_leafbrushes[leaf->firstleafbrush+k]; b = &map_brushes[brushnum]; if (b->checkcount == checkcount) continue; // already checked this brush in another leaf b->checkcount = checkcount; if ( !(b->contents & trace_contents)) continue; CM_ClipBoxToBrush (trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, b); if (trace_nearfraction <= 0) return; } if (!mapisq3 || map_noCurves.value) return; // trace line against all patches in the leaf for (k = 0; k < leaf->numleafpatches; k++) { patchnum = map_leafpatches[leaf->firstleafpatch+k]; patch = &map_patches[patchnum]; if (patch->checkcount == checkcount) continue; // already checked this patch in another leaf patch->checkcount = checkcount; if ( !(patch->surface->c.value & trace_contents) ) continue; if ( !BoundsIntersect(patch->absmins, patch->absmaxs, trace_absmins, trace_absmaxs) ) continue; for (j = 0; j < patch->numbrushes; j++) { CM_ClipBoxToPatch (trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, &patch->brushes[j]); if (trace_nearfraction<=0) return; } } } /* ================ CM_TestInLeaf ================ */ void CM_TestInLeaf (int leafnum) { int k, j; int brushnum; int patchnum; mleaf_t *leaf; q2cbrush_t *b; q3cpatch_t *patch; leaf = &map_leafs[leafnum]; if ( !(leaf->contents & trace_contents)) return; // trace line against all brushes in the leaf for (k=0 ; knumleafbrushes ; k++) { brushnum = map_leafbrushes[leaf->firstleafbrush+k]; b = &map_brushes[brushnum]; if (b->checkcount == checkcount) continue; // already checked this brush in another leaf b->checkcount = checkcount; if ( !(b->contents & trace_contents)) continue; CM_TestBoxInBrush (trace_mins, trace_maxs, trace_start, &trace_trace, b); if (!trace_trace.fraction) return; } if (!mapisq3 || map_noCurves.value) return; // trace line against all patches in the leaf for (k = 0; k < leaf->numleafpatches; k++) { patchnum = map_leafpatches[leaf->firstleafpatch+k]; patch = &map_patches[patchnum]; if (patch->checkcount == checkcount) continue; // already checked this patch in another leaf patch->checkcount = checkcount; if ( !(patch->surface->c.value & trace_contents) ) continue; if ( !BoundsIntersect(patch->absmins, patch->absmaxs, trace_absmins, trace_absmaxs) ) continue; for (j = 0; j < patch->numbrushes; j++) { CM_TestBoxInPatch (trace_mins, trace_maxs, trace_start, &trace_trace, &patch->brushes[j]); if (!trace_trace.fraction) return; } } } /* ================== CM_RecursiveHullCheck ================== */ void CM_RecursiveHullCheck (model_t *mod, int num, float p1f, float p2f, vec3_t p1, vec3_t p2) { mnode_t *node; mplane_t *plane; float t1, t2, offset; float frac, frac2; float idist; int i; vec3_t mid; int side; float midf; if (trace_truefraction <= p1f) return; // already hit something nearer // if < 0, we are in a leaf node if (num < 0) { CM_TraceToLeaf (-1-num); return; } // // find the point distances to the seperating plane // and the offset for the size of the box // node = mod->nodes + num; plane = node->plane; if (plane->type < 3) { t1 = p1[plane->type] - plane->dist; t2 = p2[plane->type] - plane->dist; offset = trace_extents[plane->type]; } else { t1 = DotProduct (plane->normal, p1) - plane->dist; t2 = DotProduct (plane->normal, p2) - plane->dist; if (trace_ispoint) offset = 0; else offset = fabs(trace_extents[0]*plane->normal[0]) + fabs(trace_extents[1]*plane->normal[1]) + fabs(trace_extents[2]*plane->normal[2]); } #if 0 CM_RecursiveHullCheck (node->childnum[0], p1f, p2f, p1, p2); CM_RecursiveHullCheck (node->childnum[1], p1f, p2f, p1, p2); return; #endif // see which sides we need to consider if (t1 >= offset && t2 >= offset) { CM_RecursiveHullCheck (mod, node->childnum[0], p1f, p2f, p1, p2); return; } if (t1 < -offset && t2 < -offset) { CM_RecursiveHullCheck (mod, node->childnum[1], p1f, p2f, p1, p2); return; } // put the crosspoint DIST_EPSILON pixels on the near side if (t1 < t2) { idist = 1.0/(t1-t2); side = 1; frac2 = (t1 + offset + DIST_EPSILON)*idist; frac = (t1 - offset + DIST_EPSILON)*idist; } else if (t1 > t2) { idist = 1.0/(t1-t2); side = 0; frac2 = (t1 - offset - DIST_EPSILON)*idist; frac = (t1 + offset + DIST_EPSILON)*idist; } else { side = 0; frac = 1; frac2 = 0; } // move up to the node if (frac < 0) frac = 0; if (frac > 1) frac = 1; midf = p1f + (p2f - p1f)*frac; for (i=0 ; i<3 ; i++) mid[i] = p1[i] + frac*(p2[i] - p1[i]); CM_RecursiveHullCheck (mod, node->childnum[side], p1f, midf, p1, mid); // go past the node if (frac2 < 0) frac2 = 0; if (frac2 > 1) frac2 = 1; midf = p1f + (p2f - p1f)*frac2; for (i=0 ; i<3 ; i++) mid[i] = p1[i] + frac2*(p2[i] - p1[i]); CM_RecursiveHullCheck (mod, node->childnum[side^1], midf, p2f, mid, p2); } //====================================================================== /* ================== CM_BoxTrace ================== */ trace_t CM_BoxTrace (model_t *mod, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, int brushmask) { int i; #if ADJ int moved; #endif vec3_t point; checkcount++; // for multi-check avoidance c_traces++; // for statistics, may be zeroed // fill in a default trace memset (&trace_trace, 0, sizeof(trace_trace)); trace_truefraction = 1; trace_nearfraction = 1; trace_trace.fraction = 1; trace_trace.surface = &(nullsurface.c); if (!mod) // map not loaded return trace_trace; trace_contents = brushmask; VectorCopy (start, trace_start); VectorCopy (end, trace_end); VectorCopy (mins, trace_mins); VectorCopy (maxs, trace_maxs); // build a bounding box of the entire move (for patches) ClearBounds (trace_absmins, trace_absmaxs); VectorAdd (start, trace_mins, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorAdd (start, trace_maxs, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorAdd (end, trace_mins, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorAdd (end, trace_maxs, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); // // check for position test special case // if (start[0] == end[0] && start[1] == end[1] && start[2] == end[2]) { int leafs[1024]; int i, numleafs; vec3_t c1, c2; int topnode; #if ADJ if (-mins[2] != maxs[2]) //be prepared to move the thing up to counter the different min/max { moved = (trace_maxs[2] - trace_mins[2])/2; trace_mins[2] = -moved; trace_maxs[2] = moved; trace_extents[2] = -trace_mins[2] > trace_maxs[2] ? -trace_mins[2] : trace_maxs[2]; moved = (maxs[2] - trace_maxs[2]); } trace_start[2]+=moved; trace_end[2]+=moved; #endif VectorAdd (start, mins, c1); VectorAdd (start, maxs, c2); for (i=0 ; i<3 ; i++) { c1[i] -= 1; c2[i] += 1; } numleafs = CM_BoxLeafnums_headnode (mod, c1, c2, leafs, sizeof(leafs)/sizeof(leafs[0]), mod->hulls[0].firstclipnode, &topnode); for (i=0 ; i trace_maxs[0] ? -trace_mins[0] : trace_maxs[0]+1; trace_extents[1] = -trace_mins[1] > trace_maxs[1] ? -trace_mins[1] : trace_maxs[1]+1; trace_extents[2] = -trace_mins[2] > trace_maxs[2] ? -trace_mins[2] : trace_maxs[2]+1; #if ADJ if (-mins[2] != maxs[2]) //be prepared to move the thing up to counter the different min/max { moved = (trace_maxs[2] - trace_mins[2])/2; trace_mins[2] = -moved; trace_maxs[2] = moved; trace_extents[2] = -trace_mins[2] > trace_maxs[2] ? -trace_mins[2] : trace_maxs[2]; moved = (maxs[2] - trace_maxs[2]); } trace_start[2]+=moved; trace_end[2]+=moved; #endif } // // general sweeping through world // CM_RecursiveHullCheck (mod, mod->hulls[0].firstclipnode, 0, 1, trace_start, trace_end); if (trace_nearfraction == 1) { trace_trace.fraction = 1; VectorCopy (trace_end, trace_trace.endpos); } else { if (trace_nearfraction<0) trace_nearfraction=0; trace_trace.fraction = trace_nearfraction; for (i=0 ; i<3 ; i++) trace_trace.endpos[i] = trace_start[i] + trace_trace.fraction * (trace_end[i] - trace_start[i]); } #if ADJ trace_trace.endpos[2] -= moved; #endif return trace_trace; } qboolean CM_Trace(model_t *model, int forcehullnum, int frame, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, trace_t *trace) { *trace = CM_BoxTrace(model, start, end, mins, maxs, MASK_PLAYERSOLID); return trace->fraction != 1; } qboolean CM_NativeTrace(model_t *model, int forcehullnum, int frame, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, unsigned int contents, trace_t *trace) { *trace = CM_BoxTrace(model, start, end, mins, maxs, contents); return trace->fraction != 1; } /* ================== CM_TransformedBoxTrace Handles offseting and rotation of the end points for moving and rotating entities ================== */ #ifdef _MSC_VER #pragma optimize( "", off ) #endif trace_t CM_TransformedBoxTrace (model_t *mod, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, int brushmask, vec3_t origin, vec3_t angles) { trace_t trace; vec3_t start_l, end_l; vec3_t a; vec3_t forward, right, up; vec3_t temp; qboolean rotated; // subtract origin offset VectorSubtract (start, origin, start_l); VectorSubtract (end, origin, end_l); // rotate start and end into the models frame of reference if (mod != &box_model && (angles[0] || angles[1] || angles[2]) ) rotated = true; else rotated = false; if (rotated) { AngleVectors (angles, forward, right, up); VectorCopy (start_l, temp); start_l[0] = DotProduct (temp, forward); start_l[1] = -DotProduct (temp, right); start_l[2] = DotProduct (temp, up); VectorCopy (end_l, temp); end_l[0] = DotProduct (temp, forward); end_l[1] = -DotProduct (temp, right); end_l[2] = DotProduct (temp, up); } // sweep the box through the model trace = CM_BoxTrace (mod, start_l, end_l, mins, maxs, brushmask); if (rotated && trace.fraction != 1.0) { // FIXME: figure out how to do this with existing angles VectorNegate (angles, a); AngleVectors (a, forward, right, up); VectorCopy (trace.plane.normal, temp); trace.plane.normal[0] = DotProduct (temp, forward); trace.plane.normal[1] = -DotProduct (temp, right); trace.plane.normal[2] = DotProduct (temp, up); } if (trace.fraction == 1) { VectorCopy(end, trace.endpos); } else { trace.endpos[0] = start[0] + trace.fraction * (end[0] - start[0]); trace.endpos[1] = start[1] + trace.fraction * (end[1] - start[1]); trace.endpos[2] = start[2] + trace.fraction * (end[2] - start[2]); } return trace; } #ifdef _MSC_VER #pragma optimize( "", on ) #endif /* =============================================================================== PVS / PHS =============================================================================== */ /* =================== CM_DecompressVis =================== */ /* qbyte *Mod_Q2DecompressVis (qbyte *in, model_t *model) { static qbyte decompressed[MAX_MAP_LEAFS/8]; int c; qbyte *out; int row; row = (model->vis->numclusters+7)>>3; out = decompressed; if (!in) { // no vis info, so make all visible while (row) { *out++ = 0xff; row--; } return decompressed; } do { if (*in) { *out++ = *in++; continue; } c = in[1]; in += 2; while (c) { *out++ = 0; c--; } } while (out - decompressed < row); return decompressed; } #define DVIS_PVS 0 #define DVIS_PHS 1 qbyte *Mod_ClusterPVS (int cluster, model_t *model) { if (cluster == -1 || !model->vis) return mod_novis; return Mod_Q2DecompressVis ( (qbyte *)model->vis + model->vis->bitofs[cluster][DVIS_PVS], model); } */ void CM_DecompressVis (qbyte *in, qbyte *out) { int c; qbyte *out_p; int row; row = (numclusters+7)>>3; out_p = out; if (!in || !numvisibility) { // no vis info, so make all visible while (row) { *out_p++ = 0xff; row--; } return; } do { if (*in) { *out_p++ = *in++; continue; } c = in[1]; in += 2; if ((out_p - out) + c > row) { c = row - (out_p - out); Con_DPrintf ("warning: Vis decompression overrun\n"); } while (c) { *out_p++ = 0; c--; } } while (out_p - out < row); } qbyte pvsrow[MAX_MAP_LEAFS/8]; qbyte phsrow[MAX_MAP_LEAFS/8]; qbyte *CM_ClusterPVS (model_t *mod, int cluster, qbyte *buffer) { if (!buffer) buffer = pvsrow; if (mapisq3) { if (cluster != -1 && map_q3pvs->numclusters) { return (qbyte *)map_q3pvs->data + cluster * map_q3pvs->rowsize; } else { memset (buffer, 0, (numclusters+7)>>3); return buffer; } } if (cluster == -1) memset (buffer, 0, (numclusters+7)>>3); else CM_DecompressVis (map_visibility + map_q2vis->bitofs[cluster][DVIS_PVS], buffer); return buffer; } qbyte *CM_ClusterPHS (model_t *mod, int cluster) { if (mapisq3) //phs not working yet. { if (cluster != -1 && map_q3phs->numclusters) { return (qbyte *)map_q3phs->data + cluster * map_q3phs->rowsize; } else { memset (phsrow, 0, (numclusters+7)>>3); return phsrow; } } if (cluster == -1) memset (phsrow, 0, (numclusters+7)>>3); else CM_DecompressVis (map_visibility + map_q2vis->bitofs[cluster][DVIS_PHS], phsrow); return phsrow; } /* =============================================================================== AREAPORTALS =============================================================================== */ void FloodArea_r (q2carea_t *area, int floodnum) { int i; q2dareaportal_t *p; if (area->floodvalid == floodvalid) { if (area->floodnum == floodnum) return; Host_Error ("FloodArea_r: reflooded"); } area->floodnum = floodnum; area->floodvalid = floodvalid; p = &map_areaportals[area->firstareaportal]; for (i=0 ; inumareaportals ; i++, p++) { if (portalopen[p->portalnum]) FloodArea_r (&map_q2areas[p->otherarea], floodnum); } } /* ==================== FloodAreaConnections ==================== */ void FloodAreaConnections (void) { int i, j; q2carea_t *area; int floodnum; if (mapisq3) { // area 0 is not used for (i=1 ; ifloodvalid == floodvalid) continue; // already flooded into floodnum++; FloodArea_r (area, floodnum); } } void VARGS CMQ2_SetAreaPortalState (int portalnum, qboolean open) { if (mapisq3) Host_Error ("CMQ2_SetAreaPortalState on q3 map"); if (portalnum > numareaportals) Host_Error ("areaportal > numareaportals"); if (portalopen[portalnum] == open) return; portalopen[portalnum] = open; FloodAreaConnections (); return; } void CMQ3_SetAreaPortalState (int area1, int area2, qboolean open) { if (!mapisq3) return; // Host_Error ("CMQ3_SetAreaPortalState on non-q3 map"); if (area1 > numareas || area2 > numareas) Host_Error ("CMQ3_SetAreaPortalState: area > numareas"); if (open) { map_q3areas[area1].numareaportals[area2]++; map_q3areas[area2].numareaportals[area1]++; } else { map_q3areas[area1].numareaportals[area2]--; map_q3areas[area2].numareaportals[area1]--; } } qboolean VARGS CM_AreasConnected (model_t *mod, int area1, int area2) { if (map_noareas.value) return true; if (area1 > numareas || area2 > numareas) Host_Error ("area > numareas"); if (mapisq3) { int i; for (i=1 ; i>3; if (map_noareas.value) { // for debugging, send everything memset (buffer, 255, bytes); } else { memset (buffer, 0, bytes); if (mapisq3) { for (i=0 ; i>3] |= 1<<(i&7); } } else { floodnum = map_q2areas[area].floodnum; for (i=0 ; i>3] |= 1<<(i&7); } } } return bytes; } /* =================== CM_WritePortalState Writes the portal state to a savegame file =================== */ void CM_WritePortalState (FILE *f) { fwrite (portalopen, sizeof(portalopen), 1, f); } /* =================== CM_ReadPortalState Reads the portal state from a savegame file and recalculates the area connections =================== */ void CM_ReadPortalState (FILE *f) { fread (portalopen, 1, sizeof(portalopen), f); FloodAreaConnections (); } /* ============= CM_HeadnodeVisible Returns true if any leaf under headnode has a cluster that is potentially visible ============= */ qboolean CM_HeadnodeVisible (model_t *mod, int nodenum, qbyte *visbits) { int leafnum; int cluster; mnode_t *node; if (nodenum < 0) { leafnum = -1-nodenum; cluster = map_leafs[leafnum].cluster; if (cluster == -1) return false; if (visbits[cluster>>3] & (1<<(cluster&7))) return true; return false; } node = &mod->nodes[nodenum]; if (CM_HeadnodeVisible(mod, node->childnum[0], visbits)) return true; return CM_HeadnodeVisible(mod, node->childnum[1], visbits); } /* qboolean Q2BSP_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, trace_t *trace) { trace_t ret = CM_BoxTrace(p1, p2, hull->clip_mins, hull->clip_maxs, hull->firstclipnode, MASK_SOLID); memcpy(trace, &ret, sizeof(trace_t)); if (ret.fraction==1) return true; return false; }*/ unsigned int Q2BSP_PointContents(model_t *mod, vec3_t p) { int pc, ret = FTECONTENTS_EMPTY; pc = CM_PointContents (mod, p); if (pc & (Q2CONTENTS_SOLID|Q2CONTENTS_WINDOW)) ret |= FTECONTENTS_SOLID; if (pc & Q2CONTENTS_LAVA) ret |= FTECONTENTS_LAVA; if (pc & Q2CONTENTS_SLIME) ret |= FTECONTENTS_SLIME; if (pc & Q2CONTENTS_WATER) ret |= FTECONTENTS_WATER; if (pc & Q2CONTENTS_LADDER) ret |= FTECONTENTS_LADDER; return ret; } void Q2BSP_SetHullFuncs(hull_t *hull) { // hull->funcs.HullPointContents = Q2BSP_HullPointContents; } int map_checksum; qboolean Mod_LoadQ2BrushModel (model_t *mod, void *buffer) { mod->fromgame = fg_quake2; mod->engineflags |= MDLF_NEEDOVERBRIGHT; return CM_LoadMap(mod->name, buffer, true, &map_checksum) != NULL; } void CM_Init(void) //register cvars. { #define MAPOPTIONS "Map Cvar Options" Cvar_Register(&map_noareas, MAPOPTIONS); Cvar_Register(&map_noCurves, MAPOPTIONS); Cvar_Register(&map_autoopenportals, MAPOPTIONS); Cvar_Register(&r_subdivisions, MAPOPTIONS); } #endif