//a note about dedicated servers: //In the server-side gamecode, a couple of q1 extensions require knowing something about models. //So we load models serverside, if required. //things we need: //tag/bone names and indexes so we can have reasonable modding with tags. :) //tag/bone positions so we can shoot from the actual gun or other funky stuff //vertex positions so we can trace against the mesh rather than the bbox. //we use the gl renderer's model code because it supports more sorts of models than the sw renderer. Sad but true. #include "quakedef.h" #include "glquake.h" #if defined(GLQUAKE) || defined(D3DQUAKE) #ifdef _WIN32 #include #else #include #endif #define MAX_BONES 256 #include "com_mesh.h" //FIXME typedef struct { float scale[3]; // multiply qbyte verts by this float translate[3]; // then add this char name[16]; // frame name from grabbing dtrivertx_t verts[1]; // variable sized } dmd2aliasframe_t; extern cvar_t gl_part_flame, r_fullbrightSkins, r_fb_models; extern cvar_t r_noaliasshadows; void R_TorchEffect (vec3_t pos, int type); void GLMod_FloodFillSkin( qbyte *skin, int skinwidth, int skinheight ); extern char loadname[32]; // for hunk tags int numTempColours; byte_vec4_t *tempColours; int numTempVertexCoords; vec3_t *tempVertexCoords; int numTempNormals; vec3_t *tempNormals; extern cvar_t gl_ati_truform; extern cvar_t r_vertexdlights; extern cvar_t mod_md3flags; extern cvar_t r_skin_overlays; #ifndef SERVERONLY static hashtable_t skincolourmapped; extern avec3_t shadevector, shadelight, ambientlight; //changes vertex lighting values #if 0 static void R_GAliasApplyLighting(mesh_t *mesh, vec3_t org, vec3_t angles, float *colormod) { int l, v; vec3_t rel; vec3_t dir; float dot, d, a; if (mesh->colors4f_array) { float l; int temp; int i; avec4_t *colours = mesh->colors4f_array; vec3_t *normals = mesh->normals_array; vec3_t ambient, shade; qbyte alphab = bound(0, colormod[3], 1); if (!mesh->normals_array) { mesh->colors4f_array = NULL; return; } VectorCopy(ambientlight, ambient); VectorCopy(shadelight, shade); for (i = 0; i < 3; i++) { ambient[i] *= colormod[i]; shade[i] *= colormod[i]; } for (i = mesh->numvertexes-1; i >= 0; i--) { l = DotProduct(normals[i], shadevector); temp = l*ambient[0]+shade[0]; colours[i][0] = temp; temp = l*ambient[1]+shade[1]; colours[i][1] = temp; temp = l*ambient[2]+shade[2]; colours[i][2] = temp; colours[i][3] = alphab; } } if (r_vertexdlights.value && mesh->colors4f_array) { //don't include world lights for (l=rtlights_first ; lcl_dlights[l].radius+mesh->radius) //far out man! continue; rel[0] = -DotProduct(dir, currententity->axis[0]); rel[1] = -DotProduct(dir, currententity->axis[1]); //quake's crazy. rel[2] = -DotProduct(dir, currententity->axis[2]); /* glBegin(GL_LINES); glVertex3f(0,0,0); glVertex3f(rel[0],rel[1],rel[2]); glEnd(); */ for (v = 0; v < mesh->numvertexes; v++) { VectorSubtract(mesh->xyz_array[v], rel, dir); dot = DotProduct(dir, mesh->normals_array[v]); if (dot>0) { d = DotProduct(dir, dir); a = 1/d; if (a>0) { a *= 10000000*dot/sqrt(d); mesh->colors4f_array[v][0] += a*cl_dlights[l].color[0]; mesh->colors4f_array[v][1] += a*cl_dlights[l].color[1]; mesh->colors4f_array[v][2] += a*cl_dlights[l].color[2]; } // else // mesh->colors4f_array[v][1] = 1; } // else // mesh->colors4f_array[v][2] = 1; } } } } } #endif void GL_GAliasFlushSkinCache(void) { int i; bucket_t *b; for (i = 0; i < skincolourmapped.numbuckets; i++) { while((b = skincolourmapped.bucket[i])) { skincolourmapped.bucket[i] = b->next; BZ_Free(b->data); } } if (skincolourmapped.bucket) BZ_Free(skincolourmapped.bucket); skincolourmapped.bucket = NULL; skincolourmapped.numbuckets = 0; } static texnums_t *GL_ChooseSkin(galiasinfo_t *inf, char *modelname, int surfnum, entity_t *e) { galiasskin_t *skins; texnums_t *texnums; int frame; unsigned int subframe; unsigned int tc, bc, pc; qboolean forced; if (e->skinnum >= 100 && e->skinnum < 110) { shader_t *s; s = R_RegisterSkin(va("gfx/skin%d.lmp", e->skinnum)); if (!TEXVALID(s->defaulttextures.base)) s->defaulttextures.base = R_LoadHiResTexture(va("gfx/skin%d.lmp", e->skinnum), NULL, 0); s->defaulttextures.shader = s; return &s->defaulttextures; } if ((e->model->engineflags & MDLF_NOTREPLACEMENTS) && !ruleset_allow_sensative_texture_replacements.ival) forced = true; else forced = false; if (!gl_nocolors.ival || forced) { if (e->scoreboard) { if (!e->scoreboard->skin) Skin_Find(e->scoreboard); tc = e->scoreboard->ttopcolor; bc = e->scoreboard->tbottomcolor; pc = e->scoreboard->h2playerclass; } else { tc = 1; bc = 1; pc = 0; } if (forced || tc != 1 || bc != 1 || (e->scoreboard && e->scoreboard->skin)) { int inwidth, inheight; int tinwidth, tinheight; char *skinname; qbyte *original; galiascolourmapped_t *cm; char hashname[512]; // if (e->scoreboard->skin->cachedbpp /* if (cls.protocol == CP_QUAKE2) { if (e->scoreboard && e->scoreboard->skin) snprintf(hashname, sizeof(hashname), "%s$%s$%i", modelname, e->scoreboard->skin->name, surfnum); else snprintf(hashname, sizeof(hashname), "%s$%i", modelname, surfnum); skinname = hashname; } else */ { if (e->scoreboard && e->scoreboard->skin) { snprintf(hashname, sizeof(hashname), "%s$%s$%i", modelname, e->scoreboard->skin->name, surfnum); skinname = hashname; } else if (surfnum) { snprintf(hashname, sizeof(hashname), "%s$%i", modelname, surfnum); skinname = hashname; } else skinname = modelname; } if (!skincolourmapped.numbuckets) { void *buckets = BZ_Malloc(Hash_BytesForBuckets(256)); memset(buckets, 0, Hash_BytesForBuckets(256)); Hash_InitTable(&skincolourmapped, 256, buckets); } if (!inf->numskins) { skins = NULL; subframe = 0; texnums = NULL; } else { skins = (galiasskin_t*)((char *)inf + inf->ofsskins); if (!skins->texnums) { skins = NULL; subframe = 0; texnums = NULL; } else { if (e->skinnum >= 0 && e->skinnum < inf->numskins) skins += e->skinnum; subframe = cl.time*skins->skinspeed; subframe = subframe%skins->texnums; texnums = (texnums_t*)((char *)skins + skins->ofstexnums + subframe*sizeof(texnums_t)); } } for (cm = Hash_Get(&skincolourmapped, skinname); cm; cm = Hash_GetNext(&skincolourmapped, skinname, cm)) { if (cm->tcolour == tc && cm->bcolour == bc && cm->skinnum == e->skinnum && cm->subframe == subframe && cm->pclass == pc) { return &cm->texnum; } } //colourmap isn't present yet. cm = BZ_Malloc(sizeof(*cm)); Q_strncpyz(cm->name, skinname, sizeof(cm->name)); Hash_Add(&skincolourmapped, cm->name, cm, &cm->bucket); cm->tcolour = tc; cm->bcolour = bc; cm->pclass = pc; cm->skinnum = e->skinnum; cm->subframe = subframe; cm->texnum.fullbright = r_nulltex; cm->texnum.base = r_nulltex; cm->texnum.loweroverlay = r_nulltex; cm->texnum.upperoverlay = r_nulltex; cm->texnum.shader = texnums?texnums->shader:R_RegisterSkin(skinname); if (!texnums) { //load just the skin if (e->scoreboard && e->scoreboard->skin) { if (cls.protocol == CP_QUAKE2) { original = Skin_Cache32(e->scoreboard->skin); if (original) { inwidth = e->scoreboard->skin->width; inheight = e->scoreboard->skin->height; cm->texnum.base = R_LoadTexture32(e->scoreboard->skin->name, inwidth, inheight, (unsigned int*)original, IF_NOALPHA|IF_NOGAMMA); return &cm->texnum; } } else { original = Skin_Cache8(e->scoreboard->skin); if (original) { inwidth = e->scoreboard->skin->width; inheight = e->scoreboard->skin->height; cm->texnum.base = R_LoadTexture8(e->scoreboard->skin->name, inwidth, inheight, original, IF_NOALPHA|IF_NOGAMMA, 1); return &cm->texnum; } } if (TEXVALID(e->scoreboard->skin->tex_base)) { texnums = &cm->texnum; texnums->loweroverlay = e->scoreboard->skin->tex_lower; texnums->upperoverlay = e->scoreboard->skin->tex_upper; texnums->base = e->scoreboard->skin->tex_base; return texnums; } cm->texnum.base = R_LoadHiResTexture(e->scoreboard->skin->name, "skins", IF_NOALPHA); return &cm->texnum; } return NULL; } cm->texnum.bump = texnums[cm->skinnum].bump; //can't colour bumpmapping if (cls.protocol != CP_QUAKE2 && ((!texnums || !strcmp(modelname, "progs/player.mdl")) && e->scoreboard && e->scoreboard->skin)) { original = Skin_Cache8(e->scoreboard->skin); inwidth = e->scoreboard->skin->width; inheight = e->scoreboard->skin->height; if (!original && TEXVALID(e->scoreboard->skin->tex_base)) { texnums = &cm->texnum; texnums->loweroverlay = e->scoreboard->skin->tex_lower; texnums->upperoverlay = e->scoreboard->skin->tex_upper; texnums->base = e->scoreboard->skin->tex_base; return texnums; } } else { original = NULL; inwidth = 0; inheight = 0; } if (!original) { if (skins->ofstexels) { original = (qbyte *)skins + skins->ofstexels; inwidth = skins->skinwidth; inheight = skins->skinheight; } else { original = NULL; inwidth = 0; inheight = 0; } } tinwidth = skins->skinwidth; tinheight = skins->skinheight; if (original) { int i, j; unsigned translate32[256]; static unsigned pixels[512*512]; unsigned *out; unsigned frac, fracstep; unsigned scaled_width, scaled_height; qbyte *inrow; texnums = &cm->texnum; texnums->base = r_nulltex; texnums->fullbright = r_nulltex; scaled_width = gl_max_size.value < 512 ? gl_max_size.value : 512; scaled_height = gl_max_size.value < 512 ? gl_max_size.value : 512; //handle the case of an external skin being smaller than the texture that its meant to replace //(to support the evil hackage of the padding on the outside of common qw skins) if (tinwidth > inwidth) tinwidth = inwidth; if (tinheight > inheight) tinheight = inheight; //don't make scaled width any larger than it needs to be for (i = 0; i < 10; i++) { scaled_width = (1<= tinwidth) break; //its covered } if (scaled_width > gl_max_size.value) scaled_width = gl_max_size.value; //whoops, we made it too big for (i = 0; i < 10; i++) { scaled_height = (1<= tinheight) break; //its covered } if (scaled_height > gl_max_size.value) scaled_height = gl_max_size.value; //whoops, we made it too big if (scaled_width < 4) scaled_width = 4; if (scaled_height < 4) scaled_height = 4; if (h2playertranslations && pc) { unsigned int color_offsets[5] = {2*14*256,0,1*14*256,2*14*256,2*14*256}; unsigned char *colorA, *colorB, *sourceA, *sourceB; colorA = h2playertranslations + 256 + color_offsets[pc-1]; colorB = colorA + 256; sourceA = colorB + (tc * 256); sourceB = colorB + (bc * 256); for(i=0;i<256;i++) { translate32[i] = d_8to24rgbtable[i]; if (tc > 0 && (colorA[i] != 255)) translate32[i] = d_8to24rgbtable[sourceA[i]]; if (bc > 0 && (colorB[i] != 255)) translate32[i] = d_8to24rgbtable[sourceB[i]]; } translate32[0] = 0; } else { for (i=0 ; i<256 ; i++) translate32[i] = d_8to24rgbtable[i]; for (i = 0; i < 16; i++) { if (tc >= 16) { //assumption: row 0 is pure white. *((unsigned char*)&translate32[TOP_RANGE+i]+0) = (((tc&0xff0000)>>16)**((unsigned char*)&d_8to24rgbtable[i]+0))>>8; *((unsigned char*)&translate32[TOP_RANGE+i]+1) = (((tc&0x00ff00)>> 8)**((unsigned char*)&d_8to24rgbtable[i]+1))>>8; *((unsigned char*)&translate32[TOP_RANGE+i]+2) = (((tc&0x0000ff)>> 0)**((unsigned char*)&d_8to24rgbtable[i]+2))>>8; *((unsigned char*)&translate32[TOP_RANGE+i]+3) = 0xff; } else { if (tc < 8) translate32[TOP_RANGE+i] = d_8to24rgbtable[(tc<<4)+i]; else translate32[TOP_RANGE+i] = d_8to24rgbtable[(tc<<4)+15-i]; } if (bc >= 16) { *((unsigned char*)&translate32[BOTTOM_RANGE+i]+0) = (((bc&0xff0000)>>16)**((unsigned char*)&d_8to24rgbtable[i]+0))>>8; *((unsigned char*)&translate32[BOTTOM_RANGE+i]+1) = (((bc&0x00ff00)>> 8)**((unsigned char*)&d_8to24rgbtable[i]+1))>>8; *((unsigned char*)&translate32[BOTTOM_RANGE+i]+2) = (((bc&0x0000ff)>> 0)**((unsigned char*)&d_8to24rgbtable[i]+2))>>8; *((unsigned char*)&translate32[BOTTOM_RANGE+i]+3) = 0xff; } else { if (bc < 8) translate32[BOTTOM_RANGE+i] = d_8to24rgbtable[(bc<<4)+i]; else translate32[BOTTOM_RANGE+i] = d_8to24rgbtable[(bc<<4)+15-i]; } } } out = pixels; fracstep = tinwidth*0x10000/scaled_width; for (i=0 ; i> 1; for (j=0 ; j>16]]; frac += fracstep; out[j+1] = translate32[inrow[frac>>16]]; frac += fracstep; out[j+2] = translate32[inrow[frac>>16]]; frac += fracstep; out[j+3] = translate32[inrow[frac>>16]]; frac += fracstep; } } texnums->base = R_AllocNewTexture(scaled_width, scaled_height); R_Upload(texnums->base, "", h2playertranslations?TF_RGBA32:TF_RGBX32, pixels, NULL, scaled_width, scaled_height, IF_NOMIPMAP); if (!h2playertranslations) { //now do the fullbrights. out = pixels; fracstep = tinwidth*0x10000/scaled_width; for (i=0 ; i> 1; for (j=0 ; j>16] < 255-vid.fullbright) ((char *) (&out[j]))[3] = 0; //alpha 0 frac += fracstep; } } texnums->fullbright = R_AllocNewTexture(scaled_width, scaled_height); R_Upload(texnums->fullbright, "", TF_RGBA32, pixels, NULL, scaled_width, scaled_height, IF_NOMIPMAP); } } else { skins = (galiasskin_t*)((char *)inf + inf->ofsskins); if (e->skinnum >= 0 && e->skinnum < inf->numskins) skins += e->skinnum; if (!inf->numskins || !skins->texnums) return NULL; frame = cl.time*skins->skinspeed; frame = frame%skins->texnums; texnums = (texnums_t*)((char *)skins + skins->ofstexnums + frame*sizeof(texnums_t)); memcpy(&cm->texnum, texnums, sizeof(cm->texnum)); } return &cm->texnum; } } if (!inf->numskins) return NULL; skins = (galiasskin_t*)((char *)inf + inf->ofsskins); if (e->skinnum >= 0 && e->skinnum < inf->numskins) skins += e->skinnum; else { Con_DPrintf("Skin number out of range\n"); if (!inf->numskins) return NULL; } if (!skins->texnums) return NULL; frame = cl.time*skins->skinspeed; frame = frame%skins->texnums; texnums = (texnums_t*)((char *)skins + skins->ofstexnums + frame*sizeof(texnums_t)); return texnums; } #if defined(RTLIGHTS) && defined(GLQUAKE) static int numFacing; static qbyte *triangleFacing; static void R_CalcFacing(mesh_t *mesh, vec3_t lightpos) { float *v1, *v2, *v3; vec3_t d1, d2, norm; int i; index_t *indexes = mesh->indexes; int numtris = mesh->numindexes/3; if (numFacing < numtris) { if (triangleFacing) BZ_Free(triangleFacing); triangleFacing = BZ_Malloc(sizeof(*triangleFacing)*numtris); numFacing = numtris; } for (i = 0; i < numtris; i++, indexes+=3) { v1 = (float *)(mesh->xyz_array + indexes[0]); v2 = (float *)(mesh->xyz_array + indexes[1]); v3 = (float *)(mesh->xyz_array + indexes[2]); VectorSubtract(v1, v2, d1); VectorSubtract(v3, v2, d2); CrossProduct(d1, d2, norm); triangleFacing[i] = (( lightpos[0] - v1[0] ) * norm[0] + ( lightpos[1] - v1[1] ) * norm[1] + ( lightpos[2] - v1[2] ) * norm[2]) > 0; } } #define PROJECTION_DISTANCE 30000 static int numProjectedShadowVerts; static vec3_t *ProjectedShadowVerts; static void R_ProjectShadowVolume(mesh_t *mesh, vec3_t lightpos) { int numverts = mesh->numvertexes; int i; vecV_t *input = mesh->xyz_array; vec3_t *projected; if (numProjectedShadowVerts < numverts) { if (ProjectedShadowVerts) BZ_Free(ProjectedShadowVerts); ProjectedShadowVerts = BZ_Malloc(sizeof(*ProjectedShadowVerts)*numverts); numProjectedShadowVerts = numverts; } projected = ProjectedShadowVerts; for (i = 0; i < numverts; i++) { projected[i][0] = input[i][0] + (input[i][0]-lightpos[0])*PROJECTION_DISTANCE; projected[i][1] = input[i][1] + (input[i][1]-lightpos[1])*PROJECTION_DISTANCE; projected[i][2] = input[i][2] + (input[i][2]-lightpos[2])*PROJECTION_DISTANCE; } } static void R_DrawShadowVolume(mesh_t *mesh) { int t; vec3_t *proj = ProjectedShadowVerts; vecV_t *verts = mesh->xyz_array; index_t *indexes = mesh->indexes; int *neighbours = mesh->trneighbors; int numtris = mesh->numindexes/3; qglBegin(GL_TRIANGLES); for (t = 0; t < numtris; t++) { if (triangleFacing[t]) { //draw front qglVertex3fv(verts[indexes[t*3+0]]); qglVertex3fv(verts[indexes[t*3+1]]); qglVertex3fv(verts[indexes[t*3+2]]); //draw back qglVertex3fv(proj[indexes[t*3+1]]); qglVertex3fv(proj[indexes[t*3+0]]); qglVertex3fv(proj[indexes[t*3+2]]); //draw side caps if (neighbours[t*3+0] < 0 || !triangleFacing[neighbours[t*3+0]]) { qglVertex3fv(verts[indexes[t*3+1]]); qglVertex3fv(verts[indexes[t*3+0]]); qglVertex3fv(proj [indexes[t*3+0]]); qglVertex3fv(verts[indexes[t*3+1]]); qglVertex3fv(proj [indexes[t*3+0]]); qglVertex3fv(proj [indexes[t*3+1]]); } if (neighbours[t*3+1] < 0 || !triangleFacing[neighbours[t*3+1]]) { qglVertex3fv(verts[indexes[t*3+2]]); qglVertex3fv(verts[indexes[t*3+1]]); qglVertex3fv(proj [indexes[t*3+1]]); qglVertex3fv(verts[indexes[t*3+2]]); qglVertex3fv(proj [indexes[t*3+1]]); qglVertex3fv(proj [indexes[t*3+2]]); } if (neighbours[t*3+2] < 0 || !triangleFacing[neighbours[t*3+2]]) { qglVertex3fv(verts[indexes[t*3+0]]); qglVertex3fv(verts[indexes[t*3+2]]); qglVertex3fv(proj [indexes[t*3+2]]); qglVertex3fv(verts[indexes[t*3+0]]); qglVertex3fv(proj [indexes[t*3+2]]); qglVertex3fv(proj [indexes[t*3+0]]); } } } qglEnd(); } #endif //true if no shading is to be used. static qboolean R_CalcModelLighting(entity_t *e, model_t *clmodel) { vec3_t lightdir; int i; vec3_t dist; float add; if (clmodel->engineflags & MDLF_FLAME) { shadelight[0] = shadelight[1] = shadelight[2] = 1; ambientlight[0] = ambientlight[1] = ambientlight[2] = 1; return true; } if ((e->drawflags & MLS_MASKIN) == MLS_FULLBRIGHT || (e->flags & Q2RF_FULLBRIGHT)) { shadelight[0] = shadelight[1] = shadelight[2] = 1; ambientlight[0] = ambientlight[1] = ambientlight[2] = 1; return true; } if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL)) { if (e->flags & Q2RF_WEAPONMODEL) { cl.worldmodel->funcs.LightPointValues(cl.worldmodel, r_refdef.vieworg, shadelight, ambientlight, lightdir); for (i = 0; i < 3; i++) { /*viewmodels may not be pure black*/ if (ambientlight[i] < 24) ambientlight[i] = 24; } } else { vec3_t center; #if 0 /*hexen2*/ VectorAvg(clmodel->mins, clmodel->maxs, center); VectorAdd(e->origin, center, center); #else VectorCopy(e->origin, center); center[2] += 8; #endif cl.worldmodel->funcs.LightPointValues(cl.worldmodel, center, shadelight, ambientlight, lightdir); } } else { ambientlight[0] = ambientlight[1] = ambientlight[2] = shadelight[0] = shadelight[1] = shadelight[2] = 255; lightdir[0] = 0; lightdir[1] = 1; lightdir[2] = 1; } if (!r_vertexdlights.ival && r_dynamic.ival) { //don't do world lights, although that might be funny for (i=rtlights_first; iorigin, cl_dlights[i].origin, dist); add = cl_dlights[i].radius - Length(dist); if (add > 0) { add*=5; ambientlight[0] += add * cl_dlights[i].color[0]; ambientlight[1] += add * cl_dlights[i].color[1]; ambientlight[2] += add * cl_dlights[i].color[2]; //ZOID models should be affected by dlights as well shadelight[0] += add * cl_dlights[i].color[0]; shadelight[1] += add * cl_dlights[i].color[1]; shadelight[2] += add * cl_dlights[i].color[2]; } } } } for (i = 0; i < 3; i++) //clamp light so it doesn't get vulgar. { if (ambientlight[i] > 128) ambientlight[i] = 128; if (shadelight[i] > 192) shadelight[i] = 192; } //MORE HUGE HACKS! WHEN WILL THEY CEASE! // clamp lighting so it doesn't overbright as much // ZOID: never allow players to go totally black if (clmodel->engineflags & MDLF_PLAYER) { float fb = r_fullbrightSkins.value; if (fb > cls.allow_fbskins) fb = cls.allow_fbskins; if (fb < 0) fb = 0; if (fb) { extern cvar_t r_fb_models; if (fb >= 1 && r_fb_models.value) { ambientlight[0] = ambientlight[1] = ambientlight[2] = 1; shadelight[0] = shadelight[1] = shadelight[2] = 1; return true; } else { for (i = 0; i < 3; i++) { ambientlight[i] = max(ambientlight[i], 8 + fb * 120); shadelight[i] = max(shadelight[i], 8 + fb * 120); } } } for (i = 0; i < 3; i++) { if (ambientlight[i] < 8) ambientlight[i] = shadelight[i] = 8; } } for (i = 0; i < 3; i++) { if (ambientlight[i] > 128) ambientlight[i] = 128; shadelight[i] /= 200.0/255; ambientlight[i] /= 200.0/255; } if ((e->model->flags & EF_ROTATE) && cl.hexen2pickups) { shadelight[0] = shadelight[1] = shadelight[2] = ambientlight[0] = ambientlight[1] = ambientlight[2] = 128+sin(cl.servertime*4)*64; } if ((e->drawflags & MLS_MASKIN) == MLS_ABSLIGHT) { shadelight[0] = shadelight[1] = shadelight[2] = e->abslight; ambientlight[0] = ambientlight[1] = ambientlight[2] = e->abslight; } //#define SHOWLIGHTDIR { //lightdir is absolute, shadevector is relative shadevector[0] = DotProduct(lightdir, e->axis[0]); shadevector[1] = DotProduct(lightdir, e->axis[1]); shadevector[2] = DotProduct(lightdir, e->axis[2]); if (e->flags & Q2RF_WEAPONMODEL) { vec3_t temp; temp[0] = DotProduct(shadevector, vpn); temp[1] = -DotProduct(shadevector, vright); temp[2] = DotProduct(shadevector, vup); VectorCopy(temp, shadevector); } VectorNormalize(shadevector); } shadelight[0] *= 1/255.0f; shadelight[1] *= 1/255.0f; shadelight[2] *= 1/255.0f; ambientlight[0] *= 1/255.0f; ambientlight[1] *= 1/255.0f; ambientlight[2] *= 1/255.0f; if (e->flags & Q2RF_GLOW) { shadelight[0] += sin(cl.time)*0.25; shadelight[1] += sin(cl.time)*0.25; shadelight[2] += sin(cl.time)*0.25; } return false; } void R_GAlias_DrawBatch(batch_t *batch) { entity_t *e; galiasinfo_t *inf; model_t *clmodel; int surfnum; static mesh_t mesh; static mesh_t *meshl = &mesh; qboolean needrecolour; qboolean nolightdir; e = batch->ent; clmodel = e->model; currententity = e; nolightdir = R_CalcModelLighting(e, clmodel); inf = RMod_Extradata (clmodel); if (inf) { memset(&mesh, 0, sizeof(mesh)); for(surfnum=0; inf; ((inf->nextsurf)?(inf = (galiasinfo_t*)((char *)inf + inf->nextsurf)):(inf=NULL)), surfnum++) { if (batch->surf_first == surfnum) { needrecolour = Alias_GAliasBuildMesh(&mesh, inf, e, e->shaderRGBAf[3], nolightdir); batch->mesh = &meshl; return; } } } batch->meshes = 0; Con_Printf("Broken model surfaces mid-frame\n"); return; } void R_GAlias_GenerateBatches(entity_t *e, batch_t **batches) { galiasinfo_t *inf; model_t *clmodel; shader_t *shader; batch_t *b; int surfnum; texnums_t *skin; if (r_refdef.externalview && e->flags & Q2RF_WEAPONMODEL) return; /*switch model if we're the player model, and the player skin says a new model*/ { extern int cl_playerindex; if (e->scoreboard && e->model == cl.model_precache[cl_playerindex]) { clmodel = e->scoreboard->model; if (clmodel && clmodel->type == mod_alias) e->model = clmodel; } } clmodel = e->model; if (!(e->flags & Q2RF_WEAPONMODEL)) { if (R_CullEntityBox (e, clmodel->mins, clmodel->maxs)) return; #ifdef RTLIGHTS if (BE_LightCullModel(e->origin, clmodel)) return; } else { if (BE_LightCullModel(r_origin, clmodel)) return; #endif } if (clmodel->tainted) { if (!ruleset_allow_modified_eyes.ival && !strcmp(clmodel->name, "progs/eyes.mdl")) return; } inf = RMod_Extradata (clmodel); for(surfnum=0; inf; ((inf->nextsurf)?(inf = (galiasinfo_t*)((char *)inf + inf->nextsurf)):(inf=NULL)), surfnum++) { skin = GL_ChooseSkin(inf, clmodel->name, surfnum, e); if (!skin) continue; shader = e->forcedshader?e->forcedshader:skin->shader; if (shader) { b = BE_GetTempBatch(); if (!b) break; b->buildmeshes = R_GAlias_DrawBatch; b->ent = e; b->mesh = NULL; b->firstmesh = 0; b->meshes = 1; b->skin = skin; b->texture = NULL; b->shader = shader; b->lightmap = -1; b->surf_first = surfnum; b->flags = 0; b->vbo = 0; b->next = batches[shader->sort]; batches[shader->sort] = b; } } } #if 0 void R_Sprite_GenerateBatches(entity_t *e, batch_t **batches) { galiasinfo_t *inf; model_t *clmodel; shader_t *shader; batch_t *b; int surfnum; texnums_t *skin; if (r_refdef.externalview && e->flags & Q2RF_WEAPONMODEL) return; clmodel = e->model; if (!(e->flags & Q2RF_WEAPONMODEL)) { if (R_CullEntityBox (e, clmodel->mins, clmodel->maxs)) return; #ifdef RTLIGHTS if (BE_LightCullModel(e->origin, clmodel)) return; } else { if (BE_LightCullModel(r_origin, clmodel)) return; #endif } if (clmodel->tainted) { if (!ruleset_allow_modified_eyes.ival && !strcmp(clmodel->name, "progs/eyes.mdl")) return; } inf = RMod_Extradata (clmodel); if (!e->model || e->forcedshader) { //fixme return; } else { frame = R_GetSpriteFrame (e); psprite = e->model->cache.data; sprtype = psprite->type; shader = frame->shader; } if (shader) { b = BE_GetTempBatch(); if (!b) break; b->buildmeshes = R_Sprite_DrawBatch; b->ent = e; b->mesh = NULL; b->firstmesh = 0; b->meshes = 1; b->skin = frame-; b->texture = NULL; b->shader = frame->shader; b->lightmap = -1; b->surf_first = surfnum; b->flags = 0; b->vbo = 0; b->next = batches[shader->sort]; batches[shader->sort] = b; } } #endif //returns the rotated offset of the two points in result void RotateLightVector(const vec3_t *axis, const vec3_t origin, const vec3_t lightpoint, vec3_t result) { vec3_t offs; offs[0] = lightpoint[0] - origin[0]; offs[1] = lightpoint[1] - origin[1]; offs[2] = lightpoint[2] - origin[2]; result[0] = DotProduct (offs, axis[0]); result[1] = DotProduct (offs, axis[1]); result[2] = DotProduct (offs, axis[2]); } #if defined(RTLIGHTS) && defined(GLQUAKE) void GL_LightMesh (mesh_t *mesh, vec3_t lightpos, vec3_t colours, float radius) { vec3_t dir; int i; float dot, d, f, a; vecV_t *xyz = mesh->xyz_array; vec3_t *normals = mesh->normals_array; vec4_t *out = mesh->colors4f_array; if (!out) return; //urm.. if (normals) { for (i = 0; i < mesh->numvertexes; i++) { VectorSubtract(lightpos, xyz[i], dir); dot = DotProduct(dir, normals[i]); if (dot > 0) { d = DotProduct(dir, dir)/radius; a = 1/d; if (a>0) { a *= dot/sqrt(d); f = a*colours[0]; out[i][0] = f; f = a*colours[1]; out[i][1] = f; f = a*colours[2]; out[i][2] = f; } else { out[i][0] = 0; out[i][1] = 0; out[i][2] = 0; } } else { out[i][0] = 0; out[i][1] = 0; out[i][2] = 0; } out[i][3] = 1; } } else { for (i = 0; i < mesh->numvertexes; i++) { VectorSubtract(lightpos, xyz[i], dir); out[i][0] = colours[0]; out[i][1] = colours[1]; out[i][2] = colours[2]; out[i][3] = 1; } } } //courtesy of DP void R_BuildBumpVectors(const float *v0, const float *v1, const float *v2, const float *tc0, const float *tc1, const float *tc2, float *svector3f, float *tvector3f, float *normal3f) { float f, tangentcross[3], v10[3], v20[3], tc10[2], tc20[2]; // 79 add/sub/negate/multiply (1 cycle), 1 compare (3 cycle?), total cycles not counting load/store/exchange roughly 82 cycles // 6 add, 28 subtract, 39 multiply, 1 compare, 50% chance of 6 negates // 6 multiply, 9 subtract VectorSubtract(v1, v0, v10); VectorSubtract(v2, v0, v20); normal3f[0] = v10[1] * v20[2] - v10[2] * v20[1]; normal3f[1] = v10[2] * v20[0] - v10[0] * v20[2]; normal3f[2] = v10[0] * v20[1] - v10[1] * v20[0]; // 12 multiply, 10 subtract tc10[1] = tc1[1] - tc0[1]; tc20[1] = tc2[1] - tc0[1]; svector3f[0] = tc10[1] * v20[0] - tc20[1] * v10[0]; svector3f[1] = tc10[1] * v20[1] - tc20[1] * v10[1]; svector3f[2] = tc10[1] * v20[2] - tc20[1] * v10[2]; tc10[0] = tc1[0] - tc0[0]; tc20[0] = tc2[0] - tc0[0]; tvector3f[0] = tc10[0] * v20[0] - tc20[0] * v10[0]; tvector3f[1] = tc10[0] * v20[1] - tc20[0] * v10[1]; tvector3f[2] = tc10[0] * v20[2] - tc20[0] * v10[2]; // 12 multiply, 4 add, 6 subtract f = DotProduct(svector3f, normal3f); svector3f[0] -= f * normal3f[0]; svector3f[1] -= f * normal3f[1]; svector3f[2] -= f * normal3f[2]; f = DotProduct(tvector3f, normal3f); tvector3f[0] -= f * normal3f[0]; tvector3f[1] -= f * normal3f[1]; tvector3f[2] -= f * normal3f[2]; // if texture is mapped the wrong way (counterclockwise), the tangents // have to be flipped, this is detected by calculating a normal from the // two tangents, and seeing if it is opposite the surface normal // 9 multiply, 2 add, 3 subtract, 1 compare, 50% chance of: 6 negates CrossProduct(tvector3f, svector3f, tangentcross); if (DotProduct(tangentcross, normal3f) < 0) { VectorNegate(svector3f, svector3f); VectorNegate(tvector3f, tvector3f); } } //courtesy of DP void R_AliasGenerateTextureVectors(mesh_t *mesh, float *normal3f, float *svector3f, float *tvector3f) { int i; float sdir[3], tdir[3], normal[3], *v; index_t *e; float *vertex3f = (float*)mesh->xyz_array; float *texcoord2f = (float*)mesh->st_array; // clear the vectors // if (svector3f) memset(svector3f, 0, mesh->numvertexes * sizeof(float[3])); // if (tvector3f) memset(tvector3f, 0, mesh->numvertexes * sizeof(float[3])); // if (normal3f) memset(normal3f, 0, mesh->numvertexes * sizeof(float[3])); // process each vertex of each triangle and accumulate the results for (e = mesh->indexes; e < mesh->indexes+mesh->numindexes; e += 3) { R_BuildBumpVectors(vertex3f + e[0] * 3, vertex3f + e[1] * 3, vertex3f + e[2] * 3, texcoord2f + e[0] * 2, texcoord2f + e[1] * 2, texcoord2f + e[2] * 2, sdir, tdir, normal); // if (!areaweighting) // { // VectorNormalize(sdir); // VectorNormalize(tdir); // VectorNormalize(normal); // } // if (svector3f) for (i = 0;i < 3;i++) VectorAdd(svector3f + e[i]*3, sdir, svector3f + e[i]*3); // if (tvector3f) for (i = 0;i < 3;i++) VectorAdd(tvector3f + e[i]*3, tdir, tvector3f + e[i]*3); // if (normal3f) for (i = 0;i < 3;i++) VectorAdd(normal3f + e[i]*3, normal, normal3f + e[i]*3); } // now we could divide the vectors by the number of averaged values on // each vertex... but instead normalize them // 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies if (svector3f) for (i = 0, v = svector3f;i < mesh->numvertexes;i++, v += 3) VectorNormalize(v); // 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies if (tvector3f) for (i = 0, v = tvector3f;i < mesh->numvertexes;i++, v += 3) VectorNormalize(v); // 4 assignments, 1 divide, 1 sqrt, 2 adds, 6 multiplies if (normal3f) for (i = 0, v = normal3f;i < mesh->numvertexes;i++, v += 3) VectorNormalize(v); } void R_AliasGenerateVertexLightDirs(mesh_t *mesh, vec3_t lightdir, vec3_t *results, vec3_t *normal3f, vec3_t *svector3f, vec3_t *tvector3f) { int i; R_AliasGenerateTextureVectors(mesh, (float*)normal3f, (float*)svector3f, (float*)tvector3f); for (i = 0; i < mesh->numvertexes; i++) { results[i][0] = -DotProduct(lightdir, tvector3f[i]); results[i][1] = -DotProduct(lightdir, svector3f[i]); results[i][2] = -DotProduct(lightdir, normal3f[i]); } } //FIXME: Be less agressive. //This function will have to be called twice (for geforce cards), with the same data, so do the building once and rendering twice. void R_DrawGAliasShadowVolume(entity_t *e, vec3_t lightpos, float radius) { model_t *clmodel = e->model; galiasinfo_t *inf; mesh_t mesh; vec3_t lightorg; if (clmodel->engineflags & (MDLF_FLAME | MDLF_BOLT)) return; if (r_noaliasshadows.ival) return; // if (e->shaderRGBAf[3] < 0.5) // return; RotateLightVector(e->axis, e->origin, lightpos, lightorg); if (Length(lightorg) > radius + clmodel->radius) return; BE_SelectEntity(e); inf = RMod_Extradata (clmodel); while(inf) { if (inf->ofs_trineighbours) { Alias_GAliasBuildMesh(&mesh, inf, e, 1, true); R_CalcFacing(&mesh, lightorg); R_ProjectShadowVolume(&mesh, lightorg); R_DrawShadowVolume(&mesh); } if (inf->nextsurf) inf = (galiasinfo_t*)((char *)inf + inf->nextsurf); else inf = NULL; } } #endif #if 0 static int R_FindTriangleWithEdge ( index_t *indexes, int numtris, index_t start, index_t end, int ignore) { int i; int match, count; count = 0; match = -1; for (i = 0; i < numtris; i++, indexes += 3) { if ( (indexes[0] == start && indexes[1] == end) || (indexes[1] == start && indexes[2] == end) || (indexes[2] == start && indexes[0] == end) ) { if (i != ignore) match = i; count++; } else if ( (indexes[1] == start && indexes[0] == end) || (indexes[2] == start && indexes[1] == end) || (indexes[0] == start && indexes[2] == end) ) { count++; } } // detect edges shared by three triangles and make them seams if (count > 2) match = -1; return match; } #endif #if 0 static void R_BuildTriangleNeighbours ( int *neighbours, index_t *indexes, int numtris ) { int i, *n; index_t *index; for (i = 0, index = indexes, n = neighbours; i < numtris; i++, index += 3, n += 3) { n[0] = R_FindTriangleWithEdge (indexes, numtris, index[1], index[0], i); n[1] = R_FindTriangleWithEdge (indexes, numtris, index[2], index[1], i); n[2] = R_FindTriangleWithEdge (indexes, numtris, index[0], index[2], i); } } #endif #if 0 void GL_GenerateNormals(float *orgs, float *normals, int *indicies, int numtris, int numverts) { vec3_t d1, d2; vec3_t norm; int t, i, v1, v2, v3; int tricounts[MD2MAX_VERTS]; vec3_t combined[MD2MAX_VERTS]; int triremap[MD2MAX_VERTS]; if (numverts > MD2MAX_VERTS) return; //not an issue, you just loose the normals. memset(triremap, 0, numverts*sizeof(triremap[0])); v2=0; for (i = 0; i < numverts; i++) //weld points { for (v1 = 0; v1 < v2; v1++) { if (orgs[i*3+0] == combined[v1][0] && orgs[i*3+1] == combined[v1][1] && orgs[i*3+2] == combined[v1][2]) { triremap[i] = v1; break; } } if (v1 == v2) { combined[v1][0] = orgs[i*3+0]; combined[v1][1] = orgs[i*3+1]; combined[v1][2] = orgs[i*3+2]; v2++; triremap[i] = v1; } } memset(tricounts, 0, v2*sizeof(tricounts[0])); memset(combined, 0, v2*sizeof(*combined)); for (t = 0; t < numtris; t++) { v1 = triremap[indicies[t*3]]; v2 = triremap[indicies[t*3+1]]; v3 = triremap[indicies[t*3+2]]; VectorSubtract((orgs+v2*3), (orgs+v1*3), d1); VectorSubtract((orgs+v3*3), (orgs+v1*3), d2); CrossProduct(d1, d2, norm); VectorNormalize(norm); VectorAdd(norm, combined[v1], combined[v1]); VectorAdd(norm, combined[v2], combined[v2]); VectorAdd(norm, combined[v3], combined[v3]); tricounts[v1]++; tricounts[v2]++; tricounts[v3]++; } for (i = 0; i < numverts; i++) { if (tricounts[triremap[i]]) { VectorScale(combined[triremap[i]], 1.0f/tricounts[triremap[i]], normals+i*3); } } } #endif #endif #endif // defined(GLQUAKE)