/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_main.c #include "quakedef.h" #ifdef RGLQUAKE #include "glquake.h" #include "renderque.h" #ifdef Q3SHADERS #include "shader.h" #endif void R_RenderBrushPoly (msurface_t *fa); #define PROJECTION_DISTANCE 200 #define MAX_STENCIL_ENTS 128 extern int gl_canstencil; PFNGLCOMPRESSEDTEXIMAGE2DARBPROC qglCompressedTexImage2DARB; PFNGLGETCOMPRESSEDTEXIMAGEARBPROC qglGetCompressedTexImageARB; #define Q2RF_WEAPONMODEL 4 // only draw through eyes #define Q2RF_DEPTHHACK 16 entity_t r_worldentity; qboolean r_cache_thrash; // compatability vec3_t modelorg, r_entorigin; entity_t *currententity; int r_visframecount; // bumped when going to a new PVS int r_framecount; // used for dlight push checking float r_wateralphaval; //allowed or not... mplane_t frustum[4]; int c_brush_polys, c_alias_polys; qboolean envmap; // true during envmap command capture int particletexture; // little dot for particles int explosiontexture; int balltexture; int playertextures; // up to 16 color translated skins int mirrortexturenum; // quake texturenum, not gltexturenum qboolean mirror; mplane_t *mirror_plane; msurface_t *r_mirror_chain; qboolean r_inmirror; //or out-of-body void R_DrawAliasModel (entity_t *e); // // view origin // vec3_t vup; vec3_t vpn; vec3_t vright; vec3_t r_origin; float r_projection_matrix[16]; float r_view_matrix[16]; // // screen size info // refdef_t r_refdef; mleaf_t *r_viewleaf, *r_oldviewleaf; mleaf_t *r_viewleaf2, *r_oldviewleaf2; int r_viewcluster, r_viewcluster2, r_oldviewcluster, r_oldviewcluster2; texture_t *r_notexture_mip; int d_lightstylevalue[256]; // 8.8 fraction of base light value void GLR_MarkLeaves (void); cvar_t r_norefresh = SCVAR("r_norefresh","0"); //cvar_t r_drawentities = SCVAR("r_drawentities","1"); //cvar_t r_drawviewmodel = SCVAR("r_drawviewmodel","1"); //cvar_t r_speeds = SCVAR("r_speeds","0"); //cvar_t r_fullbright = SCVAR("r_fullbright","0"); cvar_t r_mirroralpha = SCVARF("r_mirroralpha","1", CVAR_CHEAT); cvar_t r_wateralpha = SCVAR("r_wateralpha","1"); //cvar_t r_waterwarp = SCVAR("r_waterwarp", "0"); cvar_t r_novis = SCVAR("r_novis","0"); //cvar_t r_netgraph = SCVAR("r_netgraph","0"); extern cvar_t gl_part_flame; cvar_t gl_clear = SCVAR("gl_clear","0"); cvar_t gl_cull = SCVAR("gl_cull","1"); cvar_t gl_smoothmodels = SCVAR("gl_smoothmodels","1"); cvar_t gl_affinemodels = SCVAR("gl_affinemodels","0"); cvar_t gl_polyblend = SCVAR("gl_polyblend","1"); cvar_t gl_playermip = SCVAR("gl_playermip","0"); cvar_t gl_keeptjunctions = SCVAR("gl_keeptjunctions","1"); cvar_t gl_reporttjunctions = SCVAR("gl_reporttjunctions","0"); cvar_t gl_finish = SCVAR("gl_finish","0"); cvar_t gl_contrast = SCVAR("gl_contrast", "1"); cvar_t gl_dither = SCVAR("gl_dither", "1"); cvar_t gl_maxdist = SCVAR("gl_maxdist", "8192"); cvar_t gl_mindist = SCVARF("gl_mindist", "4", CVAR_CHEAT); //by setting to 64 or something, you can use this as a wallhack extern cvar_t gl_motionblur; extern cvar_t gl_motionblurscale; extern cvar_t gl_ati_truform; extern cvar_t gl_ati_truform_type; extern cvar_t gl_ati_truform_tesselation; extern cvar_t gl_blendsprites; #ifdef R_XFLIP cvar_t r_xflip = SCVAR("leftisright", "0"); #endif extern cvar_t gl_ztrick; extern cvar_t scr_fov; // post processing stuff int sceneblur_texture; int scenepp_texture; int scenepp_texture_warp; int scenepp_texture_edge; int scenepp_ww_program; int scenepp_ww_parm_texture0i; int scenepp_ww_parm_texture1i; int scenepp_ww_parm_texture2i; int scenepp_ww_parm_ampscalef; int scenepp_bloom_program; // KrimZon - init post processing - called in GL_CheckExtensions, when they're called // I put it here so that only this file need be changed when messing with the post // processing shaders void GL_InitSceneProcessingShaders_WaterWarp (void) { char *genericvert = "\ varying vec2 v_texCoord0;\ varying vec2 v_texCoord1;\ varying vec2 v_texCoord2;\ void main (void)\ {\ vec4 v = vec4( gl_Vertex.x, gl_Vertex.y, gl_Vertex.z, 1.0 );\ gl_Position = gl_ModelViewProjectionMatrix * v;\ v_texCoord0 = gl_MultiTexCoord0.xy;\ v_texCoord1 = gl_MultiTexCoord1.xy;\ v_texCoord2 = gl_MultiTexCoord2.xy;\ }\ "; char *wwfrag = "\ varying vec2 v_texCoord0;\ varying vec2 v_texCoord1;\ varying vec2 v_texCoord2;\ uniform sampler2D theTexture0;\ uniform sampler2D theTexture1;\ uniform sampler2D theTexture2;\ uniform float ampscale;\ void main (void)\ {\ float amptemp;\ vec3 edge;\ edge = texture2D( theTexture2, v_texCoord2 ).rgb;\ amptemp = ampscale * edge.x;\ vec3 offset;\ offset = texture2D( theTexture1, v_texCoord1 ).rgb;\ offset.x = (offset.x - 0.5) * 2.0;\ offset.y = (offset.y - 0.5) * 2.0;\ vec2 temp;\ temp.x = v_texCoord0.x + offset.x * amptemp;\ temp.y = v_texCoord0.y + offset.y * amptemp;\ gl_FragColor = texture2D( theTexture0, temp );\ }\ "; if (qglGetError()) Con_Printf("GL Error before initing shader object\n"); scenepp_ww_program = GLSlang_CreateProgram(NULL, genericvert, wwfrag); if (!scenepp_ww_program) return; scenepp_ww_parm_texture0i = GLSlang_GetUniformLocation(scenepp_ww_program, "theTexture0"); scenepp_ww_parm_texture1i = GLSlang_GetUniformLocation(scenepp_ww_program, "theTexture1"); scenepp_ww_parm_texture2i = GLSlang_GetUniformLocation(scenepp_ww_program, "theTexture2"); scenepp_ww_parm_ampscalef = GLSlang_GetUniformLocation(scenepp_ww_program, "ampscale"); GLSlang_UseProgram(scenepp_ww_program); GLSlang_SetUniform1i(scenepp_ww_parm_texture0i, 0); GLSlang_SetUniform1i(scenepp_ww_parm_texture1i, 1); GLSlang_SetUniform1i(scenepp_ww_parm_texture2i, 2); GLSlang_UseProgram(0); if (qglGetError()) Con_Printf("GL Error initing shader object\n"); } void GL_InitSceneProcessingShaders_Bloom(void) { int texnum; char *genericvert = "\ varying vec2 v_texCoord0;\ /*varying vec2 v_texCoord1;*/\ /*varying vec2 v_texCoord2;*/\ void main (void)\ {\ vec4 v = vec4( gl_Vertex.x, gl_Vertex.y, gl_Vertex.z, 1.0 );\ gl_Position = gl_ModelViewProjectionMatrix * v;\ v_texCoord0 = gl_MultiTexCoord0.xy;\ /*v_texCoord1 = gl_MultiTexCoord1.xy;*/\ /*v_texCoord2 = gl_MultiTexCoord2.xy;*/\ }\ "; char *frag = COM_LoadTempFile("bloom.glsl"); if (!frag) return; scenepp_bloom_program = GLSlang_CreateProgram(NULL, genericvert, frag); if (!scenepp_bloom_program) return; texnum = GLSlang_GetUniformLocation(scenepp_bloom_program, "theTexture0"); GLSlang_SetUniform1i(texnum, 0); } void GL_InitSceneProcessingShaders (void) { GL_InitSceneProcessingShaders_WaterWarp(); GL_InitSceneProcessingShaders_Bloom(); } #define PP_WARP_TEX_SIZE 64 #define PP_AMP_TEX_SIZE 64 #define PP_AMP_TEX_BORDER 4 void GL_SetupSceneProcessingTextures (void) { int i, x, y; unsigned char pp_warp_tex[PP_WARP_TEX_SIZE*PP_WARP_TEX_SIZE*3]; unsigned char pp_edge_tex[PP_AMP_TEX_SIZE*PP_AMP_TEX_SIZE*3]; sceneblur_texture = texture_extension_number++; if (!gl_config.arb_shader_objects) return; scenepp_texture = texture_extension_number++; scenepp_texture_warp = texture_extension_number++; scenepp_texture_edge = texture_extension_number++; // init warp texture - this specifies offset in for (y=0; y PP_AMP_TEX_SIZE - PP_AMP_TEX_BORDER) { fx = (PP_AMP_TEX_SIZE - (float)x) / PP_AMP_TEX_BORDER; } if (y < PP_AMP_TEX_BORDER) { fy = (float)y / PP_AMP_TEX_BORDER; } if (y > PP_AMP_TEX_SIZE - PP_AMP_TEX_BORDER) { fy = (PP_AMP_TEX_SIZE - (float)y) / PP_AMP_TEX_BORDER; } if (fx < fy) { fy = fx; } pp_edge_tex[i ] = fy * 255; pp_edge_tex[i+1] = 0; pp_edge_tex[i+2] = 0; } } GL_Bind(scenepp_texture_edge); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); qglTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, PP_WARP_TEX_SIZE, PP_WARP_TEX_SIZE, 0, GL_RGB, GL_UNSIGNED_BYTE, pp_edge_tex); } /* ================= R_CullBox Returns true if the box is completely outside the frustom ================= */ qboolean R_CullBox (vec3_t mins, vec3_t maxs) { int i; for (i=0 ; i<4 ; i++) if (BOX_ON_PLANE_SIDE (mins, maxs, &frustum[i]) == 2) return true; return false; } qboolean R_CullSphere (vec3_t org, float radius) { //four frustrum planes all point inwards in an expanding 'cone'. int i; float d; for (i=0 ; i<4 ; i++) { d = DotProduct(frustum[i].normal, org)-frustum[i].dist; if (d <= -radius) return true; } return false; } void R_RotateForEntity (entity_t *e) { float m[16]; if (e->flags & Q2RF_WEAPONMODEL && r_refdef.currentplayernum>=0) { //rotate to view first m[0] = cl.viewent[r_refdef.currentplayernum].axis[0][0]; m[1] = cl.viewent[r_refdef.currentplayernum].axis[0][1]; m[2] = cl.viewent[r_refdef.currentplayernum].axis[0][2]; m[3] = 0; m[4] = cl.viewent[r_refdef.currentplayernum].axis[1][0]; m[5] = cl.viewent[r_refdef.currentplayernum].axis[1][1]; m[6] = cl.viewent[r_refdef.currentplayernum].axis[1][2]; m[7] = 0; m[8] = cl.viewent[r_refdef.currentplayernum].axis[2][0]; m[9] = cl.viewent[r_refdef.currentplayernum].axis[2][1]; m[10] = cl.viewent[r_refdef.currentplayernum].axis[2][2]; m[11] = 0; m[12] = cl.viewent[r_refdef.currentplayernum].origin[0]; m[13] = cl.viewent[r_refdef.currentplayernum].origin[1]; m[14] = cl.viewent[r_refdef.currentplayernum].origin[2]; m[15] = 1; qglMultMatrixf(m); } m[0] = e->axis[0][0]; m[1] = e->axis[0][1]; m[2] = e->axis[0][2]; m[3] = 0; m[4] = e->axis[1][0]; m[5] = e->axis[1][1]; m[6] = e->axis[1][2]; m[7] = 0; m[8] = e->axis[2][0]; m[9] = e->axis[2][1]; m[10] = e->axis[2][2]; m[11] = 0; m[12] = e->origin[0]; m[13] = e->origin[1]; m[14] = e->origin[2]; m[15] = 1; qglMultMatrixf(m); } /* ============================================================= SPRITE MODELS ============================================================= */ /* ================ R_GetSpriteFrame ================ */ mspriteframe_t *R_GetSpriteFrame (entity_t *currententity) { msprite_t *psprite; mspritegroup_t *pspritegroup; mspriteframe_t *pspriteframe; int i, numframes, frame; float *pintervals, fullinterval, targettime, time; psprite = currententity->model->cache.data; frame = currententity->frame; if ((frame >= psprite->numframes) || (frame < 0)) { Con_DPrintf ("R_DrawSprite: no such frame %d (%s)\n", frame, currententity->model->name); frame = 0; } if (psprite->frames[frame].type == SPR_SINGLE) { pspriteframe = psprite->frames[frame].frameptr; } else if (psprite->frames[frame].type == SPR_ANGLED) { pspritegroup = (mspritegroup_t *)psprite->frames[frame].frameptr; pspriteframe = pspritegroup->frames[(int)((r_refdef.viewangles[1]-currententity->angles[1])/360*8 + 0.5-4)&7]; } else { pspritegroup = (mspritegroup_t *)psprite->frames[frame].frameptr; pintervals = pspritegroup->intervals; numframes = pspritegroup->numframes; fullinterval = pintervals[numframes-1]; time = currententity->frame1time; // when loading in Mod_LoadSpriteGroup, we guaranteed all interval values // are positive, so we don't have to worry about division by 0 targettime = time - ((int)(time / fullinterval)) * fullinterval; for (i=0 ; i<(numframes-1) ; i++) { if (pintervals[i] > targettime) break; } pspriteframe = pspritegroup->frames[i]; } return pspriteframe; } /* ================= R_DrawSpriteModel ================= */ void R_DrawSpriteModel (entity_t *e) { vec3_t point; mspriteframe_t *frame; vec3_t forward, right, up; msprite_t *psprite; qbyte coloursb[4]; #ifdef Q3SHADERS if (e->forcedshader) { meshbuffer_t mb; mesh_t mesh; vec2_t texcoords[4]={{0, 1},{0,0},{1,0},{1,1}}; vec3_t vertcoords[4]; int indexes[6] = {0, 1, 2, 0, 2, 3}; byte_vec4_t colours[4]; float x, y; #define VectorSet(a,b,c,v) {v[0]=a;v[1]=b;v[2]=c;} x = cos(e->rotation+225*M_PI/180)*e->scale; y = sin(e->rotation+225*M_PI/180)*e->scale; VectorSet (e->origin[0] - y*vright[0] + x*vup[0], e->origin[1] - y*vright[1] + x*vup[1], e->origin[2] - y*vright[2] + x*vup[2], vertcoords[3]); VectorSet (e->origin[0] - x*vright[0] - y*vup[0], e->origin[1] - x*vright[1] - y*vup[1], e->origin[2] - x*vright[2] - y*vup[2], vertcoords[2]); VectorSet (e->origin[0] + y*vright[0] - x*vup[0], e->origin[1] + y*vright[1] - x*vup[1], e->origin[2] + y*vright[2] - x*vup[2], vertcoords[1]); VectorSet (e->origin[0] + x*vright[0] + y*vup[0], e->origin[1] + x*vright[1] + y*vup[1], e->origin[2] + x*vright[2] + y*vup[2], vertcoords[0]); coloursb[0] = e->shaderRGBAf[0]*255; coloursb[1] = e->shaderRGBAf[1]*255; coloursb[2] = e->shaderRGBAf[2]*255; coloursb[3] = e->shaderRGBAf[3]*255; *(int*)colours[0] = *(int*)colours[1] = *(int*)colours[2] = *(int*)colours[3] = *(int*)coloursb; mesh.colors_array = colours; mesh.indexes = indexes; mesh.lmst_array = NULL; mesh.st_array = texcoords; mesh.normals_array = NULL; mesh.numvertexes = 4; mesh.numindexes = 6; mesh.radius = e->scale; mesh.xyz_array = vertcoords; mesh.normals_array = NULL; R_IBrokeTheArrays(); mb.entity = e; mb.shader = e->forcedshader; mb.fog = NULL;//fog; mb.mesh = &mesh; mb.infokey = -1; mb.dlightbits = 0; R_PushMesh(&mesh, mb.shader->features | MF_NONBATCHED|MF_COLORS); R_RenderMeshBuffer ( &mb, false ); return; } #endif if (!e->model) return; if (e->flags & RF_NODEPTHTEST) qglDisable(GL_DEPTH_TEST); // don't even bother culling, because it's just a single // polygon without a surface cache frame = R_GetSpriteFrame (e); psprite = e->model->cache.data; // frame = 0x05b94140; switch(psprite->type) { case SPR_ORIENTED: // bullet marks on walls AngleVectors (e->angles, forward, right, up); break; case SPR_FACING_UPRIGHT: up[0] = 0;up[1] = 0;up[2]=1; right[0] = e->origin[1] - r_origin[1]; right[1] = -(e->origin[0] - r_origin[0]); right[2] = 0; VectorNormalize (right); break; case SPR_VP_PARALLEL_UPRIGHT: up[0] = 0;up[1] = 0;up[2]=1; VectorCopy (vright, right); break; default: case SPR_VP_PARALLEL: //normal sprite VectorCopy(vup, up); VectorCopy(vright, right); break; } up[0]*=e->scale; up[1]*=e->scale; up[2]*=e->scale; right[0]*=e->scale; right[1]*=e->scale; right[2]*=e->scale; qglColor4fv (e->shaderRGBAf); GL_DisableMultitexture(); GL_Bind(frame->gl_texturenum); { extern int gldepthfunc; qglDepthFunc(gldepthfunc); qglDepthMask(0); if (gldepthmin == 0.5) qglCullFace ( GL_BACK ); else qglCullFace ( GL_FRONT ); GL_TexEnv(GL_MODULATE); qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); qglDisable (GL_ALPHA_TEST); qglDisable(GL_BLEND); } if (e->flags & Q2RF_ADDATIVE) { qglEnable(GL_BLEND); qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); qglBlendFunc(GL_SRC_ALPHA, GL_ONE); } else if (e->shaderRGBAf[3]<1 || gl_blendsprites.value) { qglEnable(GL_BLEND); qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else qglEnable (GL_ALPHA_TEST); qglDisable(GL_CULL_FACE); qglBegin (GL_QUADS); qglTexCoord2f (0, 1); VectorMA (e->origin, frame->down, up, point); VectorMA (point, frame->left, right, point); qglVertex3fv (point); qglTexCoord2f (0, 0); VectorMA (e->origin, frame->up, up, point); VectorMA (point, frame->left, right, point); qglVertex3fv (point); qglTexCoord2f (1, 0); VectorMA (e->origin, frame->up, up, point); VectorMA (point, frame->right, right, point); qglVertex3fv (point); qglTexCoord2f (1, 1); VectorMA (e->origin, frame->down, up, point); VectorMA (point, frame->right, right, point); qglVertex3fv (point); qglEnd (); qglDisable(GL_BLEND); qglDisable (GL_ALPHA_TEST); qglEnable(GL_DEPTH_TEST); if (e->flags & Q2RF_ADDATIVE) //back to regular blending for us! qglBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } #if 0 extern int gldepthfunc; typedef struct decal_s { vec3_t origin; vec3_t normal; int modelindex; float endtime; float starttime; float size; struct decal_s *next; } decal_t; decal_t *firstdecal; void vectoangles(vec3_t vec, vec3_t ang); void R_DrawDecals(void) { // vec3_t point; // vec3_t right, up; entity_t ent; extern int cl_spikeindex; extern model_t mod_known[]; decal_t *dec = firstdecal; // glDisable(GL_TEXTURE_2D); glDisable (GL_ALPHA_TEST); glEnable (GL_BLEND); // glDepthFunc(GL_LEQUAL); // glDisable(GL_CULL_TEST); // glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); GL_Bind(particletexture); // glDepthMask(0); // glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glColor4f(0, 0, 0, 0.5); // glClearStencil(0x0); // glEnable(GL_STENCIL_TEST); memset(&ent, 0, sizeof(ent)); while(dec) { // if (dec->modelindex) { ent.origin[0] = dec->origin[0]; ent.origin[1] = dec->origin[1]; ent.origin[2] = dec->origin[2]; ent.angles[0] = -dec->normal[0]; ent.angles[1] = -dec->normal[1]; ent.angles[2] = -dec->normal[2]; vectoangles(ent.angles, ent.angles); ent.model = &mod_known[cl_spikeindex];//dec->modelindex; currententity = &ent; switch(currententity->model->type) { case mod_alias: R_DrawAliasModel(currententity); break; case mod_alias3: R_DrawAlias3Model(currententity); break; } dec = dec->next; continue; } /* PerpendicularVector(up, dec->normal); CrossProduct(dec->normal, up, right); #if 0 glClear(GL_STENCIL_BUFFER_BIT); glStencilFunc (GL_ALWAYS, 0x1, 0x1); glStencilOp (GL_REPLACE, GL_REPLACE, GL_REPLACE); glBegin(GL_QUADS); glVertex2f (-1.0, 0.0); glVertex2f (0.0, 1.0); glVertex2f (1.0, 0.0); glVertex2f (0.0, -1.0); glEnd(); glStencilFunc (GL_EQUAL, 0x1, 0x1); //where we drew to the stencil buffer. glStencilOp (GL_ZERO, GL_KEEP, GL_KEEP); #endif // glColor4f(1, 1, 1, (dec->starttime-dec->endtime) * (cl.time-dec->starttime)); glBegin (GL_QUADS); glTexCoord2f (0, 0.5); VectorMA (dec->origin, dec->size, up, point); VectorMA (point, -dec->size, right, point); glVertex3fv (point); glTexCoord2f (0, 0); VectorMA (dec->origin, -dec->size, up, point); VectorMA (point, -dec->size, right, point); glVertex3fv (point); glTexCoord2f (0.5, 0); VectorMA (dec->origin, -dec->size, up, point); VectorMA (point, dec->size, right, point); glVertex3fv (point); glTexCoord2f (0.5, 0.5); VectorMA (dec->origin, dec->size, up, point); VectorMA (point, dec->size, right, point); glVertex3fv (point); glEnd (); dec = dec->next; */ } // glDisable(GL_STENCIL_TEST); // glDepthMask(1); glEnable(GL_TEXTURE_2D); glDisable (GL_BLEND); // glDepthFunc(gldepthfunc); } void TraceLineN (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal); void GLR_AddDecals(vec3_t org) { decal_t *dec; vec3_t end, impact, norm; vec3_t dir[] = { {0, 0, 10}, {0, 0, -10}, {0, 10, 0}, {0, -10, 0}, {10, 0, 0}, {-10, 0, 0} }; int i; #define STOP_EPSILON 0.01 return; for (i = 0; i < 6; i++) { VectorAdd(org, dir[i], end); TraceLineN(org, end, impact, norm); if (!((end[0]==impact[0] && end[1]==impact[1] && end[2]==impact[2]) || (!impact[0] && !impact[1] && !impact[2]))) { dec = Z_Malloc(sizeof(decal_t)); VectorCopy(norm, dec->normal); // VectorCopy(impact, dec->origin); VectorMA(impact, STOP_EPSILON, norm, dec->origin); dec->next = firstdecal; firstdecal = dec; } } } #endif //================================================================================== void GLR_DrawSprite(void *e, void *parm) { qglEnd(); currententity = e; qglEnable(GL_TEXTURE_2D); R_DrawSpriteModel (currententity); P_FlushRenderer(); qglBegin(GL_QUADS); } /* ============= R_DrawEntitiesOnList ============= */ void GLR_DrawEntitiesOnList (void) { int i; if (!r_drawentities.value) return; // draw sprites seperately, because of alpha blending for (i=0 ; irtype) { case RT_SPRITE: RQ_AddDistReorder(GLR_DrawSprite, currententity, NULL, currententity->origin); // R_DrawSpriteModel(currententity); continue; #ifdef Q3SHADERS case RT_BEAM: case RT_RAIL_RINGS: case RT_LIGHTNING: R_DrawLightning(currententity); continue; case RT_RAIL_CORE: R_DrawRailCore(currententity); continue; #endif case RT_MODEL: //regular model break; case RT_PORTALSURFACE: continue; //this doesn't do anything anyway, does it? default: case RT_POLY: //these are a little painful, we need to do them some time... just not yet. continue; } if (currententity->flags & Q2RF_BEAM) { R_DrawBeam(currententity); continue; } if (!currententity->model) continue; if (cl.lerpents && (cls.allow_anyparticles || currententity->visframe)) //allowed or static { if (gl_part_flame.value) { if (currententity->model->engineflags & MDLF_ENGULPHS) continue; } } switch (currententity->model->type) { case mod_alias: if (r_refdef.flags & Q2RDF_NOWORLDMODEL || !cl.worldmodel || cl.worldmodel->type != mod_brush || cl.worldmodel->fromgame == fg_doom) R_DrawGAliasModel (currententity); break; #ifdef HALFLIFEMODELS case mod_halflife: R_DrawHLModel (currententity); break; #endif case mod_brush: if (!cl.worldmodel || cl.worldmodel->type != mod_brush || cl.worldmodel->fromgame == fg_doom) PPL_BaseBModelTextures (currententity); break; case mod_sprite: RQ_AddDistReorder(GLR_DrawSprite, currententity, NULL, currententity->origin); break; #ifdef TERRAIN case mod_heightmap: GL_DrawHeightmapModel(currententity); break; #endif default: break; } } } /* ============= R_DrawViewModel ============= */ void GLR_DrawViewModel (void) { /* // float ambient[4], diffuse[4]; // int j; // int lnum; // vec3_t dist; // float add; // dlight_t *dl; // int ambientlight, shadelight; static struct model_s *oldmodel[MAX_SPLITS]; static float lerptime[MAX_SPLITS]; static int prevframe[MAX_SPLITS]; #ifdef SIDEVIEWS extern qboolean r_secondaryview; if (r_secondaryview==1) return; #endif if (!r_drawviewmodel.value || !Cam_DrawViewModel(r_refdef.currentplayernum)) return; if (envmap) return; #ifdef Q2CLIENT if (cls.q2server) return; #endif if (!r_drawentities.value) return; if (cl.stats[r_refdef.currentplayernum][STAT_ITEMS] & IT_INVISIBILITY) return; if (cl.stats[r_refdef.currentplayernum][STAT_HEALTH] <= 0) return; currententity = &cl.viewent[r_refdef.currentplayernum]; if (!currententity->model) return; // if (cls.allow_anyparticles || currententity->visframe) //allowed or static { if (currententity->model->particleeffect>=0) { if (currententity->model->particleengulphs) { if (gl_part_flame.value) { P_TorchEffect(currententity->origin, currententity->model->particleeffect); currententity->model = NULL; return; } } else { if (gl_part_torch.value) { P_TorchEffect(currententity->origin, currententity->model->particleeffect); } } } } #ifdef PEXT_SCALE currententity->scale = 1; #endif if (r_drawviewmodel.value > 0 && r_drawviewmodel.value < 1) currententity->alpha = r_drawviewmodel.value; else currententity->alpha = 1; if (currententity->frame != prevframe[r_refdef.currentplayernum]) { currententity->oldframe = prevframe[r_refdef.currentplayernum]; lerptime[r_refdef.currentplayernum] = realtime; } prevframe[r_refdef.currentplayernum] = currententity->frame; if (currententity->model != oldmodel[r_refdef.currentplayernum]) { oldmodel[r_refdef.currentplayernum] = currententity->model; currententity->oldframe = currententity->frame; lerptime[r_refdef.currentplayernum] = realtime; } currententity->lerptime = 1-(realtime-lerptime[r_refdef.currentplayernum])*10; if (currententity->lerptime<0)currententity->lerptime=0; if (currententity->lerptime>1)currententity->lerptime=1; currententity->flags = Q2RF_WEAPONMODEL|Q2RF_DEPTHHACK; switch(currententity->model->type) { case mod_sprite: R_DrawSpriteModel (currententity); break; case mod_alias: R_DrawGAliasModel (currententity); break; #ifdef HALFLIFEMODELS case mod_halflife: R_DrawHLModel (currententity); break; #else case mod_halflife: //no gcc warning please break; #endif //we don't support these as view models case mod_brush: case mod_dummy: break; } */ } /* ============ R_PolyBlend ============ */ void GLV_CalcBlendServer (float colors[4]); void R_PolyBlend (void) { float shift[4]; extern qboolean gammaworks; if ((!v_blend[3] || gammaworks) && !cl.cshifts[CSHIFT_SERVER].percent) return; GLV_CalcBlendServer(shift); //figure out the shift we need (normally just the server specified one) //Con_Printf("R_PolyBlend(): %4.2f %4.2f %4.2f %4.2f\n",shift[0], shift[1], shift[2], shift[3]); GL_DisableMultitexture(); qglDisable (GL_ALPHA_TEST); qglEnable (GL_BLEND); qglDisable (GL_DEPTH_TEST); qglDisable (GL_TEXTURE_2D); qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); qglLoadIdentity (); qglRotatef (-90, 1, 0, 0); // put Z going up qglRotatef (90, 0, 0, 1); // put Z going up qglColor4fv (shift); qglBegin (GL_QUADS); qglVertex3f (10, 100, 100); qglVertex3f (10, -100, 100); qglVertex3f (10, -100, -100); qglVertex3f (10, 100, -100); qglEnd (); qglDisable (GL_BLEND); qglEnable (GL_TEXTURE_2D); qglEnable (GL_ALPHA_TEST); } void GLR_BrightenScreen (void) { extern float vid_gamma; float f; RSpeedMark(); if (gl_contrast.value <= 1.0) return; f = gl_contrast.value; f = min (f, 3); f = pow (f, vid_gamma); qglDisable (GL_TEXTURE_2D); qglEnable (GL_BLEND); qglBlendFunc (GL_DST_COLOR, GL_ONE); qglBegin (GL_QUADS); while (f > 1) { if (f >= 2) qglColor3f (1,1,1); else qglColor3f (f - 1, f - 1, f - 1); qglVertex2f (0, 0); qglVertex2f (vid.width, 0); qglVertex2f (vid.width, vid.height); qglVertex2f (0, vid.height); f *= 0.5; } qglEnd (); qglBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); qglEnable (GL_TEXTURE_2D); qglDisable (GL_BLEND); qglColor3f(1, 1, 1); RSpeedEnd(RSPEED_PALETTEFLASHES); } int SignbitsForPlane (mplane_t *out) { int bits, j; // for fast box on planeside test bits = 0; for (j=0 ; j<3 ; j++) { if (out->normal[j] < 0) bits |= 1<fromgame == fg_quake2 || cl.worldmodel->fromgame == fg_quake3)) { static mleaf_t fakeleaf; mleaf_t *leaf; r_viewleaf = &fakeleaf; //so we can use quake1 rendering routines for q2 bsps. r_viewleaf->contents = Q1CONTENTS_EMPTY; r_viewleaf2 = NULL; r_oldviewcluster = r_viewcluster; r_oldviewcluster2 = r_viewcluster2; leaf = GLMod_PointInLeaf (cl.worldmodel, r_origin); r_viewcluster = r_viewcluster2 = leaf->cluster; // check above and below so crossing solid water doesn't draw wrong if (!leaf->contents) { // look down a bit vec3_t temp; VectorCopy (r_origin, temp); temp[2] -= 16; leaf = GLMod_PointInLeaf (cl.worldmodel, temp); if ( !(leaf->contents & Q2CONTENTS_SOLID) && (leaf->cluster != r_viewcluster2) ) r_viewcluster2 = leaf->cluster; } else { // look up a bit vec3_t temp; VectorCopy (r_origin, temp); temp[2] += 16; leaf = GLMod_PointInLeaf (cl.worldmodel, temp); if ( !(leaf->contents & Q2CONTENTS_SOLID) && (leaf->cluster != r_viewcluster2) ) r_viewcluster2 = leaf->cluster; } } #endif else { mleaf_t *leaf; vec3_t temp; r_oldviewleaf = r_viewleaf; r_oldviewleaf2 = r_viewleaf2; r_viewleaf = GLMod_PointInLeaf (cl.worldmodel, r_origin); if (!r_viewleaf) { } else if (r_viewleaf->contents == Q1CONTENTS_EMPTY) { //look down a bit VectorCopy (r_origin, temp); temp[2] -= 16; leaf = GLMod_PointInLeaf (cl.worldmodel, temp); if (leaf->contents <= Q1CONTENTS_WATER && leaf->contents >= Q1CONTENTS_LAVA) r_viewleaf2 = leaf; else r_viewleaf2 = NULL; } else if (r_viewleaf->contents <= Q1CONTENTS_WATER && r_viewleaf->contents >= Q1CONTENTS_LAVA) { //in water, look up a bit. VectorCopy (r_origin, temp); temp[2] += 16; leaf = GLMod_PointInLeaf (cl.worldmodel, temp); if (leaf->contents == Q1CONTENTS_EMPTY) r_viewleaf2 = leaf; else r_viewleaf2 = NULL; } else r_viewleaf2 = NULL; if (r_viewleaf) V_SetContentsColor (r_viewleaf->contents); } GLV_CalcBlend (); r_cache_thrash = false; c_brush_polys = 0; c_alias_polys = 0; } void MYgluPerspective( GLdouble fovx, GLdouble fovy, GLdouble zNear, GLdouble zFar ) { GLdouble xmin, xmax, ymin, ymax; ymax = zNear * tan( fovy * M_PI / 360.0 ); ymin = -ymax; xmax = zNear * tan( fovx * M_PI / 360.0 ); xmin = -xmax; r_projection_matrix[0] = (2*zNear) / (xmax - xmin); r_projection_matrix[4] = 0; r_projection_matrix[8] = (xmax + xmin) / (xmax - xmin); r_projection_matrix[12] = 0; r_projection_matrix[1] = 0; r_projection_matrix[5] = (2*zNear) / (ymax - ymin); r_projection_matrix[9] = (ymax + ymin) / (ymax - ymin); r_projection_matrix[13] = 0; r_projection_matrix[2] = 0; r_projection_matrix[6] = 0; r_projection_matrix[10] = - (zFar+zNear)/(zFar-zNear); r_projection_matrix[14] = - (2.0f*zFar*zNear)/(zFar-zNear); r_projection_matrix[3] = 0; r_projection_matrix[7] = 0; r_projection_matrix[11] = -1; r_projection_matrix[15] = 0; } void GL_InfinatePerspective( GLdouble fovx, GLdouble fovy, GLdouble zNear) { // nudge infinity in just slightly for lsb slop GLfloat nudge = 1;// - 1.0 / (1<<23); GLdouble xmin, xmax, ymin, ymax; ymax = zNear * tan( fovy * M_PI / 360.0 ); ymin = -ymax; xmax = zNear * tan( fovx * M_PI / 360.0 ); xmin = -xmax; r_projection_matrix[0] = (2*zNear) / (xmax - xmin); r_projection_matrix[4] = 0; r_projection_matrix[8] = (xmax + xmin) / (xmax - xmin); r_projection_matrix[12] = 0; r_projection_matrix[1] = 0; r_projection_matrix[5] = (2*zNear) / (ymax - ymin); r_projection_matrix[9] = (ymax + ymin) / (ymax - ymin); r_projection_matrix[13] = 0; r_projection_matrix[2] = 0; r_projection_matrix[6] = 0; r_projection_matrix[10] = -1 * nudge; r_projection_matrix[14] = -2*zNear * nudge; r_projection_matrix[3] = 0; r_projection_matrix[7] = 0; r_projection_matrix[11] = -1; r_projection_matrix[15] = 0; } void GL_ParallelPerspective(GLdouble xmin, GLdouble xmax, GLdouble ymax, GLdouble ymin, GLdouble znear, GLdouble zfar) { r_projection_matrix[0] = 2/(xmax-xmin); r_projection_matrix[4] = 0; r_projection_matrix[8] = 0; r_projection_matrix[12] = (xmax+xmin)/(xmax-xmin); r_projection_matrix[1] = 0; r_projection_matrix[5] = 2/(ymax-ymin); r_projection_matrix[9] = 0; r_projection_matrix[13] = (ymax+ymin)/(ymax-ymin); r_projection_matrix[2] = 0; r_projection_matrix[6] = 0; r_projection_matrix[10] = -2/(zfar-znear); r_projection_matrix[14] = (zfar+znear)/(zfar-znear); r_projection_matrix[3] = 0; r_projection_matrix[7] = 0; r_projection_matrix[11] = 0; r_projection_matrix[15] = 1; } /* ============= R_SetupGL ============= */ void R_SetupGL (void) { float screenaspect; extern int glwidth, glheight; int x, x2, y2, y, w, h; float fov_x, fov_y; // // set up viewpoint // x = r_refdef.vrect.x * glwidth/(int)vid.width; x2 = (r_refdef.vrect.x + r_refdef.vrect.width) * glwidth/(int)vid.width; y = (vid.height-r_refdef.vrect.y) * glheight/(int)vid.height; y2 = ((int)vid.height - (r_refdef.vrect.y + r_refdef.vrect.height)) * glheight/(int)vid.height; // fudge around because of frac screen scale if (x > 0) x--; if (x2 < glwidth) x2++; if (y2 < 0) y2--; if (y < glheight) y++; w = x2 - x; h = y - y2; if (envmap) { x = y2 = 0; w = h = 256; } qglViewport (glx + x, gly + y2, w, h); qglMatrixMode(GL_PROJECTION); fov_x = r_refdef.fov_x;//+sin(cl.time)*5; fov_y = r_refdef.fov_y;//-sin(cl.time+1)*5; if (r_waterwarp.value<0 && r_viewleaf->contents <= Q1CONTENTS_WATER) { fov_x *= 1 + (((sin(cl.time * 4.7) + 1) * 0.015) * r_waterwarp.value); fov_y *= 1 + (((sin(cl.time * 3.0) + 1) * 0.015) * r_waterwarp.value); } screenaspect = (float)r_refdef.vrect.width/r_refdef.vrect.height; if (r_refdef.useperspective) { if ((!r_shadows.value || !gl_canstencil) && gl_maxdist.value>256)//gl_nv_range_clamp) { // yfov = 2*atan((float)r_refdef.vrect.height/r_refdef.vrect.width)*180/M_PI; // yfov = (2.0 * tan (scr_fov.value/360*M_PI)) / screenaspect; // yfov = 2*atan((float)r_refdef.vrect.height/r_refdef.vrect.width)*(scr_fov.value*2)/M_PI; // MYgluPerspective (yfov, screenaspect, 4, 4096); MYgluPerspective (fov_x, fov_y, gl_mindist.value, gl_maxdist.value); } else { GL_InfinatePerspective(fov_x, fov_y, gl_mindist.value); } } else { if (gl_maxdist.value>=1) GL_ParallelPerspective(-fov_x/2, fov_x/2, fov_y/2, -fov_y/2, -gl_maxdist.value, gl_maxdist.value); else GL_ParallelPerspective(0, r_refdef.vrect.width, 0, r_refdef.vrect.height, -9999, 9999); } qglLoadMatrixf(r_projection_matrix); if (mirror) { // if (mirror_plane->normal[2]) // qglScalef (1, -1, 1); // else // qglScalef (-1, 1, 1); qglCullFace(GL_BACK); } else { #ifdef R_XFLIP if (r_xflip.value) { qglScalef (1, -1, 1); qglCullFace(GL_BACK); } else #endif qglCullFace(GL_FRONT); } qglMatrixMode(GL_MODELVIEW); ML_ModelViewMatrixFromAxis(r_view_matrix, vpn, vright, vup, r_refdef.vieworg); qglLoadMatrixf(r_view_matrix); // // set drawing parms // if (gl_cull.value) qglEnable(GL_CULL_FACE); else qglDisable(GL_CULL_FACE); qglDisable(GL_BLEND); qglDisable(GL_ALPHA_TEST); qglEnable(GL_DEPTH_TEST); //#ifndef D3DQUAKE // glClearDepth(1.0f); //#endif // if (gl_lightmap_format == GL_LUMINANCE) // glBlendFunc (GL_ZERO, GL_ONE_MINUS_SRC_COLOR); /* else if (gl_lightmap_format == GL_INTENSITY) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glColor4f (0,0,0,1); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else if (gl_lightmap_format == GL_RGBA) { glBlendFunc (GL_ZERO, GL_ONE_MINUS_SRC_COLOR); } */ if (gl_dither.value) { qglEnable(GL_DITHER); } else { qglDisable(GL_DITHER); } GL_DisableMultitexture(); } /* ================ R_RenderScene r_refdef must be set before the first call ================ */ void R_RenderScene (void) { qboolean GLR_DoomWorld(void); if (!cl.worldmodel || !cl.worldmodel->nodes) r_refdef.flags |= Q2RDF_NOWORLDMODEL; GLR_SetupFrame (); TRACE(("dbg: calling R_SetupGL\n")); R_SetupGL (); TRACE(("dbg: calling R_SetFrustrum\n")); R_SetFrustum (); if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL)) { #ifdef DOOMWADS if (!GLR_DoomWorld ()) #endif { TRACE(("dbg: calling GLR_MarkLeaves\n")); GLR_MarkLeaves (); // done here so we know if we're in water TRACE(("dbg: calling R_DrawWorld\n")); R_DrawWorld (); // adds static entities to the list } } S_ExtraUpdate (); // don't let sound get messed up if going slow TRACE(("dbg: calling GLR_DrawEntitiesOnList\n")); GLR_DrawEntitiesOnList (); // R_DrawDecals(); TRACE(("dbg: calling GL_DisableMultitexture\n")); GL_DisableMultitexture(); TRACE(("dbg: calling R_RenderDlights\n")); R_RenderDlights (); if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL)) { TRACE(("dbg: calling R_DrawParticles\n")); P_DrawParticles (); } #ifdef GLTEST Test_Draw (); #endif } /* ============= R_Clear ============= */ int gldepthfunc = GL_LEQUAL; void R_Clear (void) { qglDepthMask(1); if (r_mirroralpha.value != 1.0) { if (gl_clear.value && !r_secondaryview) qglClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); else qglClear (GL_DEPTH_BUFFER_BIT); gldepthmin = 0; gldepthmax = 0.5; gldepthfunc=GL_LEQUAL; } #ifdef SIDEVIEWS else if (gl_ztrick.value && !gl_ztrickdisabled) #else else if (gl_ztrick.value) #endif { static int trickframe; if (gl_clear.value && !(r_refdef.flags & Q2RDF_NOWORLDMODEL)) qglClear (GL_COLOR_BUFFER_BIT); trickframe++; if (trickframe & 1) { gldepthmin = 0; gldepthmax = 0.49999; gldepthfunc=GL_LEQUAL; } else { gldepthmin = 1; gldepthmax = 0.5; gldepthfunc=GL_GEQUAL; } } else { if (gl_clear.value && !r_secondaryview && !(r_refdef.flags & Q2RDF_NOWORLDMODEL)) qglClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); else qglClear (GL_DEPTH_BUFFER_BIT); gldepthmin = 0; gldepthmax = 1; gldepthfunc=GL_LEQUAL; } qglDepthFunc (gldepthfunc); qglDepthRange (gldepthmin, gldepthmax); } //#if 0 //!!! FIXME, Zoid, mirror is disabled for now /* ============= R_Mirror ============= */ /* void CL_AddFlagModels (entity_t *ent, int team); void R_MirrorAddPlayerModels (void) { extern int cl_playerindex; extern cvar_t cl_predict_players, cl_predict_players2; player_state_t *state; player_state_t exact; player_info_t *info=cl.players + cl.playernum[0]; double playertime; entity_t *ent; int msec; frame_t *frame; int oldphysent; extern cvar_t spectator; playertime = realtime - cls.latency + 0.02; if (playertime > realtime) playertime = realtime; frame = &cl.frames[cl.parsecount&UPDATE_MASK]; state=&frame->playerstate[cl.playernum[0]]; if (!state->modelindex || spectator.value) return; ent = &cl_visedicts[cl_numvisedicts]; cl_numvisedicts++; ent->keynum = cl.playernum[0]+1; ent->model = cl.model_precache[state->modelindex]; ent->skinnum = state->skinnum; ent->frame = state->frame; ent->oldframe = state->oldframe; if (state->lerpstarttime) { ent->lerptime = 1-(realtime - state->lerpstarttime)*10; if (ent->lerptime < 0) ent->lerptime = 0; } else ent->lerptime = 0; ent->colormap = cl.players[cl.playernum[0]].translations; if (state->modelindex == cl_playerindex) ent->scoreboard = &cl.players[cl.playernum[0]]; // use custom skin else ent->scoreboard = NULL; #ifdef PEXT_SCALE ent->scale = state->scale; if (!ent->scale) ent->scale = 1; #endif #ifdef PEXT_TRANS ent->alpha = state->trans; if (!ent->alpha) ent->alpha = 1; #endif // // angles // ent->angles[PITCH] = -r_refdef.viewangles[PITCH]/3; ent->angles[YAW] = r_refdef.viewangles[YAW]; // ent->angles[ROLL] = 0; ent->angles[ROLL] = V_CalcRoll (ent->angles, state->velocity)*4; AngleVectors(ent->angles, ent->axis[0], ent->axis[1], ent->axis[2]); VectorInverse(ent->axis[1]); // only predict half the move to minimize overruns msec = 500*(playertime - state->state_time); if (msec <= 0 || (!cl_predict_players.value && !cl_predict_players2.value)) { VectorCopy (state->origin, ent->origin); //Con_DPrintf ("nopredict\n"); } else { // predict players movement if (msec > 255) msec = 255; state->command.msec = msec; //Con_DPrintf ("predict: %i\n", msec); oldphysent = pmove.numphysent; CL_SetSolidPlayers (cl.playernum[0]); CL_PredictUsercmd (0, state, &exact, &state->command); pmove.numphysent = oldphysent; VectorCopy (exact.origin, ent->origin); } VectorCopy(cl.simorg[0], ent->origin); if (state->effects & QWEF_FLAG1) CL_AddFlagModels (ent, 0); else if (state->effects & QWEF_FLAG2) CL_AddFlagModels (ent, 1); if (info->vweapindex) CL_AddVWeapModel(ent, info->vweapindex); } */ void R_Mirror (void) { msurface_t *s, *prevs, *prevr, *rejects; // entity_t *ent; mplane_t *mirror_plane; vec3_t oldangles, oldorg, oldvpn, oldvright, oldvup; //cache - for rear view mirror and stuff. float base_view_matrix[16]; if (!mirror) { r_inmirror = false; return; } r_inmirror = true; memcpy(oldangles, r_refdef.viewangles, sizeof(vec3_t)); memcpy(oldorg, r_refdef.vieworg, sizeof(vec3_t)); memcpy(oldvpn, vpn, sizeof(vec3_t)); memcpy(oldvright, vright, sizeof(vec3_t)); memcpy(oldvup, vup, sizeof(vec3_t)); memcpy (base_view_matrix, r_view_matrix, sizeof(base_view_matrix)); s = r_mirror_chain; while(s) //okay, so this is a hack { s->nextalphasurface = s->texturechain; s = s->nextalphasurface; } cl.worldmodel->textures[mirrortexturenum]->texturechain = NULL; while(r_mirror_chain) { s = r_mirror_chain; r_mirror_chain = r_mirror_chain->nextalphasurface; #if 0 s->nextalphasurface = NULL; #else //this loop figures out all surfaces with the same plane. //yes, this can mean that the list is reversed a few times, but we do have depth testing to solve that anyway. for(prevs = s,prevr=NULL,rejects=NULL;r_mirror_chain;r_mirror_chain=r_mirror_chain->nextalphasurface) { if (s->plane->dist != r_mirror_chain->plane->dist || s->plane->signbits != r_mirror_chain->plane->signbits || s->plane->normal[0] != r_mirror_chain->plane->normal[0] || s->plane->normal[1] != r_mirror_chain->plane->normal[1] || s->plane->normal[2] != r_mirror_chain->plane->normal[2]) { //reject if (prevr) prevr->nextalphasurface = r_mirror_chain; else rejects = r_mirror_chain; prevr = r_mirror_chain; } else { //matches prevs->nextalphasurface = r_mirror_chain; prevs = r_mirror_chain; } } prevs->nextalphasurface = NULL; if (prevr) prevr->nextalphasurface = NULL; r_mirror_chain = rejects; #endif mirror_plane = s->plane; //enable stencil writing qglClearStencil(0); qglClear(GL_STENCIL_BUFFER_BIT); qglDisable(GL_ALPHA_TEST); qglDisable(GL_STENCIL_TEST); qglEnable(GL_STENCIL_TEST); qglStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); //replace where it passes qglStencilFunc( GL_ALWAYS, 1, ~0 ); //always pass (where z passes set to 1) qglDisable(GL_TEXTURE_2D); qglColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE ); qglDepthMask( GL_FALSE ); qglEnableClientState( GL_VERTEX_ARRAY ); for (prevs = s; s; s=s->nextalphasurface) //write the polys to the stencil buffer. { qglVertexPointer(3, GL_FLOAT, 0, s->mesh->xyz_array); qglDrawElements(GL_TRIANGLES, s->mesh->numindexes, GL_UNSIGNED_INT, s->mesh->indexes); } qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); qglStencilFunc( GL_EQUAL, 1, ~0 ); //pass if equal to 1 //now clear the depth buffer where the stencil passed //we achieve this by changing the projection matrix underneath. //the stencil only shows where the final surface will appear, and only where not obscured //we rewrite the depth with the blending pass after. qglEnable(GL_DEPTH_TEST); //use only the stencil test qglDepthRange(1, 1); qglDepthFunc (GL_ALWAYS); qglDepthMask( GL_TRUE ); qglColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE ); qglMatrixMode(GL_PROJECTION); qglLoadIdentity(); qglOrtho (0, 1, 1, 0, -99999, 99999); qglMatrixMode(GL_MODELVIEW); qglLoadIdentity (); qglBegin(GL_QUADS); qglVertex3f(0, 0, -99999); qglVertex3f(1, 0, -99999); qglVertex3f(1, 1, -99999); qglVertex3f(0, 1, -99999); qglEnd(); qglEnable(GL_DEPTH_TEST); //use only the stencil test qglColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE ); /* Thus the final mirror matrix for any given plane p*+k=0 is: | 1-2*nx*nx -2*nx*ny -2*nx*nz -2*nx*k | | -2*ny*nx 1-2*ny*ny -2*ny*nz -2*ny*k | | -2*nz*nx -2*nz*ny 1-2*nz*nz -2*nz*k | | 0 0 0 1 | */ { float mirror[16]; float view[16]; float result[16]; float nx = mirror_plane->normal[0]; float ny = mirror_plane->normal[1]; float nz = mirror_plane->normal[2]; float k = -mirror_plane->dist; mirror[0] = 1-2*nx*nx; mirror[1] = -2*nx*ny; mirror[2] = -2*nx*nz; mirror[3] = 0; mirror[4] = -2*ny*nx; mirror[5] = 1-2*ny*ny; mirror[6] = -2*ny*nz; mirror[7] = 0; mirror[8] = -2*nz*nx; mirror[9] = -2*nz*ny; mirror[10] = 1-2*nz*nz; mirror[11] = 0; mirror[12] = -2*nx*k; mirror[13] = -2*ny*k; mirror[14] = -2*nz*k; mirror[15] = 1; view[0] = oldvpn[0]; view[1] = oldvpn[1]; view[2] = oldvpn[2]; view[3] = 0; view[4] = -oldvright[0]; view[5] = -oldvright[1]; view[6] = -oldvright[2]; view[7] = 0; view[8] = oldvup[0]; view[9] = oldvup[1]; view[10] = oldvup[2]; view[11] = 0; view[12] = oldorg[0]; view[13] = oldorg[1]; view[14] = oldorg[2]; view[15] = 1; Matrix4_Multiply(mirror, view, result); vpn[0] = result[0]; vpn[1] = result[1]; vpn[2] = result[2]; vright[0] = -result[4]; vright[1] = -result[5]; vright[2] = -result[6]; vup[0] = result[8]; vup[1] = result[9]; vup[2] = result[10]; r_refdef.vieworg[0] = result[12]; r_refdef.vieworg[1] = result[13]; r_refdef.vieworg[2] = result[14]; } r_refdef.viewangles[0] = 0; r_refdef.viewangles[1] = 0; r_refdef.viewangles[2] = 0; gldepthmin = 0.5; gldepthmax = 1; qglDepthRange (gldepthmin, gldepthmax); qglDepthFunc (gldepthfunc); R_RenderScene (); // GLR_DrawWaterSurfaces (); gldepthmin = 0; gldepthmax = 0.5; qglDepthRange (gldepthmin, gldepthmax); qglDepthFunc (gldepthfunc); memcpy(r_refdef.viewangles, oldangles, sizeof(vec3_t)); memcpy(r_refdef.vieworg, oldorg, sizeof(vec3_t)); qglCullFace(GL_FRONT); qglMatrixMode(GL_MODELVIEW); qglLoadMatrixf (base_view_matrix); qglDisable(GL_STENCIL_TEST); // blend on top qglDisable(GL_ALPHA_TEST); qglEnable (GL_BLEND); qglEnable(GL_TEXTURE_2D); qglBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); qglColor4f (1,1,1,r_mirroralpha.value); qglDisable(GL_STENCIL_TEST); qglPolygonOffset(1, 0); qglEnable(GL_POLYGON_OFFSET_FILL); for (s=prevs ; s ; s=s->nextalphasurface) { qglEnable (GL_BLEND); R_RenderBrushPoly (s); } qglDisable(GL_POLYGON_OFFSET_FILL); qglPolygonOffset(0, 0); qglEnable(GL_TEXTURE_2D); qglDisable (GL_BLEND); qglColor4f (1,1,1,1); } qglDisable(GL_STENCIL_TEST); memcpy(r_refdef.viewangles, oldangles, sizeof(vec3_t)); memcpy(r_refdef.vieworg, oldorg, sizeof(vec3_t)); AngleVectors (r_refdef.viewangles, vpn, vright, vup); r_inmirror = false; } //#endif /* ================ R_RenderView r_refdef must be set before the first call ================ */ void GLR_RenderView (void) { extern msurface_t *r_alpha_surfaces; double time1 = 0, time2; if (qglGetError()) Con_Printf("GL Error before drawing scene\n"); if (r_norefresh.value || !glwidth || !glheight) { GL_DoSwap(); return; } if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL)) if (!r_worldentity.model || !cl.worldmodel) { GL_DoSwap(); return; } // Sys_Error ("R_RenderView: NULL worldmodel"); if (qglPNTrianglesiATI) { if (gl_ati_truform_type.value) { //linear qglPNTrianglesiATI(GL_PN_TRIANGLES_NORMAL_MODE_ATI, GL_PN_TRIANGLES_NORMAL_MODE_LINEAR_ATI); qglPNTrianglesiATI(GL_PN_TRIANGLES_POINT_MODE_ATI, GL_PN_TRIANGLES_POINT_MODE_CUBIC_ATI); } else { //quadric qglPNTrianglesiATI(GL_PN_TRIANGLES_NORMAL_MODE_ATI, GL_PN_TRIANGLES_NORMAL_MODE_QUADRATIC_ATI); qglPNTrianglesiATI(GL_PN_TRIANGLES_POINT_MODE_ATI, GL_PN_TRIANGLES_POINT_MODE_CUBIC_ATI); } qglPNTrianglesfATI(GL_PN_TRIANGLES_TESSELATION_LEVEL_ATI, gl_ati_truform_tesselation.value); } if (gl_finish.value) { RSpeedMark(); qglFinish (); RSpeedEnd(RSPEED_FINISH); } if (r_speeds.value) { time1 = Sys_DoubleTime (); c_brush_polys = 0; c_alias_polys = 0; } mirror = false; R_Clear (); /* if (r_viewleaf)// && r_viewleaf->contents != CONTENTS_EMPTY) { // static fogcolour; float fogcol[4]={0}; float fogperc; float fogdist; #pragma comment (lib, "opengl32.lib") //temp only. fogperc=0; fogdist=512; switch(r_viewleaf->contents) { case CONTENTS_WATER: fogcol[0] = 64/255.0; fogcol[1] = 128/255.0; fogcol[2] = 192/255.0; fogperc=0.2; fogdist=512; break; case CONTENTS_SLIME: fogcol[0] = 32/255.0; fogcol[1] = 192/255.0; fogcol[2] = 92/255.0; fogperc=1; fogdist=256; break; case CONTENTS_LAVA: fogcol[0] = 192/255.0; fogcol[1] = 32/255.0; fogcol[2] = 64/255.0; fogperc=1; fogdist=128; break; default: fogcol[0] = 192/255.0; fogcol[1] = 192/255.0; fogcol[2] = 192/255.0; fogperc=1; fogdist=1024; break; } if (fogperc) { glFogi(GL_FOG_MODE, GL_LINEAR); glFogfv(GL_FOG_COLOR, fogcol); glFogf(GL_FOG_DENSITY, fogperc); glFogf(GL_FOG_START, 1); glFogf(GL_FOG_END, fogdist); glEnable(GL_FOG); } } */ r_alpha_surfaces = NULL; GL_SetShaderState2D(false); // render normal view R_RenderScene (); GLR_DrawViewModel (); GLR_DrawWaterSurfaces (); GLR_DrawAlphaSurfaces (); // render mirror view R_Mirror (); R_BloomBlend(); R_PolyBlend (); // glDisable(GL_FOG); if (r_speeds.value) { // glFinish (); time2 = Sys_DoubleTime (); RQuantAdd(RQUANT_MSECS, (int)((time2-time1)*1000000)); RQuantAdd(RQUANT_WPOLYS, c_brush_polys); RQuantAdd(RQUANT_EPOLYS, c_alias_polys); // Con_Printf ("%3i ms %4i wpoly %4i epoly\n", (int)((time2-time1)*1000), c_brush_polys, c_alias_polys); } if (qglGetError()) Con_Printf("GL Error drawing scene\n"); // SCENE POST PROCESSING // we check if we need to use any shaders - currently it's just waterwarp if (scenepp_ww_program) if ((r_waterwarp.value>0 && r_viewleaf && r_viewleaf->contents <= Q1CONTENTS_WATER)) { float vwidth = 1, vheight = 1; float vs, vt; // get the powers of 2 for the size of the texture that will hold the scene while (vwidth < glwidth) { vwidth *= 2; } while (vheight < glheight) { vheight *= 2; } // get the maxtexcoords while we're at it vs = glwidth / vwidth; vt = glheight / vheight; // 2d mode, but upside down to quake's normal 2d drawing // this makes grabbing the sreen a lot easier qglViewport (glx, gly, glwidth, glheight); qglMatrixMode(GL_PROJECTION); // Push the matrices to go into 2d mode, that matches opengl's mode qglPushMatrix(); qglLoadIdentity (); // TODO: use actual window width and height qglOrtho (0, glwidth, 0, glheight, -99999, 99999); qglMatrixMode(GL_MODELVIEW); qglPushMatrix(); qglLoadIdentity (); qglDisable (GL_DEPTH_TEST); qglDisable (GL_CULL_FACE); qglDisable (GL_BLEND); qglEnable (GL_ALPHA_TEST); // copy the scene to texture GL_Bind(scenepp_texture); qglCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, glx, gly, vwidth, vheight, 0); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (qglGetError()) Con_Printf("GL Error after qglCopyTexImage2D\n"); // Here we apply the shaders - currently just waterwarp GLSlang_UseProgram(scenepp_ww_program); //keep the amp proportional to the size of the scene in texture coords // WARNING - waterwarp can change the amplitude, but if it's too big it'll exceed // the size determined by the edge texture, after which black bits will be shown. // Suggest clamping to a suitable range. if (r_waterwarp.value<0) { GLSlang_SetUniform1f(scenepp_ww_parm_ampscalef, (0.005 / 0.625) * vs*(-r_waterwarp.value)); } else { GLSlang_SetUniform1f(scenepp_ww_parm_ampscalef, (0.005 / 0.625) * vs*r_waterwarp.value); } if (qglGetError()) Con_Printf("GL Error after GLSlang_UseProgram\n"); { float xmin, xmax, ymin, ymax; xmin = cl.time * 0.25; ymin = cl.time * 0.25; xmax = xmin + 1; ymax = ymin + 1/vt*vs; GL_EnableMultitexture(); GL_Bind (scenepp_texture_warp); GL_SelectTexture(mtexid1+1); qglEnable(GL_TEXTURE_2D); GL_Bind(scenepp_texture_edge); qglBegin(GL_QUADS); qglMTexCoord2fSGIS (mtexid0, 0, 0); qglMTexCoord2fSGIS (mtexid1, xmin, ymin); qglMTexCoord2fSGIS (mtexid1+1, 0, 0); qglVertex2f(0, 0); qglMTexCoord2fSGIS (mtexid0, vs, 0); qglMTexCoord2fSGIS (mtexid1, xmax, ymin); qglMTexCoord2fSGIS (mtexid1+1, 1, 0); qglVertex2f(glwidth, 0); qglMTexCoord2fSGIS (mtexid0, vs, vt); qglMTexCoord2fSGIS (mtexid1, xmax, ymax); qglMTexCoord2fSGIS (mtexid1+1, 1, 1); qglVertex2f(glwidth, glheight); qglMTexCoord2fSGIS (mtexid0, 0, vt); qglMTexCoord2fSGIS (mtexid1, xmin, ymax); qglMTexCoord2fSGIS (mtexid1+1, 0, 1); qglVertex2f(0, glheight); qglEnd(); qglDisable(GL_TEXTURE_2D); GL_SelectTexture(mtexid1); GL_DisableMultitexture(); } // Disable shaders GLSlang_UseProgram(0); // After all the post processing, pop the matrices qglMatrixMode(GL_PROJECTION); qglPopMatrix(); qglMatrixMode(GL_MODELVIEW); qglPopMatrix(); if (qglGetError()) Con_Printf("GL Error after drawing with shaderobjects\n"); } if (gl_motionblur.value>0 && gl_motionblur.value < 1 && qglCopyTexImage2D) { int vwidth = 1, vheight = 1; float vs, vt, cs, ct; if (gl_config.arb_texture_non_power_of_two) { //we can use any size, supposedly vwidth = glwidth; vheight = glheight; } else { //limit the texture size to square and use padding. while (vwidth < glwidth) vwidth *= 2; while (vheight < glheight) vheight *= 2; } qglViewport (glx, gly, glwidth, glheight); GL_Bind(sceneblur_texture); // go 2d qglMatrixMode(GL_PROJECTION); qglPushMatrix(); qglLoadIdentity (); qglOrtho (0, glwidth, 0, glheight, -99999, 99999); qglMatrixMode(GL_MODELVIEW); qglPushMatrix(); qglLoadIdentity (); //blend the last frame onto the scene //the maths is because our texture is over-sized (must be power of two) cs = vs = (float)glwidth / vwidth * 0.5; ct = vt = (float)glheight / vheight * 0.5; vs *= gl_motionblurscale.value; vt *= gl_motionblurscale.value; qglDisable (GL_DEPTH_TEST); qglDisable (GL_CULL_FACE); qglDisable (GL_ALPHA_TEST); qglEnable(GL_BLEND); qglColor4f(1, 1, 1, gl_motionblur.value); qglBegin(GL_QUADS); qglTexCoord2f(cs-vs, ct-vt); qglVertex2f(0, 0); qglTexCoord2f(cs+vs, ct-vt); qglVertex2f(glwidth, 0); qglTexCoord2f(cs+vs, ct+vt); qglVertex2f(glwidth, glheight); qglTexCoord2f(cs-vs, ct+vt); qglVertex2f(0, glheight); qglEnd(); qglMatrixMode(GL_PROJECTION); qglPopMatrix(); qglMatrixMode(GL_MODELVIEW); qglPopMatrix(); //copy the image into the texture so that we can play with it next frame too! qglCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, glx, gly, vwidth, vheight, 0); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } } #endif