#include "quakedef.h" #ifdef VKQUAKE #include "vkrenderer.h" #include "gl_draw.h" #include "shader.h" #include "renderque.h" //is anything still using this? extern qboolean vid_isfullscreen; extern cvar_t vk_submissionthread; extern cvar_t vk_debug; extern cvar_t vk_loadglsl; extern cvar_t vk_dualqueue; extern cvar_t vid_srgb, vid_vsync, vid_triplebuffer, r_stereo_method; void R2D_Console_Resize(void); const char *vklayerlist[] = { #if 1 "VK_LAYER_LUNARG_standard_validation" #else //older versions of the sdk were crashing out on me, // "VK_LAYER_LUNARG_api_dump", "VK_LAYER_LUNARG_device_limits", //"VK_LAYER_LUNARG_draw_state", "VK_LAYER_LUNARG_image", //"VK_LAYER_LUNARG_mem_tracker", "VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_param_checker", "VK_LAYER_LUNARG_screenshot", "VK_LAYER_LUNARG_swapchain", "VK_LAYER_GOOGLE_threading", "VK_LAYER_GOOGLE_unique_objects", //"VK_LAYER_LUNARG_vktrace", #endif }; #define vklayercount (vk_debug.ival>1?countof(vklayerlist):0) //code to initialise+destroy vulkan contexts. //this entire file is meant to be platform-agnostic. //the vid code still needs to set up vkGetInstanceProcAddr, and do all the window+input stuff. #ifdef VK_NO_PROTOTYPES #define VKFunc(n) PFN_vk##n vk##n; VKFunc(CreateDebugReportCallbackEXT) VKFunc(DestroyDebugReportCallbackEXT) VKFuncs #undef VKFunc #endif void VK_Submit_Work(VkCommandBuffer cmdbuf, VkSemaphore semwait, VkPipelineStageFlags semwaitstagemask, VkSemaphore semsignal, VkFence fencesignal, struct vkframe *presentframe, struct vk_fencework *fencedwork); static int VK_Submit_Thread(void *arg); static void VK_Submit_DoWork(void); static void VK_DestroyRenderPass(void); static void VK_CreateRenderPass(void); static void VK_Shutdown_PostProc(void); struct vulkaninfo_s vk; static struct vk_rendertarg postproc[4]; static unsigned int postproc_buf; static struct vk_rendertarg_cube vk_rt_cubemap; qboolean VK_SCR_GrabBackBuffer(void); static VkDebugReportCallbackEXT vk_debugcallback; static VkBool32 VKAPI_PTR mydebugreportcallback( VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage, void* pUserData) { if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) Con_Printf("%s: %s\n", pLayerPrefix, pMessage); else if (flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) { if (!strncmp(pMessage, "Additional bits in Source accessMask", 36) && strstr(pMessage, "VK_IMAGE_LAYOUT_UNDEFINED")) return false; //I don't give a fuck. undefined can be used to change layouts on a texture that already exists too. Con_Printf("%s: %s\n", pLayerPrefix, pMessage); } else if (flags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) Con_Printf("%s: %s\n", pLayerPrefix, pMessage); else if (flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) { #ifdef _WIN32 // OutputDebugString(va("%s\n", pMessage)); #endif // Con_Printf("%s: %s\n", pLayerPrefix, pMessage); } else if (flags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) Con_Printf("%s: %s\n", pLayerPrefix, pMessage); else Con_Printf("%s: %s\n", pLayerPrefix, pMessage); return false; } //typeBits is some vulkan requirement thing (like textures must be device-local). //requirements_mask are things that the engine may require (like host-visible). //note that there is absolutely no guarentee that hardware requirements will match what the host needs. //thus you may need to use staging. uint32_t vk_find_memory_try(uint32_t typeBits, VkFlags requirements_mask) { uint32_t i; for (i = 0; i < 32; i++) { if ((typeBits & 1) == 1) { if ((vk.memory_properties.memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) return i; } typeBits >>= 1; } return ~0u; } uint32_t vk_find_memory_require(uint32_t typeBits, VkFlags requirements_mask) { uint32_t ret = vk_find_memory_try(typeBits, requirements_mask); if (ret == ~0) Sys_Error("Unable to find suitable vulkan memory pool\n"); return ret; } void VK_DestroyVkTexture(vk_image_t *img) { if (!img) return; if (img->sampler) vkDestroySampler(vk.device, img->sampler, vkallocationcb); if (img->view) vkDestroyImageView(vk.device, img->view, vkallocationcb); if (img->image) vkDestroyImage(vk.device, img->image, vkallocationcb); if (img->memory) vkFreeMemory(vk.device, img->memory, vkallocationcb); } static void VK_DestroySwapChain(void) { uint32_t i; if (vk.submitcondition) { Sys_LockConditional(vk.submitcondition); vk.neednewswapchain = true; Sys_ConditionSignal(vk.submitcondition); Sys_UnlockConditional(vk.submitcondition); } if (vk.submitthread) { Sys_WaitOnThread(vk.submitthread); vk.submitthread = NULL; } vk.dopresent(NULL); while (vk.aquirenext < vk.aquirelast) { VkWarnAssert(vkWaitForFences(vk.device, 1, &vk.acquirefences[vk.aquirenext%ACQUIRELIMIT], VK_FALSE, UINT64_MAX)); vk.aquirenext++; } while (vk.work) { Sys_LockConditional(vk.submitcondition); VK_Submit_DoWork(); Sys_UnlockConditional(vk.submitcondition); } if (vk.device) vkDeviceWaitIdle(vk.device); VK_FencedCheck(); while(vk.frameendjobs) { //we've fully synced the gpu now, we can clean up any resources that were pending but not assigned yet. struct vk_fencework *job = vk.frameendjobs; vk.frameendjobs = job->next; job->Passed(job); if (job->fence || job->cbuf) Con_Printf("job with junk\n"); Z_Free(job); } if (vk.frame) { vk.frame->next = vk.unusedframes; vk.unusedframes = vk.frame; vk.frame = NULL; } for (i = 0; i < vk.backbuf_count; i++) { //swapchain stuff if (vk.backbufs[i].framebuffer) vkDestroyFramebuffer(vk.device, vk.backbufs[i].framebuffer, vkallocationcb); vk.backbufs[i].framebuffer = VK_NULL_HANDLE; if (vk.backbufs[i].colour.view) vkDestroyImageView(vk.device, vk.backbufs[i].colour.view, vkallocationcb); vk.backbufs[i].colour.view = VK_NULL_HANDLE; VK_DestroyVkTexture(&vk.backbufs[i].depth); } vk.dopresent(NULL); while (vk.aquirenext < vk.aquirelast) { VkWarnAssert(vkWaitForFences(vk.device, 1, &vk.acquirefences[vk.aquirenext%ACQUIRELIMIT], VK_FALSE, UINT64_MAX)); vk.aquirenext++; } for (i = 0; i < ACQUIRELIMIT; i++) { if (vk.acquirefences[i]) vkDestroyFence(vk.device, vk.acquirefences[i], vkallocationcb); vk.acquirefences[i] = VK_NULL_HANDLE; } while(vk.unusedframes) { struct vkframe *frame = vk.unusedframes; vk.unusedframes = frame->next; VKBE_ShutdownFramePools(frame); vkResetCommandBuffer(frame->cbuf, VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT); vkFreeCommandBuffers(vk.device, vk.cmdpool, 1, &frame->cbuf); vkDestroyFence(vk.device, frame->finishedfence, vkallocationcb); Z_Free(frame); } if (vk.swapchain) { vkDestroySwapchainKHR(vk.device, vk.swapchain, vkallocationcb); vk.swapchain = VK_NULL_HANDLE; } if (vk.backbufs) free(vk.backbufs); vk.backbufs = NULL; vk.backbuf_count = 0; } static qboolean VK_CreateSwapChain(void) { qboolean reloadshaders = false; uint32_t fmtcount; VkSurfaceFormatKHR *surffmts; uint32_t presentmodes; VkPresentModeKHR *presentmode; VkSurfaceCapabilitiesKHR surfcaps; VkSwapchainCreateInfoKHR swapinfo = {VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR}; uint32_t i, curpri; VkSwapchainKHR newvkswapchain; VkImage *images; VkImageView attachments[2]; VkFramebufferCreateInfo fb_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO}; vk.dopresent(NULL); //make sure they're all pushed through. VkAssert(vkGetPhysicalDeviceSurfaceFormatsKHR(vk.gpu, vk.surface, &fmtcount, NULL)); surffmts = malloc(sizeof(VkSurfaceFormatKHR)*fmtcount); VkAssert(vkGetPhysicalDeviceSurfaceFormatsKHR(vk.gpu, vk.surface, &fmtcount, surffmts)); VkAssert(vkGetPhysicalDeviceSurfacePresentModesKHR(vk.gpu, vk.surface, &presentmodes, NULL)); presentmode = malloc(sizeof(VkPresentModeKHR)*presentmodes); VkAssert(vkGetPhysicalDeviceSurfacePresentModesKHR(vk.gpu, vk.surface, &presentmodes, presentmode)); vkGetPhysicalDeviceSurfaceCapabilitiesKHR(vk.gpu, vk.surface, &surfcaps); swapinfo.surface = vk.surface; swapinfo.minImageCount = surfcaps.minImageCount+vk.triplebuffer; if (swapinfo.minImageCount > surfcaps.maxImageCount) swapinfo.minImageCount = surfcaps.maxImageCount; if (swapinfo.minImageCount < surfcaps.minImageCount) swapinfo.minImageCount = surfcaps.minImageCount; swapinfo.imageExtent.width = surfcaps.currentExtent.width; swapinfo.imageExtent.height = surfcaps.currentExtent.height; swapinfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT; swapinfo.preTransform = surfcaps.currentTransform;//VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; if (surfcaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR) swapinfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; else if (surfcaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR) swapinfo.compositeAlpha = VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR; else if (surfcaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR) swapinfo.compositeAlpha = VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR; else swapinfo.compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR; //erk? swapinfo.imageArrayLayers = /*(r_stereo_method.ival==1)?2:*/1; swapinfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; swapinfo.queueFamilyIndexCount = 0; swapinfo.pQueueFamilyIndices = NULL; swapinfo.oldSwapchain = vk.swapchain; swapinfo.clipped = vid_isfullscreen?VK_FALSE:VK_TRUE; //allow fragment shaders to be skipped on parts that are obscured by another window. screenshots might get weird, so use proper captures if required/automagic. swapinfo.presentMode = VK_PRESENT_MODE_FIFO_KHR; //supposed to be guarenteed support. for (i = 0, curpri = 0; i < presentmodes; i++) { uint32_t priority = 0; switch(presentmode[i]) { default://ignore it. break; case VK_PRESENT_MODE_IMMEDIATE_KHR: priority = (vk.vsync?0:2) + 2; //for most quake players, latency trumps tearing. break; case VK_PRESENT_MODE_MAILBOX_KHR: priority = (vk.vsync?0:2) + 1; break; case VK_PRESENT_MODE_FIFO_KHR: priority = (vk.vsync?2:0) + 1; break; case VK_PRESENT_MODE_FIFO_RELAXED_KHR: priority = (vk.vsync?2:0) + 2; //strict vsync results in weird juddering if rtlights etc caues framerates to drop below the refreshrate break; } if (priority > curpri) { curpri = priority; swapinfo.presentMode = presentmode[i]; } } swapinfo.imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR; swapinfo.imageFormat = vid_srgb.ival?VK_FORMAT_B8G8R8A8_SRGB:VK_FORMAT_B8G8R8A8_UNORM; for (i = 0, curpri = 0; i < fmtcount; i++) { uint32_t priority = 0; switch(surffmts[i].format) { case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_R8G8B8A8_UNORM: priority = 4+!vid_srgb.ival; break; case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_R8G8B8A8_SRGB: priority = 4+!!vid_srgb.ival; break; case VK_FORMAT_R16G16B16A16_SFLOAT: //16bit per-channel formats case VK_FORMAT_R16G16B16A16_SNORM: priority = 3; break; case VK_FORMAT_R32G32B32A32_SFLOAT: //32bit per-channel formats priority = 2; break; default: //16 bit formats (565). priority = 1; break; } if (priority > curpri) { curpri = priority; swapinfo.imageColorSpace = surffmts[i].colorSpace; swapinfo.imageFormat = surffmts[i].format; } } if (vk.backbufformat != swapinfo.imageFormat) { VK_DestroyRenderPass(); reloadshaders = true; } vk.backbufformat = swapinfo.imageFormat; free(presentmode); free(surffmts); VkAssert(vkCreateSwapchainKHR(vk.device, &swapinfo, vkallocationcb, &newvkswapchain)); if (!newvkswapchain) return false; if (vk.swapchain) { VK_DestroySwapChain(); } vk.swapchain = newvkswapchain; VkAssert(vkGetSwapchainImagesKHR(vk.device, vk.swapchain, &vk.backbuf_count, NULL)); images = malloc(sizeof(VkImage)*vk.backbuf_count); VkAssert(vkGetSwapchainImagesKHR(vk.device, vk.swapchain, &vk.backbuf_count, images)); vk.aquirelast = vk.aquirenext = 0; for (i = 0; i < ACQUIRELIMIT; i++) { VkFenceCreateInfo fci = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO}; VkAssert(vkCreateFence(vk.device,&fci,vkallocationcb,&vk.acquirefences[i])); } /*-1 to hide any weird thread issues*/ while (vk.aquirelast < ACQUIRELIMIT-1 && vk.aquirelast < vk.backbuf_count && vk.aquirelast <= vk.backbuf_count-surfcaps.minImageCount) { VkAssert(vkAcquireNextImageKHR(vk.device, vk.swapchain, UINT64_MAX, VK_NULL_HANDLE, vk.acquirefences[vk.aquirelast%ACQUIRELIMIT], &vk.acquirebufferidx[vk.aquirelast%ACQUIRELIMIT])); vk.aquirelast++; } VK_CreateRenderPass(); if (reloadshaders) { Shader_NeedReload(true); Shader_DoReload(); } attachments[1] = VK_NULL_HANDLE; attachments[0] = VK_NULL_HANDLE; fb_info.renderPass = vk.renderpass[0]; fb_info.attachmentCount = countof(attachments); fb_info.pAttachments = attachments; fb_info.width = swapinfo.imageExtent.width; fb_info.height = swapinfo.imageExtent.height; fb_info.layers = 1; vk.backbufs = malloc(sizeof(*vk.backbufs)*vk.backbuf_count); memset(vk.backbufs, 0, sizeof(*vk.backbufs)*vk.backbuf_count); for (i = 0; i < vk.backbuf_count; i++) { VkImageViewCreateInfo ivci = {VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO}; ivci.format = swapinfo.imageFormat; ivci.components.r = VK_COMPONENT_SWIZZLE_R; ivci.components.g = VK_COMPONENT_SWIZZLE_G; ivci.components.b = VK_COMPONENT_SWIZZLE_B; ivci.components.a = VK_COMPONENT_SWIZZLE_A; ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; ivci.subresourceRange.baseMipLevel = 0; ivci.subresourceRange.levelCount = 1; ivci.subresourceRange.baseArrayLayer = 0; ivci.subresourceRange.layerCount = 1; ivci.viewType = VK_IMAGE_VIEW_TYPE_2D; ivci.flags = 0; ivci.image = images[i]; vk.backbufs[i].colour.image = images[i]; VkAssert(vkCreateImageView(vk.device, &ivci, vkallocationcb, &vk.backbufs[i].colour.view)); vk.backbufs[i].firstuse = true; { VkImageCreateInfo depthinfo = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO}; depthinfo.flags = 0; depthinfo.imageType = VK_IMAGE_TYPE_2D; depthinfo.format = vk.depthformat; depthinfo.extent.width = swapinfo.imageExtent.width; depthinfo.extent.height = swapinfo.imageExtent.height; depthinfo.extent.depth = 1; depthinfo.mipLevels = 1; depthinfo.arrayLayers = 1; depthinfo.samples = VK_SAMPLE_COUNT_1_BIT; depthinfo.tiling = VK_IMAGE_TILING_OPTIMAL; depthinfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; depthinfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; depthinfo.queueFamilyIndexCount = 0; depthinfo.pQueueFamilyIndices = NULL; depthinfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VkAssert(vkCreateImage(vk.device, &depthinfo, vkallocationcb, &vk.backbufs[i].depth.image)); } { VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo memAllocInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO}; vkGetImageMemoryRequirements(vk.device, vk.backbufs[i].depth.image, &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, 0); VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &vk.backbufs[i].depth.memory)); VkAssert(vkBindImageMemory(vk.device, vk.backbufs[i].depth.image, vk.backbufs[i].depth.memory, 0)); } { VkImageViewCreateInfo depthviewinfo = {VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO}; depthviewinfo.format = vk.depthformat; depthviewinfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; depthviewinfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; depthviewinfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; depthviewinfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; depthviewinfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;//|VK_IMAGE_ASPECT_STENCIL_BIT; depthviewinfo.subresourceRange.baseMipLevel = 0; depthviewinfo.subresourceRange.levelCount = 1; depthviewinfo.subresourceRange.baseArrayLayer = 0; depthviewinfo.subresourceRange.layerCount = 1; depthviewinfo.viewType = VK_IMAGE_VIEW_TYPE_2D; depthviewinfo.flags = 0; depthviewinfo.image = vk.backbufs[i].depth.image; VkAssert(vkCreateImageView(vk.device, &depthviewinfo, vkallocationcb, &vk.backbufs[i].depth.view)); attachments[1] = vk.backbufs[i].depth.view; } attachments[0] = vk.backbufs[i].colour.view; VkAssert(vkCreateFramebuffer(vk.device, &fb_info, vkallocationcb, &vk.backbufs[i].framebuffer)); { VkSemaphoreCreateInfo seminfo = {VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO}; VkAssert(vkCreateSemaphore(vk.device, &seminfo, vkallocationcb, &vk.backbufs[i].presentsemaphore)); } } free(images); vid.pixelwidth = swapinfo.imageExtent.width; vid.pixelheight = swapinfo.imageExtent.height; R2D_Console_Resize(); return true; } void VK_Draw_Init(void) { R2D_Init(); } void VK_Draw_Shutdown(void) { R2D_Shutdown(); Image_Shutdown(); Shader_Shutdown(); } void VK_CreateSampler(unsigned int flags, vk_image_t *img) { qboolean clamptoedge = flags & IF_CLAMP; VkSamplerCreateInfo lmsampinfo = {VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO}; if (img->sampler) vkDestroySampler(vk.device, img->sampler, vkallocationcb); if (flags & IF_LINEAR) { lmsampinfo.minFilter = lmsampinfo.magFilter = VK_FILTER_LINEAR; lmsampinfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; } else if (flags & IF_NEAREST) { lmsampinfo.minFilter = lmsampinfo.magFilter = VK_FILTER_NEAREST; lmsampinfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; } else { int *filter = (flags & IF_UIPIC)?vk.filterpic:vk.filtermip; if (filter[0]) lmsampinfo.minFilter = VK_FILTER_LINEAR; else lmsampinfo.minFilter = VK_FILTER_NEAREST; if (filter[1]) lmsampinfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; else lmsampinfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; if (filter[2]) lmsampinfo.magFilter = VK_FILTER_LINEAR; else lmsampinfo.magFilter = VK_FILTER_NEAREST; } lmsampinfo.addressModeU = clamptoedge?VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:VK_SAMPLER_ADDRESS_MODE_REPEAT; lmsampinfo.addressModeV = clamptoedge?VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:VK_SAMPLER_ADDRESS_MODE_REPEAT; lmsampinfo.addressModeW = clamptoedge?VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:VK_SAMPLER_ADDRESS_MODE_REPEAT; lmsampinfo.mipLodBias = 0.0; lmsampinfo.anisotropyEnable = (flags & IF_NEAREST)?false:(vk.max_anistophy > 1); lmsampinfo.maxAnisotropy = vk.max_anistophy; lmsampinfo.compareEnable = VK_FALSE; lmsampinfo.compareOp = VK_COMPARE_OP_NEVER; lmsampinfo.minLod = vk.mipcap[0]; //this isn't quite right lmsampinfo.maxLod = vk.mipcap[1]; lmsampinfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK; lmsampinfo.unnormalizedCoordinates = VK_FALSE; VkAssert(vkCreateSampler(vk.device, &lmsampinfo, NULL, &img->sampler)); } void VK_UpdateFiltering(image_t *imagelist, int filtermip[3], int filterpic[3], int mipcap[2], float anis) { uint32_t i; for (i = 0; i < countof(vk.filtermip); i++) vk.filtermip[i] = filtermip[i]; for (i = 0; i < countof(vk.filterpic); i++) vk.filterpic[i] = filterpic[i]; for (i = 0; i < countof(vk.mipcap); i++) vk.mipcap[i] = mipcap[i]; vk.max_anistophy = anis; vkDeviceWaitIdle(vk.device); while(imagelist) { if (imagelist->vkimage) VK_CreateSampler(imagelist->flags, imagelist->vkimage); imagelist = imagelist->next; } } vk_image_t VK_CreateTexture2DArray(uint32_t width, uint32_t height, uint32_t layers, uint32_t mips, unsigned int encoding, unsigned int type) { vk_image_t ret; qboolean staging = layers == 0; VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo memAllocInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO}; VkImageCreateInfo ici = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO}; VkFormat format; ret.width = width; ret.height = height; ret.layers = layers; ret.mipcount = mips; ret.encoding = encoding; ret.type = type; ret.layout = staging?VK_IMAGE_LAYOUT_PREINITIALIZED:VK_IMAGE_LAYOUT_UNDEFINED; //16bit formats. if (encoding == PTI_RGB565) format = VK_FORMAT_R5G6B5_UNORM_PACK16; else if (encoding == PTI_RGBA4444) format = VK_FORMAT_R4G4B4A4_UNORM_PACK16; else if (encoding == PTI_ARGB4444) format = VK_FORMAT_B4G4R4A4_UNORM_PACK16; //fixme: this seems wrong. else if (encoding == PTI_RGBA5551) format = VK_FORMAT_R5G5B5A1_UNORM_PACK16; else if (encoding == PTI_ARGB1555) format = VK_FORMAT_A1R5G5B5_UNORM_PACK16; //float formats else if (encoding == PTI_RGBA16F) format = VK_FORMAT_R16G16B16A16_SFLOAT; else if (encoding == PTI_RGBA32F) format = VK_FORMAT_R32G32B32A32_SFLOAT; //weird formats else if (encoding == PTI_R8) format = VK_FORMAT_R8_UNORM; else if (encoding == PTI_RG8) format = VK_FORMAT_R8G8_UNORM; //compressed formats else if (encoding == PTI_S3RGB1) format = VK_FORMAT_BC1_RGB_UNORM_BLOCK; else if (encoding == PTI_S3RGBA1) format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK; else if (encoding == PTI_S3RGBA3) format = VK_FORMAT_BC2_UNORM_BLOCK; else if (encoding == PTI_S3RGBA5) format = VK_FORMAT_BC3_UNORM_BLOCK; //depth formats else if (encoding == PTI_DEPTH16) format = VK_FORMAT_D16_UNORM; else if (encoding == PTI_DEPTH24) format = VK_FORMAT_X8_D24_UNORM_PACK32; else if (encoding == PTI_DEPTH32) format = VK_FORMAT_D32_SFLOAT; else if (encoding == PTI_DEPTH24_8) format = VK_FORMAT_D24_UNORM_S8_UINT; //standard formats else if (encoding == PTI_BGRA8 || encoding == PTI_BGRX8) format = VK_FORMAT_B8G8R8A8_UNORM; else //if (encoding == PTI_RGBA8 || encoding == PTI_RGBX8) format = VK_FORMAT_R8G8B8A8_UNORM; ici.flags = (ret.type==PTI_CUBEMAP)?VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:0; ici.imageType = VK_IMAGE_TYPE_2D; ici.format = format; ici.extent.width = width; ici.extent.height = height; ici.extent.depth = 1; ici.mipLevels = mips; ici.arrayLayers = staging?1:layers; ici.samples = VK_SAMPLE_COUNT_1_BIT; ici.tiling = staging?VK_IMAGE_TILING_LINEAR:VK_IMAGE_TILING_OPTIMAL; ici.usage = staging?VK_IMAGE_USAGE_TRANSFER_SRC_BIT:(VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT); ici.sharingMode = VK_SHARING_MODE_EXCLUSIVE; ici.queueFamilyIndexCount = 0; ici.pQueueFamilyIndices = NULL; ici.initialLayout = ret.layout; VkAssert(vkCreateImage(vk.device, &ici, vkallocationcb, &ret.image)); vkGetImageMemoryRequirements(vk.device, ret.image, &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; if (staging) memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); else { memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_try(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); if (memAllocInfo.memoryTypeIndex == ~0) memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, 0); } VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &ret.memory)); VkAssert(vkBindImageMemory(vk.device, ret.image, ret.memory, 0)); ret.view = VK_NULL_HANDLE; ret.sampler = VK_NULL_HANDLE; if (!staging) { VkImageViewCreateInfo viewInfo = {VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO}; viewInfo.flags = 0; viewInfo.image = ret.image; viewInfo.viewType = (ret.type==PTI_CUBEMAP)?VK_IMAGE_VIEW_TYPE_CUBE:VK_IMAGE_VIEW_TYPE_2D; viewInfo.format = format; viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; viewInfo.components.g = VK_COMPONENT_SWIZZLE_G; viewInfo.components.b = VK_COMPONENT_SWIZZLE_B; viewInfo.components.a = (encoding == PTI_RGBX8 || encoding == PTI_BGRX8)?VK_COMPONENT_SWIZZLE_ONE:VK_COMPONENT_SWIZZLE_A; viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewInfo.subresourceRange.baseMipLevel = 0; viewInfo.subresourceRange.levelCount = mips; viewInfo.subresourceRange.baseArrayLayer = 0; viewInfo.subresourceRange.layerCount = layers; VkAssert(vkCreateImageView(vk.device, &viewInfo, NULL, &ret.view)); } return ret; } void set_image_layout(VkCommandBuffer cmd, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout old_image_layout, VkAccessFlags srcaccess, VkImageLayout new_image_layout, VkAccessFlags dstaccess) { //images have weird layout representations. //we need to use a side-effect of memory barriers in order to convert from one layout to another, so that we can actually use the image. VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = srcaccess; imgbarrier.dstAccessMask = dstaccess; imgbarrier.oldLayout = old_image_layout; imgbarrier.newLayout = new_image_layout; imgbarrier.image = image; imgbarrier.subresourceRange.aspectMask = aspectMask; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; /* if (new_image_layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) // Make sure anything that was copying from this image has completed imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; else if (new_image_layout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) // Make sure anything that was copying from this image has completed imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; else if (new_image_layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) imgbarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; else if (new_image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) imgbarrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; else if (new_image_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) // Make sure any Copy or CPU writes to image are flushed imgbarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; if (old_image_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) imgbarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; else if (old_image_layout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) imgbarrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT; else if (old_image_layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) imgbarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; */ vkCmdPipelineBarrier(cmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } void VK_FencedCheck(void) { while(vk.fencework) { Sys_LockConditional(vk.submitcondition); if (VK_SUCCESS == vkGetFenceStatus(vk.device, vk.fencework->fence)) { struct vk_fencework *w; w = vk.fencework; vk.fencework = w->next; if (!vk.fencework) vk.fencework_last = NULL; Sys_UnlockConditional(vk.submitcondition); if (w->Passed) w->Passed(w); if (w->cbuf) vkFreeCommandBuffers(vk.device, vk.cmdpool, 1, &w->cbuf); if (w->fence) vkDestroyFence(vk.device, w->fence, vkallocationcb); Z_Free(w); continue; } Sys_UnlockConditional(vk.submitcondition); break; } } //allocate and begin a commandbuffer so we can do the copies void *VK_FencedBegin(void (*passed)(void *work), size_t worksize) { struct vk_fencework *w = BZ_Malloc(worksize?worksize:sizeof(*w)); VkCommandBufferAllocateInfo cbai = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO}; VkCommandBufferInheritanceInfo cmdinh = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO}; VkCommandBufferBeginInfo cmdinf = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO}; cbai.commandPool = vk.cmdpool; cbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cbai.commandBufferCount = 1; VkAssert(vkAllocateCommandBuffers(vk.device, &cbai, &w->cbuf)); cmdinf.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; cmdinf.pInheritanceInfo = &cmdinh; vkBeginCommandBuffer(w->cbuf, &cmdinf); w->Passed = passed; w->next = NULL; return w; } //end+submit a commandbuffer, and set up a fence so we know when its complete void VK_FencedSubmit(void *work) { struct vk_fencework *w = work; VkFenceCreateInfo fenceinfo = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO}; if (w->cbuf) vkEndCommandBuffer(w->cbuf); //check if we can release anything yet. VK_FencedCheck(); vkCreateFence(vk.device, &fenceinfo, vkallocationcb, &w->fence); VK_Submit_Work(w->cbuf, VK_NULL_HANDLE, 0, VK_NULL_HANDLE, w->fence, NULL, w); } void VK_FencedSync(void *work) { struct vk_fencework *w = work; VK_FencedSubmit(w); //fixme: waiting for the fence while it may still be getting created by the worker is unsafe. vkWaitForFences(vk.device, 1, &w->fence, VK_FALSE, UINT64_MAX); } //called to schedule the release of a resource that may be referenced by an active command buffer. //the command buffer in question may even have not yet been submitted yet. void *VK_AtFrameEnd(void (*passed)(void *work), size_t worksize) { struct vk_fencework *w = Z_Malloc(worksize?worksize:sizeof(*w)); w->Passed = passed; w->next = vk.frameendjobs; vk.frameendjobs = w; return w; } struct texturefence { struct vk_fencework w; int mips; vk_image_t staging[32]; }; static void VK_TextureLoaded(void *ctx) { struct texturefence *w = ctx; unsigned int i; for (i = 0; i < w->mips; i++) if (w->staging[i].image != VK_NULL_HANDLE) { vkDestroyImage(vk.device, w->staging[i].image, vkallocationcb); vkFreeMemory(vk.device, w->staging[i].memory, vkallocationcb); } } qboolean VK_LoadTextureMips (texid_t tex, struct pendingtextureinfo *mips) { struct texturefence *fence; VkCommandBuffer vkloadcmd; vk_image_t target; uint32_t i, y; uint32_t blocksize; uint32_t blockbytes; uint32_t layers; if (mips->type != PTI_2D && mips->type != PTI_CUBEMAP) return false; if (!mips->mipcount || mips->mip[0].width == 0 || mips->mip[0].height == 0) return false; layers = (mips->type == PTI_CUBEMAP)?6:1; switch(mips->encoding) { case PTI_RGB565: case PTI_RGBA4444: case PTI_ARGB4444: case PTI_RGBA5551: case PTI_ARGB1555: blocksize = 1; blockbytes = 2; //16bit formats break; case PTI_RGBA8: case PTI_RGBX8: case PTI_BGRA8: case PTI_BGRX8: blocksize = 1; //in texels blockbytes = 4; break; case PTI_S3RGB1: case PTI_S3RGBA1: blocksize = 4; blockbytes = 8; break; case PTI_S3RGBA3: case PTI_S3RGBA5: blocksize = 4; blockbytes = 16; break; case PTI_RGBA16F: blocksize = 1; blockbytes = 4*2; break; case PTI_RGBA32F: blocksize = 1; blockbytes = 4*4; break; case PTI_R8: blocksize = 1; blockbytes = 1; break; case PTI_RG8: blocksize = 1; blockbytes = 2; break; default: return false; } fence = VK_FencedBegin(VK_TextureLoaded, sizeof(*fence)); fence->mips = mips->mipcount; vkloadcmd = fence->w.cbuf; //create our target image if (tex->vkimage) { if (tex->vkimage->width != mips->mip[0].width || tex->vkimage->height != mips->mip[0].height || tex->vkimage->layers != layers || tex->vkimage->mipcount != mips->mipcount || tex->vkimage->encoding != mips->encoding || tex->vkimage->type != mips->type) { vkDeviceWaitIdle(vk.device); //erk, we can't cope with a commandbuffer poking the texture while things happen VK_FencedCheck(); VK_DestroyVkTexture(tex->vkimage); Z_Free(tex->vkimage); tex->vkimage = NULL; } } if (tex->vkimage) { target = *tex->vkimage; //can reuse it Z_Free(tex->vkimage); //we're meant to be replacing the entire thing, so we can just transition from undefined here // set_image_layout(vkloadcmd, target.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_ACCESS_SHADER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT); { //images have weird layout representations. //we need to use a side-effect of memory barriers in order to convert from one layout to another, so that we can actually use the image. VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgbarrier.newLayout = target.layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgbarrier.image = target.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = mips->mipcount/layers; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = layers; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT; imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; vkCmdPipelineBarrier(vkloadcmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } } else { target = VK_CreateTexture2DArray(mips->mip[0].width, mips->mip[0].height, layers, mips->mipcount/layers, mips->encoding, mips->type); { //images have weird layout representations. //we need to use a side-effect of memory barriers in order to convert from one layout to another, so that we can actually use the image. VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgbarrier.newLayout = target.layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgbarrier.image = target.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = mips->mipcount/layers; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = layers; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.srcAccessMask = 0; imgbarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; vkCmdPipelineBarrier(vkloadcmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } } //create the staging images and fill them for (i = 0; i < mips->mipcount; i++) { VkImageSubresource subres = {0}; VkSubresourceLayout layout; void *mapdata; //figure out the number of 'blocks' in the image. //for non-compressed formats this is just the width directly. //for compressed formats (ie: s3tc/dxt) we need to round up to deal with npot. uint32_t blockwidth = (mips->mip[i].width+blocksize-1) / blocksize; uint32_t blockheight = (mips->mip[i].height+blocksize-1) / blocksize; fence->staging[i] = VK_CreateTexture2DArray(mips->mip[i].width, mips->mip[i].height, 0, 1, mips->encoding, PTI_2D); subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subres.mipLevel = 0; subres.arrayLayer = 0; vkGetImageSubresourceLayout(vk.device, fence->staging[i].image, &subres, &layout); VkAssert(vkMapMemory(vk.device, fence->staging[i].memory, 0, layout.size, 0, &mapdata)); if (mapdata) { for (y = 0; y < blockheight; y++) memcpy((char*)mapdata + layout.offset + y*layout.rowPitch, (char*)mips->mip[i].data + y*blockwidth*blockbytes, blockwidth*blockbytes); } else Sys_Error("Unable to map staging image\n"); vkUnmapMemory(vk.device, fence->staging[i].memory); //queue up an image copy for this mip { VkImageCopy region; region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.srcSubresource.mipLevel = 0; region.srcSubresource.baseArrayLayer = 0; region.srcSubresource.layerCount = 1; region.srcOffset.x = 0; region.srcOffset.y = 0; region.srcOffset.z = 0; region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.dstSubresource.mipLevel = i%(mips->mipcount/layers); region.dstSubresource.baseArrayLayer = i/(mips->mipcount/layers); region.dstSubresource.layerCount = 1; region.dstOffset.x = 0; region.dstOffset.y = 0; region.dstOffset.z = 0; region.extent.width = mips->mip[i].width; region.extent.height = mips->mip[i].height; region.extent.depth = 1; set_image_layout(vkloadcmd, fence->staging[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_ACCESS_HOST_WRITE_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT); vkCmdCopyImage(vkloadcmd, fence->staging[i].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, target.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); } } //layouts are annoying. and weird. { //images have weird layout representations. //we need to use a side-effect of memory barriers in order to convert from one layout to another, so that we can actually use the image. VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgbarrier.newLayout = target.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imgbarrier.image = target.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = mips->mipcount/layers; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = layers; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; imgbarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; vkCmdPipelineBarrier(vkloadcmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } VK_FencedSubmit(fence); //FIXME: should probably reuse these samplers. if (!target.sampler) VK_CreateSampler(tex->flags, &target); tex->vkdescriptor = VK_NULL_HANDLE; tex->vkimage = Z_Malloc(sizeof(*tex->vkimage)); *tex->vkimage = target; return true; } void VK_DestroyTexture (texid_t tex) { if (tex->vkimage) { VK_DestroyVkTexture(tex->vkimage); Z_Free(tex->vkimage); tex->vkimage = NULL; } tex->vkdescriptor = VK_NULL_HANDLE; } void VK_R_Init (void) { } void VK_R_DeInit (void) { R_GAliasFlushSkinCache(true); Surf_DeInit(); VK_Shutdown_PostProc(); VK_DestroySwapChain(); VKBE_Shutdown(); Shader_Shutdown(); Image_Shutdown(); } void VK_SetupViewPortProjection(qboolean flipy) { float fov_x, fov_y; AngleVectors (r_refdef.viewangles, vpn, vright, vup); VectorCopy (r_refdef.vieworg, r_origin); fov_x = r_refdef.fov_x;//+sin(cl.time)*5; fov_y = r_refdef.fov_y;//-sin(cl.time+1)*5; if ((r_refdef.flags & RDF_UNDERWATER) && !(r_refdef.flags & RDF_WATERWARP)) { fov_x *= 1 + (((sin(cl.time * 4.7) + 1) * 0.015) * r_waterwarp.value); fov_y *= 1 + (((sin(cl.time * 3.0) + 1) * 0.015) * r_waterwarp.value); } // screenaspect = (float)r_refdef.vrect.width/r_refdef.vrect.height; /*view matrix*/ if (flipy) //mimic gl and give bottom-up { vec3_t down; VectorNegate(vup, down); VectorCopy(down, vup); Matrix4x4_CM_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, down, r_refdef.vieworg); r_refdef.flipcull = SHADER_CULL_FRONT | SHADER_CULL_BACK; } else { Matrix4x4_CM_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, vup, r_refdef.vieworg); r_refdef.flipcull = 0; } if (r_refdef.maxdist) Matrix4x4_CM_Projection_Far(r_refdef.m_projection, fov_x, fov_y, r_refdef.mindist, r_refdef.maxdist); else Matrix4x4_CM_Projection_Inf(r_refdef.m_projection, fov_x, fov_y, r_refdef.mindist); } void VK_Set2D(void) { vid.fbvwidth = vid.width; vid.fbvheight = vid.height; vid.fbpwidth = vid.pixelwidth; vid.fbpheight = vid.pixelheight; r_refdef.pxrect.x = 0; r_refdef.pxrect.y = 0; r_refdef.pxrect.width = vid.fbpwidth; r_refdef.pxrect.height = vid.fbpheight; r_refdef.pxrect.maxheight = vid.pixelheight; /* { VkClearDepthStencilValue val; VkImageSubresourceRange range; val.depth = 1; val.stencil = 0; range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; range.baseArrayLayer = 0; range.baseMipLevel = 0; range.layerCount = 1; range.levelCount = 1; vkCmdClearDepthStencilImage(vk.frame->cbuf, vk.depthbuf.image, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, &val, 1, &range); } */ /* vkCmdEndRenderPass(vk.frame->cbuf); { VkRenderPassBeginInfo rpiinfo = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO}; VkClearValue clearvalues[1]; clearvalues[0].depthStencil.depth = 1.0; clearvalues[0].depthStencil.stencil = 0; rpiinfo.renderPass = vk.renderpass[1]; rpiinfo.renderArea.offset.x = r_refdef.pxrect.x; rpiinfo.renderArea.offset.y = r_refdef.pxrect.y; rpiinfo.renderArea.extent.width = r_refdef.pxrect.width; rpiinfo.renderArea.extent.height = r_refdef.pxrect.height; rpiinfo.framebuffer = vk.frame->backbuf->framebuffer; rpiinfo.clearValueCount = 1; rpiinfo.pClearValues = clearvalues; vkCmdBeginRenderPass(vk.frame->cbuf, &rpiinfo, VK_SUBPASS_CONTENTS_INLINE); } */ { VkViewport vp[1]; VkRect2D scissor[1]; vp[0].x = r_refdef.pxrect.x; vp[0].y = r_refdef.pxrect.y; vp[0].width = r_refdef.pxrect.width; vp[0].height = r_refdef.pxrect.height; vp[0].minDepth = 0.0; vp[0].maxDepth = 1.0; scissor[0].offset.x = r_refdef.pxrect.x; scissor[0].offset.y = r_refdef.pxrect.y; scissor[0].extent.width = r_refdef.pxrect.width; scissor[0].extent.height = r_refdef.pxrect.height; vkCmdSetViewport(vk.frame->cbuf, 0, countof(vp), vp); vkCmdSetScissor(vk.frame->cbuf, 0, countof(scissor), scissor); } VKBE_Set2D(true); if (0) Matrix4x4_CM_Orthographic(r_refdef.m_projection, 0, vid.fbvwidth, 0, vid.fbvheight, -99999, 99999); else Matrix4x4_CM_Orthographic(r_refdef.m_projection, 0, vid.fbvwidth, vid.fbvheight, 0, -99999, 99999); Matrix4x4_Identity(r_refdef.m_view); BE_SelectEntity(&r_worldentity); } static void VK_Shutdown_PostProc(void) { unsigned int i; for (i = 0; i < countof(postproc); i++) VKBE_RT_Gen(&postproc[i], 0, 0, true); vk.scenepp_waterwarp = NULL; vk.scenepp_antialias = NULL; VK_R_BloomShutdown(); } static void VK_Init_PostProc(void) { texid_t scenepp_texture_warp, scenepp_texture_edge; //this block liberated from the opengl code { #define PP_WARP_TEX_SIZE 64 #define PP_AMP_TEX_SIZE 64 #define PP_AMP_TEX_BORDER 4 int i, x, y; unsigned char pp_warp_tex[PP_WARP_TEX_SIZE*PP_WARP_TEX_SIZE*4]; unsigned char pp_edge_tex[PP_AMP_TEX_SIZE*PP_AMP_TEX_SIZE*4]; // scenepp_postproc_cube = r_nulltex; // TEXASSIGN(sceneblur_texture, Image_CreateTexture("***postprocess_blur***", NULL, 0)); TEXASSIGN(scenepp_texture_warp, Image_CreateTexture("***postprocess_warp***", NULL, IF_NOMIPMAP|IF_NOGAMMA|IF_LINEAR)); TEXASSIGN(scenepp_texture_edge, Image_CreateTexture("***postprocess_edge***", NULL, IF_NOMIPMAP|IF_NOGAMMA|IF_LINEAR)); // init warp texture - this specifies offset in for (y=0; y PP_AMP_TEX_SIZE - PP_AMP_TEX_BORDER) { fx = (PP_AMP_TEX_SIZE - (float)x) / PP_AMP_TEX_BORDER; } if (y < PP_AMP_TEX_BORDER) { fy = (float)y / PP_AMP_TEX_BORDER; } if (y > PP_AMP_TEX_SIZE - PP_AMP_TEX_BORDER) { fy = (PP_AMP_TEX_SIZE - (float)y) / PP_AMP_TEX_BORDER; } //avoid any sudden changes. fx=sin(fx*M_PI*0.5); fy=sin(fy*M_PI*0.5); //lame fx = fy = min(fx, fy); pp_edge_tex[i ] = fx * 255; pp_edge_tex[i+1] = fy * 255; pp_edge_tex[i+2] = 0; pp_edge_tex[i+3] = 0xff; } } Image_Upload(scenepp_texture_edge, TF_RGBX32, pp_edge_tex, NULL, PP_AMP_TEX_SIZE, PP_AMP_TEX_SIZE, IF_LINEAR|IF_NOMIPMAP|IF_NOGAMMA); } vk.scenepp_waterwarp = R_RegisterShader("waterwarp", SUF_NONE, "{\n" "program underwaterwarp\n" "{\n" "map $sourcecolour\n" "}\n" "{\n" "map $upperoverlay\n" "}\n" "{\n" "map $loweroverlay\n" "}\n" "}\n" ); vk.scenepp_waterwarp->defaulttextures->upperoverlay = scenepp_texture_warp; vk.scenepp_waterwarp->defaulttextures->loweroverlay = scenepp_texture_edge; vk.scenepp_antialias = R_RegisterShader("fte_ppantialias", 0, "{\n" "program fxaa\n" "{\n" "map $sourcecolour\n" "}\n" "}\n" ); } static qboolean VK_R_RenderScene_Cubemap(struct vk_rendertarg *fb) { int cmapsize = 512; int i; static vec3_t ang[6] = { {0, -90, 0}, {0, 90, 0}, {90, 0, 0}, {-90, 0, 0}, {0, 0, 0}, {0, -180, 0} }; vec3_t saveang; vec3_t saveorg; vrect_t vrect; pxrect_t prect; extern cvar_t ffov; shader_t *shader; int facemask; extern cvar_t r_projection; int osm; struct vk_rendertarg_cube *rtc = &vk_rt_cubemap; if (!*ffov.string || !strcmp(ffov.string, "0")) { if (ffov.vec4[0] != scr_fov.value) { ffov.value = ffov.vec4[0] = scr_fov.value; Shader_NeedReload(false); //gah! } } facemask = 0; switch(r_projection.ival) { default: //invalid. return false; case PROJ_STEREOGRAPHIC: shader = R_RegisterShader("postproc_stereographic", SUF_NONE, "{\n" "program postproc_stereographic\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); facemask |= 1<<4; /*front view*/ if (ffov.value > 70) { facemask |= (1<<0) | (1<<1); /*side/top*/ if (ffov.value > 85) facemask |= (1<<2) | (1<<3); /*bottom views*/ if (ffov.value > 300) facemask |= 1<<5; /*back view*/ } break; case PROJ_FISHEYE: shader = R_RegisterShader("postproc_fisheye", SUF_NONE, "{\n" "program postproc_fisheye\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); //fisheye view sees up to a full sphere facemask |= 1<<4; /*front view*/ if (ffov.value > 77) facemask |= (1<<0) | (1<<1) | (1<<2) | (1<<3); /*side/top/bottom views*/ if (ffov.value > 270) facemask |= 1<<5; /*back view*/ break; case PROJ_PANORAMA: shader = R_RegisterShader("postproc_panorama", SUF_NONE, "{\n" "program postproc_panorama\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); //panoramic view needs at most the four sides facemask |= 1<<4; /*front view*/ if (ffov.value > 90) { facemask |= (1<<0) | (1<<1); /*side views*/ if (ffov.value > 270) facemask |= 1<<5; /*back view*/ } facemask = 0x3f; break; case PROJ_LAEA: shader = R_RegisterShader("postproc_laea", SUF_NONE, "{\n" "program postproc_laea\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); facemask |= 1<<4; /*front view*/ if (ffov.value > 90) { facemask |= (1<<0) | (1<<1) | (1<<2) | (1<<3); /*side/top/bottom views*/ if (ffov.value > 270) facemask |= 1<<5; /*back view*/ } break; case PROJ_EQUIRECTANGULAR: shader = R_RegisterShader("postproc_equirectangular", SUF_NONE, "{\n" "program postproc_equirectangular\n" "{\n" "map $sourcecube\n" "}\n" "}\n" ); facemask = 0x3f; #if 0 facemask |= 1<<4; /*front view*/ if (ffov.value > 90) { facemask |= (1<<0) | (1<<1) | (1<<2) | (1<<3); /*side/top/bottom views*/ if (ffov.value > 270) facemask |= 1<<5; /*back view*/ } #endif break; } if (!shader || !shader->prog) return false; //erk. shader failed. //FIXME: we should be able to rotate the view vrect = r_refdef.vrect; prect = r_refdef.pxrect; // prect.x = (vrect.x * vid.pixelwidth)/vid.width; // prect.width = (vrect.width * vid.pixelwidth)/vid.width; // prect.y = (vrect.y * vid.pixelheight)/vid.height; // prect.height = (vrect.height * vid.pixelheight)/vid.height; if (sh_config.texture_non_power_of_two_pic) { cmapsize = prect.width > prect.height?prect.width:prect.height; if (cmapsize > 4096)//sh_config.texture_maxsize) cmapsize = 4096;//sh_config.texture_maxsize; } r_refdef.flags |= RDF_FISHEYE; vid.fbpwidth = vid.fbpheight = cmapsize; //FIXME: gl_max_size VectorCopy(r_refdef.vieworg, saveorg); VectorCopy(r_refdef.viewangles, saveang); saveang[2] = 0; osm = r_refdef.stereomethod; r_refdef.stereomethod = STEREO_OFF; VKBE_RT_Gen_Cube(rtc, cmapsize, r_clear.ival?true:false); vrect = r_refdef.vrect; //save off the old vrect r_refdef.vrect.width = (cmapsize * vid.fbvwidth) / vid.fbpwidth; r_refdef.vrect.height = (cmapsize * vid.fbvheight) / vid.fbpheight; r_refdef.vrect.x = 0; r_refdef.vrect.y = prect.y; ang[0][0] = -saveang[0]; ang[0][1] = -90; ang[0][2] = -saveang[0]; ang[1][0] = -saveang[0]; ang[1][1] = 90; ang[1][2] = saveang[0]; ang[5][0] = -saveang[0]*2; //in theory, we could use a geometry shader to duplicate the polygons to each face. //that would of course require that every bit of glsl had such a geometry shader. //it would at least reduce cpu load quite a bit. for (i = 0; i < 6; i++) { if (!(facemask & (1<face[i]); r_refdef.fov_x = 90; r_refdef.fov_y = 90; r_refdef.viewangles[0] = saveang[0]+ang[i][0]; r_refdef.viewangles[1] = saveang[1]+ang[i][1]; r_refdef.viewangles[2] = saveang[2]+ang[i][2]; VK_SetupViewPortProjection(true); /*if (!vk.rendertarg->depthcleared) { VkClearAttachment clr; VkClearRect rect; clr.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clr.clearValue.depthStencil.depth = 1; clr.clearValue.depthStencil.stencil = 0; clr.colorAttachment = 1; rect.rect.offset.x = r_refdef.pxrect.x; rect.rect.offset.y = r_refdef.pxrect.y; rect.rect.extent.width = r_refdef.pxrect.width; rect.rect.extent.height = r_refdef.pxrect.height; rect.layerCount = 1; rect.baseArrayLayer = 0; vkCmdClearAttachments(vk.frame->cbuf, 1, &clr, 1, &rect); vk.rendertarg->depthcleared = true; }*/ VKBE_SelectEntity(&r_worldentity); R_SetFrustum (r_refdef.m_projection, r_refdef.m_view); RQ_BeginFrame(); if (!(r_refdef.flags & RDF_NOWORLDMODEL)) { if (cl.worldmodel) P_DrawParticles (); } Surf_DrawWorld(); RQ_RenderBatchClear(); vk.rendertarg->depthcleared = false; if (R2D_Flush) Con_Printf("no flush\n"); } r_refdef.vrect = vrect; r_refdef.pxrect = prect; VectorCopy(saveorg, r_refdef.vieworg); r_refdef.stereomethod = osm; VKBE_RT_Begin(fb); r_refdef.flipcull = 0; VK_Set2D(); shader->defaulttextures->reflectcube = &rtc->q_colour; // draw it through the shader if (r_projection.ival == PROJ_EQUIRECTANGULAR) { //note vr screenshots have requirements here R2D_Image(vrect.x, vrect.y, vrect.width, vrect.height, 0, 1, 1, 0, shader); } else if (r_projection.ival == PROJ_PANORAMA) { float saspect = .5; float taspect = vrect.height / vrect.width * ffov.value / 90;//(0.5 * vrect.width) / vrect.height; R2D_Image(vrect.x, vrect.y, vrect.width, vrect.height, -saspect, taspect, saspect, -taspect, shader); } else if (vrect.width > vrect.height) { float aspect = (0.5 * vrect.height) / vrect.width; R2D_Image(vrect.x, vrect.y, vrect.width, vrect.height, -0.5, aspect, 0.5, -aspect, shader); } else { float aspect = (0.5 * vrect.width) / vrect.height; R2D_Image(vrect.x, vrect.y, vrect.width, vrect.height, -aspect, 0.5, aspect, -0.5, shader); } if (R2D_Flush) R2D_Flush(); return true; } void VK_R_RenderView (void) { extern unsigned int r_viewcontents; struct vk_rendertarg *rt, *rtscreen = vk.rendertarg; extern cvar_t r_fxaa; extern cvar_t r_renderscale, r_postprocshader; float renderscale = r_renderscale.value; shader_t *custompostproc; if (r_norefresh.value || !vid.fbpwidth || !vid.fbpwidth) { VK_Set2D (); return; } VKBE_Set2D(false); Surf_SetupFrame(); //check if we can do underwater warp if (cls.protocol != CP_QUAKE2) //quake2 tells us directly { if (r_viewcontents & FTECONTENTS_FLUID) r_refdef.flags |= RDF_UNDERWATER; else r_refdef.flags &= ~RDF_UNDERWATER; } if (r_refdef.flags & RDF_UNDERWATER) { extern cvar_t r_projection; if (!r_waterwarp.value || r_projection.ival) r_refdef.flags &= ~RDF_UNDERWATER; //no warp at all else if (r_waterwarp.value > 0) r_refdef.flags |= RDF_WATERWARP; //try fullscreen warp instead if we can } if (!r_refdef.globalfog.density) { int fogtype = ((r_refdef.flags & RDF_UNDERWATER) && cl.fog[1].density)?1:0; CL_BlendFog(&r_refdef.globalfog, &cl.oldfog[fogtype], realtime, &cl.fog[fogtype]); r_refdef.globalfog.density /= 64; //FIXME } custompostproc = NULL; if (r_refdef.flags & RDF_NOWORLDMODEL) renderscale = 1; //with no worldmodel, this is probably meant to be transparent so make sure that there's no post-proc stuff messing up transparencies. else { if (*r_postprocshader.string) { custompostproc = R_RegisterCustom(r_postprocshader.string, SUF_NONE, NULL, NULL); if (custompostproc) r_refdef.flags |= RDF_CUSTOMPOSTPROC; } if (r_fxaa.ival) //overlays will have problems. r_refdef.flags |= RDF_ANTIALIAS; if (R_CanBloom()) r_refdef.flags |= RDF_BLOOM; } // // figure out the viewport // { int x = r_refdef.vrect.x * vid.pixelwidth/(int)vid.width; int x2 = (r_refdef.vrect.x + r_refdef.vrect.width) * vid.pixelwidth/(int)vid.width; int y = (r_refdef.vrect.y) * vid.pixelheight/(int)vid.height; int y2 = ((int)(r_refdef.vrect.y + r_refdef.vrect.height)) * vid.pixelheight/(int)vid.height; // fudge around because of frac screen scale if (x > 0) x--; if (x2 < vid.pixelwidth) x2++; if (y < 0) y--; if (y2 < vid.pixelheight) y2++; r_refdef.pxrect.x = x; r_refdef.pxrect.y = y; r_refdef.pxrect.width = x2 - x; r_refdef.pxrect.height = y2 - y; r_refdef.pxrect.maxheight = vid.pixelheight; } if (renderscale != 1.0) { r_refdef.flags |= RDF_RENDERSCALE; r_refdef.pxrect.width *= renderscale; r_refdef.pxrect.height *= renderscale; r_refdef.pxrect.maxheight = r_refdef.pxrect.height; } if (r_refdef.pxrect.width <= 0 || r_refdef.pxrect.height <= 0) return; //you're not allowed to do that, dude. //FIXME: VF_RT_* //FIXME: if we're meant to be using msaa, render the scene to an msaa target and then resolve. postproc_buf = 0; if (r_refdef.flags & (RDF_ALLPOSTPROC|RDF_RENDERSCALE)) { r_refdef.pxrect.x = 0; r_refdef.pxrect.y = 0; rt = &postproc[postproc_buf++%countof(postproc)]; VKBE_RT_Gen(rt, r_refdef.pxrect.width, r_refdef.pxrect.height, false); } else rt = rtscreen; if (!(r_refdef.flags & RDF_NOWORLDMODEL) && VK_R_RenderScene_Cubemap(rt)) { } else { VKBE_RT_Begin(rt); VK_SetupViewPortProjection(false); { VkViewport vp[1]; VkRect2D scissor[1]; vp[0].x = r_refdef.pxrect.x; vp[0].y = r_refdef.pxrect.y; vp[0].width = r_refdef.pxrect.width; vp[0].height = r_refdef.pxrect.height; vp[0].minDepth = 0.0; vp[0].maxDepth = 1.0; scissor[0].offset.x = r_refdef.pxrect.x; scissor[0].offset.y = r_refdef.pxrect.y; scissor[0].extent.width = r_refdef.pxrect.width; scissor[0].extent.height = r_refdef.pxrect.height; vkCmdSetViewport(vk.frame->cbuf, 0, countof(vp), vp); vkCmdSetScissor(vk.frame->cbuf, 0, countof(scissor), scissor); } if (!vk.rendertarg->depthcleared) { VkClearAttachment clr; VkClearRect rect; clr.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clr.clearValue.depthStencil.depth = 1; clr.clearValue.depthStencil.stencil = 0; clr.colorAttachment = 1; rect.rect.offset.x = r_refdef.pxrect.x; rect.rect.offset.y = r_refdef.pxrect.y; rect.rect.extent.width = r_refdef.pxrect.width; rect.rect.extent.height = r_refdef.pxrect.height; rect.layerCount = 1; rect.baseArrayLayer = 0; vkCmdClearAttachments(vk.frame->cbuf, 1, &clr, 1, &rect); vk.rendertarg->depthcleared = true; } VKBE_SelectEntity(&r_worldentity); R_SetFrustum (r_refdef.m_projection, r_refdef.m_view); RQ_BeginFrame(); if (!(r_refdef.flags & RDF_NOWORLDMODEL)) { if (cl.worldmodel) P_DrawParticles (); } Surf_DrawWorld(); RQ_RenderBatchClear(); vk.rendertarg->depthcleared = false; VK_Set2D (); } if (r_refdef.flags & RDF_ALLPOSTPROC) { if (!vk.scenepp_waterwarp) VK_Init_PostProc(); //FIXME: chain renderpasses as required. if (r_refdef.flags & RDF_WATERWARP) { r_refdef.flags &= ~RDF_WATERWARP; vk.sourcecolour = &rt->q_colour; if (r_refdef.flags & RDF_ALLPOSTPROC) { rt = &postproc[postproc_buf++]; VKBE_RT_Gen(rt, 320, 200, false); } else rt = rtscreen; VKBE_RT_Begin(rt); R2D_Image(r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height, 0, 0, 1, 1, vk.scenepp_waterwarp); R2D_Flush(); } if (r_refdef.flags & RDF_CUSTOMPOSTPROC) { r_refdef.flags &= ~RDF_CUSTOMPOSTPROC; vk.sourcecolour = &rt->q_colour; if (r_refdef.flags & RDF_ALLPOSTPROC) { rt = &postproc[postproc_buf++]; VKBE_RT_Gen(rt, 320, 200, false); } else rt = rtscreen; VKBE_RT_Begin(rt); R2D_Image(r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height, 0, 1, 1, 0, custompostproc); R2D_Flush(); } if (r_refdef.flags & RDF_ANTIALIAS) { r_refdef.flags &= ~RDF_ANTIALIAS; R2D_ImageColours(rt->width, rt->height, 1, 1); vk.sourcecolour = &rt->q_colour; if (r_refdef.flags & RDF_ALLPOSTPROC) { rt = &postproc[postproc_buf++]; VKBE_RT_Gen(rt, 320, 200, false); } else rt = rtscreen; VKBE_RT_Begin(rt); R2D_Image(r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height, 0, 1, 1, 0, vk.scenepp_antialias); R2D_ImageColours(1, 1, 1, 1); R2D_Flush(); } if (r_refdef.flags & RDF_BLOOM) { VKBE_RT_Begin(rtscreen); VK_R_BloomBlend(&rt->q_colour, r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height); rt = rtscreen; } } else if (r_refdef.flags & RDF_RENDERSCALE) { if (!vk.scenepp_rescale) vk.scenepp_rescale = R_RegisterShader("fte_rescaler", 0, "{\n" "program default2d\n" "{\n" "map $sourcecolour\n" "}\n" "}\n" ); vk.sourcecolour = &rt->q_colour; rt = rtscreen; VKBE_RT_Begin(rt); R2D_Image(r_refdef.vrect.x, r_refdef.vrect.y, r_refdef.vrect.width, r_refdef.vrect.height, 0, 0, 1, 1, vk.scenepp_rescale); R2D_Flush(); } vk.sourcecolour = r_nulltex; } char *VKVID_GetRGBInfo (int *truevidwidth, int *truevidheight, enum uploadfmt *fmt) { //with vulkan, we need to create a staging image to write into, submit a copy, wait for completion, map the copy, copy that out, free the staging. //its enough to make you pitty anyone that writes opengl drivers. if (VK_SCR_GrabBackBuffer()) { void *imgdata, *outdata; uint32_t y; struct vk_fencework *fence = VK_FencedBegin(NULL, 0); VkImageCopy icpy; VkImage tempimage; VkDeviceMemory tempmemory; VkImageSubresource subres = {0}; VkSubresourceLayout layout; VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo memAllocInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO}; VkImageCreateInfo ici = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO}; ici.flags = 0; ici.imageType = VK_IMAGE_TYPE_2D; ici.format = VK_FORMAT_B8G8R8A8_UNORM; ici.extent.width = vid.pixelwidth; ici.extent.height = vid.pixelheight; ici.extent.depth = 1; ici.mipLevels = 1; ici.arrayLayers = 1; ici.samples = VK_SAMPLE_COUNT_1_BIT; ici.tiling = VK_IMAGE_TILING_LINEAR; ici.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT; ici.sharingMode = VK_SHARING_MODE_EXCLUSIVE; ici.queueFamilyIndexCount = 0; ici.pQueueFamilyIndices = NULL; ici.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VkAssert(vkCreateImage(vk.device, &ici, vkallocationcb, &tempimage)); vkGetImageMemoryRequirements(vk.device, tempimage, &mem_reqs); memAllocInfo.allocationSize = mem_reqs.size; memAllocInfo.memoryTypeIndex = vk_find_memory_require(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); VkAssert(vkAllocateMemory(vk.device, &memAllocInfo, vkallocationcb, &tempmemory)); VkAssert(vkBindImageMemory(vk.device, tempimage, tempmemory, 0)); set_image_layout(fence->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT); set_image_layout(fence->cbuf, tempimage, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, 0, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT); //fixme: transition layouts! icpy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; icpy.srcSubresource.mipLevel = 0; icpy.srcSubresource.baseArrayLayer = 0; icpy.srcSubresource.layerCount = 1; icpy.srcOffset.x = 0; icpy.srcOffset.y = 0; icpy.srcOffset.z = 0; icpy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; icpy.dstSubresource.mipLevel = 0; icpy.dstSubresource.baseArrayLayer = 0; icpy.dstSubresource.layerCount = 1; icpy.dstOffset.x = 0; icpy.dstOffset.y = 0; icpy.dstOffset.z = 0; icpy.extent.width = vid.pixelwidth; icpy.extent.height = vid.pixelheight; icpy.extent.depth = 1; vkCmdCopyImage(fence->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, tempimage, VK_IMAGE_LAYOUT_GENERAL, 1, &icpy); set_image_layout(fence->cbuf, vk.frame->backbuf->colour.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT); set_image_layout(fence->cbuf, tempimage, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_GENERAL, VK_ACCESS_HOST_READ_BIT); VK_FencedSync(fence); outdata = BZ_Malloc(4*vid.pixelwidth*vid.pixelheight); *fmt = PTI_BGRA8; *truevidwidth = vid.pixelwidth; *truevidheight = vid.pixelheight; subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subres.mipLevel = 0; subres.arrayLayer = 0; vkGetImageSubresourceLayout(vk.device, tempimage, &subres, &layout); VkAssert(vkMapMemory(vk.device, tempmemory, 0, mem_reqs.size, 0, &imgdata)); for (y = 0; y < vid.pixelheight; y++) memcpy((char*)outdata + (vid.pixelheight-1-y)*vid.pixelwidth*4, (char*)imgdata + layout.offset + y*layout.rowPitch, vid.pixelwidth*4); vkUnmapMemory(vk.device, tempmemory); vkDestroyImage(vk.device, tempimage, vkallocationcb); vkFreeMemory(vk.device, tempmemory, vkallocationcb); return outdata; } return NULL; } static void VK_PaintScreen(void) { int uimenu; qboolean nohud; qboolean noworld; vid.fbvwidth = vid.width; vid.fbvheight = vid.height; vid.fbpwidth = vid.pixelwidth; vid.fbpheight = vid.pixelheight; r_refdef.pxrect.x = 0; r_refdef.pxrect.y = 0; r_refdef.pxrect.width = vid.fbpwidth; r_refdef.pxrect.height = vid.fbpheight; r_refdef.pxrect.maxheight = vid.pixelheight; vid.numpages = vk.backbuf_count + 1; R2D_Font_Changed(); VK_Set2D (); Shader_DoReload(); if (scr_disabled_for_loading) { extern float scr_disabled_time; if (Sys_DoubleTime() - scr_disabled_time > 60 || !Key_Dest_Has(~kdm_game)) { //FIXME: instead of reenabling the screen, we should just draw the relevent things skipping only the game. scr_disabled_for_loading = false; } else { // scr_drawloading = true; SCR_DrawLoading (true); // scr_drawloading = false; return; } } /* if (!scr_initialized || !con_initialized) { RSpeedEnd(RSPEED_TOTALREFRESH); return; // not initialized yet } */ #ifdef VM_UI uimenu = UI_MenuState(); #else uimenu = 0; #endif #ifdef TEXTEDITOR if (editormodal) { Editor_Draw(); V_UpdatePalette (false); #if defined(_WIN32) && defined(GLQUAKE) Media_RecordFrame(); #endif R2D_BrightenScreen(); if (key_dest_mask & kdm_console) Con_DrawConsole(vid.height/2, false); else Con_DrawConsole(0, false); // SCR_DrawCursor(); return; } #endif if (Media_ShowFilm()) { M_Draw(0); V_UpdatePalette (false); R2D_BrightenScreen(); #if defined(_WIN32) && defined(GLQUAKE) Media_RecordFrame(); #endif return; } // // do 3D refresh drawing, and then update the screen // SCR_SetUpToDrawConsole (); noworld = false; nohud = false; #ifdef VM_CG if (CG_Refresh()) nohud = true; else #endif #ifdef CSQC_DAT if (CSQC_DrawView()) nohud = true; else #endif { if (uimenu != 1) { if (r_worldentity.model && cls.state == ca_active) V_RenderView (); else { noworld = true; } } } // scr_con_forcedraw = false; if (noworld) { extern char levelshotname[]; //draw the levelshot or the conback fullscreen if (*levelshotname) R2D_ScalePic(0, 0, vid.width, vid.height, R2D_SafeCachePic (levelshotname)); else if (scr_con_current != vid.height) R2D_ConsoleBackground(0, vid.height, true); // else // scr_con_forcedraw = true; nohud = true; } SCR_DrawTwoDimensional(uimenu, nohud); V_UpdatePalette (false); R2D_BrightenScreen(); #if defined(_WIN32) && defined(GLQUAKE) Media_RecordFrame(); #endif RSpeedShow(); } qboolean VK_SCR_GrabBackBuffer(void) { RSpeedLocals(); if (vk.frame) //erk, we already have one... return true; RSpeedRemark(); VK_FencedCheck(); if (!vk.unusedframes) { struct vkframe *newframe = Z_Malloc(sizeof(*vk.frame)); VKBE_InitFramePools(newframe); newframe->next = vk.unusedframes; vk.unusedframes = newframe; } while (vk.aquirenext == vk.aquirelast) { //we're still waiting for the render thread to increment acquirelast. Sys_Sleep(0); //o.O } //wait for the queued acquire to actually finish if (1)//vk.vsync) { //friendly wait VkResult err = vkWaitForFences(vk.device, 1, &vk.acquirefences[vk.aquirenext%ACQUIRELIMIT], VK_FALSE, UINT64_MAX); if (err) { if (err == VK_ERROR_DEVICE_LOST) Sys_Error("Vulkan device lost"); return false; } } else { //busy wait, to try to get the highest fps possible while (VK_TIMEOUT == vkGetFenceStatus(vk.device, vk.acquirefences[vk.aquirenext%ACQUIRELIMIT])) ; } vk.bufferidx = vk.acquirebufferidx[vk.aquirenext%ACQUIRELIMIT]; VkAssert(vkResetFences(vk.device, 1, &vk.acquirefences[vk.aquirenext%ACQUIRELIMIT])); vk.aquirenext++; //grab the first unused Sys_LockConditional(vk.submitcondition); vk.frame = vk.unusedframes; vk.unusedframes = vk.frame->next; vk.frame->next = NULL; Sys_UnlockConditional(vk.submitcondition); VkAssert(vkResetFences(vk.device, 1, &vk.frame->finishedfence)); vk.frame->backbuf = &vk.backbufs[vk.bufferidx]; RSpeedEnd(RSPEED_SETUP); { VkCommandBufferBeginInfo begininf = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO}; VkCommandBufferInheritanceInfo inh = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO}; begininf.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; begininf.pInheritanceInfo = &inh; inh.renderPass = VK_NULL_HANDLE; //unused inh.subpass = 0; //unused inh.framebuffer = VK_NULL_HANDLE; //unused inh.occlusionQueryEnable = VK_FALSE; inh.queryFlags = 0; inh.pipelineStatistics = 0; vkBeginCommandBuffer(vk.frame->cbuf, &begininf); } VKBE_RestartFrame(); // VK_DebugFramerate(); // vkCmdWriteTimestamp(vk.frame->cbuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, querypool, vk.bufferidx*2+0); { VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; imgbarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; //'Alternately, oldLayout can be VK_IMAGE_LAYOUT_UNDEFINED, if the image’s contents need not be preserved.' imgbarrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; imgbarrier.image = vk.frame->backbuf->colour.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = vk.queuefam[1]; imgbarrier.dstQueueFamilyIndex = vk.queuefam[0]; if (vk.frame->backbuf->firstuse) { imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vk.frame->backbuf->firstuse = false; } vkCmdPipelineBarrier(vk.frame->cbuf, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } { VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = 0; imgbarrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgbarrier.newLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; imgbarrier.image = vk.frame->backbuf->depth.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgbarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vkCmdPipelineBarrier(vk.frame->cbuf, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } { VkClearValue clearvalues[2]; extern cvar_t r_clear; VkRenderPassBeginInfo rpbi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO}; clearvalues[0].color.float32[0] = !!(r_clear.ival & 1); clearvalues[0].color.float32[1] = !!(r_clear.ival & 2); clearvalues[0].color.float32[2] = !!(r_clear.ival & 4); clearvalues[0].color.float32[3] = 1; clearvalues[1].depthStencil.depth = 1.0; clearvalues[1].depthStencil.stencil = 0; rpbi.clearValueCount = 2; if (r_clear.ival) rpbi.renderPass = vk.renderpass[2]; else rpbi.renderPass = vk.renderpass[1]; //may still clear rpbi.framebuffer = vk.frame->backbuf->framebuffer; rpbi.renderArea.offset.x = 0; rpbi.renderArea.offset.y = 0; rpbi.renderArea.extent.width = vid.pixelwidth; rpbi.renderArea.extent.height = vid.pixelheight; rpbi.pClearValues = clearvalues; vkCmdBeginRenderPass(vk.frame->cbuf, &rpbi, VK_SUBPASS_CONTENTS_INLINE); vk.frame->backbuf->width = vid.pixelwidth; vk.frame->backbuf->height = vid.pixelheight; rpbi.clearValueCount = 0; rpbi.pClearValues = NULL; rpbi.renderPass = vk.renderpass[0]; vk.rendertarg = vk.frame->backbuf; vk.rendertarg->restartinfo = rpbi; vk.rendertarg->depthcleared = true; } return true; } struct vk_presented { struct vk_fencework fw; struct vkframe *frame; }; void VK_Presented(void *fw) { struct vk_presented *pres = fw; struct vkframe *frame = pres->frame; pres->fw.fence = VK_NULL_HANDLE; //don't allow that to be freed. while(frame->frameendjobs) { struct vk_fencework *job = frame->frameendjobs; frame->frameendjobs = job->next; job->Passed(job); if (job->fence || job->cbuf) Con_Printf("job with junk\n"); Z_Free(job); } frame->next = vk.unusedframes; vk.unusedframes = frame; } #if 0 void VK_DebugFramerate(void) { static double lastupdatetime; static double lastsystemtime; double t; extern int fps_count; float lastfps; float frametime; t = Sys_DoubleTime(); if ((t - lastupdatetime) >= 1.0) { lastfps = fps_count/(t - lastupdatetime); fps_count = 0; lastupdatetime = t; OutputDebugStringA(va("%g fps\n", lastfps)); } frametime = t - lastsystemtime; lastsystemtime = t; } #endif qboolean VK_SCR_UpdateScreen (void) { VkCommandBuffer bufs[1]; VK_FencedCheck(); //a few cvars need some extra work if they're changed if (vk_submissionthread.modified || vid_vsync.modified || vid_triplebuffer.modified || vid_srgb.modified) { vid_vsync.modified = false; vid_triplebuffer.modified = false; vid_srgb.modified = false; vk_submissionthread.modified = false; vk.triplebuffer = vid_triplebuffer.ival; vk.vsync = vid_vsync.ival; vk.neednewswapchain = true; } if (vk.neednewswapchain && !vk.frame) { //kill the thread if (vk.submitthread) { Sys_LockConditional(vk.submitcondition); //annoying, but required for it to be reliable with respect to other things. Sys_ConditionSignal(vk.submitcondition); Sys_UnlockConditional(vk.submitcondition); Sys_WaitOnThread(vk.submitthread); vk.submitthread = NULL; } //make sure any work is actually done BEFORE the swapchain gets destroyed while (vk.work) { Sys_LockConditional(vk.submitcondition); VK_Submit_DoWork(); Sys_UnlockConditional(vk.submitcondition); } vkDeviceWaitIdle(vk.device); VK_CreateSwapChain(); vk.neednewswapchain = false; if (vk_submissionthread.ival || !*vk_submissionthread.string) { vk.submitthread = Sys_CreateThread("vksubmission", VK_Submit_Thread, NULL, THREADP_HIGHEST, 0); } } if (!VK_SCR_GrabBackBuffer()) return false; VKBE_Set2D(true); VKBE_SelectDLight(NULL, vec3_origin, NULL, 0); VK_PaintScreen(); if (R2D_Flush) R2D_Flush(); vkCmdEndRenderPass(vk.frame->cbuf); { VkImageMemoryBarrier imgbarrier = {VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER}; imgbarrier.pNext = NULL; imgbarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; imgbarrier.dstAccessMask = 0; imgbarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; imgbarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; imgbarrier.image = vk.frame->backbuf->colour.image; imgbarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgbarrier.subresourceRange.baseMipLevel = 0; imgbarrier.subresourceRange.levelCount = 1; imgbarrier.subresourceRange.baseArrayLayer = 0; imgbarrier.subresourceRange.layerCount = 1; imgbarrier.srcQueueFamilyIndex = vk.queuefam[0]; imgbarrier.dstQueueFamilyIndex = vk.queuefam[1]; vkCmdPipelineBarrier(vk.frame->cbuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &imgbarrier); } // vkCmdWriteTimestamp(vk.frame->cbuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, querypool, vk.bufferidx*2+1); vkEndCommandBuffer(vk.frame->cbuf); VKBE_FlushDynamicBuffers(); bufs[0] = vk.frame->cbuf; { struct vk_presented *fw = Z_Malloc(sizeof(*fw)); fw->fw.Passed = VK_Presented; fw->fw.fence = vk.frame->finishedfence; fw->frame = vk.frame; //hand over any post-frame jobs to the frame in question. vk.frame->frameendjobs = vk.frameendjobs; vk.frameendjobs = NULL; VK_Submit_Work(bufs[0], VK_NULL_HANDLE, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, vk.frame->backbuf->presentsemaphore, vk.frame->finishedfence, vk.frame, &fw->fw); } //now would be a good time to do any compute work or lightmap updates... vk.frame = NULL; VK_FencedCheck(); VID_SwapBuffers(); #ifdef TEXTEDITOR if (editormodal) { //FIXME VK_SCR_GrabBackBuffer(); } #endif return true; } void VKBE_RenderToTextureUpdate2d(qboolean destchanged) { } static void VK_DestroyRenderPass(void) { int i; for (i = 0; i < countof(vk.renderpass); i++) { if (vk.renderpass[i] != VK_NULL_HANDLE) { vkDestroyRenderPass(vk.device, vk.renderpass[i], vkallocationcb); vk.renderpass[i] = VK_NULL_HANDLE; } } } static void VK_CreateRenderPass(void) { int pass; static VkAttachmentReference color_reference; static VkAttachmentReference depth_reference; static VkAttachmentDescription attachments[2] = {{0}}; static VkSubpassDescription subpass = {0}; static VkRenderPassCreateInfo rp_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO}; for (pass = 0; pass < 3; pass++) { if (vk.renderpass[pass] != VK_NULL_HANDLE) continue; color_reference.attachment = 0; color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; depth_reference.attachment = 1; depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[color_reference.attachment].format = vk.backbufformat; attachments[color_reference.attachment].samples = VK_SAMPLE_COUNT_1_BIT; // attachments[color_reference.attachment].loadOp = pass?VK_ATTACHMENT_LOAD_OP_LOAD:VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[color_reference.attachment].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[color_reference.attachment].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[color_reference.attachment].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[color_reference.attachment].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[color_reference.attachment].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[depth_reference.attachment].format = vk.depthformat; attachments[depth_reference.attachment].samples = VK_SAMPLE_COUNT_1_BIT; // attachments[depth_reference.attachment].loadOp = pass?VK_ATTACHMENT_LOAD_OP_LOAD:VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[depth_reference.attachment].storeOp = VK_ATTACHMENT_STORE_OP_STORE;//VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[depth_reference.attachment].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[depth_reference.attachment].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[depth_reference.attachment].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[depth_reference.attachment].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.flags = 0; subpass.inputAttachmentCount = 0; subpass.pInputAttachments = NULL; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_reference; subpass.pResolveAttachments = NULL; subpass.pDepthStencilAttachment = &depth_reference; subpass.preserveAttachmentCount = 0; subpass.pPreserveAttachments = NULL; rp_info.attachmentCount = countof(attachments); rp_info.pAttachments = attachments; rp_info.subpassCount = 1; rp_info.pSubpasses = &subpass; rp_info.dependencyCount = 0; rp_info.pDependencies = NULL; if (pass == 0) { //nothing cleared, both are just re-loaded. attachments[color_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachments[depth_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; } else if (pass == 1) { //depth cleared, colour is whatever. attachments[color_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[depth_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; } else { //both cleared attachments[color_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[depth_reference.attachment].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; } VkAssert(vkCreateRenderPass(vk.device, &rp_info, vkallocationcb, &vk.renderpass[pass])); } } void VK_DoPresent(struct vkframe *theframe) { VkResult err; uint32_t framenum; VkPresentInfoKHR presinfo = {VK_STRUCTURE_TYPE_PRESENT_INFO_KHR}; if (!theframe) return; //used to ensure that the queue is flushed at shutdown framenum = theframe->backbuf - vk.backbufs; presinfo.waitSemaphoreCount = 1; presinfo.pWaitSemaphores = &theframe->backbuf->presentsemaphore; presinfo.swapchainCount = 1; presinfo.pSwapchains = &vk.swapchain; presinfo.pImageIndices = &framenum; { RSpeedMark(); err = vkQueuePresentKHR(vk.queue_present, &presinfo); RSpeedEnd(RSPEED_PRESENT); } { RSpeedMark(); if (err) { Con_Printf("ERROR: vkQueuePresentKHR: %x\n", err); vk.neednewswapchain = true; } else { err = vkAcquireNextImageKHR(vk.device, vk.swapchain, 0, VK_NULL_HANDLE, vk.acquirefences[vk.aquirelast%ACQUIRELIMIT], &vk.acquirebufferidx[vk.aquirelast%ACQUIRELIMIT]); if (err) { Con_Printf("ERROR: vkAcquireNextImageKHR: %x\n", err); vk.neednewswapchain = true; } vk.aquirelast++; } RSpeedEnd(RSPEED_ACQUIRE); } } static void VK_Submit_DoWork(void) { VkCommandBuffer cbuf[64]; VkSemaphore wsem[64]; VkPipelineStageFlags wsemstageflags[64]; VkSemaphore ssem[64]; VkQueue subqueue = NULL; VkSubmitInfo subinfo[64]; unsigned int subcount = 0; struct vkwork_s *work; struct vkframe *present = NULL; VkFence waitfence = VK_NULL_HANDLE; VkResult err; struct vk_fencework *fencedwork = NULL; qboolean errored = false; while(vk.work && !present && !waitfence && !fencedwork && subcount < countof(subinfo)) { work = vk.work; if (subcount && subqueue != work->queue) break; subinfo[subcount].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; subinfo[subcount].pNext = NULL; subinfo[subcount].waitSemaphoreCount = work->semwait?1:0; subinfo[subcount].pWaitSemaphores = &wsem[subcount]; wsem[subcount] = work->semwait; subinfo[subcount].pWaitDstStageMask = &wsemstageflags[subcount]; wsemstageflags[subcount] = work->semwaitstagemask; subinfo[subcount].commandBufferCount = work->cmdbuf?1:0; subinfo[subcount].pCommandBuffers = &cbuf[subcount]; cbuf[subcount] = work->cmdbuf; subinfo[subcount].signalSemaphoreCount = work->semsignal?1:0; subinfo[subcount].pSignalSemaphores = &ssem[subcount]; ssem[subcount] = work->semsignal; waitfence = work->fencesignal; fencedwork = work->fencedwork; subqueue = work->queue; subcount++; present = work->present; vk.work = work->next; Z_Free(work); } Sys_UnlockConditional(vk.submitcondition); //don't block people giving us work while we're occupied if (subcount || waitfence) { RSpeedMark(); err = vkQueueSubmit(subqueue, subcount, subinfo, waitfence); if (err) { Con_Printf("ERROR: vkQueueSubmit: %i\n", err); errored = vk.neednewswapchain = true; } RSpeedEnd(RSPEED_SUBMIT); } if (present && !errored) { vk.dopresent(present); } Sys_LockConditional(vk.submitcondition); if (fencedwork) { //this is used for loading and cleaning up things after the gpu has consumed it. if (vk.fencework_last) { vk.fencework_last->next = fencedwork; vk.fencework_last = fencedwork; } else vk.fencework_last = vk.fencework = fencedwork; } } //oh look. a thread. //nvidia's drivers seem to like doing a lot of blocking in queuesubmit and queuepresent(despite the whole QUEUE thing). //so thread this work so the main thread doesn't have to block so much. int VK_Submit_Thread(void *arg) { Sys_LockConditional(vk.submitcondition); while(!vk.neednewswapchain) { if (!vk.work) Sys_ConditionWait(vk.submitcondition); VK_Submit_DoWork(); } Sys_UnlockConditional(vk.submitcondition); return true; } void VK_Submit_Work(VkCommandBuffer cmdbuf, VkSemaphore semwait, VkPipelineStageFlags semwaitstagemask, VkSemaphore semsignal, VkFence fencesignal, struct vkframe *presentframe, struct vk_fencework *fencedwork) { struct vkwork_s *work = Z_Malloc(sizeof(*work)); struct vkwork_s **link; work->queue = vk.queue_render; work->cmdbuf = cmdbuf; work->semwait = semwait; work->semwaitstagemask = semwaitstagemask; work->semsignal = semsignal; work->fencesignal = fencesignal; work->present = presentframe; work->fencedwork = fencedwork; Sys_LockConditional(vk.submitcondition); //add it on the end in a lazy way. for (link = &vk.work; *link; link = &(*link)->next) ; *link = work; if (vk.submitthread && !vk.neednewswapchain) Sys_ConditionSignal(vk.submitcondition); else VK_Submit_DoWork(); Sys_UnlockConditional(vk.submitcondition); } void VK_CheckTextureFormats(void) { struct { unsigned int pti; VkFormat vulkan; unsigned int needextra; } texfmt[] = { {PTI_RGBA8, VK_FORMAT_R8G8B8A8_UNORM}, {PTI_RGBX8, VK_FORMAT_R8G8B8A8_UNORM}, {PTI_BGRA8, VK_FORMAT_B8G8R8A8_UNORM}, {PTI_BGRX8, VK_FORMAT_B8G8R8A8_UNORM}, {PTI_RGB565, VK_FORMAT_R5G6B5_UNORM_PACK16}, {PTI_RGBA4444, VK_FORMAT_R4G4B4A4_UNORM_PACK16}, {PTI_ARGB4444, VK_FORMAT_B4G4R4A4_UNORM_PACK16}, {PTI_RGBA5551, VK_FORMAT_R5G5B5A1_UNORM_PACK16}, {PTI_ARGB1555, VK_FORMAT_A1R5G5B5_UNORM_PACK16}, {PTI_RGBA16F, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT|VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT}, {PTI_RGBA32F, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT|VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT}, {PTI_R8, VK_FORMAT_R8_UNORM}, {PTI_RG8, VK_FORMAT_R8G8_UNORM}, {PTI_DEPTH16, VK_FORMAT_D16_UNORM, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT}, {PTI_DEPTH24, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT}, {PTI_DEPTH32, VK_FORMAT_D32_SFLOAT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT}, {PTI_DEPTH24_8, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT}, {PTI_S3RGB1, VK_FORMAT_BC1_RGB_UNORM_BLOCK}, {PTI_S3RGBA1, VK_FORMAT_BC1_RGBA_UNORM_BLOCK}, {PTI_S3RGBA3, VK_FORMAT_BC2_UNORM_BLOCK}, {PTI_S3RGBA5, VK_FORMAT_BC3_UNORM_BLOCK}, }; unsigned int i; VkPhysicalDeviceProperties props; vkGetPhysicalDeviceProperties(vk.gpu, &props); sh_config.texture_maxsize = props.limits.maxImageDimension2D; for (i = 0; i < countof(texfmt); i++) { unsigned int need = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT | texfmt[i].needextra; VkFormatProperties fmt; vkGetPhysicalDeviceFormatProperties(vk.gpu, texfmt[i].vulkan, &fmt); if ((fmt.optimalTilingFeatures & need) == need) sh_config.texfmt[texfmt[i].pti] = true; } } //initialise the vulkan instance, context, device, etc. qboolean VK_Init(rendererstate_t *info, const char *sysextname, qboolean (*createSurface)(void), void (*dopresent)(struct vkframe *theframe)) { VkQueueFamilyProperties *queueprops; VkResult err; VkApplicationInfo app; VkInstanceCreateInfo inst_info; const char *extensions[8]; qboolean nvglsl = false; uint32_t extensions_count = 0; extensions[extensions_count++] = sysextname; extensions[extensions_count++] = VK_KHR_SURFACE_EXTENSION_NAME; if (vk_debug.ival) extensions[extensions_count++] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME; vk.neednewswapchain = true; vk.triplebuffer = info->triplebuffer; vk.vsync = info->wait; vk.dopresent = dopresent?dopresent:VK_DoPresent; memset(&sh_config, 0, sizeof(sh_config)); //get second set of pointers... #ifdef VK_NO_PROTOTYPES if (!vkGetInstanceProcAddr) { Con_Printf("vkGetInstanceProcAddr is null\n"); return false; } #define VKFunc(n) vk##n = (PFN_vk##n)vkGetInstanceProcAddr(VK_NULL_HANDLE, "vk"#n); VKInstFuncs #undef VKFunc #endif #define ENGINEVERSION 1 memset(&app, 0, sizeof(app)); app.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; app.pNext = NULL; app.pApplicationName = NULL; app.applicationVersion = 0; app.pEngineName = FULLENGINENAME; app.engineVersion = ENGINEVERSION; app.apiVersion = VK_MAKE_VERSION(1, 0, 2); memset(&inst_info, 0, sizeof(inst_info)); inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; inst_info.pApplicationInfo = &app; inst_info.enabledLayerCount = vklayercount; inst_info.ppEnabledLayerNames = vklayerlist; inst_info.enabledExtensionCount = extensions_count; inst_info.ppEnabledExtensionNames = extensions; err = vkCreateInstance(&inst_info, vkallocationcb, &vk.instance); switch(err) { case VK_ERROR_INCOMPATIBLE_DRIVER: Con_Printf("VK_ERROR_INCOMPATIBLE_DRIVER: please install an appropriate vulkan driver\n"); return false; case VK_ERROR_EXTENSION_NOT_PRESENT: Con_Printf("VK_ERROR_EXTENSION_NOT_PRESENT: something on a system level is probably misconfigured\n"); { uint32_t count, i, j; VkExtensionProperties *ext; vkEnumerateInstanceExtensionProperties(NULL, &count, NULL); ext = malloc(sizeof(*ext)*count); vkEnumerateInstanceExtensionProperties(NULL, &count, ext); for (i = 0; i < extensions_count; i++) { for (j = 0; j < count; j++) { if (!strcmp(ext[j].extensionName, extensions[i])) break; } if (j == count) Con_Printf("Missing extension: %s\n", extensions[i]); } free(ext); } return false; case VK_ERROR_LAYER_NOT_PRESENT: Con_Printf("VK_ERROR_LAYER_NOT_PRESENT: requested layer is not known/usable\n"); return false; default: Con_Printf("Unknown vulkan instance creation error: %x\n", err); return false; case VK_SUCCESS: break; } //third set of functions... #ifdef VK_NO_PROTOTYPES vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr(vk.instance, "vkGetInstanceProcAddr"); #define VKFunc(n) vk##n = (PFN_vk##n)vkGetInstanceProcAddr(vk.instance, "vk"#n); VKInst2Funcs #undef VKFunc #endif //set up debug callbacks if (vk_debug.ival) { vkCreateDebugReportCallbackEXT = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(vk.instance, "vkCreateDebugReportCallbackEXT"); vkDestroyDebugReportCallbackEXT = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(vk.instance, "vkDestroyDebugReportCallbackEXT"); if (vkCreateDebugReportCallbackEXT && vkDestroyDebugReportCallbackEXT) { VkDebugReportCallbackCreateInfoEXT dbgCreateInfo; memset(&dbgCreateInfo, 0, sizeof(dbgCreateInfo)); dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; dbgCreateInfo.pfnCallback = mydebugreportcallback; dbgCreateInfo.pUserData = NULL; dbgCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | /* VK_DEBUG_REPORT_INFORMATION_BIT_EXT | */ VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_DEBUG_BIT_EXT; vkCreateDebugReportCallbackEXT(vk.instance, &dbgCreateInfo, vkallocationcb, &vk_debugcallback); } } //create the platform-specific surface createSurface(); //figure out which gpu we're going to use { uint32_t gpucount = 0, i; uint32_t bestpri = ~0u, pri; VkPhysicalDevice *devs; vkEnumeratePhysicalDevices(vk.instance, &gpucount, NULL); if (!gpucount) { Con_Printf("vulkan: no devices known!\n"); return false; } devs = malloc(sizeof(VkPhysicalDevice)*gpucount); vkEnumeratePhysicalDevices(vk.instance, &gpucount, devs); for (i = 0; i < gpucount; i++) { VkPhysicalDeviceProperties props; uint32_t j, queue_count; vkGetPhysicalDeviceProperties(devs[i], &props); vkGetPhysicalDeviceQueueFamilyProperties(devs[i], &queue_count, NULL); for (j = 0; j < queue_count; j++) { VkBool32 supportsPresent; VkAssert(vkGetPhysicalDeviceSurfaceSupportKHR(devs[i], j, vk.surface, &supportsPresent)); if (supportsPresent) break; //okay, this one should be usable } if (j == queue_count) { //no queues can present to that surface, so I guess we can't use that device Con_DPrintf("vulkan: ignoring device %s as it can't present to window\n", props.deviceName); continue; } if (!vk.gpu) vk.gpu = devs[i]; switch(props.deviceType) { default: case VK_PHYSICAL_DEVICE_TYPE_OTHER: pri = 5; break; case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: pri = 2; break; case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: pri = 1; break; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: pri = 3; break; case VK_PHYSICAL_DEVICE_TYPE_CPU: pri = 4; break; } if (!Q_strcasecmp(props.deviceName, info->subrenderer)) pri = 0; if (pri < bestpri) { vk.gpu = devs[i]; bestpri = pri; } } free(devs); if (bestpri == ~0u) { Con_Printf("vulkan: unable to pick a usable device\n"); return false; } } { char *vendor, *type; VkPhysicalDeviceProperties props; vkGetPhysicalDeviceProperties(vk.gpu, &props); switch(props.vendorID) { //explicit vendors case 0x10001: vendor = "Vivante"; break; case 0x10002: vendor = "VeriSilicon"; break; //pci vendor ids //there's a lot of pci vendors, some even still exist, but not all of them actually have 3d hardware. //many of these probably won't even be used... Oh well. //anyway, here's some of the ones that are listed case 0x1002: vendor = "AMD"; break; case 0x10DE: vendor = "NVIDIA"; break; case 0x8086: vendor = "Intel"; break; //cute case 0x13B5: vendor = "ARM"; break; case 0x5143: vendor = "Qualcomm"; break; case 0x1AEE: vendor = "Imagination";break; case 0x1957: vendor = "Freescale"; break; case 0x1AE0: vendor = "Google"; break; case 0x5333: vendor = "S3"; break; case 0xA200: vendor = "NEC"; break; case 0x0A5C: vendor = "Broadcom"; break; case 0x1131: vendor = "NXP"; break; case 0x1099: vendor = "Samsung"; break; case 0x10C3: vendor = "Samsung"; break; case 0x11E2: vendor = "Samsung"; break; case 0x1249: vendor = "Samsung"; break; default: vendor = va("VEND_%x", props.vendorID); break; } switch(props.deviceType) { default: case VK_PHYSICAL_DEVICE_TYPE_OTHER: type = "(other)"; break; case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: type = "integrated"; break; case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: type = "discrete"; break; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: type = "virtual"; break; case VK_PHYSICAL_DEVICE_TYPE_CPU: type = "software"; break; } Con_Printf("Vulkan %u.%u.%u: %s %s %s (%u.%u.%u)\n", VK_VERSION_MAJOR(props.apiVersion), VK_VERSION_MINOR(props.apiVersion), VK_VERSION_PATCH(props.apiVersion), type, vendor, props.deviceName, VK_VERSION_MAJOR(props.driverVersion), VK_VERSION_MINOR(props.driverVersion), VK_VERSION_PATCH(props.driverVersion) ); } //figure out which of the device's queue's we're going to use { uint32_t queue_count, i; vkGetPhysicalDeviceQueueFamilyProperties(vk.gpu, &queue_count, NULL); queueprops = malloc(sizeof(VkQueueFamilyProperties)*queue_count); //Oh how I wish I was able to use C99. vkGetPhysicalDeviceQueueFamilyProperties(vk.gpu, &queue_count, queueprops); vk.queuefam[0] = ~0u; vk.queuefam[1] = ~0u; vk.queuenum[0] = 0; vk.queuenum[1] = 0; /* //try to find a 'dedicated' present queue for (i = 0; i < queue_count; i++) { VkBool32 supportsPresent = FALSE; VkAssert(vkGetPhysicalDeviceSurfaceSupportKHR(vk.gpu, i, vk.surface, &supportsPresent)); if (supportsPresent && !(queueprops[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) { vk.queuefam[1] = i; break; } } if (vk.queuefam[1] != ~0u) { //try to find a good graphics queue for (i = 0; i < queue_count; i++) { if (queueprops[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { vk.queuefam[0] = i; break; } } } else*/ { for (i = 0; i < queue_count; i++) { VkBool32 supportsPresent; VkAssert(vkGetPhysicalDeviceSurfaceSupportKHR(vk.gpu, i, vk.surface, &supportsPresent)); if ((queueprops[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) && supportsPresent) { vk.queuefam[0] = i; vk.queuefam[1] = i; break; } else if (vk.queuefam[0] == ~0u && (queueprops[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) vk.queuefam[0] = i; else if (vk.queuefam[1] == ~0u && supportsPresent) vk.queuefam[1] = i; } } if (vk.queuefam[0] == ~0u || vk.queuefam[1] == ~0u) { free(queueprops); Con_Printf("unable to find suitable queues\n"); return false; } } { uint32_t extcount = 0; VkExtensionProperties *ext; vkEnumerateDeviceExtensionProperties(vk.gpu, NULL, &extcount, NULL); ext = malloc(sizeof(*ext)*extcount); vkEnumerateDeviceExtensionProperties(vk.gpu, NULL, &extcount, ext); while (extcount --> 0) { if (!strcmp(ext[extcount].extensionName, VK_NV_GLSL_SHADER_EXTENSION_NAME)) nvglsl = !!vk_loadglsl.ival; } free(ext); if (nvglsl) Con_Printf("Using %s.\n", VK_NV_GLSL_SHADER_EXTENSION_NAME); else if (vk_loadglsl.ival) Con_Printf("unable to enable %s extension. direct use of glsl is not supported.\n", VK_NV_GLSL_SHADER_EXTENSION_NAME); } { const char *devextensions[8]; size_t numdevextensions = 0; float queue_priorities[2] = {0.8, 1.0}; VkDeviceQueueCreateInfo queueinf[2] = {{VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO},{VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO}}; VkDeviceCreateInfo devinf = {VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO}; devextensions[numdevextensions++] = VK_KHR_SWAPCHAIN_EXTENSION_NAME; if (nvglsl) devextensions[numdevextensions++] = VK_NV_GLSL_SHADER_EXTENSION_NAME; queueinf[0].pNext = NULL; queueinf[0].queueFamilyIndex = vk.queuefam[0]; queueinf[0].queueCount = 1; queueinf[0].pQueuePriorities = &queue_priorities[0]; queueinf[1].pNext = NULL; queueinf[1].queueFamilyIndex = vk.queuefam[1]; queueinf[1].queueCount = 1; queueinf[1].pQueuePriorities = &queue_priorities[1]; if (vk.queuefam[0] == vk.queuefam[1]) { devinf.queueCreateInfoCount = 1; if (queueprops[queueinf[0].queueFamilyIndex].queueCount >= 2 && vk_dualqueue.ival) { queueinf[0].queueCount = 2; vk.queuenum[1] = 1; Con_DPrintf("Using duel queue\n"); } else { queueinf[0].queueCount = 1; vk.dopresent = VK_DoPresent; //can't split submit+present onto different queues, so do these on a single thread. Con_DPrintf("Using single queue\n"); } } else { devinf.queueCreateInfoCount = 2; Con_DPrintf("Using separate queue families\n"); } free(queueprops); devinf.pQueueCreateInfos = queueinf; devinf.enabledLayerCount = vklayercount; devinf.ppEnabledLayerNames = vklayerlist; devinf.enabledExtensionCount = numdevextensions; devinf.ppEnabledExtensionNames = devextensions; devinf.pEnabledFeatures = NULL; err = vkCreateDevice(vk.gpu, &devinf, NULL, &vk.device); switch(err) { case VK_ERROR_INCOMPATIBLE_DRIVER: Con_Printf("VK_ERROR_INCOMPATIBLE_DRIVER: please install an appropriate vulkan driver\n"); return false; case VK_ERROR_EXTENSION_NOT_PRESENT: Con_Printf("VK_ERROR_EXTENSION_NOT_PRESENT: something on a system level is probably misconfigured\n"); return false; default: Con_Printf("Unknown vulkan device creation error: %x\n", err); return false; case VK_SUCCESS: break; } } #ifdef VK_NO_PROTOTYPES vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(vk.instance, "vkGetDeviceProcAddr"); #define VKFunc(n) vk##n = (PFN_vk##n)vkGetDeviceProcAddr(vk.device, "vk"#n); VKDevFuncs #undef VKFunc #endif vkGetDeviceQueue(vk.device, vk.queuefam[0], vk.queuenum[0], &vk.queue_render); vkGetDeviceQueue(vk.device, vk.queuefam[1], vk.queuenum[1], &vk.queue_present); vkGetPhysicalDeviceMemoryProperties(vk.gpu, &vk.memory_properties); { VkCommandPoolCreateInfo cpci = {VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO}; cpci.queueFamilyIndex = vk.queuefam[0]; cpci.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT|VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VkAssert(vkCreateCommandPool(vk.device, &cpci, vkallocationcb, &vk.cmdpool)); } sh_config.progpath = NULL; sh_config.blobpath = "spirv"; sh_config.shadernamefmt = NULL;//".spv"; if (nvglsl) { sh_config.progpath = "glsl/%s.glsl"; sh_config.shadernamefmt = "%s_glsl"; } sh_config.progs_supported = true; sh_config.progs_required = true; sh_config.minver = -1; sh_config.maxver = -1; sh_config.texture_maxsize = 4096; //must be at least 4096, FIXME: query this properly sh_config.texture_non_power_of_two = true; //is this always true? sh_config.texture_non_power_of_two_pic = true; //probably true... sh_config.npot_rounddown = false; sh_config.tex_env_combine = false; //fixme: figure out what this means... sh_config.nv_tex_env_combine4 = false; //fixme: figure out what this means... sh_config.env_add = false; //fixme: figure out what this means... sh_config.can_mipcap = true; VK_CheckTextureFormats(); sh_config.pDeleteProg = NULL; sh_config.pLoadBlob = NULL; if (nvglsl) sh_config.pCreateProgram = VK_LoadGLSL; else sh_config.pCreateProgram = NULL; sh_config.pValidateProgram = NULL; sh_config.pProgAutoFields = NULL; if (sh_config.texfmt[PTI_DEPTH32]) vk.depthformat = VK_FORMAT_D32_SFLOAT; else if (sh_config.texfmt[PTI_DEPTH24]) vk.depthformat = VK_FORMAT_X8_D24_UNORM_PACK32; else if (sh_config.texfmt[PTI_DEPTH24_8]) vk.depthformat = VK_FORMAT_D24_UNORM_S8_UINT; else //16bit depth is guarenteed in vulkan vk.depthformat = VK_FORMAT_D16_UNORM; vk.submitcondition = Sys_CreateConditional(); { VkPipelineCacheCreateInfo pci = {VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO}; qofs_t size = 0; pci.pInitialData = FS_MallocFile("vulkan.pcache", FS_ROOT, &size); pci.initialDataSize = size; VkAssert(vkCreatePipelineCache(vk.device, &pci, vkallocationcb, &vk.pipelinecache)); FS_FreeFile((void*)pci.pInitialData); } if (VK_CreateSwapChain()) { vk.neednewswapchain = false; if (vk_submissionthread.ival || !*vk_submissionthread.string) { vk.submitthread = Sys_CreateThread("vksubmission", VK_Submit_Thread, NULL, THREADP_HIGHEST, 0); } } return true; } void VK_Shutdown(void) { uint32_t i; VK_DestroySwapChain(); for (i = 0; i < countof(postproc); i++) VKBE_RT_Gen(&postproc[i], 0, 0, false); VKBE_RT_Gen_Cube(&vk_rt_cubemap, 0, false); VK_R_BloomShutdown(); if (vk.cmdpool) vkDestroyCommandPool(vk.device, vk.cmdpool, vkallocationcb); VK_DestroyRenderPass(); if (vk.pipelinecache) { size_t size; if (VK_SUCCESS == vkGetPipelineCacheData(vk.device, vk.pipelinecache, &size, NULL)) { void *ptr = Z_Malloc(size); //valgrind says nvidia isn't initialising this. if (VK_SUCCESS == vkGetPipelineCacheData(vk.device, vk.pipelinecache, &size, ptr)) FS_WriteFile("vulkan.pcache", ptr, size, FS_ROOT); Z_Free(ptr); } vkDestroyPipelineCache(vk.device, vk.pipelinecache, vkallocationcb); } if (vk.device) vkDestroyDevice(vk.device, vkallocationcb); if (vk_debugcallback) { vkDestroyDebugReportCallbackEXT(vk.instance, vk_debugcallback, vkallocationcb); vk_debugcallback = VK_NULL_HANDLE; } if (vk.surface) vkDestroySurfaceKHR(vk.instance, vk.surface, vkallocationcb); if (vk.instance) vkDestroyInstance(vk.instance, vkallocationcb); if (vk.submitcondition) Sys_DestroyConditional(vk.submitcondition); memset(&vk, 0, sizeof(vk)); #ifdef VK_NO_PROTOTYPES #define VKFunc(n) vk##n = NULL; VKFuncs #undef VKFunc #endif } #endif