#include "quakedef.h"
#include "glquake.h"
#include "shader.h"

#ifdef RGLQUAKE

#define MAX_TEXTURE_UNITS 8

typedef struct {
	GLenum currenttextures[MAX_TEXTURE_UNITS];
	GLenum texenvmode[MAX_TEXTURE_UNITS];

	int currenttmu;

	qboolean in2d;
} gl_state_t;
gl_state_t gl_state;

void GL_SetShaderState2D(qboolean is2d)
{
	gl_state.in2d = is2d;
}

extern int		*lightmap_textures;
extern int		*deluxmap_textures;

void GL_SelectTexture (GLenum target) 
{
	gl_state.currenttmu = target - mtexid0;
	if (qglClientActiveTextureARB)
	{
		qglClientActiveTextureARB(target);
		qglActiveTextureARB(target);
	}
	else
		qglSelectTextureSGIS(target);
}

void GL_CheckTMUIs0(void)
{
	if (gl_state.currenttmu != 0)
	{
		Con_Printf("TMU is not 0\n");
		GL_SelectTexture(mtexid0);
	}
}

void GL_MBind( GLenum target, int texnum )
{
	GL_SelectTexture( target );

	if ( gl_state.currenttextures[gl_state.currenttmu] == texnum )
		return;

	gl_state.currenttextures[gl_state.currenttmu] = texnum;
	bindTexFunc (GL_TEXTURE_2D, texnum);
}

void GL_Bind (int texnum)
{
	if (gl_state.currenttextures[gl_state.currenttmu] == texnum)
		return;

	gl_state.currenttextures[gl_state.currenttmu] = texnum;

	bindTexFunc (GL_TEXTURE_2D, texnum);
}
void GL_BindType (int type, int texnum)
{
	if (gl_state.currenttextures[gl_state.currenttmu] == texnum)
		return;

	gl_state.currenttextures[gl_state.currenttmu] = texnum;
	bindTexFunc (type, texnum);
}

void GL_TexEnv( GLenum mode )
{
	if ( mode != gl_state.texenvmode[gl_state.currenttmu] )
	{
		qglTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode );
		gl_state.texenvmode[gl_state.currenttmu] = mode;
	}
}

//vid restarted.
void GL_FlushBackEnd(void)
{
	int i;
	for (i = 0; i < MAX_TEXTURE_UNITS; i++)
	{
		gl_state.currenttextures[i] = -1;
		gl_state.texenvmode[i] = -1;
	}
}

typedef vec3_t mat3_t[3];




#ifndef Q3SHADERS

qboolean varrayactive;
void R_IBrokeTheArrays(void)
{
}

void R_BackendInit(void)
{
}





#else

/*
Copyright (C) 2002-2003 Victor Luchits

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/
#define MAX_ARRAY_VERTS 8192
#define MAX_ARRAY_INDEXES 8192
#define MAX_ARRAY_NEIGHBORS 8192
#define MAX_ARRAY_TRIANGLES (8192/3)
#define M_TWO_PI (M_PI*2)

cvar_t r_detailtextures = SCVAR("r_detailtextures", "1");
cvar_t r_showtris = SCVAR("r_showtris", "1");
cvar_t r_shownormals = SCVAR("r_shownormals", "1");

float Q_rsqrt( float number )
{
	int i;
	float x2, y;
	const float threehalfs = 1.5F;

	x2 = number * 0.5F;
	y  = number;
	i  = * ( int * ) &y;						// evil floating point bit level hacking
	i  = 0x5f3759df - ( i >> 1 );               // what the fuck?
	y  = * ( float * ) &i;
	y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration
//	y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed

	return y;
}

void VectorNormalizeFast( vec3_t v )
{
	float ilength;

	ilength = Q_rsqrt( DotProduct( v, v ) );

	v[0] *= ilength;
	v[1] *= ilength;
	v[2] *= ilength;
}




mat3_t axisDefault={{1, 0, 0},
					{0, 1, 0},
					{0, 0, 1}};

void Matrix3_Transpose (mat3_t in, mat3_t out)
{
	out[0][0] = in[0][0];
	out[1][1] = in[1][1];
	out[2][2] = in[2][2];

	out[0][1] = in[1][0];
	out[0][2] = in[2][0];
	out[1][0] = in[0][1];
	out[1][2] = in[2][1];
	out[2][0] = in[0][2];
	out[2][1] = in[1][2];
}
void Matrix3_Multiply_Vec3 (mat3_t a, vec3_t b, vec3_t product)
{
	product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2];
	product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2];
	product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2];
}

int Matrix3_Compare(mat3_t in, mat3_t out)
{
	return memcmp(in, out, sizeof(mat3_t));
}
extern model_t		*currentmodel;

#define clamp(v,min,max) (v) = (((v)<(min))?(min):(((v)>(max))?(max):(v)))

extern qbyte FloatToByte( float x );


#define FTABLE_SIZE		1024
#define FTABLE_CLAMP(x)	(((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1)))
#define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x)))

static	float	r_sintable[FTABLE_SIZE];
static	float	r_triangletable[FTABLE_SIZE];
static	float	r_squaretable[FTABLE_SIZE];
static	float	r_sawtoothtable[FTABLE_SIZE];
static	float	r_inversesawtoothtable[FTABLE_SIZE];

index_t			*indexesArray;
int				*neighborsArray;
vec3_t			*trNormalsArray;

vec2_t			*coordsArray;
vec2_t			*lightmapCoordsArray;

vec3_t			vertexArray[MAX_ARRAY_VERTS*2];
vec3_t			normalsArray[MAX_ARRAY_VERTS];

vec3_t			tempVertexArray[MAX_ARRAY_VERTS];
vec3_t			tempNormalsArray[MAX_ARRAY_VERTS];
index_t			tempIndexesArray[MAX_ARRAY_INDEXES];

index_t			inIndexesArray[MAX_ARRAY_INDEXES];
int				inNeighborsArray[MAX_ARRAY_NEIGHBORS];
vec3_t			inTrNormalsArray[MAX_ARRAY_TRIANGLES];
vec2_t			inCoordsArray[MAX_ARRAY_VERTS];
vec2_t			inLightmapCoordsArray[MAX_ARRAY_VERTS];
byte_vec4_t		inColorsArray[MAX_ARRAY_VERTS];

static	vec2_t		tUnitCoordsArray[MAX_TEXTURE_UNITS][MAX_ARRAY_VERTS];
static	byte_vec4_t	colorArray[MAX_ARRAY_VERTS];

int				numVerts, numIndexes, numColors;

qboolean		r_arrays_locked;
qboolean		r_blocked;

int				r_features;

static	int		r_lmtex;

static	int		r_texNums[SHADER_PASS_MAX];
static	int		r_numUnits;

index_t			*currentIndex;
int				*currentTrNeighbor;
float			*currentTrNormal;
float			*currentVertex;
float			*currentNormal;
float			*currentCoords;
float			*currentLightmapCoords;
qbyte			*currentColor;

static	int		r_identityLighting;
static	float	r_localShaderTime;

unsigned int	r_numverts;
unsigned int	r_numtris;
unsigned int	r_numflushes;
int r_backendStart;

int r_dlighttexture;

	extern qbyte *host_basepal;
	extern qboolean gammaworks;
	extern qbyte gammatable[256];

void R_FetchTopColour(int *retred, int *retgreen, int *retblue)
{
	int i;
	if (currententity->scoreboard)
	{
		i = currententity->scoreboard->ttopcolor;
	}
	else
		i = TOP_RANGE>>4;
	if (i > 8)
	{
		i<<=4;
	}
	else
	{
		i<<=4;
		i+=15;
	}
	i*=3;
	*retred = host_basepal[i+0];
	*retgreen = host_basepal[i+1];
	*retblue = host_basepal[i+2];
	if (!gammaworks)
	{
		*retred = gammatable[*retred];
		*retgreen = gammatable[*retgreen];
		*retblue = gammatable[*retblue];
	}
}
void R_FetchBottomColour(int *retred, int *retgreen, int *retblue)
{
	int i;
	if (currententity->scoreboard)
	{
		i = currententity->scoreboard->tbottomcolor;
	}
	else
		i = BOTTOM_RANGE>>4;
	if (i > 8)
	{
		i<<=4;
	}
	else
	{
		i<<=4;
		i+=15;
	}
	i*=3;
	*retred = host_basepal[i+0];
	*retgreen = host_basepal[i+1];
	*retblue = host_basepal[i+2];
	if (!gammaworks)
	{
		*retred = gammatable[*retred];
		*retgreen = gammatable[*retgreen];
		*retblue = gammatable[*retblue];
	}
}

void R_InitDynamicLightTexture (void)
{
	int x, y;
	int dx2, dy, d;
	qbyte data[64*64*4];

	//
	// dynamic light texture
	//

	for (x = 0; x < 64; x++) 
	{
		dx2 = x - 32;
		dx2 = dx2 * dx2 + 8;

		for (y = 0; y < 64; y++) 
		{
			dy = y - 32;
			d = (int)(65536.0f * ((1.0f / (dx2 + dy * dy + 32.0f)) - 0.0005) + 0.5f);
			if ( d < 50 ) d = 0; else if ( d > 255 ) d = 255;

			data[(y*64 + x) * 4 + 0] = d;
			data[(y*64 + x) * 4 + 1] = d;
			data[(y*64 + x) * 4 + 2] = d;
			data[(y*64 + x) * 4 + 3] = 255;
		}
	}

	r_dlighttexture = GL_LoadTexture32("", 64, 64, (unsigned int*)data, true, false);

	qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
	qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
}

void R_ResetTexState (void)
{
	coordsArray = inCoordsArray;
	lightmapCoordsArray = inLightmapCoordsArray;

	currentCoords = coordsArray[0];
	currentLightmapCoords = lightmapCoordsArray[0];

	numColors = 0;
	currentColor = inColorsArray[0];
}


void R_PushIndexes ( index_t *indexes, int *neighbors, vec3_t *trnormals, int numindexes, int features )
{
	int i;
	int numTris;

	// this is a fast path for non-batched geometry, use carefully 
	// used on pics, sprites, .dpm, .md3 and .md2 models
	if ( features & MF_NONBATCHED ) {
		if ( numindexes > MAX_ARRAY_INDEXES ) {
			numindexes = MAX_ARRAY_INDEXES;
		}

		// simply change indexesArray to point at indexes
		numIndexes = numindexes;
		indexesArray = indexes;
		currentIndex = indexesArray + numIndexes;

		if ( neighbors ) {
			neighborsArray = neighbors;
			currentTrNeighbor = neighborsArray + numIndexes;
		}

		if ( trnormals && (features & MF_TRNORMALS) ) {
			numTris = numIndexes / 3;

			trNormalsArray = trnormals;
			currentTrNormal = trNormalsArray[0] + numTris;
		}
	}
	else
	{
		// clamp
		if ( numIndexes + numindexes > MAX_ARRAY_INDEXES ) {
			numindexes = MAX_ARRAY_INDEXES - numIndexes;
		}

		numTris = numindexes / 3;
		numIndexes += numindexes;

		// the following code assumes that R_PushIndexes is fed with triangles...
		for ( i=0; i<numTris; i++, indexes += 3, currentIndex += 3 )
		{
			currentIndex[0] = numVerts + indexes[0];
			currentIndex[1] = numVerts + indexes[1];
			currentIndex[2] = numVerts + indexes[2];

			if ( neighbors ) {
				currentTrNeighbor[0] = numTris + neighbors[0];
				currentTrNeighbor[1] = numTris + neighbors[1];
				currentTrNeighbor[2] = numTris + neighbors[2];

				neighbors += 3;
				currentTrNeighbor += 3;
			}

			if ( trnormals && (features & MF_TRNORMALS) ) {
				VectorCopy ( trnormals[i], currentTrNormal );
				currentTrNormal += 3;
			}
		}
	}
}

void R_PushMesh ( mesh_t *mesh, int features )
{
	int numverts;

	if ( !mesh->indexes || !mesh->xyz_array ) {
		return;
	}

	r_features = features;

	R_PushIndexes ( mesh->indexes, mesh->trneighbors, mesh->trnormals, mesh->numindexes, features );

	numverts = mesh->numvertexes;
	if ( numVerts + numverts > MAX_ARRAY_VERTS ) {
		numverts = MAX_ARRAY_VERTS - numVerts;
	}

	memcpy ( currentVertex, mesh->xyz_array, numverts * sizeof(vec3_t) );
	currentVertex += numverts * 3;

	if ( mesh->normals_array && (features & MF_NORMALS) ) {
		memcpy ( currentNormal, mesh->normals_array, numverts * sizeof(vec3_t) );
		currentNormal += numverts * 3;
	}

	if ( mesh->st_array && (features & MF_STCOORDS) ) {
		if ( features & MF_NONBATCHED ) {
			coordsArray = mesh->st_array;
			currentCoords = coordsArray[0];
		} else {
			memcpy ( currentCoords, mesh->st_array, numverts * sizeof(vec2_t) );
		}

		currentCoords += numverts * 2;
	}

	if ( mesh->lmst_array && (features & MF_LMCOORDS) ) {
		if ( features & MF_NONBATCHED ) {
			lightmapCoordsArray = mesh->lmst_array;
			currentLightmapCoords = lightmapCoordsArray[0];
		} else {
			memcpy ( currentLightmapCoords, mesh->lmst_array, numverts * sizeof(vec2_t) );
		}

		currentLightmapCoords += numverts * 2;
	}

	if ( mesh->colors_array && (features & MF_COLORS) ) {
		memcpy ( currentColor, mesh->colors_array, numverts * sizeof(byte_vec4_t) );
		currentColor += numverts * 4;
	}

	numVerts += numverts;
	r_numverts += numverts;
}


qboolean R_MeshWillExceed(mesh_t *mesh)
{
	if (numVerts + mesh->numvertexes > MAX_ARRAY_VERTS)
		return true;
	if (numIndexes + mesh->numindexes > MAX_ARRAY_INDEXES)
		return true;
	return false;
}

extern index_t			r_quad_indexes[6];// = { 0, 1, 2, 0, 2, 3 };

void R_FinishMeshBuffer ( meshbuffer_t *mb );

static float	frand(void)
{
	return (rand()&32767)* (1.0/32767);
}

//static float	crand(void)
//{
//	return (rand()&32767)* (2.0/32767) - 1;
//}

/*
==============
R_BackendInit
==============
*/
void R_IBrokeTheArrays(void);
void R_BackendInit (void)
{
	int i;
	double t;

	numVerts = 0;
	numIndexes = 0;
    numColors = 0;

	indexesArray = inIndexesArray;
	currentIndex = indexesArray;
	neighborsArray = inNeighborsArray;
	trNormalsArray = inTrNormalsArray;
	coordsArray = inCoordsArray;
	lightmapCoordsArray = inLightmapCoordsArray;

	currentTrNeighbor = neighborsArray;
	currentTrNormal = trNormalsArray[0];

	currentVertex = vertexArray[0];
	currentNormal = normalsArray[0];

	currentCoords = coordsArray[0];
	currentLightmapCoords = lightmapCoordsArray[0];

	currentColor = inColorsArray[0];

	r_arrays_locked = false;
	r_blocked = false;

	R_IBrokeTheArrays();

	//FIZME: FTE already has some stuff along these lines, surly...
//	if ( !r_ignorehwgamma->value )
//		r_identityLighting = (int)(255.0f / pow(2, max(0, floor(r_overbrightbits->value))));
//	else
		r_identityLighting = 255;

	for ( i = 0; i < FTABLE_SIZE; i++ ) {
		t = (double)i / (double)FTABLE_SIZE;

		r_sintable[i] = sin ( t * M_TWO_PI );
		
		if (t < 0.25) 
			r_triangletable[i] = t * 4.0;
		else if (t < 0.75)
			r_triangletable[i] = 2 - 4.0 * t;
		else
			r_triangletable[i] = (t - 0.75) * 4.0 - 1.0;

		if (t < 0.5) 
			r_squaretable[i] = 1.0f;
		else
			r_squaretable[i] = -1.0f;

		r_sawtoothtable[i] = t;
		r_inversesawtoothtable[i] = 1.0 - t;
	}

	R_InitDynamicLightTexture();
}

qboolean varrayactive;
void R_IBrokeTheArrays(void)
{
	varrayactive = true;
	qglVertexPointer( 3, GL_FLOAT, 0, vertexArray );
	qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );

	qglEnableClientState( GL_VERTEX_ARRAY );
}

/*
==============
R_BackendShutdown
==============
*/
void R_BackendShutdown (void)
{
}

/*
==============
R_FastSin
==============
*/
float R_FastSin ( float t )
{
	return r_sintable[FTABLE_CLAMP(t)];
}

/*
==============
R_TableForFunc
==============
*/
static float *R_TableForFunc ( unsigned int func )
{
	switch (func)
	{
		case SHADER_FUNC_SIN:
			return r_sintable;

		case SHADER_FUNC_TRIANGLE:
			return r_triangletable;

		case SHADER_FUNC_SQUARE:
			return r_squaretable;

		case SHADER_FUNC_SAWTOOTH:
			return r_sawtoothtable;

		case SHADER_FUNC_INVERSESAWTOOTH:
			return r_inversesawtoothtable;
	}

	// assume noise
	return NULL;
}

/*
==============
R_BackendStartFrame
==============
*/
void R_BackendStartFrame (void)
{
	r_numverts = 0;
	r_numtris = 0;
	r_numflushes = 0;
//	r_backendStart = Sys_Milliseconds();
}

/*
==============
R_BackendEndFrame
==============
*/
void R_BackendEndFrame (void)
{
	if (r_speeds.value)
	{
		Con_Printf( "%4i wpoly %4i leafs %4i verts %4i tris %4i flushes\n",
			c_brush_polys, 
			0/*c_world_leafs*/,
			r_numverts,
			r_numtris,
			r_numflushes ); 
	}
//	time_backend = Sys_Milliseconds() - r_backendStart;
//	r_backendStart = 0;
}

/*
==============
R_LockArrays
==============
*/
void R_LockArrays ( int numverts )
{
	if ( r_arrays_locked )
		return;

	if ( qglLockArraysEXT != 0 ) {
		qglLockArraysEXT( 0, numverts );
		r_arrays_locked = true;
	}
}

/*
==============
R_UnlockArrays
==============
*/
void R_UnlockArrays (void)
{
	if ( !r_arrays_locked )
		return;

	if ( qglUnlockArraysEXT != 0 ) {
		qglUnlockArraysEXT();
		r_arrays_locked = false;
	}
}

/*
==============
R_DrawTriangleStrips

This function looks for and sends tristrips.
Original code by Stephen C. Taylor (Aftershock 3D rendering engine)
==============
*/
void R_DrawTriangleStrips (index_t *indexes, int numindexes)
{
	int toggle;
	index_t a, b, c, *index;

	c = 0;
	index = indexes;
	while ( c < numindexes ) {
		toggle = 1;

		qglBegin( GL_TRIANGLE_STRIP );
		
		qglArrayElement( index[0] );
		qglArrayElement( b = index[1] );
		qglArrayElement( a = index[2] );

		c += 3;
		index += 3;

		while ( c < numindexes ) {
			if ( a != index[0] || b != index[1] ) {
				break;
			}

			if ( toggle ) {
				qglArrayElement( b = index[2] );
			} else {
				qglArrayElement( a = index[2] );
			}

			c += 3;
			index += 3;
			toggle = !toggle;
		}

		qglEnd();
    }
}

/*
==============
R_ClearArrays
==============
*/
void R_ClearArrays (void)
{
	numVerts = 0;
	numIndexes = 0;

	indexesArray = inIndexesArray;
	currentIndex = indexesArray;
	neighborsArray = inNeighborsArray;
	trNormalsArray = inTrNormalsArray;

	currentTrNeighbor = neighborsArray;
	currentTrNormal = trNormalsArray[0];

	currentVertex = vertexArray[0];
	currentNormal = normalsArray[0];

	R_ResetTexState ();

	r_blocked = false;
}

/*
==============
R_FlushArrays
==============
*/
void R_FlushArrays (void)
{
	if ( !numVerts || !numIndexes ) {
		return;
	}

	if ( numColors > 1 ) {
		qglEnableClientState( GL_COLOR_ARRAY );
	} else if ( numColors == 1 ) {
		qglColor4ubv ( colorArray[0] );
	}

	qglEnableClientState( GL_TEXTURE_COORD_ARRAY );

	if ( !r_arrays_locked ) {
		R_DrawTriangleStrips ( indexesArray, numIndexes );
	} else {
		qglDrawElements( GL_TRIANGLES, numIndexes, GL_INDEX_TYPE,	indexesArray );
	}

	r_numtris += numIndexes / 3;

	qglDisableClientState( GL_TEXTURE_COORD_ARRAY );

	if ( numColors > 1 ) {
		qglDisableClientState( GL_COLOR_ARRAY );
	}

	r_numflushes++;
}

/*
==============
R_FlushArraysMtex
==============
*/
void R_FlushArraysMtex (void)
{
	int i;

	if ( !numVerts || !numIndexes ) {
		return;
	}

	if ( numColors > 1 ) {
		qglEnableClientState( GL_COLOR_ARRAY );
	} else if ( numColors == 1 ) {
		qglColor4ubv ( colorArray[0] );
	}

	GL_MBind( mtexid0, r_texNums[0] );
	qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
	for ( i = 1; i < r_numUnits; i++ )
	{
		GL_MBind( mtexid0 + i, r_texNums[i] );
		qglEnable ( GL_TEXTURE_2D );
		qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
	}

	if ( !r_arrays_locked ) {
		R_DrawTriangleStrips ( indexesArray, numIndexes );
	} else {
		qglDrawElements( GL_TRIANGLES, numIndexes, GL_INDEX_TYPE,	indexesArray );
	}

	r_numtris += numIndexes / 3;

	for ( i = r_numUnits - 1; i >= 0; i-- )
	{
		GL_SelectTexture ( mtexid0 + i );

		if ( i ) {
			qglDisable ( GL_TEXTURE_2D );
		}
		qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
	}

	if ( numColors > 1 ) {
		qglDisableClientState( GL_COLOR_ARRAY );
	}

	r_numflushes++;
}

/*
================
R_DeformVertices
================
*/
void R_DeformVertices ( meshbuffer_t *mb )
{
	int i, j, k, pw, ph, p;
	float args[4], deflect;
	float *quad[4], *table;
	shader_t *shader;
	deformv_t *deformv;
	vec3_t tv, rot_centre;

	shader = mb->shader;
	deformv = &shader->deforms[0];

	for (i = 0; i < shader->numdeforms; i++, deformv++)
	{
		switch (deformv->type)
		{
			case DEFORMV_NONE:
				break;

			case DEFORMV_WAVE:
				args[0] = deformv->func.args[0];
				args[1] = deformv->func.args[1];
				args[3] = deformv->func.args[2] + deformv->func.args[3] * r_localShaderTime;
				table = R_TableForFunc ( deformv->func.type );

				for ( j = 0; j < numVerts; j++ ) {
					deflect = deformv->args[0] * (vertexArray[j][0]+vertexArray[j][1]+vertexArray[j][2]) + args[3];
					deflect = FTABLE_EVALUATE ( table, deflect ) * args[1] + args[0];

					// Deflect vertex along its normal by wave amount
					VectorMA ( vertexArray[j], deflect, normalsArray[j], vertexArray[j] );
				}
				break;

			case DEFORMV_NORMAL:
				args[0] = deformv->args[1] * r_localShaderTime;

				for ( j = 0; j < numVerts; j++ ) {
					args[1] = normalsArray[j][2] * args[0];

					deflect = deformv->args[0] * R_FastSin ( args[1] );
					normalsArray[j][0] *= deflect;
					deflect = deformv->args[0] * R_FastSin ( args[1] + 0.25 );
					normalsArray[j][1] *= deflect;
					VectorNormalizeFast ( normalsArray[j] );
				}
				break;

			case DEFORMV_MOVE:
				table = R_TableForFunc ( deformv->func.type );
				deflect = deformv->func.args[2] + r_localShaderTime * deformv->func.args[3];
				deflect = FTABLE_EVALUATE (table, deflect) * deformv->func.args[1] + deformv->func.args[0];

				for ( j = 0; j < numVerts; j++ )
					VectorMA ( vertexArray[j], deflect, deformv->args, vertexArray[j] );
				break;

			case DEFORMV_BULGE:
				pw = mb->mesh->patchWidth;
				ph = mb->mesh->patchHeight;

				args[0] = deformv->args[0] / (float)ph;
				args[1] = deformv->args[1];
				args[2] = r_localShaderTime / (deformv->args[2]*pw);

				for ( k = 0, p = 0; k < ph; k++ ) {
					deflect = R_FastSin ( (float)k * args[0] + args[2] ) * args[1];

					for ( j = 0; j < pw; j++, p++ )
						VectorMA ( vertexArray[p], deflect, normalsArray[p], vertexArray[p] );
				}
				break;

			case DEFORMV_AUTOSPRITE:
				if ( numIndexes < 6 )
					break;

				for ( k = 0; k < numIndexes; k += 6 )
				{
					mat3_t m0, m1, result;

					quad[0] = (float *)(vertexArray + indexesArray[k+0]);
					quad[1] = (float *)(vertexArray + indexesArray[k+1]);
					quad[2] = (float *)(vertexArray + indexesArray[k+2]);

					for ( j = 2; j >= 0; j-- ) {
						quad[3] = (float *)(vertexArray + indexesArray[k+3+j]);
						if ( !VectorCompare (quad[3], quad[0]) && 
							!VectorCompare (quad[3], quad[1]) &&
							!VectorCompare (quad[3], quad[2]) ) {
							break;
						}
					}

					VectorSubtract ( quad[0], quad[1], m0[0] );
					VectorSubtract ( quad[2], quad[1], m0[1] );
					CrossProduct ( m0[0], m0[1], m0[2] );
					VectorNormalizeFast ( m0[2] );
					VectorVectors ( m0[2], m0[1], m0[0] );

					VectorCopy ( (&r_view_matrix[0]), m1[0] );
					VectorCopy ( (&r_view_matrix[4]), m1[1] );
					VectorCopy ( (&r_view_matrix[8]), m1[2] );

					Matrix3_Multiply ( m1, m0, result );

					for ( j = 0; j < 3; j++ )
						rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25 + currententity->origin[j];

					for ( j = 0; j < 4; j++ ) {
						VectorSubtract ( quad[j], rot_centre, tv );
						Matrix3_Multiply_Vec3 ( result, tv, quad[j] );
						VectorAdd ( rot_centre, quad[j], quad[j] );
					}
				}
				break;

			case DEFORMV_AUTOSPRITE2:
				if ( numIndexes < 6 )
					break;

				for ( k = 0; k < numIndexes; k += 6 )
				{
					int long_axis, short_axis;
					vec3_t axis;
					float len[3];
					mat3_t m0, m1, m2, result;

					quad[0] = (float *)(vertexArray + indexesArray[k+0]);
					quad[1] = (float *)(vertexArray + indexesArray[k+1]);
					quad[2] = (float *)(vertexArray + indexesArray[k+2]);

					for ( j = 2; j >= 0; j-- ) {
						quad[3] = (float *)(vertexArray + indexesArray[k+3+j]);
						if ( !VectorCompare (quad[3], quad[0]) && 
							!VectorCompare (quad[3], quad[1]) &&
							!VectorCompare (quad[3], quad[2]) ) {
							break;
						}
					}

					// build a matrix were the longest axis of the billboard is the Y-Axis
					VectorSubtract ( quad[1], quad[0], m0[0] );
					VectorSubtract ( quad[2], quad[0], m0[1] );
					VectorSubtract ( quad[2], quad[1], m0[2] );
					len[0] = DotProduct ( m0[0], m0[0] );
					len[1] = DotProduct ( m0[1], m0[1] );
					len[2] = DotProduct ( m0[2], m0[2] );

					if ( (len[2] > len[1]) && (len[2] > len[0]) )
					{
						if ( len[1] > len[0] )
						{
							long_axis = 1;
							short_axis = 0;
						}
						else
						{
							long_axis = 0;
							short_axis = 1;
						}
					}
					else if ( (len[1] > len[2]) && (len[1] > len[0]) )
					{
						if ( len[2] > len[0] )
						{
							long_axis = 2;
							short_axis = 0;
						}
						else
						{
							long_axis = 0;
							short_axis = 2;
						}
					}
					else //if ( (len[0] > len[1]) && (len[0] > len[2]) )
					{
						if ( len[2] > len[1] )
						{
							long_axis = 2;
							short_axis = 1;
						}
						else
						{
							long_axis = 1;
							short_axis = 2;
						}
					}

					if ( DotProduct (m0[long_axis], m0[short_axis]) ) {
						VectorNormalize2 ( m0[long_axis], axis );
						VectorCopy ( axis, m0[1] );

						if ( axis[0] || axis[1] ) {
							VectorVectors ( m0[1], m0[2], m0[0] );
						} else {
							VectorVectors ( m0[1], m0[0], m0[2] );
						}
					} else {
						VectorNormalize2 ( m0[long_axis], axis );
						VectorNormalize2 ( m0[short_axis], m0[0] );
						VectorCopy ( axis, m0[1] );
						CrossProduct ( m0[0], m0[1], m0[2] );
					}

					for ( j = 0; j < 3; j++ )
						rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25;

					if ( currententity ) {
						VectorAdd ( currententity->origin, rot_centre, tv );
					} else {
						VectorCopy ( rot_centre, tv );
					}
					VectorSubtract ( r_origin, tv, tv );

					// filter any longest-axis-parts off the camera-direction
					deflect = -DotProduct ( tv, axis );

					VectorMA ( tv, deflect, axis, m1[2] );
					VectorNormalizeFast ( m1[2] );
					VectorCopy ( axis, m1[1] );
					CrossProduct ( m1[1], m1[2], m1[0] );

					Matrix3_Transpose ( m1, m2 );
					Matrix3_Multiply ( m2, m0, result );

					for ( j = 0; j < 4; j++ ) {
						VectorSubtract ( quad[j], rot_centre, tv );
						Matrix3_Multiply_Vec3 ( result, tv, quad[j] );
						VectorAdd ( rot_centre, quad[j], quad[j] );
					}
				}
				break;

			case DEFORMV_PROJECTION_SHADOW:
				break;

			default:
				break;
		}
	}
}

void RB_CalcEnvironmentTexCoords( float *st ) 
{
	int			i;
	float		*v, *normal;
	vec3_t		viewer, reflected;
	float		d;

	vec3_t		rorg;

	v = vertexArray[0];
	normal = normalsArray[0];

	RotateLightVector(currententity->axis, currententity->origin, r_origin, rorg);

	for (i = 0 ; i < numVerts ; i++, v += 3, normal += 3, st += 2 ) 
	{
		VectorSubtract (rorg, v, viewer);
		VectorNormalizeFast (viewer);

		d = DotProduct (normal, viewer);

		reflected[0] = normal[0]*2*d - viewer[0];
		reflected[1] = normal[1]*2*d - viewer[1];
		reflected[2] = normal[2]*2*d - viewer[2];

		st[0] = 0.5 + reflected[1] * 0.5;
		st[1] = 0.5 - reflected[2] * 0.5;
	}
}

/*
==============
R_VertexTCBase
==============
*/
float *R_VertexTCBase ( int tcgen, int unit )
{
	int	i;
//	vec3_t t, n;
	float *outCoords;
//	vec3_t transform;
//	mat3_t inverse_axis;
//	mat3_t axis;

	outCoords = tUnitCoordsArray[unit][0];

	if ( tcgen == TC_GEN_BASE )
	{
		memcpy ( outCoords, coordsArray[0], sizeof(float) * 2 * numVerts );
	} else if ( tcgen == TC_GEN_LIGHTMAP )
	{
		memcpy ( outCoords, lightmapCoordsArray[0], sizeof(float) * 2 * numVerts );
	}
	else if ( tcgen == TC_GEN_ENVIRONMENT ) 
	{
		RB_CalcEnvironmentTexCoords(outCoords);	//use genuine q3 code, to get it totally identical (for cell shading effects)
												//plus, it looks like less overhead too
												//I guess it depends on the size of the mesh
/*
	//the old qfusion code
		if ( !currentmodel )
		{
			VectorSubtract ( vec3_origin, currententity->origin, transform );
			AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
			Matrix3_Transpose ( axis, inverse_axis );
		}
		else if ( currentmodel == cl.worldmodel )
		{
			VectorSubtract ( vec3_origin, r_origin, transform );
		}
		else if ( currentmodel->type == mod_brush )
		{
			VectorNegate ( currententity->origin, t );
			VectorSubtract ( t, r_origin, transform );
			AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
			Matrix3_Transpose ( axis, inverse_axis );
		}
		else
		{
			VectorSubtract ( vec3_origin, currententity->origin, transform );
			AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
			Matrix3_Transpose ( axis, inverse_axis );
		}

		for ( i = 0; i < numVerts; i++, outCoords += 2 )
		{
			VectorAdd ( vertexArray[i], transform, t );

			// project vector
			if ( currentmodel && (currentmodel == cl.worldmodel) )
			{
				n[0] = normalsArray[i][0];
				n[1] = normalsArray[i][1];
				n[2] = Q_rsqrt ( DotProduct(t,t) );
			}
			else
			{
				n[0] = DotProduct ( normalsArray[i], inverse_axis[0] );
				n[1] = DotProduct ( normalsArray[i], inverse_axis[1] );
				n[2] = Q_rsqrt ( DotProduct(t,t) );
			}

			outCoords[0] = t[0]*n[2] - n[0];
			outCoords[1] = t[1]*n[2] - n[1];
		}
*/
	}
	else if ( tcgen == TC_GEN_VECTOR )
	{
		for ( i = 0; i < numVerts; i++, outCoords += 2 )
		{
			static vec3_t tc_gen_s = { 1.0f, 0.0f, 0.0f };
			static vec3_t tc_gen_t = { 0.0f, 1.0f, 0.0f };
			
			outCoords[0] = DotProduct ( tc_gen_s, vertexArray[i] );
			outCoords[1] = DotProduct ( tc_gen_t, vertexArray[i] );
		}
	}

	return tUnitCoordsArray[unit][0];
}

/*
==============
R_ShaderpassTex
==============
*/
int R_ShaderpassTex ( shaderpass_t *pass )
{
	if (pass->flags & (SHADER_PASS_ANIMMAP|SHADER_PASS_LIGHTMAP|SHADER_PASS_VIDEOMAP|SHADER_PASS_DELUXMAP))
	{
		if ( pass->flags & SHADER_PASS_ANIMMAP ) {
			return pass->anim_frames[(int)(pass->anim_fps * r_localShaderTime) % pass->anim_numframes];
		}
		else if ( (pass->flags & SHADER_PASS_LIGHTMAP) && r_lmtex >= 0 )
		{
			return lightmap_textures[r_lmtex];
		}
		else if ( (pass->flags & SHADER_PASS_DELUXMAP) && r_lmtex >= 0 )
		{
			return lightmap_textures[r_lmtex+1];
		}
		else if ( (pass->flags & SHADER_PASS_VIDEOMAP))
		{
			return Media_UpdateForShader(pass->anim_frames[0], pass->cin);
		}
	}

	return pass->anim_frames[0] ? pass->anim_frames[0] : 0;
}

/*
================
R_ModifyTextureCoords
================
*/
void R_ModifyTextureCoords ( shaderpass_t *pass, int unit )
{
	int i, j;
	float *table;
	float t1, t2, sint, cost;
	float *tcArray, *buffer;
	tcmod_t	*tcmod;

	r_texNums[unit] = R_ShaderpassTex ( pass );

	// we're smart enough not to copy data and simply switch the pointer
	if ( !pass->numtcmods ) {
		if ( pass->tcgen == TC_GEN_BASE ) {
			qglTexCoordPointer( 2, GL_FLOAT, 0, coordsArray );
		} else if ( pass->tcgen == TC_GEN_LIGHTMAP ) {
			qglTexCoordPointer( 2, GL_FLOAT, 0, lightmapCoordsArray );
		} else {
			qglTexCoordPointer( 2, GL_FLOAT, 0, R_VertexTCBase (pass->tcgen, unit));
		}
		return;
	}

	buffer = R_VertexTCBase (pass->tcgen, unit);
	qglTexCoordPointer(2, GL_FLOAT, 0, buffer);

	for (i = 0, tcmod = pass->tcmods; i < pass->numtcmods; i++, tcmod++)
	{
		tcArray = buffer;

		switch (tcmod->type)
		{
			case SHADER_TCMOD_ROTATE:
				cost = tcmod->args[0] * r_localShaderTime;
				sint = R_FastSin( cost );
				cost = R_FastSin( cost + 0.25 );

				for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
					t1 = cost * (tcArray[0] - 0.5f) - sint * (tcArray[1] - 0.5f) + 0.5f;
					t2 = cost * (tcArray[1] - 0.5f) + sint * (tcArray[0] - 0.5f) + 0.5f;
					tcArray[0] = t1;
					tcArray[1] = t2;
				}
				break;

			case SHADER_TCMOD_SCALE:
				t1 = tcmod->args[0];
				t2 = tcmod->args[1];

				for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
					tcArray[0] = tcArray[0] * t1;
					tcArray[1] = tcArray[1] * t2;
				}
				break;

			case SHADER_TCMOD_TURB:
				t1 = tcmod->args[2] + r_localShaderTime * tcmod->args[3];
				t2 = tcmod->args[1];

				for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
					tcArray[0] = tcArray[0] + R_FastSin (tcArray[0]*t2+t1) * t2;
					tcArray[1] = tcArray[1] + R_FastSin (tcArray[1]*t2+t1) * t2;
				}
				break;
			
			case SHADER_TCMOD_STRETCH:
				table = R_TableForFunc ( tcmod->args[0] );
				t2 = tcmod->args[3] + r_localShaderTime * tcmod->args[4];
				t1 = FTABLE_EVALUATE ( table, t2 ) * tcmod->args[2] + tcmod->args[1];
				t1 = t1 ? 1.0f / t1 : 1.0f;
				t2 = 0.5f - 0.5f * t1;

				for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
					tcArray[0] = tcArray[0] * t1 + t2;
					tcArray[1] = tcArray[1] * t1 + t2;
				}
				break;
						
			case SHADER_TCMOD_SCROLL:
				t1 = tcmod->args[0] * r_localShaderTime;
				t2 = tcmod->args[1] * r_localShaderTime;

				for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
					tcArray[0] = tcArray[0] + t1;
					tcArray[1] = tcArray[1] + t2;
				}
				break;
					
			case SHADER_TCMOD_TRANSFORM:
				for ( j = 0; j < numVerts; j++, tcArray += 2 ) {
					t1 = tcArray[0];
					t2 = tcArray[1];
					tcArray[0] = t1 * tcmod->args[0] + t2 * tcmod->args[2] + tcmod->args[4];
					tcArray[1] = t2 * tcmod->args[1] + t1 * tcmod->args[3] + tcmod->args[5];
				}
				break;

			default:
				break;
		}
	}
}


#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
#define VectorScalef(a, b, c) c[0]=a[0]*b;c[1]=a[1]*b;c[2]=a[2]*b

/*
================
R_ModifyColor
================
*/
void R_ModifyColor ( meshbuffer_t *mb, shaderpass_t *pass )
{

	int i, b;
	float *table, c, a;
	vec3_t t, v;
	shader_t *shader;
	qbyte *bArray, *vArray;
	qboolean fogged, noArray;
	shaderfunc_t *rgbgenfunc, *alphagenfunc;

	shader = mb->shader;
	fogged = mb->fog && (shader->sort >= SHADER_SORT_UNDERWATER) &&
		!(pass->flags & SHADER_PASS_DEPTHWRITE) && !shader->fog_dist;
	noArray = (pass->flags & SHADER_PASS_NOCOLORARRAY) && !fogged;
	rgbgenfunc = &pass->rgbgen_func;
	alphagenfunc = &pass->alphagen_func;

	if ( noArray ) {
		numColors = 1;
	} else {
		numColors = numVerts;
	}

	bArray = colorArray[0];
	vArray = inColorsArray[0];

	switch (pass->rgbgen)
	{
		case RGB_GEN_IDENTITY:
			memset ( bArray, 255, sizeof(byte_vec4_t)*numColors );
			break;

		case RGB_GEN_IDENTITY_LIGHTING:
			memset ( bArray, r_identityLighting, sizeof(byte_vec4_t)*numColors );
			break;

		case RGB_GEN_CONST:
			for ( i = 0; i < numColors; i++, bArray += 4 ) {
				bArray[0] = FloatToByte (rgbgenfunc->args[0]);
				bArray[1] = FloatToByte (rgbgenfunc->args[1]);
				bArray[2] = FloatToByte (rgbgenfunc->args[2]);
			}
			break;

		case RGB_GEN_WAVE:
			table = R_TableForFunc ( rgbgenfunc->type );
			c = rgbgenfunc->args[2] + r_localShaderTime * rgbgenfunc->args[3];
			c = FTABLE_EVALUATE ( table, c ) * rgbgenfunc->args[1] + rgbgenfunc->args[0];
			clamp ( c, 0.0f, 1.0f );

			memset ( bArray, FloatToByte (c), sizeof(byte_vec4_t)*numColors );
			break;

		case RGB_GEN_ENTITY:
			((qbyte*)&b)[0] = currententity->shaderRGBAf[0];
			((qbyte*)&b)[1] = currententity->shaderRGBAf[1];
			((qbyte*)&b)[2] = currententity->shaderRGBAf[2];
			((qbyte*)&b)[3] = currententity->shaderRGBAf[3];
			for ( i = 0; i < numColors; i++, bArray += 4 )
			{
				*(int *)bArray = b;
			}
			break;

		case RGB_GEN_ONE_MINUS_ENTITY:
			((qbyte*)&b)[0] = 255-currententity->shaderRGBAf[0];
			((qbyte*)&b)[1] = 255-currententity->shaderRGBAf[1];
			((qbyte*)&b)[2] = 255-currententity->shaderRGBAf[2];
			((qbyte*)&b)[3] = 255-currententity->shaderRGBAf[3];
			for ( i = 0; i < numColors; i++, bArray += 4 )
			{
				*(int *)bArray = b;
			}
			break;

		case RGB_GEN_VERTEX:
		case RGB_GEN_EXACT_VERTEX:
			memcpy ( bArray, vArray, sizeof(byte_vec4_t)*numColors );
			break;
			
		case RGB_GEN_TOPCOLOR:	//multiply vertex by topcolor (for player models)
		{
			int rc, gc, bc;
			R_FetchTopColour(&rc, &gc, &bc);
			for ( i = 0; i < numColors; i++, bArray += 4, vArray += 4 ) {
				bArray[0] = (vArray[0]*rc)>>8;
				bArray[1] = (vArray[1]*gc)>>8;
				bArray[2] = (vArray[2]*bc)>>8;
			}
			break;
		}
			
		case RGB_GEN_BOTTOMCOLOR:	//multiply vertex by bottomcolor (for player models)
		{
			int rc, gc, bc;
			R_FetchBottomColour(&rc, &gc, &bc);
			for ( i = 0; i < numColors; i++, bArray += 4, vArray += 4 ) {
				bArray[0] = (vArray[0]*rc)>>8;
				bArray[1] = (vArray[1]*gc)>>8;
				bArray[2] = (vArray[2]*bc)>>8;
			}
			break;
		}
		

		case RGB_GEN_ONE_MINUS_VERTEX:
			for ( i = 0; i < numColors; i++, bArray += 4, vArray += 4 ) {
				bArray[0] = 255 - vArray[0];
				bArray[1] = 255 - vArray[1];
				bArray[2] = 255 - vArray[2];
			}
			break;

		case RGB_GEN_LIGHTING_DIFFUSE:
			if ( !currententity )
			{
				memset ( bArray, 255, sizeof(byte_vec4_t)*numColors );
			}
			else
			{
				R_LightArrays((byte_vec4_t*)bArray, numColors, normalsArray);
			}
			break;

		default:
			break;
	}

	bArray = colorArray[0];
	vArray = inColorsArray[0];

	switch (pass->alphagen)
	{
		case ALPHA_GEN_IDENTITY:
			for ( i = 0; i < numColors; i++, bArray += 4 ) {
				bArray[3] = 255;
			}
			break;

		case ALPHA_GEN_CONST:
			b = FloatToByte ( alphagenfunc->args[0] );

			for ( i = 0; i < numColors; i++, bArray += 4 ) {
				bArray[3] = b;
			}
			break;

		case ALPHA_GEN_WAVE:
			table = R_TableForFunc ( alphagenfunc->type );
			a = alphagenfunc->args[2] + r_localShaderTime * alphagenfunc->args[3];
			a = FTABLE_EVALUATE ( table, a ) * alphagenfunc->args[1] + alphagenfunc->args[0];
			b = FloatToByte ( bound (0.0f, a, 1.0f) );

			for ( i = 0; i < numColors; i++, bArray += 4 ) {
				bArray[3] = b;
			}
			break;

		case ALPHA_GEN_PORTAL:
			VectorAdd ( vertexArray[0], currententity->origin, v );
			VectorSubtract ( r_origin, v, t );
			a = VectorLength ( t ) * (1.0 / 255.0);
			clamp ( a, 0.0f, 1.0f );
			b = FloatToByte ( a );

			for ( i = 0; i < numColors; i++, bArray += 4 ) {
				bArray[3] = b;
			}
			break;

		case ALPHA_GEN_VERTEX:
			for ( i = 0; i < numColors; i++, bArray += 4, vArray += 4 ) {
				bArray[3] = vArray[3];
			}
			break;

		case ALPHA_GEN_ENTITY:
			if (pass->rgbgen != RGB_GEN_ENTITY)
			{//rgbgenentity copies across ints rather than chars. it comes padded with the alpha too.
				unsigned char value = bound(0, currententity->shaderRGBAf[3]*255, 255);
				for ( i = 0; i < numColors; i++, bArray += 4 )
				{
					bArray[3] = value;
				}
			}
			break;


		case ALPHA_GEN_SPECULAR:
			{
				mat3_t axis;
				AngleVectors(currententity->angles, axis[0], axis[1], axis[2]);
			VectorSubtract ( r_origin, currententity->origin, t );

			if ( !Matrix3_Compare (axis, axisDefault) ) {
				Matrix3_Multiply_Vec3 ( axis, t, v );
			} else {
				VectorCopy ( t, v );
			}

			for ( i = 0; i < numColors; i++, bArray += 4 ) {
				VectorSubtract ( v, vertexArray[i], t );
				a = DotProduct( t, normalsArray[i] ) * Q_rsqrt ( DotProduct(t,t) );
				a = a * a * a * a * a;
				bArray[3] = FloatToByte ( bound (0.0f, a, 1.0f) );
			}
			}
			break;

	}


	if ( fogged )
	{
		float dist, vdist;
		mplane_t *fogplane;
		vec3_t diff, viewtofog, fog_vpn;

		fogplane = mb->fog->visibleplane;
		if (!fogplane)
			return;
		dist = PlaneDiff ( r_origin, fogplane );

		if ( shader->flags & SHADER_SKY ) 
		{
			if ( dist > 0 )
				VectorScale( fogplane->normal, -dist, viewtofog );
			else
				VectorClear( viewtofog );
		}
		else
		{
			VectorCopy ( currententity->origin, viewtofog );
		}

		VectorScalef ( vpn, mb->fog->shader->fog_dist, fog_vpn );

		bArray = colorArray[0];
		for ( i = 0; i < numColors; i++, bArray += 4 )
		{
			VectorAdd ( vertexArray[i], viewtofog, diff );

			// camera is inside the fog
			if ( dist < 0 ) {
				VectorSubtract ( diff, r_origin, diff );

				c = DotProduct ( diff, fog_vpn );
				a = (1.0f - bound ( 0, c, 1.0f )) * (1.0 / 255.0);
			} else {
				vdist = PlaneDiff ( diff, fogplane );

				if ( vdist < 0 ) {
					VectorSubtract ( diff, r_origin, diff );

					c = vdist / ( vdist - dist );
					c *= DotProduct ( diff, fog_vpn );
					a = (1.0f - bound ( 0, c, 1.0f )) * (1.0 / 255.0);
				} else {
					a = 1.0 / 255.0;
				}
			}

			if ( pass->blendmode == GL_ADD || 
				((pass->blendsrc == GL_ZERO) && (pass->blenddst == GL_ONE_MINUS_SRC_COLOR)) ) {
				bArray[0] = FloatToByte ( (float)bArray[0]*a );
				bArray[1] = FloatToByte ( (float)bArray[1]*a );
				bArray[2] = FloatToByte ( (float)bArray[2]*a );
			} else {
				bArray[3] = FloatToByte ( (float)bArray[3]*a );
			}
		}
	}
}

/*
================
R_SetShaderState
================
*/
void R_SetShaderState ( shader_t *shader )
{
// Face culling
	if ( !gl_cull.value || (r_features & MF_NOCULL) )
	{
		qglDisable ( GL_CULL_FACE );
	}
	else
	{
		if ( shader->flags & SHADER_CULL_FRONT )
		{
			qglEnable ( GL_CULL_FACE );
			qglCullFace ( GL_FRONT );
		}
		else if ( shader->flags & SHADER_CULL_BACK )
		{
			qglEnable ( GL_CULL_FACE );
			qglCullFace ( GL_BACK );
		}
		else
		{
			qglDisable ( GL_CULL_FACE );
		}
	}

	if ( shader->flags & SHADER_POLYGONOFFSET )
	{
		qglEnable ( GL_POLYGON_OFFSET_FILL );
	}
	else
	{
		qglDisable ( GL_POLYGON_OFFSET_FILL );
	}
}

/*
================
R_SetShaderpassState
================
*/
void R_SetShaderpassState ( shaderpass_t *pass, qboolean mtex )
{
	if ( (mtex && (pass->blendmode != GL_REPLACE)) || (pass->flags & SHADER_PASS_BLEND) )
	{
		qglEnable ( GL_BLEND );
		qglBlendFunc ( pass->blendsrc, pass->blenddst );
	}
	else
	{
		qglDisable ( GL_BLEND );
	}

	if ( pass->flags & SHADER_PASS_ALPHAFUNC )
	{
		qglEnable ( GL_ALPHA_TEST );

		if ( pass->alphafunc == SHADER_ALPHA_GT0 )
		{
			qglAlphaFunc ( GL_GREATER, 0 );
		}
		else if ( pass->alphafunc == SHADER_ALPHA_LT128 )
		{
			qglAlphaFunc ( GL_LESS, 0.5f );
		}
		else if ( pass->alphafunc == SHADER_ALPHA_GE128 )
		{
			qglAlphaFunc ( GL_GEQUAL, 0.5f );
		}
	}
	else
	{
		qglDisable ( GL_ALPHA_TEST );
	}

	// nasty hack!!!
	if ( !gl_state.in2d )
	{
		extern int gldepthfunc;
		if (gldepthfunc == GL_LEQUAL)
			qglDepthFunc ( pass->depthfunc );
		else
		{
			switch(pass->depthfunc)
			{
			case GL_LESS:
				qglDepthFunc ( GL_GREATER );
				break;
			case GL_LEQUAL:
				qglDepthFunc ( GL_GEQUAL );
				break;
			case GL_GREATER:
				qglDepthFunc ( GL_LESS );
				break;
			case GL_GEQUAL:
				qglDepthFunc ( GL_LEQUAL );
				break;

			case GL_NEVER:
			case GL_EQUAL:
			case GL_ALWAYS:
			case GL_NOTEQUAL:
			default:
				qglDepthFunc ( pass->depthfunc );
			}
		}

		if ( pass->flags & SHADER_PASS_DEPTHWRITE )
		{
			qglDepthMask ( GL_TRUE );
		}
		else
		{
			qglDepthMask ( GL_FALSE );
		}
	}
	else
	{
		qglDepthFunc ( GL_ALWAYS );
		qglDepthMask ( GL_FALSE );
	}
}

/*
================
R_RenderMeshGeneric
================
*/
void R_RenderMeshGeneric ( meshbuffer_t *mb, shaderpass_t *pass )
{
	R_SetShaderpassState ( pass, false );
	R_ModifyTextureCoords ( pass, 0 );
	R_ModifyColor ( mb, pass );

	if ( pass->blendmode == GL_REPLACE )
		GL_TexEnv( GL_REPLACE );
	else
		GL_TexEnv ( GL_MODULATE );
	GL_Bind ( r_texNums[0] );

	R_FlushArrays ();
}

/*
================
R_RenderMeshMultitextured
================
*/

void R_RenderMeshMultitextured ( meshbuffer_t *mb, shaderpass_t *pass )
{
	int	i;

	r_numUnits = pass->numMergedPasses;

	GL_SelectTexture( mtexid0 );
	GL_TexEnv( pass->blendmode );
	R_SetShaderpassState ( pass, true );
	R_ModifyTextureCoords ( pass, 0 );
	R_ModifyColor ( mb, pass );

	for ( i = 1, pass++; i < r_numUnits; i++, pass++ )
	{
		GL_SelectTexture( mtexid0 + i );
		GL_TexEnv( pass->blendmode );
		R_ModifyTextureCoords ( pass, i );
	}

	R_FlushArraysMtex ();
}

/*
================
R_RenderMeshCombined
================
*/
void R_RenderMeshCombined ( meshbuffer_t *mb, shaderpass_t *pass )
{
	int	i;

	r_numUnits = pass->numMergedPasses;

	R_SetShaderpassState ( pass, true );
	R_ModifyColor ( mb, pass );

	GL_SelectTexture( mtexid0 );
	if ( pass->blendmode == GL_REPLACE )
		GL_TexEnv( GL_REPLACE );
	else
		GL_TexEnv( GL_MODULATE );
	R_ModifyTextureCoords ( pass, 0 );

	for ( i = 1, pass++; i < r_numUnits; i++, pass++ )
	{
		GL_SelectTexture( mtexid0 + i );

		if ( pass->blendmode )
		{
			switch ( pass->blendmode )
			{
			case GL_DOT3_RGB_ARB:
				GL_TexEnv (GL_COMBINE_EXT);
				qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
				qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
				qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, pass->blendmode);
				break;

			case GL_REPLACE:
			case GL_MODULATE:
			case GL_ADD:
				// these modes are best set with TexEnv, Combine4 would need much more setup
				GL_TexEnv (pass->blendmode);
				break;

			case GL_DECAL:
				// mimics Alpha-Blending in upper texture stage, but instead of multiplying the alpha-channel, theyre added
				// this way it can be possible to use GL_DECAL in both texture-units, while still looking good
				// normal mutlitexturing would multiply the alpha-channel which looks ugly
				GL_TexEnv (GL_COMBINE_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_INTERPOLATE_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_ADD);

				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);
							
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);

				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_RGB_EXT, GL_TEXTURE);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_RGB_EXT, GL_SRC_ALPHA);
				break;
			}
		}
		else
		{
			GL_TexEnv (GL_COMBINE4_NV);
			qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_ADD);
			qglTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_ADD);

			qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
			qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB_EXT, GL_SRC_COLOR);
			qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
			qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_EXT, GL_SRC_ALPHA);

			switch ( pass->blendsrc )
			{
			case GL_ONE:
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_ZERO);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_COLOR);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_ZERO);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
				break;
			case GL_ZERO:
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_ZERO);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_ZERO);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
				break;
			case GL_DST_COLOR:
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_COLOR);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
				break;
			case GL_ONE_MINUS_DST_COLOR:
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_COLOR);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
				break;
			case GL_SRC_ALPHA:
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_ALPHA);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_TEXTURE);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
				break;
			case GL_ONE_MINUS_SRC_ALPHA:
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_TEXTURE);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_ALPHA);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_TEXTURE);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
				break;
			case GL_DST_ALPHA:
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_SRC_ALPHA);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_SRC_ALPHA);
				break;
			case GL_ONE_MINUS_DST_ALPHA:
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_EXT, GL_PREVIOUS_EXT);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB_EXT, GL_ONE_MINUS_SRC_ALPHA);
				qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_EXT, GL_ONE_MINUS_SRC_ALPHA);
				break;
			}

			qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_RGB_EXT, GL_PREVIOUS_EXT);
			qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_RGB_EXT, GL_SRC_COLOR);
			qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE2_ALPHA_EXT, GL_PREVIOUS_EXT);	
			qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND2_ALPHA_EXT, GL_SRC_ALPHA);

			switch (pass->blenddst)
			{
				case GL_ONE:
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_ZERO);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_COLOR);
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_ZERO);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
					break;
				case GL_ZERO:
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_ZERO);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_COLOR);
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_ZERO);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
					break;
				case GL_SRC_COLOR:
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_COLOR);
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
					break;
				case GL_ONE_MINUS_SRC_COLOR:
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_COLOR);
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
					break;
				case GL_SRC_ALPHA:
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_ALPHA);
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
					break;
				case GL_ONE_MINUS_SRC_ALPHA:
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_TEXTURE);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_ALPHA);
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_TEXTURE);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
					break;
				case GL_DST_ALPHA:
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_PREVIOUS_EXT);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_SRC_ALPHA);
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_PREVIOUS_EXT);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_SRC_ALPHA);
					break;
				case GL_ONE_MINUS_DST_ALPHA:
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_RGB_NV, GL_PREVIOUS_EXT);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_RGB_NV, GL_ONE_MINUS_SRC_ALPHA);
					qglTexEnvi (GL_TEXTURE_ENV, GL_SOURCE3_ALPHA_NV, GL_PREVIOUS_EXT);
					qglTexEnvi (GL_TEXTURE_ENV, GL_OPERAND3_ALPHA_NV, GL_ONE_MINUS_SRC_ALPHA);
					break;
			}
		}

		R_ModifyTextureCoords ( pass, i );
	}

	R_FlushArraysMtex ();
}

void R_RenderMeshProgram ( meshbuffer_t *mb, shaderpass_t *pass )
{
	shader_t *s;
	int	i;
	vec3_t param3;
	int r, g, b;

	r_numUnits = pass->numMergedPasses;

	R_SetShaderpassState ( pass, true );
	R_ModifyColor ( mb, pass );

	GL_SelectTexture( mtexid0 );
	if ( pass->blendmode == GL_REPLACE )
		GL_TexEnv( GL_REPLACE );
	else
		GL_TexEnv( GL_MODULATE );
	R_ModifyTextureCoords ( pass, 0 );

	for ( i = 1, pass++; i < r_numUnits; i++, pass++ )
	{
		GL_SelectTexture( mtexid0 + i );

		R_ModifyTextureCoords ( pass, i );
	}

	s = mb->shader;
	GLSlang_UseProgram(s->programhandle);
	for (i = 0; i < s->numprogparams; i++)
	{
		switch(s->progparm[i].type)
		{
		case SP_TIME:
			qglUniform1fARB(s->progparm[i].handle, r_localShaderTime);
			break;

		case SP_ENTCOLOURS:
			qglUniform4fvARB(s->progparm[i].handle, 1, currententity->shaderRGBAf);
			break;
		case SP_TOPCOLOURS:
			R_FetchTopColour(&r, &g, &b);
			param3[0] = r/255;
			param3[1] = g/255;
			param3[2] = b/255;
			qglUniform3fvARB(s->progparm[i].handle, 1, param3);
			break;
		case SP_BOTTOMCOLOURS:
			R_FetchBottomColour(&r, &g, &b);
			param3[0] = r/255;
			param3[1] = g/255;
			param3[2] = b/255;
			qglUniform3fvARB(s->progparm[i].handle, 1, param3);
			break;

		default:
			Host_EndGame("Bad shader program parameter type (%i)", s->progparm[i].type);
			break;
		}
	}
	R_FlushArraysMtex ();
	GLSlang_UseProgram(0);
}

/*
================
R_RenderMeshBuffer
================
*/
void R_RenderMeshBuffer ( meshbuffer_t *mb, qboolean shadowpass )
{
	int	i;
	shader_t *shader;
	shaderpass_t *pass;

	if ( !numVerts )
	{
		return;
	}

//	R_IBrokeTheArrays();

//	qglVertexPointer( 3, GL_FLOAT, 16, vertexArray );	// padded for SIMD
//	qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );

//	qglEnableClientState( GL_VERTEX_ARRAY );

	shader = mb->shader;
	r_lmtex = mb->infokey;

	if ( currententity && !gl_state.in2d )
	{
		r_localShaderTime = r_refdef.time - currententity->shaderTime;
	} else
	{
		r_localShaderTime = realtime;
	}

	R_SetShaderState ( shader );

	if ( shader->numdeforms )
	{
		R_DeformVertices ( mb );
	}

	if ( !numIndexes || shadowpass )
	{
		return;
	}

	R_LockArrays ( numVerts );

	for ( i = 0, pass = shader->passes; i < shader->numpasses; )
	{
		if ( !(pass->flags & SHADER_PASS_DETAIL) || r_detailtextures.value )
		{
			pass->flush ( mb, pass );
		}

		i += pass->numMergedPasses;
		pass += pass->numMergedPasses;
	}

	R_FinishMeshBuffer ( mb );
}


/*
================
R_RenderFogOnMesh
================
*/

int r_fogtexture;
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
void R_RenderFogOnMesh ( shader_t *shader, struct mfog_s *fog )
{
#define FOG_TEXTURE_HEIGHT 32

	int		i;
	vec3_t	diff, viewtofog, fog_vpn;
	float	dist, vdist;
	shader_t *fogshader;
	mplane_t *fogplane;

	if ( !fog->numplanes || !fog->shader || !fog->visibleplane )
	{
		return;
	}

	R_ResetTexState ();

	fogshader = fog->shader;
	fogplane = fog->visibleplane;

	GL_Bind( r_fogtexture );

	qglBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
	GL_TexEnv(GL_MODULATE);

	if ( !shader || !shader->numpasses || shader->fog_dist || (shader->flags & SHADER_SKY) )
	{
		extern int gldepthfunc;
		qglDepthFunc ( gldepthfunc );
	}
	else
	{
		qglDepthFunc ( GL_EQUAL );
	}

	qglColor4ubv ( fogshader->fog_color );

	// distance to fog
	dist = PlaneDiff ( r_origin, fogplane );

	if ( shader && shader->flags & SHADER_SKY )
	{
		if ( dist > 0 )
			VectorMA( r_origin, -dist, fogplane->normal, viewtofog );
		else
			VectorCopy( r_origin, viewtofog );
	}
	else
	{
		VectorCopy( currententity->origin, viewtofog );
	}

	VectorScale ( vpn, fogshader->fog_dist, fog_vpn );

	for ( i = 0; i < numVerts; i++, currentCoords += 2 )
	{
		VectorAdd ( viewtofog, vertexArray[i], diff );
		vdist = PlaneDiff ( diff, fogplane );
		VectorSubtract ( diff, r_origin, diff );

		if ( dist < 0 )
		{	// camera is inside the fog brush
			currentCoords[0] = DotProduct ( diff, fog_vpn );
		}
		else
		{
			if ( vdist < 0 )
			{
				currentCoords[0] = vdist / ( vdist - dist );
				currentCoords[0] *= DotProduct ( diff, fog_vpn );
			}
			else
			{
				currentCoords[0] = 0.0f;
			}
		}

		currentCoords[1] = -vdist * fogshader->fog_dist + 1.5f/(float)FOG_TEXTURE_HEIGHT;
	}

	if ( shader && !shader->numpasses )
	{
		R_LockArrays ( numVerts );
	}

	R_FlushArrays ();
}

/*
================
R_DrawTriangleOutlines
================
*/
void R_DrawTriangleOutlines (void)
{
	R_ResetTexState ();

	qglDisable( GL_TEXTURE_2D );
	qglDisable( GL_DEPTH_TEST );
	qglColor4f( 1, 1, 1, 1 );
	qglDisable ( GL_BLEND );
	qglPolygonMode (GL_FRONT_AND_BACK, GL_LINE);

	R_FlushArrays ();

	qglPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
	qglEnable( GL_DEPTH_TEST );
	qglEnable( GL_TEXTURE_2D );
}

/*
================
R_DrawNormals
================
*/
void R_DrawNormals (void)
{
	int i;

	R_ResetTexState ();

	qglDisable( GL_TEXTURE_2D );
	qglColor4f( 1, 1, 1, 1 );
	qglDisable( GL_BLEND );

	if ( gl_state.in2d ) {
		qglBegin ( GL_POINTS );
		for ( i = 0; i < numVerts; i++ ) { 
			qglVertex3fv ( vertexArray[i] );
		}
		qglEnd ();
	} else {
		qglDisable( GL_DEPTH_TEST );
		qglBegin ( GL_LINES );
		for ( i = 0; i < numVerts; i++ ) { 
			qglVertex3fv ( vertexArray[i] );
			qglVertex3f ( vertexArray[i][0] + normalsArray[i][0], 
				vertexArray[i][1] + normalsArray[i][1], 
				vertexArray[i][2] + normalsArray[i][2] );
		}
		qglEnd ();
		qglEnable( GL_DEPTH_TEST );
	}

	qglEnable( GL_TEXTURE_2D );
}

/*
=================
R_AddDynamicLights
=================
*/
void R_AddDynamicLights ( meshbuffer_t *mb )
{
	dlight_t *light;
	int i, j, lnum;
	vec3_t point, tvec, dlorigin;
	vec3_t vright, vup;
	vec3_t dir1, dir2, normal, right, up, oldnormal;
	float *v[3], dist, scale;
	index_t *oldIndexesArray, index[3];
	int dlightNumIndexes, oldNumIndexes;

	oldNumIndexes = numIndexes;
	oldIndexesArray	= indexesArray;
	VectorClear ( oldnormal );

	GL_Bind ( r_dlighttexture );

	qglDepthFunc ( GL_EQUAL );
	qglBlendFunc ( GL_DST_COLOR, GL_ONE );
	GL_TexEnv(GL_MODULATE);

	light = cl_dlights;
	for ( lnum = 0; lnum < 32; lnum++, light++ )
	{
		if ( !(mb->dlightbits & (1<<lnum) ) )
			continue;		// not lit by this light
		if (!light->radius)
			continue;	//urm

		VectorSubtract ( light->origin, currententity->origin, dlorigin );
		if ( !Matrix3_Compare (currententity->axis, axisDefault) )
		{
			VectorCopy ( dlorigin, point );
			Matrix3_Multiply_Vec3 ( currententity->axis, point, dlorigin );
		}

		qglColor4f (light->color[0]*2, light->color[1]*2, light->color[2]*2,
			1);//light->color[3]);

		R_ResetTexState ();
		dlightNumIndexes = 0;

		for ( i = 0; i < oldNumIndexes; i += 3 )
		{
			index[0] = oldIndexesArray[i+0];
			index[1] = oldIndexesArray[i+1];
			index[2] = oldIndexesArray[i+2];

			v[0] = (float *)(vertexArray + index[0]);
			v[1] = (float *)(vertexArray + index[1]);
			v[2] = (float *)(vertexArray + index[2]);

			// calculate two mostly perpendicular edge directions
			VectorSubtract ( v[0], v[1], dir1 );
			VectorSubtract ( v[2], v[1], dir2 );

			// we have two edge directions, we can calculate a third vector from
			// them, which is the direction of the surface normal
			CrossProduct ( dir1, dir2, normal );
			VectorNormalize ( normal );

			VectorSubtract ( v[0], dlorigin, tvec );
			dist = DotProduct ( tvec, normal );
			if ( dist < 0 )
				dist = -dist;
			if ( dist >= light->radius ) {
				continue;
			}

			VectorMA ( dlorigin, -dist, normal, point );
			scale = 1 / (light->radius - dist);

			if ( !VectorCompare (normal, oldnormal) ) {
				MakeNormalVectors ( normal, right, up );
				VectorCopy ( normal, oldnormal );
			}

			VectorScale ( right, scale, vright );
			VectorScale ( up, scale, vup );

			for ( j = 0; j < 3; j++ )
			{		
				// Get our texture coordinates
				// Project the light image onto the face
				VectorSubtract( v[j], point, tvec );
				
				coordsArray[index[j]][0] = DotProduct( tvec, vright ) + 0.5f;
				coordsArray[index[j]][1] = DotProduct( tvec, vup ) + 0.5f;
			}

			tempIndexesArray[dlightNumIndexes++] = index[0];
			tempIndexesArray[dlightNumIndexes++] = index[1];
			tempIndexesArray[dlightNumIndexes++] = index[2];
		}

		if ( dlightNumIndexes ) {
			R_PushIndexes ( tempIndexesArray, NULL, NULL, dlightNumIndexes, MF_NONBATCHED );
			R_FlushArrays ();
			dlightNumIndexes = 0;
		}
	}

	numIndexes = oldNumIndexes;
	indexesArray = oldIndexesArray;
}


/*
================
R_FinishMeshBuffer
Render dynamic lights, fog, triangle outlines, normals and clear arrays
================
*/
void R_FinishMeshBuffer ( meshbuffer_t *mb )
{
	shader_t	*shader;
	qboolean	fogged;
	qboolean	dlight;

	shader = mb->shader;
	if ((mb->dlightbits != 0) && !(shader->flags & SHADER_FLARE))
		dlight = (currententity->model->type == mod_brush && currententity->model->fromgame == fg_quake3);
	else
		dlight = false;

	fogged = mb->fog && ((shader->sort < SHADER_SORT_UNDERWATER && 
		(shader->flags & (SHADER_DEPTHWRITE|SHADER_SKY))) || shader->fog_dist);

	if ( dlight || fogged ) {
		GL_DisableMultitexture ( );
		qglTexCoordPointer( 2, GL_FLOAT, 0, inCoordsArray[0] );

		qglEnable ( GL_BLEND );
		qglDisable ( GL_ALPHA_TEST );
		qglDepthMask ( GL_FALSE );

		if (dlight)	//HACK: the extra check is because we play with the lightmaps in q1/q2
		{
			R_AddDynamicLights ( mb );
		}

		if (fogged)
		{
			R_RenderFogOnMesh ( shader, mb->fog );
		}

		qglDepthMask ( GL_TRUE );
	}

	if ( r_showtris.value || r_shownormals.value ) {
		GL_DisableMultitexture ( );

		if ( r_showtris.value ) {
			R_DrawTriangleOutlines ();
		}

		if ( r_shownormals.value ) {
			R_DrawNormals ();
		}
	}

	R_UnlockArrays ();
	R_ClearArrays ();
}

#endif







#endif