ngunix/dumb/helpers/resample.inc
2015-07-30 21:50:50 +02:00

167 lines
6.4 KiB
C++

/* _______ ____ __ ___ ___
* \ _ \ \ / \ / \ \ / / ' ' '
* | | \ \ | | || | \/ | . .
* | | | | | | || ||\ /| |
* | | | | | | || || \/ | | ' ' '
* | | | | | | || || | | . .
* | |_/ / \ \__// || | |
* /_______/ynamic \____/niversal /__\ /____\usic /| . . ibliotheque
* / \
* / . \
* resample.inc - Resampling helper template. / / \ \
* | < / \_
* By Bob and entheh. | \/ /\ /
* \_ / > /
* In order to find a good trade-off between | \ / /
* speed and accuracy in this code, some tests | ' /
* were carried out regarding the behaviour of \__/
* long long ints with gcc. The following code
* was tested:
*
* int a, b, c;
* c = ((long long)a * b) >> 16;
*
* DJGPP GCC Version 3.0.3 generated the following assembly language code for
* the multiplication and scaling, leaving the 32-bit result in EAX.
*
* movl -8(%ebp), %eax ; read one int into EAX
* imull -4(%ebp) ; multiply by the other; result goes in EDX:EAX
* shrdl $16, %edx, %eax ; shift EAX right 16, shifting bits in from EDX
*
* Note that a 32*32->64 multiplication is performed, allowing for high
* accuracy. On the Pentium 2 and above, shrdl takes two cycles (generally),
* so it is a minor concern when four multiplications are being performed
* (the cubic resampler). On the Pentium MMX and earlier, it takes four or
* more cycles, so this method is unsuitable for use in the low-quality
* resamplers.
*
* Since "long long" is a gcc-specific extension, we use LONG_LONG instead,
* defined in dumb.h. We may investigate later what code MSVC generates, but
* if it seems too slow then we suggest you use a good compiler.
*
* FIXME: these comments are somewhat out of date now.
*/
void dumb_reset_resampler(DUMB_RESAMPLER *resampler, SRCTYPE *src, int src_channels, long pos, long start, long end)
{
int i;
resampler->src = src;
resampler->pos = pos;
resampler->subpos = 0;
resampler->start = start;
resampler->end = end;
resampler->dir = 1;
resampler->pickup = NULL;
resampler->pickup_data = NULL;
resampler->min_quality = 0;
resampler->max_quality = DUMB_RQ_N_LEVELS - 1;
for (i = 0; i < src_channels*3; i++) resampler->X[i] = 0;
resampler->overshot = -1;
}
DUMB_RESAMPLER *dumb_start_resampler(SRCTYPE *src, int src_channels, long pos, long start, long end)
{
DUMB_RESAMPLER *resampler = malloc(sizeof(*resampler));
if (!resampler) return NULL;
dumb_reset_resampler(resampler, src, src_channels, pos, start, end);
return resampler;
}
/* Create mono source resampler. */
#define SUFFIX2 _1
#define SRC_CHANNELS 1
#define DIVIDE_BY_SRC_CHANNELS(x) (x)
#define COPYSRC(dstarray, dstindex, srcarray, srcindex) (dstarray)[dstindex] = (srcarray)[srcindex]
#define COPYSRC2(dstarray, dstindex, condition, srcarray, srcindex) (dstarray)[dstindex] = condition ? (srcarray)[srcindex] : 0
#define MONO_DEST_VOLUME_PARAMETERS float volume
#define MONO_DEST_VOLUME_VARIABLES vol
#define MONO_DEST_VOLUME_ZEROS 0
#define SET_MONO_DEST_VOLUME_VARIABLES vol = (int)floor(volume * 65536.0 + 0.5)
#define MONO_DEST_VOLUMES_ARE_ZERO (vol == 0)
#define MONO_DEST_MIX_ALIAS(op, offset) *dst++ op ALIAS(x[offset], vol)
#define STEREO_DEST_MIX_ALIAS(op, offset) { \
int xm = x[offset]; \
*dst++ op ALIAS(xm, lvol); \
*dst++ op ALIAS(xm, rvol); \
}
#define MONO_DEST_MIX_LINEAR(op, o0, o1) *dst++ op MULSC(LINEAR(x[o0], x[o1]), vol)
#define STEREO_DEST_MIX_LINEAR(op, o0, o1) { \
int xm = LINEAR(x[o0], x[o1]); \
*dst++ op MULSC(xm, lvol); \
*dst++ op MULSC(xm, rvol); \
}
#define MONO_DEST_MIX_CUBIC(op, x0, x3, o0, o1, o2, o3) *dst++ op CUBICVOL(CUBIC(x0[o0], x[o1], x[o2], x3[o3]), vol)
#define STEREO_DEST_MIX_CUBIC(op, x0, x3, o0, o1, o2, o3) { \
int xm = CUBIC(x0[o0], x[o1], x[o2], x3[o3]); \
*dst++ op CUBICVOL(xm, lvol); \
*dst++ op CUBICVOL(xm, rvol); \
}
#include "resamp2.inc"
/* Create stereo source resampler. */
#define SUFFIX2 _2
#define SRC_CHANNELS 2
#define DIVIDE_BY_SRC_CHANNELS(x) ((x) >> 1)
#define COPYSRC(dstarray, dstindex, srcarray, srcindex) { \
(dstarray)[(dstindex)*2] = (srcarray)[(srcindex)*2]; \
(dstarray)[(dstindex)*2+1] = (srcarray)[(srcindex)*2+1]; \
}
#define COPYSRC2(dstarray, dstindex, condition, srcarray, srcindex) { \
if (condition) { \
(dstarray)[(dstindex)*2] = (srcarray)[(srcindex)*2]; \
(dstarray)[(dstindex)*2+1] = (srcarray)[(srcindex)*2+1]; \
} else { \
(dstarray)[(dstindex)*2] = 0; \
(dstarray)[(dstindex)*2+1] = 0; \
} \
}
#define MONO_DEST_VOLUME_PARAMETERS float volume_left, float volume_right
#define MONO_DEST_VOLUME_VARIABLES lvol, rvol
#define MONO_DEST_VOLUME_ZEROS 0, 0
#define SET_MONO_DEST_VOLUME_VARIABLES { \
lvol = (int)floor(volume_left * 65536.0 + 0.5); \
rvol = (int)floor(volume_right * 65536.0 + 0.5); \
}
#define MONO_DEST_VOLUMES_ARE_ZERO (lvol == 0 && rvol == 0)
#define MONO_DEST_MIX_ALIAS(op, offset) *dst++ op ALIAS(x[(offset)*2], lvol) + ALIAS(x[(offset)*2+1], rvol)
#define STEREO_DEST_MIX_ALIAS(op, offset) { \
*dst++ op ALIAS(x[(offset)*2], lvol); \
*dst++ op ALIAS(x[(offset)*2+1], rvol); \
}
#define MONO_DEST_MIX_LINEAR(op, o0, o1) *dst++ op MULSC(LINEAR(x[(o0)*2], x[(o1)*2]), lvol) + MULSC(LINEAR(x[(o0)*2+1], x[(o1)*2+1]), rvol)
#define STEREO_DEST_MIX_LINEAR(op, o0, o1) { \
*dst++ op MULSC(LINEAR(x[(o0)*2], x[(o1)*2]), lvol); \
*dst++ op MULSC(LINEAR(x[(o0)*2+1], x[(o1)*2+1]), rvol); \
}
#define MONO_DEST_MIX_CUBIC(op, x0, x3, o0, o1, o2, o3) *dst++ op \
CUBICVOL(CUBIC(x0[(o0)*2], x[(o1)*2], x[(o2)*2], x3[(o3)*2]), lvol) + \
CUBICVOL(CUBIC(x0[(o0)*2+1], x[(o1)*2+1], x[(o2)*2+1], x3[(o3)*2+1]), rvol)
#define STEREO_DEST_MIX_CUBIC(op, x0, x3, o0, o1, o2, o3) { \
*dst++ op CUBICVOL(CUBIC(x0[(o0)*2], x[(o1)*2], x[(o2)*2], x3[(o3)*2]), lvol); \
*dst++ op CUBICVOL(CUBIC(x0[(o0)*2+1], x[(o1)*2+1], x[(o2)*2+1], x3[(o3)*2+1]), rvol); \
}
#include "resamp2.inc"
void dumb_end_resampler(DUMB_RESAMPLER *resampler)
{
if (resampler)
free(resampler);
}
#undef CUBICVOL
#undef CUBIC
#undef LINEAR
#undef ALIAS
#undef SRCBITS
#undef SRCTYPE
#undef SUFFIX