/*** * * Copyright (c) 1996-2001, Valve LLC. All rights reserved. * * This product contains software technology licensed from Id * Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc. * All Rights Reserved. * ****/ #include "vis.h" int c_fullskip; int c_chains; int c_portalskip, c_leafskip; int c_vistest, c_mighttest; int active; void CheckStack (leaf_t *leaf, threaddata_t *thread) { pstack_t *p; for (p=thread->pstack_head.next ; p ; p=p->next) { // printf ("="); if (p->leaf == leaf) Error ("CheckStack: leaf recursion"); } // printf ("\n"); } winding_t *AllocStackWinding (pstack_t *stack) { int i; for (i=0 ; i<3 ; i++) { if (stack->freewindings[i]) { stack->freewindings[i] = 0; return &stack->windings[i]; } } Error ("AllocStackWinding: failed"); return NULL; } void FreeStackWinding (winding_t *w, pstack_t *stack) { int i; i = w - stack->windings; if (i<0 || i>2) return; // not from local if (stack->freewindings[i]) Error ("FreeStackWinding: allready free"); stack->freewindings[i] = 1; } /* ============== ChopWinding ============== */ winding_t *ChopWinding (winding_t *in, pstack_t *stack, plane_t *split) { vec_t dists[128]; int sides[128]; int counts[3]; vec_t dot; int i, j; vec_t *p1, *p2; vec3_t mid; winding_t *neww; int maxpts; counts[0] = counts[1] = counts[2] = 0; if ( in->numpoints > (sizeof(sides)/sizeof(*sides)) ) Error("Winding with too many sides!"); // determine sides for each point for (i=0 ; inumpoints ; i++) { dot = DotProduct (in->points[i], split->normal); dot -= split->dist; dists[i] = dot; if (dot > ON_EPSILON) sides[i] = SIDE_FRONT; else if (dot < -ON_EPSILON) sides[i] = SIDE_BACK; else { sides[i] = SIDE_ON; } counts[sides[i]]++; } if (!counts[1]) return in; // completely on front side if (!counts[0]) { FreeStackWinding (in, stack); return NULL; } sides[i] = sides[0]; dists[i] = dists[0]; neww = AllocStackWinding (stack); neww->numpoints = 0; for (i=0 ; inumpoints ; i++) { p1 = in->points[i]; if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING) { FreeStackWinding (neww, stack); return in; // can't chop -- fall back to original } if (sides[i] == SIDE_ON) { VectorCopy (p1, neww->points[neww->numpoints]); neww->numpoints++; continue; } if (sides[i] == SIDE_FRONT) { VectorCopy (p1, neww->points[neww->numpoints]); neww->numpoints++; } if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i]) continue; if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING) { FreeStackWinding (neww, stack); return in; // can't chop -- fall back to original } // generate a split point p2 = in->points[(i+1)%in->numpoints]; dot = dists[i] / (dists[i]-dists[i+1]); for (j=0 ; j<3 ; j++) { // avoid round off error when possible if (split->normal[j] == 1) mid[j] = split->dist; else if (split->normal[j] == -1) mid[j] = -split->dist; else mid[j] = p1[j] + dot*(p2[j]-p1[j]); } VectorCopy (mid, neww->points[neww->numpoints]); neww->numpoints++; } // free the original winding FreeStackWinding (in, stack); return neww; } /* ============== InTheBallpark Build a bounding box using the start and end windings then verify that the clip winding bounding box touches the start/end bounding box. ============== */ int InTheBallpark( winding_t *start, winding_t *clip, winding_t *end ) { int d,p; vec3_t bmin = {9999,9999,9999}, bmax = {-9999,-9999,-9999}; vec3_t cmin = {9999,9999,9999}, cmax = {-9999,-9999,-9999}; vec3_t bcenter, bsize; vec3_t ccenter, csize; for(d=0; d<3; d++) { // Establish a bounding box based on start winding for (p=0; pnumpoints; p++) { if (start->points[p][d] < bmin[d]) bmin[d] = start->points[p][d]; if (start->points[p][d] > bmax[d]) bmax[d] = start->points[p][d]; } // Extend this bounding box based on end winding for (p=0; pnumpoints; p++) { if (end->points[p][d] < bmin[d]) bmin[d] = end->points[p][d]; if (end->points[p][d] > bmax[d]) bmax[d] = end->points[p][d]; } // Establish a second box based on clip winding for (p=0; pnumpoints; p++) { if (clip->points[p][d] < cmin[d]) cmin[d] = clip->points[p][d]; if (clip->points[p][d] > cmax[d]) cmax[d] = clip->points[p][d]; } // Calculate the center of each bounding box bcenter[d] = (bmax[d]+bmin[d]); // Optimized out /2; ccenter[d] = (cmax[d]+cmin[d]); // Optimized out /2; // Calculate the distances from center to the edges bsize[d] = (bmax[d] - bmin[d]); // Optimized out /2; csize[d] = (cmax[d] - cmin[d]); // Optimized out /2; // Are the centers further apart than the distance to the edges if ( fabs(bcenter[d]-ccenter[d]) > bsize[d]+csize[d]+ON_EPSILON ) return 0; } return 1; } /* ============== ClipToSeperators Source, pass, and target are an ordering of portals. Generates seperating planes canidates by taking two points from source and one point from pass, and clips target by them. If target is totally clipped away, that portal can not be seen through. Normal clip keeps target on the same side as pass, which is correct if the order goes source, pass, target. If the order goes pass, source, target then flipclip should be set. ============== */ winding_t *ClipToSeperators (winding_t *source, winding_t *pass, winding_t *target, qboolean flipclip, pstack_t *stack) { int i, j, k, l; plane_t plane; vec3_t v1, v2; float d; vec_t length; int counts[3]; qboolean fliptest; // check all combinations for (i=0 ; inumpoints ; i++) { l = (i+1)%source->numpoints; VectorSubtract (source->points[l] , source->points[i], v1); // fing a vertex of pass that makes a plane that puts all of the // vertexes of pass on the front side and all of the vertexes of // source on the back side for (j=0 ; jnumpoints ; j++) { VectorSubtract (pass->points[j], source->points[i], v2); plane.normal[0] = v1[1]*v2[2] - v1[2]*v2[1]; plane.normal[1] = v1[2]*v2[0] - v1[0]*v2[2]; plane.normal[2] = v1[0]*v2[1] - v1[1]*v2[0]; // if points don't make a valid plane, skip it length = plane.normal[0] * plane.normal[0] + plane.normal[1] * plane.normal[1] + plane.normal[2] * plane.normal[2]; if (length < ON_EPSILON) continue; length = 1/sqrt(length); plane.normal[0] *= length; plane.normal[1] *= length; plane.normal[2] *= length; plane.dist = DotProduct (pass->points[j], plane.normal); // // find out which side of the generated seperating plane has the // source portal // #if 1 fliptest = false; for (k=0 ; knumpoints ; k++) { if (k == i || k == l) continue; d = DotProduct (source->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) { // source is on the negative side, so we want all // pass and target on the positive side fliptest = false; break; } else if (d > ON_EPSILON) { // source is on the positive side, so we want all // pass and target on the negative side fliptest = true; break; } } if (k == source->numpoints) continue; // planar with source portal #else fliptest = flipclip; #endif // // flip the normal if the source portal is backwards // if (fliptest) { VectorSubtract (vec3_origin, plane.normal, plane.normal); plane.dist = -plane.dist; } #if 1 // // if all of the pass portal points are now on the positive side, // this is the seperating plane // counts[0] = counts[1] = counts[2] = 0; for (k=0 ; knumpoints ; k++) { if (k==j) continue; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) break; else if (d > ON_EPSILON) counts[0]++; else counts[2]++; } if (k != pass->numpoints) continue; // points on negative side, not a seperating plane if (!counts[0]) continue; // planar with seperating plane #else k = (j+1)%pass->numpoints; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) continue; k = (j+pass->numpoints-1)%pass->numpoints; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) continue; #endif // // flip the normal if we want the back side // if (flipclip) { VectorSubtract (vec3_origin, plane.normal, plane.normal); plane.dist = -plane.dist; } // // clip target by the seperating plane // target = ChopWinding (target, stack, &plane); if (!target) return NULL; // target is not visible } } return target; } /* ================== RecursiveLeafFlow Flood fill through the leafs If src_portal is NULL, this is the originating leaf ================== */ void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack) { pstack_t stack; portal_t *p; plane_t backplane; leaf_t *leaf; int i, j; long *test, *might, *vis, more; int pnum; c_chains++; leaf = &leafs[leafnum]; // CheckStack (leaf, thread); // mark the leaf as visible if (! (thread->leafvis[leafnum>>3] & (1<<(leafnum&7)) ) ) { thread->leafvis[leafnum>>3] |= 1<<(leafnum&7); thread->base->numcansee++; } prevstack->next = &stack; stack.next = NULL; stack.leaf = leaf; stack.portal = NULL; might = (long *)stack.mightsee; vis = (long *)thread->leafvis; // check all portals for flowing into other leafs for (i=0 ; inumportals ; i++) { p = leaf->portals[i]; if ( ! (prevstack->mightsee[p->leaf>>3] & (1<<(p->leaf&7)) ) ) { c_leafskip++; continue; // can't possibly see it } #if 0 pnum = p - portals; if ( (thread->fullportal[pnum>>3] & (1<<(pnum&7)) ) ) { c_fullskip++; continue; // allready have full vis info } #endif // if the portal can't see anything we haven't allready seen, skip it if (p->status == stat_done) { c_vistest++; test = (long *)p->visbits; } else { c_mighttest++; test = (long *)p->mightsee; } more = 0; for (j=0 ; jmightsee)[j] & test[j]; more |= (might[j] & ~vis[j]); } if (!more) { // can't see anything new c_portalskip++; continue; } // get plane of portal, point normal into the neighbor leaf stack.portalplane = p->plane; VectorSubtract (vec3_origin, p->plane.normal, backplane.normal); backplane.dist = -p->plane.dist; if (VectorCompare (prevstack->portalplane.normal, backplane.normal) ) continue; // can't go out a coplanar face c_portalcheck++; stack.portal = p; stack.next = NULL; stack.freewindings[0] = 1; stack.freewindings[1] = 1; stack.freewindings[2] = 1; stack.pass = ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane); if (!stack.pass) continue; stack.source = ChopWinding (prevstack->source, &stack, &backplane); if (!stack.source) continue; if (!prevstack->pass) { // the second leaf can only be blocked if coplanar RecursiveLeafFlow (p->leaf, thread, &stack); continue; } stack.pass = ChopWinding (stack.pass, &stack, &prevstack->portalplane); if (!stack.pass) continue; c_portaltest++; #ifdef NOT_BROKEN if (!InTheBallpark(stack.source, prevstack->pass, stack.pass)) { FreeStackWinding (stack.pass, &stack); stack.pass = NULL; continue; } #endif stack.pass = ClipToSeperators (stack.source, prevstack->pass, stack.pass, false, &stack); if (!stack.pass) continue; stack.pass = ClipToSeperators (prevstack->pass, stack.source, stack.pass, true, &stack); if (!stack.pass) continue; c_portalpass++; #if 0 if (stack.pass == p->winding) { thread->fullportal[pnum>>3] |= (1<<(pnum&7)); FreeStackWinding (stack.source, &stack); stack.source = ChopWinding (thread->base->winding, &stack, &backplane); for (j=0 ; jpstack_head.mightsee)[j] & test[j]; } #endif // flow through it for real RecursiveLeafFlow (p->leaf, thread, &stack); } } /* =============== PortalFlow =============== */ void PortalFlow (portal_t *p) { threaddata_t data; int i; if (p->status != stat_working) Error ("PortalFlow: reflowed"); p->status = stat_working; p->visbits = malloc (bitbytes); memset (p->visbits, 0, bitbytes); memset (&data, 0, sizeof(data)); data.leafvis = p->visbits; data.base = p; data.pstack_head.portal = p; data.pstack_head.source = p->winding; data.pstack_head.portalplane = p->plane; for (i=0 ; imightsee)[i]; RecursiveLeafFlow (p->leaf, &data, &data.pstack_head); p->status = stat_done; } /* =============================================================================== This is a rough first-order aproximation that is used to trivially reject some of the final calculations. =============================================================================== */ void SimpleFlood (portal_t *srcportal, int leafnum, byte *portalsee, int *c_leafsee) { int i; leaf_t *leaf; portal_t *p; if (srcportal->mightsee[leafnum>>3] & (1<<(leafnum&7)) ) return; srcportal->mightsee[leafnum>>3] |= (1<<(leafnum&7)); (*c_leafsee)++; leaf = &leafs[leafnum]; for (i=0 ; inumportals ; i++) { p = leaf->portals[i]; if ( !portalsee[ p - portals ] ) continue; SimpleFlood (srcportal, p->leaf, portalsee, c_leafsee); } } /* ============== BasePortalVis ============== */ void BasePortalVis (int threadnum) { int i, j, k; portal_t *tp, *p; float d; winding_t *w; byte portalsee[MAX_PORTALS]; int c_leafsee; while (1) { i = GetThreadWork (); if (i == -1) break; p = portals+i; p->mightsee = malloc (bitbytes); memset (p->mightsee, 0, bitbytes); memset (portalsee, 0, numportals*2); for (j=0, tp = portals ; jwinding; for (k=0 ; knumpoints ; k++) { d = DotProduct (w->points[k], p->plane.normal) - p->plane.dist; if (d > ON_EPSILON) break; } if (k == w->numpoints) continue; // no points on front w = p->winding; for (k=0 ; knumpoints ; k++) { d = DotProduct (w->points[k], tp->plane.normal) - tp->plane.dist; if (d < -ON_EPSILON) break; } if (k == w->numpoints) continue; // no points on front portalsee[j] = 1; } c_leafsee = 0; SimpleFlood (p, p->leaf, portalsee, &c_leafsee); p->nummightsee = c_leafsee; // printf ("portal:%4i c_leafsee:%4i \n", i, c_leafsee); } }