1
0
Fork 0
forked from fte/fteqw
fteqw/engine/common/q1bsp.c
Spoike b63dc8b880 prepare for proper binary auth instead of depending upon tls certs (using sha2(512) to ensure no modification). probably buggy on windows so not fully enabled yet.
allow for binary updates on linux as on windows (-allowupdate for modified/nonsvn builds).
dlightmask is now size_t, because we might as well allow that on 64bit cpus, this allows for 64 lightmaphack lights instead of 32.
fix potential openal issue with source=0.
added q3bsp_ignorestyles cvar to ignore rbsp styles (and reduce needed batch counts), should only be used on maps with subtle lighting changes (ones that are properly lit without toggling any lightswitches).
add support for directly loading foo.bsp.gz
Added prints to clarify why servers might be listed under the 'UNKNOWN' category in the master server. Attempt to show hostnames anyway, to make it a little more obvious who's responsible for those badly configured servers.



git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5656 fc73d0e0-1445-4013-8a0c-d673dee63da5
2020-03-25 21:29:30 +00:00

2921 lines
72 KiB
C

#include "quakedef.h"
#include "pr_common.h"
#include "shader.h"
extern cvar_t r_decal_noperpendicular;
extern cvar_t mod_loadsurfenvmaps;
/*
Decal functions
*/
#define MAXFRAGMENTVERTS 360
int Fragment_ClipPolyToPlane(float *inverts, float *outverts, int incount, float *plane, float planedist)
{
#define C 4
float dotv[MAXFRAGMENTVERTS+1];
char keep[MAXFRAGMENTVERTS+1];
#define KEEP_KILL 0
#define KEEP_KEEP 1
#define KEEP_BORDER 2
int i;
int outcount = 0;
int clippedcount = 0;
float d, *p1, *p2, *out;
#define FRAG_EPSILON (1.0/32) //0.5
for (i = 0; i < incount; i++)
{
dotv[i] = DotProduct((inverts+i*C), plane) - planedist;
if (dotv[i]<-FRAG_EPSILON)
{
keep[i] = KEEP_KILL;
clippedcount++;
}
else if (dotv[i] > FRAG_EPSILON)
keep[i] = KEEP_KEEP;
else
keep[i] = KEEP_BORDER;
}
dotv[i] = dotv[0];
keep[i] = keep[0];
if (clippedcount == incount)
return 0; //all were clipped
if (clippedcount == 0)
{ //none were clipped
for (i = 0; i < incount; i++)
VectorCopy((inverts+i*C), (outverts+i*C));
return incount;
}
for (i = 0; i < incount; i++)
{
p1 = inverts+i*C;
if (keep[i] == KEEP_BORDER)
{
out = outverts+outcount++*C;
VectorCopy(p1, out);
continue;
}
if (keep[i] == KEEP_KEEP)
{
out = outverts+outcount++*C;
VectorCopy(p1, out);
}
if (keep[i+1] == KEEP_BORDER || keep[i] == keep[i+1])
continue;
p2 = inverts+((i+1)%incount)*C;
d = dotv[i] - dotv[i+1];
if (d)
d = dotv[i] / d;
out = outverts+outcount++*C;
VectorInterpolate(p1, d, p2, out);
}
return outcount;
}
//the plane itself must be a vec4_t, but can have other data packed between
size_t Fragment_ClipPlaneToBrush(vecV_t *points, size_t maxpoints, void *planes, size_t planestride, size_t numplanes, vec4_t face)
{
int p, a;
vec4_t verts[MAXFRAGMENTVERTS];
vec4_t verts2[MAXFRAGMENTVERTS];
vec4_t *cverts;
int flip;
// vec3_t d1, d2, n;
size_t numverts;
//generate some huge quad/poly aligned with the plane
vec3_t tmp;
vec3_t right, forward;
double t;
float *plane;
// if (face[2] != 1)
// return 0;
t = fabs(face[2]);
if (t > fabs(face[0]) && t > fabs(face[1]))
VectorSet(tmp, 1, 0, 0);
else
VectorSet(tmp, 0, 0, 1);
CrossProduct(face, tmp, right);
VectorNormalize(right);
CrossProduct(face, right, forward);
VectorNormalize(forward);
VectorScale(face, face[3], verts[0]);
VectorMA(verts[0], 32767, right, verts[0]);
VectorMA(verts[0], 32767, forward, verts[0]);
VectorScale(face, face[3], verts[1]);
VectorMA(verts[1], 32767, right, verts[1]);
VectorMA(verts[1], -32767, forward, verts[1]);
VectorScale(face, face[3], verts[2]);
VectorMA(verts[2], -32767, right, verts[2]);
VectorMA(verts[2], -32767, forward, verts[2]);
VectorScale(face, face[3], verts[3]);
VectorMA(verts[3], -32767, right, verts[3]);
VectorMA(verts[3], 32767, forward, verts[3]);
numverts = 4;
//clip the quad to the various other planes
flip = 0;
for (p = 0; p < numplanes; p++)
{
plane = (float*)((qbyte*)planes + p*planestride);
if (plane != face)
{
vec3_t norm;
flip^=1;
VectorNegate(plane, norm);
if (flip)
numverts = Fragment_ClipPolyToPlane((float*)verts, (float*)verts2, numverts, norm, -plane[3]);
else
numverts = Fragment_ClipPolyToPlane((float*)verts2, (float*)verts, numverts, norm, -plane[3]);
if (numverts < 3) //totally clipped.
return 0;
}
}
if (numverts > maxpoints)
return 0;
if (flip)
cverts = verts2;
else
cverts = verts;
for (p = 0; p < numverts; p++)
{
for (a = 0; a < 3; a++)
{
float f = cverts[p][a];
int rounded = floor(f + 0.5);
//if its within 1/1000th of a qu, just round it.
if (fabs(f - rounded) < 0.001)
points[p][a] = rounded;
else
points[p][a] = f;
}
}
return numverts;
}
#ifndef SERVERONLY
#define MAXFRAGMENTTRIS 256
vec3_t decalfragmentverts[MAXFRAGMENTTRIS*3];
struct fragmentdecal_s
{
vec3_t center;
vec3_t normal;
// vec3_t tangent1;
// vec3_t tangent2;
vec3_t planenorm[6];
float planedist[6];
int numplanes;
vec_t radius;
//will only appear on surfaces with the matching surfaceflag
unsigned int surfflagmask;
unsigned int surfflagmatch;
void (*callback)(void *ctx, vec3_t *fte_restrict points, size_t numpoints, shader_t *shader);
void *ctx;
};
//#define SHOWCLIPS
//#define FRAGMENTASTRIANGLES //works, but produces more fragments.
#ifdef FRAGMENTASTRIANGLES
//if the triangle is clipped away, go recursive if there are tris left.
static void Fragment_ClipTriToPlane(int trinum, float *plane, float planedist, fragmentdecal_t *dec)
{
float *point[3];
float dotv[3];
vec3_t impact1, impact2;
float t;
int i, i2, i3;
int clippedverts = 0;
for (i = 0; i < 3; i++)
{
point[i] = decalfragmentverts[trinum*3+i];
dotv[i] = DotProduct(point[i], plane)-planedist;
clippedverts += dotv[i] < 0;
}
//if they're all clipped away, scrap the tri
switch (clippedverts)
{
case 0:
return; //plane does not clip the triangle.
case 1: //split into 3, disregard the clipped vert
for (i = 0; i < 3; i++)
{
if (dotv[i] < 0)
{ //This is the vertex that's getting clipped.
if (dotv[i] > -DIST_EPSILON)
return; //it's only over the line by a tiny ammount.
i2 = (i+1)%3;
i3 = (i+2)%3;
if (dotv[i2] < DIST_EPSILON)
return;
if (dotv[i3] < DIST_EPSILON)
return;
//work out where the two lines impact the plane
t = (dotv[i]) / (dotv[i]-dotv[i2]);
VectorInterpolate(point[i], t, point[i2], impact1);
t = (dotv[i]) / (dotv[i]-dotv[i3]);
VectorInterpolate(point[i], t, point[i3], impact2);
#ifdef SHOWCLIPS
if (dec->numtris != MAXFRAGMENTTRIS)
{
VectorCopy(impact2, decalfragmentverts[dec->numtris*3+0]);
VectorCopy(decalfragmentverts[trinum*3+i], decalfragmentverts[dec->numtris*3+1]);
VectorCopy(impact1, decalfragmentverts[dec->numtris*3+2]);
dec->numtris++;
}
#endif
//shrink the tri, putting the impact into the killed vertex.
VectorCopy(impact2, point[i]);
if (dec->numtris == MAXFRAGMENTTRIS)
return; //:(
//build the second tri
VectorCopy(impact1, decalfragmentverts[dec->numtris*3+0]);
VectorCopy(decalfragmentverts[trinum*3+i2], decalfragmentverts[dec->numtris*3+1]);
VectorCopy(impact2, decalfragmentverts[dec->numtris*3+2]);
dec->numtris++;
return;
}
}
Sys_Error("Fragment_ClipTriToPlane: Clipped vertex not founc\n");
return; //can't handle it
case 2: //split into 3, disregarding both the clipped.
for (i = 0; i < 3; i++)
{
if (!(dotv[i] < 0))
{ //This is the vertex that's staying.
if (dotv[i] < DIST_EPSILON)
break; //only just inside
i2 = (i+1)%3;
i3 = (i+2)%3;
//work out where the two lines impact the plane
t = (dotv[i]) / (dotv[i]-dotv[i2]);
VectorInterpolate(point[i], t, point[i2], impact1);
t = (dotv[i]) / (dotv[i]-dotv[i3]);
VectorInterpolate(point[i], t, point[i3], impact2);
//shrink the tri, putting the impact into the killed vertex.
#ifdef SHOWCLIPS
if (dec->numtris != MAXFRAGMENTTRIS)
{
VectorCopy(impact1, decalfragmentverts[dec->numtris*3+0]);
VectorCopy(point[i2], decalfragmentverts[dec->numtris*3+1]);
VectorCopy(point[i3], decalfragmentverts[dec->numtris*3+2]);
dec->numtris++;
}
if (dec->numtris != MAXFRAGMENTTRIS)
{
VectorCopy(impact1, decalfragmentverts[dec->numtris*3+0]);
VectorCopy(point[i3], decalfragmentverts[dec->numtris*3+1]);
VectorCopy(impact2, decalfragmentverts[dec->numtris*3+2]);
dec->numtris++;
}
#endif
VectorCopy(impact1, point[i2]);
VectorCopy(impact2, point[i3]);
return;
}
}
case 3://scrap it
//fill the verts with the verts of the last and go recursive (due to the nature of Fragment_ClipTriangle, which doesn't actually know if we clip them away)
#ifndef SHOWCLIPS
dec->numtris--;
VectorCopy(decalfragmentverts[dec->numtris*3+0], decalfragmentverts[trinum*3+0]);
VectorCopy(decalfragmentverts[dec->numtris*3+1], decalfragmentverts[trinum*3+1]);
VectorCopy(decalfragmentverts[dec->numtris*3+2], decalfragmentverts[trinum*3+2]);
if (trinum < dec->numtris)
Fragment_ClipTriToPlane(trinum, plane, planedist, dec);
#endif
return;
}
}
static void Fragment_ClipTriangle(fragmentdecal_t *dec, float *a, float *b, float *c)
{
//emit the triangle, and clip it's fragments.
int start, i;
int p;
if (dec->numtris == MAXFRAGMENTTRIS)
return; //:(
start = dec->numtris;
VectorCopy(a, decalfragmentverts[dec->numtris*3+0]);
VectorCopy(b, decalfragmentverts[dec->numtris*3+1]);
VectorCopy(c, decalfragmentverts[dec->numtris*3+2]);
dec->numtris++;
//clip all the fragments to all of the planes.
//This will produce a quad if the source triangle was big enough.
for (p = 0; p < 6; p++)
{
for (i = start; i < dec->numtris; i++)
Fragment_ClipTriToPlane(i, dec->planenorm[p], dec->plantdist[p], dec);
}
}
#else
void Fragment_ClipPoly(fragmentdecal_t *dec, int numverts, float *inverts, shader_t *surfshader)
{
//emit the triangle, and clip it's fragments.
int p;
float verts[MAXFRAGMENTVERTS*C];
float verts2[MAXFRAGMENTVERTS*C];
float *cverts;
int flip;
vec3_t d1, d2, n;
size_t numtris;
if (numverts > MAXFRAGMENTTRIS)
return;
if (r_decal_noperpendicular.ival)
{
VectorSubtract(inverts+C*1, inverts+C*0, d1);
for (p = 2; ; p++)
{
if (p >= numverts)
return;
VectorSubtract(inverts+C*p, inverts+C*0, d2);
CrossProduct(d1, d2, n);
if (DotProduct(n,n)>.1)
break;
}
VectorNormalizeFast(n);
if (DotProduct(n, dec->normal) < 0.1)
return; //faces too far way from the normal
}
//clip to the first plane specially, so we don't have extra copys
numverts = Fragment_ClipPolyToPlane(inverts, verts, numverts, dec->planenorm[0], dec->planedist[0]);
//clip the triangle to the 6 planes.
flip = 0;
for (p = 1; p < dec->numplanes; p++)
{
flip^=1;
if (flip)
numverts = Fragment_ClipPolyToPlane(verts, verts2, numverts, dec->planenorm[p], dec->planedist[p]);
else
numverts = Fragment_ClipPolyToPlane(verts2, verts, numverts, dec->planenorm[p], dec->planedist[p]);
if (numverts < 3) //totally clipped.
return;
}
if (flip)
cverts = verts2;
else
cverts = verts;
//decompose the resultant polygon into triangles.
numtris = 0;
while(numverts-->2)
{
if (numtris == MAXFRAGMENTTRIS)
{
dec->callback(dec->ctx, decalfragmentverts, numtris, NULL);
numtris = 0;
break;
}
VectorCopy((cverts+C*0), decalfragmentverts[numtris*3+0]);
VectorCopy((cverts+C*(numverts-1)), decalfragmentverts[numtris*3+1]);
VectorCopy((cverts+C*numverts), decalfragmentverts[numtris*3+2]);
numtris++;
}
if (numtris)
dec->callback(dec->ctx, decalfragmentverts, numtris, surfshader);
}
#endif
//this could be inlined, but I'm lazy.
static void Fragment_Mesh (fragmentdecal_t *dec, mesh_t *mesh, mtexinfo_t *texinfo)
{
int i;
vecV_t verts[3];
shader_t *surfshader = texinfo->texture->shader;
if ((surfshader->flags & SHADER_NOMARKS) || !mesh)
return;
if (dec->surfflagmask)
{
if ((texinfo->flags & dec->surfflagmask) != dec->surfflagmatch)
return;
}
/*if its a triangle fan/poly/quad then we can just submit the entire thing without generating extra fragments*/
if (mesh->istrifan)
{
Fragment_ClipPoly(dec, mesh->numvertexes, mesh->xyz_array[0], surfshader);
return;
}
//Fixme: optimise q3 patches (quad strips with bends between each strip)
/*otherwise it goes in and out in weird places*/
for (i = 0; i < mesh->numindexes; i+=3)
{
VectorCopy(mesh->xyz_array[mesh->indexes[i+0]], verts[0]);
VectorCopy(mesh->xyz_array[mesh->indexes[i+1]], verts[1]);
VectorCopy(mesh->xyz_array[mesh->indexes[i+2]], verts[2]);
Fragment_ClipPoly(dec, 3, verts[0], surfshader);
}
}
#ifdef Q1BSPS
static void Q1BSP_ClipDecalToNodes (model_t *mod, fragmentdecal_t *dec, mnode_t *node)
{
mplane_t *splitplane;
float dist;
msurface_t *surf;
int i;
if (node->contents < 0)
return;
splitplane = node->plane;
dist = DotProduct (dec->center, splitplane->normal) - splitplane->dist;
if (dist > dec->radius)
{
Q1BSP_ClipDecalToNodes (mod, dec, node->children[0]);
return;
}
if (dist < -dec->radius)
{
Q1BSP_ClipDecalToNodes (mod, dec, node->children[1]);
return;
}
// mark the polygons
surf = mod->surfaces + node->firstsurface;
if (r_decal_noperpendicular.ival)
{
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags & SURF_PLANEBACK)
{
if (-DotProduct(surf->plane->normal, dec->normal) > -0.5)
continue;
}
else
{
if (DotProduct(surf->plane->normal, dec->normal) > -0.5)
continue;
}
Fragment_Mesh(dec, surf->mesh, surf->texinfo);
}
}
else
{
for (i=0 ; i<node->numsurfaces ; i++, surf++)
Fragment_Mesh(dec, surf->mesh, surf->texinfo);
}
Q1BSP_ClipDecalToNodes (mod, dec, node->children[0]);
Q1BSP_ClipDecalToNodes (mod, dec, node->children[1]);
}
#endif
#ifdef RTLIGHTS
extern int sh_shadowframe;
#else
static int sh_shadowframe;
#endif
#ifdef Q3BSPS
static void Q3BSP_ClipDecalToNodes (fragmentdecal_t *dec, mnode_t *node)
{
mplane_t *splitplane;
float dist;
msurface_t **msurf;
msurface_t *surf;
mleaf_t *leaf;
int i;
if (node->contents != -1)
{
leaf = (mleaf_t *)node;
// mark the polygons
msurf = leaf->firstmarksurface;
for (i=0 ; i<leaf->nummarksurfaces ; i++, msurf++)
{
surf = *msurf;
//only check each surface once. it can appear in multiple leafs.
if (surf->shadowframe == sh_shadowframe)
continue;
surf->shadowframe = sh_shadowframe;
Fragment_Mesh(dec, surf->mesh, surf->texinfo);
}
return;
}
splitplane = node->plane;
dist = DotProduct (dec->center, splitplane->normal) - splitplane->dist;
if (dist > dec->radius)
{
Q3BSP_ClipDecalToNodes (dec, node->children[0]);
return;
}
if (dist < -dec->radius)
{
Q3BSP_ClipDecalToNodes (dec, node->children[1]);
return;
}
Q3BSP_ClipDecalToNodes (dec, node->children[0]);
Q3BSP_ClipDecalToNodes (dec, node->children[1]);
}
#endif
void Mod_ClipDecal(struct model_s *mod, vec3_t center, vec3_t normal, vec3_t tangent1, vec3_t tangent2, float size, unsigned int surfflagmask, unsigned int surfflagmatch, void (*callback)(void *ctx, vec3_t *fte_restrict points, size_t numpoints, shader_t *shader), void *ctx)
{ //quad marks a full, independant quad
int p;
float r;
fragmentdecal_t dec;
VectorCopy(center, dec.center);
VectorCopy(normal, dec.normal);
dec.radius = 0;
dec.callback = callback;
dec.ctx = ctx;
dec.surfflagmask = surfflagmask;
dec.surfflagmatch = surfflagmatch;
VectorCopy(tangent1, dec.planenorm[0]);
VectorNegate(tangent1, dec.planenorm[1]);
VectorCopy(tangent2, dec.planenorm[2]);
VectorNegate(tangent2, dec.planenorm[3]);
VectorCopy(dec.normal, dec.planenorm[4]);
VectorNegate(dec.normal, dec.planenorm[5]);
for (p = 0; p < 6; p++)
{
r = sqrt(DotProduct(dec.planenorm[p], dec.planenorm[p]));
VectorScale(dec.planenorm[p], 1/r, dec.planenorm[p]);
r*= size/2;
if (r > dec.radius)
dec.radius = r;
dec.planedist[p] = -(r - DotProduct(dec.center, dec.planenorm[p]));
}
dec.numplanes = 6;
sh_shadowframe++;
if (!mod || mod->loadstate != MLS_LOADED || mod->type != mod_brush)
{
}
#ifdef Q1BSPS
else if (mod->fromgame == fg_quake || mod->fromgame == fg_halflife)
Q1BSP_ClipDecalToNodes(mod, &dec, mod->rootnode);
#endif
#ifdef Q3BSPS
else if (cl.worldmodel->fromgame == fg_quake3)
{
if (mod->submodelof)
{
msurface_t *surf;
for (surf = mod->surfaces+mod->firstmodelsurface, p = 0; p < mod->nummodelsurfaces; p++, surf++)
Fragment_Mesh(&dec, surf->mesh, surf->texinfo);
}
else
Q3BSP_ClipDecalToNodes(&dec, mod->rootnode);
}
#endif
#ifdef TERRAIN
if (cl.worldmodel && cl.worldmodel->terrain)
Terrain_ClipDecal(&dec, center, dec.radius, mod);
#endif
}
#endif
/*
Decal functions
============================================================================
Physics functions (common)
*/
#ifdef Q1BSPS
void Q1BSP_CheckHullNodes(hull_t *hull)
{
int num, c;
mclipnode_t *node;
for (num = hull->firstclipnode; num < hull->lastclipnode; num++)
{
node = hull->clipnodes + num;
for (c = 0; c < 2; c++)
if (node->children[c] >= 0)
if (node->children[c] < hull->firstclipnode || node->children[c] > hull->lastclipnode)
Sys_Error ("Q1BSP_CheckHull: bad node number");
}
}
static int Q1_ModelPointContents (mnode_t *node, const vec3_t p)
{
float d;
mplane_t *plane;
while(node->contents >= 0)
{
plane = node->plane;
if (plane->type < 3)
d = p[plane->type] - plane->dist;
else
d = DotProduct(plane->normal, p) - plane->dist;
node = node->children[d<0];
}
return node->contents;
}
#endif//Q1BSPS
/*
==================
SV_HullPointContents
==================
*/
static int Q1_HullPointContents (hull_t *hull, int num, const vec3_t p)
{
float d;
mclipnode_t *node;
mplane_t *plane;
while (num >= 0)
{
node = hull->clipnodes + num;
plane = hull->planes + node->planenum;
if (plane->type < 3)
d = p[plane->type] - plane->dist;
else
d = DotProduct (plane->normal, p) - plane->dist;
if (d < 0)
num = node->children[1];
else
num = node->children[0];
}
return num;
}
#define DIST_EPSILON (0.03125)
#if 1
static const unsigned int q1toftecontents[] =
{
0,//EMPTY
FTECONTENTS_SOLID,//SOLID
FTECONTENTS_WATER,//WATER
FTECONTENTS_SLIME,//SLIME
FTECONTENTS_LAVA,//LAVA
FTECONTENTS_SKY,//SKY
FTECONTENTS_SOLID,//STRIPPED
FTECONTENTS_PLAYERCLIP,//CLIP
Q2CONTENTS_CURRENT_0,//FLOW_1
Q2CONTENTS_CURRENT_90,//FLOW_2
Q2CONTENTS_CURRENT_180,//FLOW_3
Q2CONTENTS_CURRENT_270,//FLOW_4
Q2CONTENTS_CURRENT_UP,//FLOW_5
Q2CONTENTS_CURRENT_DOWN,//FLOW_6
Q2CONTENTS_WINDOW,//TRANS
FTECONTENTS_LADDER,//LADDER
};
enum
{
rht_solid,
rht_empty,
rht_impact
};
struct rhtctx_s
{
unsigned int checkcontents;
vec3_t start, end;
mclipnode_t *clipnodes;
mplane_t *planes;
};
static int Q1BSP_RecursiveHullTrace (struct rhtctx_s *ctx, int num, float p1f, float p2f, const vec3_t p1, const vec3_t p2, trace_t *trace)
{
mclipnode_t *node;
mplane_t *plane;
float t1, t2;
vec3_t mid;
int side;
float midf;
int rht;
reenter:
if (num < 0)
{
unsigned int c = q1toftecontents[-1-num];
/*hit a leaf*/
if (c & ctx->checkcontents)
{
trace->contents = c;
if (trace->allsolid)
trace->startsolid = true;
return rht_solid;
}
else
{
trace->allsolid = false;
if (c & FTECONTENTS_FLUID)
trace->inwater = true;
else
trace->inopen = true;
return rht_empty;
}
}
/*its a node*/
/*get the node info*/
node = ctx->clipnodes + num;
plane = ctx->planes + node->planenum;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
}
/*if its completely on one side, resume on that side*/
if (t1 >= 0 && t2 >= 0)
{
//return Q1BSP_RecursiveHullTrace (hull, node->children[0], p1f, p2f, p1, p2, trace);
num = node->children[0];
goto reenter;
}
if (t1 < 0 && t2 < 0)
{
//return Q1BSP_RecursiveHullTrace (hull, node->children[1], p1f, p2f, p1, p2, trace);
num = node->children[1];
goto reenter;
}
if (plane->type < 3)
{
t1 = ctx->start[plane->type] - plane->dist;
t2 = ctx->end[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, ctx->start) - plane->dist;
t2 = DotProduct (plane->normal, ctx->end) - plane->dist;
}
side = t1 < 0;
midf = t1 / (t1 - t2);
if (midf < p1f) midf = p1f;
if (midf > p2f) midf = p2f;
VectorInterpolate(ctx->start, midf, ctx->end, mid);
//check the near side
rht = Q1BSP_RecursiveHullTrace(ctx, node->children[side], p1f, midf, p1, mid, trace);
if (rht != rht_empty && !trace->allsolid)
return rht;
//check the far side
rht = Q1BSP_RecursiveHullTrace(ctx, node->children[side^1], midf, p2f, mid, p2, trace);
if (rht != rht_solid)
return rht;
if (side)
{
/*we impacted the back of the node, so flip the plane*/
trace->plane.dist = -plane->dist;
VectorNegate(plane->normal, trace->plane.normal);
midf = (t1 + DIST_EPSILON) / (t1 - t2);
}
else
{
/*we impacted the front of the node*/
trace->plane.dist = plane->dist;
VectorCopy(plane->normal, trace->plane.normal);
midf = (t1 - DIST_EPSILON) / (t1 - t2);
}
t1 = DotProduct (trace->plane.normal, ctx->start) - trace->plane.dist;
t2 = DotProduct (trace->plane.normal, ctx->end) - trace->plane.dist;
midf = (t1 - DIST_EPSILON) / (t1 - t2);
midf = bound(0, midf, 1);
trace->fraction = midf;
VectorCopy (mid, trace->endpos);
VectorInterpolate(ctx->start, midf, ctx->end, trace->endpos);
return rht_impact;
}
qboolean Q1BSP_RecursiveHullCheck (hull_t *hull, int num, const vec3_t p1, const vec3_t p2, unsigned int hitcontents, trace_t *trace)
{
if (VectorEquals(p1, p2))
{
/*points cannot cross planes, so do it faster*/
int q1 = Q1_HullPointContents(hull, num, p1);
unsigned int c = q1toftecontents[-1-q1];
trace->contents = c;
if (c & hitcontents)
trace->startsolid = true;
else if (c & FTECONTENTS_FLUID)
{
trace->allsolid = false;
trace->inwater = true;
}
else
{
trace->allsolid = false;
trace->inopen = true;
}
return true;
}
else
{
struct rhtctx_s ctx;
VectorCopy(p1, ctx.start);
VectorCopy(p2, ctx.end);
ctx.clipnodes = hull->clipnodes;
ctx.planes = hull->planes;
ctx.checkcontents = hitcontents;
return Q1BSP_RecursiveHullTrace(&ctx, num, 0, 1, p1, p2, trace) != rht_impact;
}
}
#else
qboolean Q1BSP_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, trace_t *trace)
{
mclipnode_t *node;
mplane_t *plane;
float t1, t2;
float frac;
int i;
vec3_t mid;
int side;
float midf;
// check for empty
if (num < 0)
{
if (num != Q1CONTENTS_SOLID)
{
trace->allsolid = false;
if (num == Q1CONTENTS_EMPTY)
trace->inopen = true;
else
trace->inwater = true;
}
else
trace->startsolid = true;
return true; // empty
}
//
// find the point distances
//
node = hull->clipnodes + num;
plane = hull->planes + node->planenum;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
}
#if 1
if (t1 >= 0 && t2 >= 0)
return Q1BSP_RecursiveHullCheck (hull, node->children[0], p1f, p2f, p1, p2, trace);
if (t1 < 0 && t2 < 0)
return Q1BSP_RecursiveHullCheck (hull, node->children[1], p1f, p2f, p1, p2, trace);
#else
if ( (t1 >= DIST_EPSILON && t2 >= DIST_EPSILON) || (t2 > t1 && t1 >= 0) )
return Q1BSP_RecursiveHullCheck (hull, node->children[0], p1f, p2f, p1, p2, trace);
if ( (t1 <= -DIST_EPSILON && t2 <= -DIST_EPSILON) || (t2 < t1 && t1 <= 0) )
return Q1BSP_RecursiveHullCheck (hull, node->children[1], p1f, p2f, p1, p2, trace);
#endif
// put the crosspoint DIST_EPSILON pixels on the near side
if (t1 < 0)
frac = (t1 + DIST_EPSILON)/(t1-t2);
else
frac = (t1 - DIST_EPSILON)/(t1-t2);
if (frac < 0)
frac = 0;
if (frac > 1)
frac = 1;
midf = p1f + (p2f - p1f)*frac;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac*(p2[i] - p1[i]);
side = (t1 < 0);
// move up to the node
if (!Q1BSP_RecursiveHullCheck (hull, node->children[side], p1f, midf, p1, mid, trace) )
return false;
#ifdef PARANOID
if (Q1BSP_RecursiveHullCheck (sv_hullmodel, mid, node->children[side])
== Q1CONTENTS_SOLID)
{
Con_Printf ("mid PointInHullSolid\n");
return false;
}
#endif
if (Q1_HullPointContents (hull, node->children[side^1], mid)
!= Q1CONTENTS_SOLID)
// go past the node
return Q1BSP_RecursiveHullCheck (hull, node->children[side^1], midf, p2f, mid, p2, trace);
if (trace->allsolid)
return false; // never got out of the solid area
//==================
// the other side of the node is solid, this is the impact point
//==================
if (!side)
{
VectorCopy (plane->normal, trace->plane.normal);
trace->plane.dist = plane->dist;
}
else
{
VectorNegate (plane->normal, trace->plane.normal);
trace->plane.dist = -plane->dist;
}
while (Q1_HullPointContents (hull, hull->firstclipnode, mid)
== Q1CONTENTS_SOLID)
{ // shouldn't really happen, but does occasionally
if (!(frac < 10000000) && !(frac > -10000000))
{
trace->fraction = 0;
VectorClear (trace->endpos);
Con_Printf ("nan in traceline\n");
return false;
}
frac -= 0.1;
if (frac < 0)
{
trace->fraction = midf;
VectorCopy (mid, trace->endpos);
Con_DPrintf ("backup past 0\n");
return false;
}
midf = p1f + (p2f - p1f)*frac;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac*(p2[i] - p1[i]);
}
trace->fraction = midf;
VectorCopy (mid, trace->endpos);
return false;
}
#endif
#ifdef Q1BSPS
/*
the bsp tree we're walking through is the renderable hull
we need to trace a box through the world.
by its very nature, this will reach more nodes than we really want, and as we can follow a node sideways, the underlying bsp structure is no longer 100% reliable (meaning we cross planes that are entirely to one side, and follow its children too)
so all contents and solidity must come from the brushes and ONLY the brushes.
*/
struct traceinfo_s
{
unsigned int solidcontents;
trace_t trace;
qboolean capsule;
float radius;
/*set even for sphere traces (used for bbox tests)*/
vec3_t mins;
vec3_t maxs;
vec3_t start;
vec3_t end;
vec3_t up;
vec3_t capsulesize;
vec3_t extents;
};
static void Q1BSP_ClipToBrushes(struct traceinfo_s *traceinfo, mbrush_t *brush)
{
struct mbrushplane_s *plane;
struct mbrushplane_s *enterplane;
int i, j;
vec3_t ofs;
qboolean startout, endout;
float d1,d2,dist,enterdist=0;
float f, enterfrac, exitfrac;
for (; brush; brush = brush->next)
{
/*ignore if its not solid to us*/
if (!(traceinfo->solidcontents & brush->contents))
continue;
startout = false;
endout = false;
enterplane= NULL;
enterfrac = -1;
exitfrac = 10;
for (i = brush->numplanes, plane = brush->planes; i; i--, plane++)
{
/*calculate the distance based upon the shape of the object we're tracing for*/
if (traceinfo->capsule)
{
dist = DotProduct(traceinfo->up, plane->normal);
dist = dist*(traceinfo->capsulesize[(dist<0)?1:2]) - traceinfo->capsulesize[0];
dist = plane->dist - dist;
//dist = plane->dist + traceinfo->radius;
}
else
{
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = traceinfo->maxs[j];
else
ofs[j] = traceinfo->mins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
}
d1 = DotProduct (traceinfo->start, plane->normal) - dist;
d2 = DotProduct (traceinfo->end, plane->normal) - dist;
if (d1 >= 0)
startout = true;
if (d2 > 0)
endout = true;
//if we're fully outside any plane, then we cannot possibly enter the brush, skip to the next one
if (d1 > 0 && d2 >= 0)
goto nextbrush;
//if we're fully inside the plane, then whatever is happening is not relevent for this plane
if (d1 < 0 && d2 <= 0)
continue;
f = d1 / (d1-d2);
if (d1 > d2)
{
//entered the brush. favour the furthest fraction to avoid extended edges (yay for convex shapes)
if (enterfrac < f)
{
enterfrac = f;
enterplane = plane;
enterdist = dist;
}
}
else
{
//left the brush, favour the nearest plane (smallest frac)
if (exitfrac > f)
{
exitfrac = f;
}
}
}
if (!startout)
{
traceinfo->trace.startsolid = true;
if (!endout)
traceinfo->trace.allsolid = true;
traceinfo->trace.contents |= brush->contents;
return;
}
if (enterfrac != -1 && enterfrac < exitfrac)
{
//impact!
if (enterfrac < traceinfo->trace.fraction)
{
traceinfo->trace.fraction = enterfrac;
traceinfo->trace.plane.dist = enterdist;
VectorCopy(enterplane->normal, traceinfo->trace.plane.normal);
traceinfo->trace.contents = brush->contents;
}
}
nextbrush:
;
}
}
static void Q1BSP_InsertBrush(mnode_t *node, mbrush_t *brush, vec3_t bmins, vec3_t bmaxs)
{
vec3_t nearp, farp;
float nd, fd;
int i;
while(1)
{
if (node->contents < 0) /*leaf, so no smaller node to put it in (I'd be surprised if it got this far)*/
{
brush->next = node->brushes;
node->brushes = brush;
return;
}
for (i = 0; i < 3; i++)
{
if (node->plane->normal[i] > 0)
{
nearp[i] = bmins[i];
farp[i] = bmaxs[i];
}
else
{
nearp[i] = bmaxs[i];
farp[i] = bmins[i];
}
}
nd = DotProduct(node->plane->normal, nearp) - node->plane->dist;
fd = DotProduct(node->plane->normal, farp) - node->plane->dist;
/*if its fully on either side, continue walking*/
if (nd < 0 && fd < 0)
node = node->children[1];
else if (nd > 0 && fd > 0)
node = node->children[0];
else
{
/*plane crosses bbox, so insert here*/
brush->next = node->brushes;
node->brushes = brush;
return;
}
}
}
static void Q1BSP_RecursiveBrushCheck (struct traceinfo_s *traceinfo, mnode_t *node, float p1f, float p2f, const vec3_t p1, const vec3_t p2)
{
mplane_t *plane;
float t1, t2;
float frac;
int i;
vec3_t mid;
int side;
float midf;
float offset;
if (node->brushes)
{
Q1BSP_ClipToBrushes(traceinfo, node->brushes);
}
if (traceinfo->trace.fraction < p1f)
{
//already hit something closer than this node
return;
}
if (node->contents < 0)
{
//we're in a leaf
return;
}
//
// find the point distances
//
plane = node->plane;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
if (plane->normal[plane->type] < 0)
offset = -traceinfo->mins[plane->type];
else
offset = traceinfo->maxs[plane->type];
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
offset = 0;
for (i = 0; i < 3; i++)
{
if (plane->normal[i] < 0)
offset += plane->normal[i] * -traceinfo->mins[i];
else
offset += plane->normal[i] * traceinfo->maxs[i];
}
}
/*if we're fully on one side of the trace, go only down that side*/
if (t1 >= offset && t2 >= offset)
{
Q1BSP_RecursiveBrushCheck (traceinfo, node->children[0], p1f, p2f, p1, p2);
return;
}
if (t1 < -offset && t2 < -offset)
{
Q1BSP_RecursiveBrushCheck (traceinfo, node->children[1], p1f, p2f, p1, p2);
return;
}
// put the crosspoint DIST_EPSILON pixels on the near side
if (t1 == t2)
{
side = 0;
frac = 0;
}
else if (t1 < 0)
{
frac = (t1 + DIST_EPSILON)/(t1-t2);
side = 1;
}
else
{
frac = (t1 - DIST_EPSILON)/(t1-t2);
side = 0;
}
if (frac < 0)
frac = 0;
if (frac > 1)
frac = 1;
midf = p1f + (p2f - p1f)*frac;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac*(p2[i] - p1[i]);
// move up to the node
Q1BSP_RecursiveBrushCheck (traceinfo, node->children[side], p1f, midf, p1, mid);
// go past the node
Q1BSP_RecursiveBrushCheck (traceinfo, node->children[side^1], midf, p2f, mid, p2);
}
#endif //Q1BSPS
static unsigned int Q1BSP_TranslateContents(int contents)
{
switch(contents)
{
case Q1CONTENTS_EMPTY:
return FTECONTENTS_EMPTY;
case Q1CONTENTS_SOLID:
return FTECONTENTS_SOLID;
case Q1CONTENTS_WATER:
return FTECONTENTS_WATER;
case Q1CONTENTS_SLIME:
return FTECONTENTS_SLIME;
case Q1CONTENTS_LAVA:
return FTECONTENTS_LAVA;
case Q1CONTENTS_SKY:
return FTECONTENTS_SKY|FTECONTENTS_PLAYERCLIP|FTECONTENTS_MONSTERCLIP;
case Q1CONTENTS_LADDER:
return FTECONTENTS_LADDER;
case Q1CONTENTS_CLIP:
return FTECONTENTS_PLAYERCLIP|FTECONTENTS_MONSTERCLIP;
case Q1CONTENTS_TRANS:
return FTECONTENTS_SOLID;
//q2 is better than nothing, right?
case Q1CONTENTS_FLOW_1:
return Q2CONTENTS_CURRENT_0;
case Q1CONTENTS_FLOW_2:
return Q2CONTENTS_CURRENT_90;
case Q1CONTENTS_FLOW_3:
return Q2CONTENTS_CURRENT_180;
case Q1CONTENTS_FLOW_4:
return Q2CONTENTS_CURRENT_270;
case Q1CONTENTS_FLOW_5:
return Q2CONTENTS_CURRENT_UP;
case Q1CONTENTS_FLOW_6:
return Q2CONTENTS_CURRENT_DOWN;
default:
Con_Printf("Q1BSP_TranslateContents: Unknown contents type - %i", contents);
return FTECONTENTS_SOLID;
}
}
int Q1BSP_HullPointContents(hull_t *hull, const vec3_t p)
{
return Q1BSP_TranslateContents(Q1_HullPointContents(hull, hull->firstclipnode, p));
}
#ifdef Q1BSPS
unsigned int Q1BSP_PointContents(model_t *model, const vec3_t axis[3], const vec3_t point)
{
int contents;
if (axis)
{
vec3_t transformed;
transformed[0] = DotProduct(point, axis[0]);
transformed[1] = DotProduct(point, axis[1]);
transformed[2] = DotProduct(point, axis[2]);
return Q1BSP_PointContents(model, NULL, transformed);
}
else
{
if (!model->firstmodelsurface)
{
contents = Q1BSP_TranslateContents(Q1_ModelPointContents(model->nodes, point));
}
else
contents = Q1BSP_HullPointContents(&model->hulls[0], point);
}
#ifdef TERRAIN
if (model->terrain)
contents |= Heightmap_PointContents(model, NULL, point);
#endif
return contents;
}
void Q1BSP_LoadBrushes(model_t *model, bspx_header_t *bspx, void *mod_base)
{
struct {
unsigned int ver;
unsigned int modelnum;
unsigned int numbrushes;
unsigned int numplanes;
} *permodel;
struct {
float mins[3];
float maxs[3];
signed short contents;
unsigned short numplanes;
} *perbrush;
/*
Note to implementors:
a pointy brush with angles pointier than 90 degrees will extend further than any adjacent brush, thus creating invisible walls with larger expansions.
the engine inserts 6 axial planes acording to the bbox, thus the qbsp need not write any axial planes
note that doing it this way probably isn't good if you want to query textures...
*/
struct {
vec3_t normal;
float dist;
} *perplane;
static vec3_t axis[3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
int br, pl, remainingplanes;
mbrush_t *brush;
mnode_t *rootnode;
unsigned int lumpsizeremaining;
model->engineflags &= ~MDLF_HASBRUSHES;
permodel = BSPX_FindLump(bspx, mod_base, "BRUSHLIST", &lumpsizeremaining);
if (!permodel)
return;
while (lumpsizeremaining)
{
if (lumpsizeremaining < sizeof(*permodel))
return;
permodel->ver = LittleLong(permodel->ver);
permodel->modelnum = LittleLong(permodel->modelnum);
permodel->numbrushes = LittleLong(permodel->numbrushes);
permodel->numplanes = LittleLong(permodel->numplanes);
if (permodel->ver != 1 || lumpsizeremaining < sizeof(*permodel) + permodel->numbrushes*sizeof(*perbrush) + permodel->numplanes*sizeof(*perplane))
return;
//find the correct rootnode for the submodel (submodels are not set up yet).
rootnode = model->nodes;
if (permodel->modelnum > model->numsubmodels)
return;
rootnode += model->submodels[permodel->modelnum].headnode[0];
brush = ZG_Malloc(&model->memgroup, (sizeof(*brush) - sizeof(brush->planes[0]))*permodel->numbrushes + sizeof(brush->planes[0])*(permodel->numbrushes*6+permodel->numplanes));
remainingplanes = permodel->numplanes;
perbrush = (void*)(permodel+1);
for (br = 0; br < permodel->numbrushes; br++)
{
/*byteswap it all in place*/
perbrush->mins[0] = LittleFloat(perbrush->mins[0]);
perbrush->mins[1] = LittleFloat(perbrush->mins[1]);
perbrush->mins[2] = LittleFloat(perbrush->mins[2]);
perbrush->maxs[0] = LittleFloat(perbrush->maxs[0]);
perbrush->maxs[1] = LittleFloat(perbrush->maxs[1]);
perbrush->maxs[2] = LittleFloat(perbrush->maxs[2]);
perbrush->contents = LittleShort(perbrush->contents);
perbrush->numplanes = LittleShort(perbrush->numplanes);
/*make sure planes don't overflow*/
if (perbrush->numplanes > remainingplanes)
return;
remainingplanes-=perbrush->numplanes;
/*set up the mbrush from the file*/
brush->contents = Q1BSP_TranslateContents(perbrush->contents);
brush->numplanes = perbrush->numplanes;
for (pl = 0, perplane = (void*)(perbrush+1); pl < perbrush->numplanes; pl++, perplane++)
{
brush->planes[pl].normal[0] = LittleFloat(perplane->normal[0]);
brush->planes[pl].normal[1] = LittleFloat(perplane->normal[1]);
brush->planes[pl].normal[2] = LittleFloat(perplane->normal[2]);
brush->planes[pl].dist = LittleFloat(perplane->dist);
}
/*and add axial planes acording to the brush's bbox*/
for (pl = 0; pl < 3; pl++)
{
VectorCopy(axis[pl], brush->planes[brush->numplanes].normal);
brush->planes[brush->numplanes].dist = perbrush->maxs[pl];
brush->numplanes++;
}
for (pl = 0; pl < 3; pl++)
{
VectorNegate(axis[pl], brush->planes[brush->numplanes].normal);
brush->planes[brush->numplanes].dist = -perbrush->mins[pl];
brush->numplanes++;
}
/*link it in to the bsp tree*/
Q1BSP_InsertBrush(rootnode, brush, perbrush->mins, perbrush->maxs);
/*set up for the next brush*/
brush = (void*)&brush->planes[brush->numplanes];
perbrush = (void*)perplane;
}
/*move on to the next model*/
lumpsizeremaining -= sizeof(*permodel) + permodel->numbrushes*sizeof(*perbrush) + permodel->numplanes*sizeof(*perplane);
permodel = (void*)((char*)permodel + sizeof(*permodel) + permodel->numbrushes*sizeof(*perbrush) + permodel->numplanes*sizeof(*perplane));
}
/*parsing was successful! flag it as okay*/
model->engineflags |= MDLF_HASBRUSHES;
}
hull_t *Q1BSP_ChooseHull(model_t *model, int forcehullnum, const vec3_t mins, const vec3_t maxs, vec3_t offset)
{
hull_t *hull;
vec3_t size;
VectorSubtract (maxs, mins, size);
if (forcehullnum >= 1 && forcehullnum <= MAX_MAP_HULLSM && model->hulls[forcehullnum-1].available)
hull = &model->hulls[forcehullnum-1];
else
{
#ifdef HEXEN2
if (model->hulls[5].available)
{ //choose based on hexen2 sizes.
if (size[0] < 3) // Point
hull = &model->hulls[0];
else if (size[0] <= 8.1 && model->hulls[4].available)
hull = &model->hulls[4]; //Pentacles
else if (size[0] <= 32.1 && size[2] <= 28.1) // Half Player
hull = &model->hulls[3];
else if (size[0] <= 32.1) // Full Player
hull = &model->hulls[1];
else // Golumn
hull = &model->hulls[5];
}
else
#endif
{
if (size[0] < 3 || !model->hulls[1].available)
hull = &model->hulls[0];
else if (size[0] <= 32.1 || !model->hulls[2].available)
{
if (size[2] < 54.1 && model->hulls[3].available)
hull = &model->hulls[3]; // 32x32x36 (half-life's crouch)
else if (model->hulls[1].available)
hull = &model->hulls[1];
else
hull = &model->hulls[0];
}
else
hull = &model->hulls[2];
}
}
VectorSubtract (hull->clip_mins, mins, offset);
return hull;
}
qboolean Q1BSP_Trace(model_t *model, int forcehullnum, const framestate_t *framestate, const vec3_t axis[3], const vec3_t start, const vec3_t end, const vec3_t mins, const vec3_t maxs, qboolean capsule, unsigned int hitcontentsmask, trace_t *trace)
{
hull_t *hull;
vec3_t start_l, end_l;
vec3_t offset;
if ((model->engineflags & MDLF_HASBRUSHES))// && (size[0] || size[1] || size[2]))
{
struct traceinfo_s traceinfo;
memset (&traceinfo.trace, 0, sizeof(trace_t));
traceinfo.trace.fraction = 1;
traceinfo.trace.allsolid = false;
VectorCopy(mins, traceinfo.mins);
VectorCopy(maxs, traceinfo.maxs);
if (axis)
{
traceinfo.start[0] = DotProduct(start, axis[0]);
traceinfo.start[1] = DotProduct(start, axis[1]);
traceinfo.start[2] = DotProduct(start, axis[2]);
traceinfo.end[0] = DotProduct(end, axis[0]);
traceinfo.end[1] = DotProduct(end, axis[1]);
traceinfo.end[2] = DotProduct(end, axis[2]);
}
else
{
VectorCopy(start, traceinfo.start);
VectorCopy(end, traceinfo.end);
}
traceinfo.capsule = capsule;
if (traceinfo.capsule)
{
float ext;
traceinfo.capsulesize[0] = ((maxs[0]-mins[0]) + (maxs[1]-mins[1]))/4.0;
traceinfo.capsulesize[1] = maxs[2];
traceinfo.capsulesize[2] = mins[2];
ext = (traceinfo.capsulesize[1] > -traceinfo.capsulesize[2])?traceinfo.capsulesize[1]:-traceinfo.capsulesize[2];
traceinfo.capsulesize[1] -= traceinfo.capsulesize[0];
traceinfo.capsulesize[2] += traceinfo.capsulesize[0];
traceinfo.extents[0] = ext+1;
traceinfo.extents[1] = ext+1;
traceinfo.extents[2] = ext+1;
VectorSet(traceinfo.up, 0, 0, 1);
}
/* traceinfo.sphere = true;
traceinfo.radius = 48;
traceinfo.mins[0] = -traceinfo.radius;
traceinfo.mins[1] = -traceinfo.radius;
traceinfo.mins[2] = -traceinfo.radius;
traceinfo.maxs[0] = traceinfo.radius;
traceinfo.maxs[1] = traceinfo.radius;
traceinfo.maxs[2] = traceinfo.radius;
*/
traceinfo.solidcontents = hitcontentsmask;
Q1BSP_RecursiveBrushCheck(&traceinfo, model->rootnode, 0, 1, traceinfo.start, traceinfo.end);
memcpy(trace, &traceinfo.trace, sizeof(trace_t));
if (trace->fraction < 1)
{
float d1 = DotProduct(start, trace->plane.normal) - trace->plane.dist;
float d2 = DotProduct(end, trace->plane.normal) - trace->plane.dist;
float f = (d1 - DIST_EPSILON) / (d1 - d2);
if (f < 0)
f = 0;
trace->fraction = f;
if (axis)
{
vec3_t iaxis[3];
vec3_t norm;
Matrix3x3_RM_Invert_Simple((const void *)axis, iaxis);
VectorCopy(trace->plane.normal, norm);
trace->plane.normal[0] = DotProduct(norm, iaxis[0]);
trace->plane.normal[1] = DotProduct(norm, iaxis[1]);
trace->plane.normal[2] = DotProduct(norm, iaxis[2]);
}
}
VectorInterpolate(start, trace->fraction, end, trace->endpos);
return trace->fraction != 1;
}
memset (trace, 0, sizeof(trace_t));
trace->fraction = 1;
trace->allsolid = true;
hull = Q1BSP_ChooseHull(model, forcehullnum, mins, maxs, offset);
//fix for hexen2 monsters half-walking into walls.
// if (forent.flags & FL_MONSTER)
// {
// offset[0] = 0;
// offset[1] = 0;
// }
if (axis)
{
vec3_t tmp;
VectorSubtract(start, offset, tmp);
start_l[0] = DotProduct(tmp, axis[0]);
start_l[1] = DotProduct(tmp, axis[1]);
start_l[2] = DotProduct(tmp, axis[2]);
VectorSubtract(end, offset, tmp);
end_l[0] = DotProduct(tmp, axis[0]);
end_l[1] = DotProduct(tmp, axis[1]);
end_l[2] = DotProduct(tmp, axis[2]);
Q1BSP_RecursiveHullCheck(hull, hull->firstclipnode, start_l, end_l, hitcontentsmask, trace);
if (trace->fraction == 1)
{
VectorCopy (end, trace->endpos);
}
else
{
vec3_t iaxis[3];
vec3_t norm;
Matrix3x3_RM_Invert_Simple((void *)axis, iaxis);
VectorCopy(trace->plane.normal, norm);
trace->plane.normal[0] = DotProduct(norm, iaxis[0]);
trace->plane.normal[1] = DotProduct(norm, iaxis[1]);
trace->plane.normal[2] = DotProduct(norm, iaxis[2]);
/*just interpolate it, its easier than inverse matrix rotations*/
VectorInterpolate(start, trace->fraction, end, trace->endpos);
}
}
else
{
VectorSubtract(start, offset, start_l);
VectorSubtract(end, offset, end_l);
Q1BSP_RecursiveHullCheck(hull, hull->firstclipnode, start_l, end_l, hitcontentsmask, trace);
if (trace->fraction == 1)
{
VectorCopy (end, trace->endpos);
}
else
{
VectorAdd (trace->endpos, offset, trace->endpos);
}
}
#ifdef TERRAIN
if (model->terrain && trace->fraction)
{
trace_t hmt;
Heightmap_Trace(model, forcehullnum, framestate, axis, start, end, mins, maxs, capsule, hitcontentsmask, &hmt);
if (hmt.fraction < trace->fraction)
*trace = hmt;
}
#endif
return trace->fraction != 1;
}
/*
Physics functions (common)
============================================================================
Rendering functions (Client only)
*/
#ifndef SERVERONLY
extern int r_dlightframecount;
//goes through the nodes marking the surfaces near the dynamic light as lit.
void Q1BSP_MarkLights (dlight_t *light, dlightbitmask_t bit, mnode_t *node)
{
mplane_t *splitplane;
float dist;
msurface_t *surf;
int i;
float l, maxdist;
int j, s, t;
vec3_t impact;
if (node->contents < 0)
return;
splitplane = node->plane;
if (splitplane->type < 3)
dist = light->origin[splitplane->type] - splitplane->dist;
else
dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist;
if (dist > light->radius)
{
Q1BSP_MarkLights (light, bit, node->children[0]);
return;
}
if (dist < -light->radius)
{
Q1BSP_MarkLights (light, bit, node->children[1]);
return;
}
maxdist = light->radius*light->radius;
// mark the polygons
surf = currentmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
//Yeah, you can blame LordHavoc for this alternate code here.
for (j=0 ; j<3 ; j++)
impact[j] = light->origin[j] - surf->plane->normal[j]*dist;
// clamp center of light to corner and check brightness
l = DotProduct (impact, surf->texinfo->vecs[0]) + surf->texinfo->vecs[0][3] - surf->texturemins[0];
s = l+0.5;if (s < 0) s = 0;else if (s > surf->extents[0]) s = surf->extents[0];
s = (l - s)*surf->texinfo->vecscale[0];
l = DotProduct (impact, surf->texinfo->vecs[1]) + surf->texinfo->vecs[1][3] - surf->texturemins[1];
t = l+0.5;if (t < 0) t = 0;else if (t > surf->extents[1]) t = surf->extents[1];
t = (l - t)*surf->texinfo->vecscale[1];
// compare to minimum light
if ((s*s+t*t+dist*dist) < maxdist)
{
if (surf->dlightframe != r_dlightframecount)
{
surf->dlightbits = bit;
surf->dlightframe = r_dlightframecount;
}
else
surf->dlightbits |= bit;
}
}
Q1BSP_MarkLights (light, bit, node->children[0]);
Q1BSP_MarkLights (light, bit, node->children[1]);
}
#endif
/*
Rendering functions (Client only)
==============================================================================
Server only functions
*/
#ifndef CLIENTONLY
static qbyte *Q1BSP_ClusterPVS (model_t *model, int cluster, pvsbuffer_t *buffer, pvsmerge_t merge);
//does the recursive work of Q1BSP_FatPVS
static void SV_Q1BSP_AddToFatPVS (model_t *mod, const vec3_t org, mnode_t *node, pvsbuffer_t *pvsbuffer)
{
mplane_t *plane;
float d;
while (1)
{
// if this is a leaf, accumulate the pvs bits
if (node->contents < 0)
{
if (node->contents != Q1CONTENTS_SOLID)
{
Q1BSP_ClusterPVS(mod, ((mleaf_t *)node - mod->leafs)-1, pvsbuffer, PVM_MERGE);
}
return;
}
plane = node->plane;
d = DotProduct (org, plane->normal) - plane->dist;
if (d > 8)
node = node->children[0];
else if (d < -8)
node = node->children[1];
else
{ // go down both
SV_Q1BSP_AddToFatPVS (mod, org, node->children[0], pvsbuffer);
node = node->children[1];
}
}
}
/*
=============
Q1BSP_FatPVS
Calculates a PVS that is the inclusive or of all leafs within 8 pixels of the
given point.
=============
*/
static unsigned int Q1BSP_FatPVS (model_t *mod, const vec3_t org, pvsbuffer_t *pvsbuffer, qboolean add)
{
if (pvsbuffer->buffersize < mod->pvsbytes)
pvsbuffer->buffer = BZ_Realloc(pvsbuffer->buffer, pvsbuffer->buffersize=mod->pvsbytes);
if (!add)
Q_memset (pvsbuffer->buffer, 0, mod->pvsbytes);
SV_Q1BSP_AddToFatPVS (mod, org, mod->nodes, pvsbuffer);
return mod->pvsbytes;
}
#endif
static qboolean Q1BSP_EdictInFatPVS(model_t *mod, const struct pvscache_s *ent, const qbyte *pvs, const int *areas)
{
int i;
//if (areas)areas[0] is the area count... but q1bsp has no areas so we ignore it entirely.
if (ent->num_leafs < 0)
return true; //it's in too many leafs for us to cope with. Just trivially accept it.
for (i=0 ; i < ent->num_leafs ; i++)
if (pvs[ent->leafnums[i] >> 3] & (1 << (ent->leafnums[i]&7) ))
return true; //we might be able to see this one.
return false; //none of this ents leafs were visible, so neither is the ent.
}
/*
===============
SV_FindTouchedLeafs
Links the edict to the right leafs so we can get it's potential visability.
===============
*/
static void Q1BSP_RFindTouchedLeafs (model_t *wm, struct pvscache_s *ent, mnode_t *node, const float *mins, const float *maxs)
{
mplane_t *splitplane;
mleaf_t *leaf;
int sides;
int leafnum;
// add an efrag if the node is a leaf
if (node->contents < 0)
{
//ignore solid leafs. this should include leaf 0 (which has no pvs info)
if (node->contents == Q1CONTENTS_SOLID)
return;
if ((unsigned)ent->num_leafs >= MAX_ENT_LEAFS)
{
ent->num_leafs = -1; //too many. mark it as such so we can trivially accept huge mega-big brush models.
return;
}
leaf = (mleaf_t *)node;
leafnum = leaf - wm->leafs - 1;
ent->leafnums[ent->num_leafs] = leafnum;
ent->num_leafs++;
return;
}
// NODE_MIXED
splitplane = node->plane;
sides = BOX_ON_PLANE_SIDE(mins, maxs, splitplane);
// recurse down the contacted sides
if (sides & 1)
Q1BSP_RFindTouchedLeafs (wm, ent, node->children[0], mins, maxs);
if (sides & 2)
Q1BSP_RFindTouchedLeafs (wm, ent, node->children[1], mins, maxs);
}
static void Q1BSP_FindTouchedLeafs(model_t *mod, struct pvscache_s *ent, const float *mins, const float *maxs)
{
ent->num_leafs = 0;
if (mins && maxs)
Q1BSP_RFindTouchedLeafs (mod, ent, mod->nodes, mins, maxs);
}
/*
Server only functions
==============================================================================
PVS type stuff
*/
/*
===================
Mod_DecompressVis
===================
*/
static qbyte *Q1BSP_DecompressVis (qbyte *in, model_t *model, qbyte *decompressed, unsigned int buffersize, qboolean merge)
{
int c;
qbyte *out;
int row;
row = (model->numclusters+7)>>3;
out = decompressed;
if (buffersize < row)
row = buffersize;
if (!in)
{ // no vis info, so make all visible
while (row)
{
*out++ = 0xff;
row--;
}
return decompressed;
}
if (merge)
{
do
{
if (*in)
{
*out++ |= *in++;
continue;
}
out += in[1];
in += 2;
} while (out - decompressed < row);
}
else
{
do
{
if (*in)
{
*out++ = *in++;
continue;
}
c = in[1];
in += 2;
if ((out - decompressed) + c > row)
{
c = row - (out - decompressed);
Con_DPrintf ("warning: Vis decompression overrun\n");
}
while (c)
{
*out++ = 0;
c--;
}
} while (out - decompressed < row);
}
return decompressed;
}
static pvsbuffer_t mod_novis;
static pvsbuffer_t mod_tempvis;
void Q1BSP_Shutdown(void)
{
Z_Free(mod_novis.buffer);
memset(&mod_novis, 0, sizeof(mod_novis));
Z_Free(mod_tempvis.buffer);
memset(&mod_tempvis, 0, sizeof(mod_tempvis));
}
//pvs is 1-based. clusters are 0-based. otherwise, q1bsp has a 1:1 mapping.
static qbyte *Q1BSP_ClusterPVS (model_t *model, int cluster, pvsbuffer_t *buffer, pvsmerge_t merge)
{
if (cluster == -1)
{
if (merge == PVM_FAST)
{
if (mod_novis.buffersize < model->pvsbytes)
{
mod_novis.buffer = BZ_Realloc(mod_novis.buffer, mod_novis.buffersize=model->pvsbytes);
memset(mod_novis.buffer, 0xff, mod_novis.buffersize);
}
return mod_novis.buffer;
}
if (buffer->buffersize < model->pvsbytes)
buffer->buffer = BZ_Realloc(buffer->buffer, buffer->buffersize=model->pvsbytes);
memset(buffer->buffer, 0xff, model->pvsbytes);
return buffer->buffer;
}
if (merge == PVM_FAST && model->pvs)
return model->pvs + cluster * model->pvsbytes;
cluster++;
if (!buffer)
buffer = &mod_tempvis;
if (buffer->buffersize < model->pvsbytes)
buffer->buffer = BZ_Realloc(buffer->buffer, buffer->buffersize=model->pvsbytes);
return Q1BSP_DecompressVis (model->leafs[cluster].compressed_vis, model, buffer->buffer, buffer->buffersize, merge==PVM_MERGE);
}
/*static qbyte *Q1BSP_ClusterPHS (model_t *model, int cluster, pvsbuffer_t *buffer, pvsmerge_t merge)
{
if (cluster == -1 || !model->phs)
{
if (merge == PVM_FAST)
{
if (mod_novis.buffersize < model->pvsbytes)
{
mod_novis.buffer = BZ_Realloc(mod_novis.buffer, mod_novis.buffersize=model->pvsbytes);
memset(mod_novis.buffer, 0xff, mod_novis.buffersize);
}
return mod_novis.buffer;
}
if (buffer->buffersize < model->pvsbytes)
buffer->buffer = BZ_Realloc(buffer->buffer, buffer->buffersize=model->pvsbytes);
memset(buffer->buffer, 0xff, model->pvsbytes);
return buffer->buffer;
}
if (merge == PVM_FAST)
return model->pvs + cluster * model->pvsbytes;
if (!buffer)
buffer = &mod_tempvis;
if (buffer->buffersize < model->pvsbytes)
buffer->buffer = BZ_Realloc(buffer->buffer, buffer->buffersize=model->pvsbytes);
memcpy(buffer->buffer, model->pvs + cluster * model->pvsbytes, model->pvsbytes);
return buffer->buffer;
}*/
//returns the leaf number, which is used as a bit index into the pvs.
static int Q1BSP_LeafnumForPoint (model_t *model, vec3_t p)
{
mnode_t *node;
float d;
mplane_t *plane;
if (!model)
{
Sys_Error ("Mod_PointInLeaf: bad model");
}
if (!model->nodes)
return 0;
node = model->nodes;
while (1)
{
if (node->contents < 0)
return (mleaf_t *)node - model->leafs;
plane = node->plane;
d = DotProduct (p,plane->normal) - plane->dist;
if (d > 0)
node = node->children[0];
else
node = node->children[1];
}
return 0; // never reached
}
mleaf_t *Q1BSP_LeafForPoint (model_t *model, vec3_t p)
{
return model->leafs + Q1BSP_LeafnumForPoint(model, p);
}
static void Q1BSP_ClustersInSphere_Union(mleaf_t *firstleaf, const vec3_t center, float radius, mnode_t *node, qbyte *out, qbyte *unionwith)
{ //this is really for rtlights.
float t1, t2;
mplane_t *plane;
while (1)
{
if (node->contents < 0)
{ //leaf! mark/merge it.
size_t c = (mleaf_t *)node - firstleaf;
if (c == -1)
return;
if (unionwith)
out[c>>3] |= (1<<(c&7)) & unionwith[c>>3];
else
out[c>>3] |= (1<<(c&7));
return;
}
plane = node->plane;
if (plane->type < 3)
t1 = center[plane->type] - plane->dist;
else
t1 = DotProduct (plane->normal, center) - plane->dist;
t2 = t1 - radius;
t1 = t1 + radius;
//if the sphere is fully to one side, only walk that side.
if (t1 > 0 && t2 > 0)
{
node = node->children[0];
continue;
}
if (t1 < 0 && t2 < 0)
{
node = node->children[1];
continue;
}
//both sides are within the sphere
Q1BSP_ClustersInSphere_Union(firstleaf, center, radius, node->children[0], out, unionwith);
node = node->children[1];
continue;
}
}
static qbyte *Q1BSP_ClustersInSphere(model_t *mod, const vec3_t center, float radius, pvsbuffer_t *fte_restrict pvsbuffer, const qbyte *unionwith)
{
if (!mod)
Sys_Error ("Mod_PointInLeaf: bad model");
if (!mod->nodes)
return NULL;
if (pvsbuffer->buffersize < mod->pvsbytes)
pvsbuffer->buffer = BZ_Realloc(pvsbuffer->buffer, pvsbuffer->buffersize=mod->pvsbytes);
Q_memset (pvsbuffer->buffer, 0, mod->pvsbytes);
Q1BSP_ClustersInSphere_Union(mod->leafs+1, center, radius, mod->nodes, pvsbuffer->buffer, NULL);//unionwith);
return pvsbuffer->buffer;
}
//returns the leaf number, which is used as a direct bit index into the pvs.
//-1 for invalid
static int Q1BSP_ClusterForPoint (model_t *model, const vec3_t p, int *area)
{
mnode_t *node;
float d;
mplane_t *plane;
if (!model)
{
Sys_Error ("Mod_PointInLeaf: bad model");
}
if (area)
*area = 0; //no areas with q1bsp.
if (!model->nodes)
return -1;
node = model->nodes;
while (1)
{
if (node->contents < 0)
return ((mleaf_t *)node - model->leafs) - 1;
plane = node->plane;
d = DotProduct (p,plane->normal) - plane->dist;
if (d > 0)
node = node->children[0];
else
node = node->children[1];
}
return -1; // never reached
}
/*
PVS type stuff
==============================================================================
Init stuff
*/
void Q1BSP_Init(void)
{
}
//sets up the functions a server needs.
//fills in bspfuncs_t
void Q1BSP_SetModelFuncs(model_t *mod)
{
#ifndef CLIENTONLY
mod->funcs.FatPVS = Q1BSP_FatPVS;
#endif
mod->funcs.EdictInFatPVS = Q1BSP_EdictInFatPVS;
mod->funcs.FindTouchedLeafs = Q1BSP_FindTouchedLeafs;
mod->funcs.LightPointValues = NULL;
mod->funcs.StainNode = NULL;
mod->funcs.MarkLights = NULL;
mod->funcs.ClustersInSphere = Q1BSP_ClustersInSphere;
mod->funcs.ClusterForPoint = Q1BSP_ClusterForPoint;
mod->funcs.ClusterPVS = Q1BSP_ClusterPVS;
// mod->funcs.ClusterPHS = Q1BSP_ClusterPHS;
mod->funcs.NativeTrace = Q1BSP_Trace;
mod->funcs.PointContents = Q1BSP_PointContents;
}
#endif
/*
Init stuff
==============================================================================
BSPX Stuff
*/
typedef struct {
char lumpname[24]; // up to 23 chars, zero-padded
int fileofs; // from file start
int filelen;
} bspx_lump_t;
struct bspx_header_s {
char id[4]; // 'BSPX'
int numlumps;
bspx_lump_t lumps[1];
};
//supported lumps:
//RGBLIGHTING (.lit)
//LIGHTING_E5BGR9 (hdr lit)
//LIGHTINGDIR (.lux)
//LMSHIFT (lightmap scaling)
//LMOFFSET (lightmap scaling)
//LMSTYLE (lightmap scaling)
//VERTEXNORMALS (smooth specular)
//BRUSHLIST (no hull size issues)
//ENVMAP (cubemaps)
//SURFENVMAP (cubemaps)
void *BSPX_FindLump(bspx_header_t *bspxheader, void *mod_base, char *lumpname, int *lumpsize)
{
int i;
*lumpsize = 0;
if (!bspxheader)
return NULL;
for (i = 0; i < bspxheader->numlumps; i++)
{
if (!strncmp(bspxheader->lumps[i].lumpname, lumpname, 24))
{
*lumpsize = bspxheader->lumps[i].filelen;
return (char*)mod_base + bspxheader->lumps[i].fileofs;
}
}
return NULL;
}
bspx_header_t *BSPX_Setup(model_t *mod, char *filebase, unsigned int filelen, lump_t *lumps, int numlumps)
{
int i;
int offs = 0;
bspx_header_t *h;
for (i = 0; i < numlumps; i++, lumps++)
{
if (offs < lumps->fileofs + lumps->filelen)
offs = lumps->fileofs + lumps->filelen;
}
offs = (offs + 3) & ~3;
if (offs + sizeof(*h) > filelen)
return NULL; /*no space for it*/
h = (bspx_header_t*)(filebase + offs);
i = LittleLong(h->numlumps);
/*verify the header*/
if (*(int*)h->id != (('B'<<0)|('S'<<8)|('P'<<16)|('X'<<24)) ||
i < 0 ||
offs + sizeof(*h) + sizeof(h->lumps[0])*(i-1) > filelen)
return NULL;
h->numlumps = i;
while(i-->0)
{
h->lumps[i].fileofs = LittleLong(h->lumps[i].fileofs);
h->lumps[i].filelen = LittleLong(h->lumps[i].filelen);
if (h->lumps[i].fileofs + h->lumps[i].filelen > filelen)
return NULL;
}
return h;
}
#ifdef SERVERONLY
void BSPX_LoadEnvmaps(model_t *mod, bspx_header_t *bspx, void *mod_base)
{
}
#else
/*
void *SCR_ScreenShot_Capture(int fbwidth, int fbheight, int *stride, enum uploadfmt *fmt);
void BSPX_RenderEnvmaps(model_t *mod)
{
int c, i;
void *buffer;
int stride, cubesize;
uploadfmt_t fmt;
char filename[MAX_QPATH];
char olddrawviewmodel[64]; //hack, so we can set r_drawviewmodel to 0 so that it doesn't appear in screenshots even if the csqc is generating new data.
vec3_t oldangles;
const struct
{
vec3_t angle;
const char *postfix;
qboolean verticalflip;
qboolean horizontalflip;
} sides[] =
{
{{0, 0, 90}, "_px", true},
{{0, 180, -90}, "_nx", true},
{{0, 90, 0}, "_py", true}, //upside down
{{0, 270, 0}, "_ny", false, true},
{{-90, 0, 90}, "_pz", true},
{{90, 0, 90}, "_nz", true},
};
char base[MAX_QPATH];
COM_FileBase(cl.worldmodel->name, base, sizeof(base));
r_refdef.stereomethod = STEREO_OFF;
Q_strncpyz(olddrawviewmodel, r_drawviewmodel.string, sizeof(olddrawviewmodel));
Cvar_Set(&r_drawviewmodel, "0");
VectorCopy(cl.playerview->viewangles, oldangles);
for (c = 0; c < mod->numenvmaps; c++)
{
cubesize = mod->envmaps[c].cubesize;
if (cubesize < 1)
cubesize = 32;
VectorCopy(mod->envmaps[c].origin, r_refdef.vieworg);
for (i = 0; i < 6; i++)
{
Q_snprintfz(filename, sizeof(filename), "%s/%i_%i_%i%s.tga", base, (int)mod->envmaps[c].origin[0], (int)mod->envmaps[c].origin[1], (int)mod->envmaps[c].origin[2], sides[i].postfix);
VectorCopy(sides[i].angle, cl.playerview->simangles);
VectorCopy(cl.playerview->simangles, cl.playerview->viewangles);
buffer = SCR_ScreenShot_Capture(cubesize, cubesize, &stride, &fmt);
if (buffer)
{
char sysname[1024];
if (sides[i].horizontalflip)
{
int y, x, p;
int pxsize;
char *bad = buffer;
char *in = buffer, *out;
switch(fmt)
{
case TF_RGBA32:
case TF_BGRA32:
case TF_RGBX32:
case TF_BGRX32:
pxsize = 4;
break;
case TF_RGB24:
case TF_BGR24:
pxsize = 3;
break;
case PTI_RGBA16F:
pxsize = 8;
break;
case PTI_RGBA32F:
pxsize = 16;
break;
default: //erk!
pxsize = 1;
break;
}
buffer = out = BZ_Malloc(cubesize*cubesize*pxsize);
for (y = 0; y < cubesize; y++, in += abs(stride), out += cubesize*pxsize)
{
for (x = 0; x < cubesize*pxsize; x+=pxsize)
{
for (p = 0; p < pxsize; p++)
out[x+p] = in[(cubesize-1)*pxsize-x+p];
}
}
BZ_Free(bad);
if (stride < 0)
stride = -cubesize*pxsize;
else
stride = cubesize*pxsize;
}
if (sides[i].verticalflip)
stride = -stride;
if (SCR_ScreenShot(filename, FS_GAMEONLY, &buffer, 1, stride, cubesize, cubesize, fmt))
{
FS_NativePath(filename, FS_GAMEONLY, sysname, sizeof(sysname));
Con_Printf ("Wrote %s\n", sysname);
}
else
{
FS_NativePath(filename, FS_GAMEONLY, sysname, sizeof(sysname));
Con_Printf ("Failed to write %s\n", sysname);
}
BZ_Free(buffer);
}
}
}
Cvar_Set(&r_drawviewmodel, olddrawviewmodel);
VectorCopy(oldangles, cl.playerview->viewangles);
}
*/
void BSPX_LoadEnvmaps(model_t *mod, bspx_header_t *bspx, void *mod_base)
{
unsigned int *envidx, idx;
int i;
char base[MAX_QPATH];
char imagename[MAX_QPATH];
menvmap_t *out;
int count;
denvmap_t *in = BSPX_FindLump(bspx, mod_base, "ENVMAP", &count);
mod->envmaps = NULL;
mod->numenvmaps = 0;
if (!mod_loadsurfenvmaps.ival)
return;
if (count%sizeof(*in))
return; //erk
count /= sizeof(*in);
if (!count)
return;
out = ZG_Malloc(&mod->memgroup, sizeof(*out)*count);
mod->envmaps = out;
mod->numenvmaps = count;
COM_FileBase(mod->name, base, sizeof(base));
for (i = 0; i < count; i++)
{
out[i].origin[0] = LittleFloat(in[i].origin[0]);
out[i].origin[1] = LittleFloat(in[i].origin[1]);
out[i].origin[2] = LittleFloat(in[i].origin[2]);
out[i].cubesize = LittleLong(in[i].cubesize);
Q_snprintfz(imagename, sizeof(imagename), "textures/env/%s_%i_%i_%i", base, (int)mod->envmaps[i].origin[0], (int)mod->envmaps[i].origin[1], (int)mod->envmaps[i].origin[2]);
out[i].image = Image_GetTexture(imagename, NULL, IF_TEXTYPE_CUBE|IF_NOREPLACE, NULL, NULL, out[i].cubesize, out[i].cubesize, PTI_INVALID);
}
//now update surface lists.
envidx = BSPX_FindLump(bspx, mod_base, "SURFENVMAP", &i);
if (i/sizeof(*envidx) == mod->numsurfaces)
{
for (i = 0; i < mod->numsurfaces; i++)
{
idx = LittleLong(envidx[i]);
if (idx < (unsigned int)count)
mod->surfaces[i].envmap = out[idx].image;
}
}
}
struct bspxrw
{
const char *fname;
char *origfile;
qofs_t origsize;
int lumpofs;
fromgame_t fg;
size_t corelumps;
size_t totallumps;
struct
{
char lumpname[24]; // up to 23 chars, zero-padded
void *data; // from file start
qofs_t filelen;
} *lumps;
};
void Mod_BSPXRW_Free(struct bspxrw *ctx)
{
FS_FreeFile(ctx->origfile);
Z_Free(ctx->lumps);
ctx->corelumps = ctx->totallumps = 0;
ctx->origfile = NULL;
}
void Mod_BSPXRW_Write(struct bspxrw *ctx)
{
#if 1
vfsfile_t *f = FS_OpenVFS(ctx->fname, "wb", FS_GAMEONLY);
if (f)
{
qofs_t bspxofs;
size_t i, j;
int pad, paddata = 0;
int nxlumps = ctx->totallumps-ctx->corelumps;
lump_t *lumps = alloca(sizeof(*lumps)*ctx->corelumps);
bspx_lump_t *xlumps = alloca(sizeof(*xlumps)*(ctx->totallumps-ctx->corelumps));
//bsp header info
VFS_WRITE(f, ctx->origfile, ctx->lumpofs);
VFS_WRITE(f, lumps, sizeof(lumps[0])*ctx->corelumps); //placeholder
//orig lumps
for (i = 0; i < ctx->corelumps; i++)
{
lumps[i].fileofs = VFS_TELL(f);
lumps[i].filelen = ctx->lumps[i].filelen;
VFS_WRITE(f, ctx->lumps[i].data, ctx->lumps[i].filelen);
//ALL lumps must be 4-aligned, so pad if needed.
pad = ((ctx->lumps[i].filelen+3)&~3)-ctx->lumps[i].filelen;
VFS_WRITE(f, &paddata, pad);
}
//bspx header
VFS_WRITE(f, "BSPX", 4);
VFS_WRITE(f, &nxlumps, sizeof(nxlumps));
bspxofs = VFS_TELL(f);
VFS_WRITE(f, xlumps, sizeof(xlumps[0])*(ctx->totallumps-ctx->corelumps)); //placeholder
//bspx data
for (i = 0; i < nxlumps; i++)
{
j = ctx->corelumps+i;
xlumps[i].fileofs = VFS_TELL(f);
xlumps[i].filelen = ctx->lumps[j].filelen;
memcpy(xlumps[i].lumpname, ctx->lumps[j].lumpname, sizeof(xlumps[i].lumpname));
VFS_WRITE(f, ctx->lumps[j].data, ctx->lumps[j].filelen);
//ALL lumps must be 4-aligned, so pad if needed.
pad = ((ctx->lumps[j].filelen+3)&~3)-ctx->lumps[j].filelen;
VFS_WRITE(f, &paddata, pad);
}
//now rewrite both sets of offsets.
VFS_SEEK(f, ctx->lumpofs);
VFS_WRITE(f, lumps, sizeof(lumps[0])*ctx->corelumps);
VFS_SEEK(f, bspxofs);
VFS_WRITE(f, xlumps, sizeof(xlumps[0])*(ctx->totallumps-ctx->corelumps));
VFS_CLOSE(f);
}
#endif
Mod_BSPXRW_Free(ctx);
}
void Mod_BSPXRW_SetLump(struct bspxrw *ctx, const char *lumpname, void *data, size_t datasize)
{
int i;
for (i = 0; i < ctx->totallumps; i++)
{
if (!strcmp(ctx->lumps[i].lumpname, lumpname))
{ //replace the existing lump
ctx->lumps[i].data = data;
ctx->lumps[i].filelen = datasize;
return;
}
}
Z_ReallocElements((void**)&ctx->lumps, &ctx->totallumps, ctx->totallumps+1, sizeof(*ctx->lumps));
Q_strncpyz(ctx->lumps[i].lumpname, lumpname, sizeof(ctx->lumps[i].lumpname));
ctx->lumps[i].data = data;
ctx->lumps[i].filelen = datasize;
}
qboolean Mod_BSPXRW_Read(struct bspxrw *ctx, const char *fname)
{
int i;
lump_t *l;
const char **corelumpnames = NULL;
bspx_header_t *bspxheader;
#ifdef Q3BSPS
static const char *q3corelumpnames[Q3LUMPS_TOTAL] = {"entities","shaders","planes","nodes","leafs","leafsurfs","leafbrushes","submodels","brushes","brushsides","verts","indexes","fogs","surfaces","lightmaps","lightgrid","visibility"
#ifdef RFBSPS
,"lightgrididx"
#endif
};
#endif
ctx->fname = fname;
ctx->origfile = FS_MallocFile(ctx->fname, FS_GAME, &ctx->origsize);
if (!ctx->origfile)
return false;
ctx->lumps = 0;
ctx->totallumps = 0;
i = LittleLong(*(int*)ctx->origfile);
switch(i)
{
case 29:
case 30:
ctx->fg = ((i==30)?fg_halflife:fg_quake);
ctx->lumpofs = 4;
ctx->corelumps = 0;
break;
case IDBSPHEADER:
i = LittleLong(*(int*)(ctx->origfile+4));
ctx->lumpofs = 8;
switch(i)
{
#ifdef Q2BSPS
case BSPVERSION_Q2:
// case BSPVERSION_Q2W:
ctx->fg = fg_quake2;
ctx->corelumps = Q2HEADER_LUMPS;
break;
#endif
#ifdef Q3BSPS
case BSPVERSION_Q3:
case BSPVERSION_RTCW:
ctx->fg = fg_quake3;
ctx->corelumps = 17;
corelumpnames = q3corelumpnames;
break;
#endif
default:
Mod_BSPXRW_Free(ctx);
return false;
}
break;
#ifdef RFBSPS
case ('R'<<0)+('B'<<8)+('S'<<16)+('P'<<24):
case ('F'<<0)+('B'<<8)+('S'<<16)+('P'<<24):
i = LittleLong(*(int*)(ctx->origfile+4));
ctx->lumpofs = 8;
switch(i)
{
case BSPVERSION_RBSP:
ctx->fg = fg_quake3;
ctx->corelumps = 18;
corelumpnames = q3corelumpnames;
break;
default:
Mod_BSPXRW_Free(ctx);
return false;
}
break;
#endif
default:
Mod_BSPXRW_Free(ctx);
return false;
}
l = (lump_t*)(ctx->origfile+ctx->lumpofs);
for (i = 0; i < ctx->corelumps; i++)
{
Z_ReallocElements((void**)&ctx->lumps, &ctx->totallumps, ctx->totallumps+1, sizeof(*ctx->lumps));
ctx->lumps[ctx->totallumps-1].data = ctx->origfile+l[i].fileofs;
ctx->lumps[ctx->totallumps-1].filelen = l[i].filelen;
if (corelumpnames)
Q_snprintfz(ctx->lumps[ctx->totallumps-1].lumpname, sizeof(ctx->lumps[0].lumpname), "%s", corelumpnames[i]);
else
Q_snprintfz(ctx->lumps[ctx->totallumps-1].lumpname, sizeof(ctx->lumps[0].lumpname), "lump%u", i);
}
bspxheader = BSPX_Setup(NULL, ctx->origfile, ctx->origsize, l, ctx->corelumps);
if (bspxheader)
{
for (i = 0; i < bspxheader->numlumps; i++)
{
Z_ReallocElements((void**)&ctx->lumps, &ctx->totallumps, ctx->totallumps+1, sizeof(*ctx->lumps));
ctx->lumps[ctx->totallumps-1].data = ctx->origfile+bspxheader->lumps[i].fileofs;
ctx->lumps[ctx->totallumps-1].filelen = bspxheader->lumps[i].filelen;
memcpy(ctx->lumps[ctx->totallumps-1].lumpname, bspxheader->lumps[i].lumpname, sizeof(ctx->lumps[0].lumpname));
}
}
return true;
}
unsigned int Mod_NearestCubeForSurf(msurface_t *surf, denvmap_t *envmap, size_t nenvmap)
{ //this is slow, yes.
size_t n, v;
unsigned int best = ~0;
float bestdist = FLT_MAX, dist;
vec3_t diff, mins, maxs, mid;
if (surf->mesh && surf->mesh->numvertexes)
{
VectorCopy(surf->mesh->xyz_array[0], mins);
VectorCopy(surf->mesh->xyz_array[0], maxs);
for (v = 1; v < surf->mesh->numvertexes; v++)
AddPointToBounds(surf->mesh->xyz_array[v], mins, maxs);
VectorAvg(mins, maxs, mid);
for (n = 0; n < nenvmap; n++)
{
VectorSubtract(envmap[n].origin, mid, diff);
#if 0
//axial distance
dist = fabs(diff[0]) + fabs(diff[1]) + fabs(diff[2]);
#else
//radial distance (squared)
dist = DotProduct(diff,diff);
#endif
if (bestdist > dist)
{
best = n;
bestdist = dist;
}
}
}
return best;
}
int QDECL envmapsort(const void *av, const void *bv)
{ //sorts cubemaps in order of size, to make texturearrays easier, if ever. The loader can then just make runs.
const denvmap_t *a=av, *b=bv;
if (a->cubesize == b->cubesize)
return 0;
if (a->cubesize > b->cubesize)
return 1;
return -1;
}
void Mod_FindCubemaps_f(void)
{
struct bspxrw bspctx;
if (Mod_BSPXRW_Read(&bspctx, cl.worldmodel->name))
{
const char *entlump = Mod_GetEntitiesString(cl.worldmodel), *lmp;
int nest;
char key[1024];
char value[1024];
qboolean isenvmap;
float size;
vec3_t origin;
denvmap_t *envmap = NULL; //*nenvmap
size_t nenvmap = 0;
unsigned int *envmapidx = NULL; //*numsurfaces
size_t nenvmapidx = 0, i;
//find targetnames, and store their origins so that we can deal with spotlights.
for (lmp = entlump; ;)
{
lmp = COM_Parse(lmp);
if (com_token[0] != '{')
break;
isenvmap = false;
size = 128;
VectorClear(origin);
nest = 1;
while (1)
{
lmp = COM_ParseOut(lmp, key, sizeof(key));
if (!lmp)
break; // error
if (key[0] == '{')
{
nest++;
continue;
}
if (key[0] == '}')
{
nest--;
if (!nest)
break; // end of entity
continue;
}
if (nest!=1)
continue;
if (key[0] == '_')
memmove(key, key+1, strlen(key));
while (key[strlen(key)-1] == ' ') // remove trailing spaces
key[strlen(key)-1] = 0;
lmp = COM_ParseOut(lmp, value, sizeof(value));
if (!lmp)
break; // error
// now that we have the key pair worked out...
if (!strcmp("classname", key) && !strcmp(value, "env_cubemap"))
isenvmap = true;
else if (!strcmp("origin", key))
sscanf(value, "%f %f %f", &origin[0], &origin[1], &origin[2]);
else if (!strcmp("size", key))
sscanf(value, "%f", &size);
}
if (isenvmap)
{
int e = nenvmap;
if (ZF_ReallocElements((void**)&envmap, &nenvmap, nenvmap+1, sizeof(*envmap)))
{
VectorCopy(origin, envmap[e].origin);
envmap[e].cubesize = size;
}
}
}
if (nenvmap)
{
qsort(envmap, nenvmap, sizeof(*envmap), envmapsort); //sort them by size
if (ZF_ReallocElements((void**)&envmapidx, &nenvmapidx, cl.worldmodel->numsurfaces, sizeof(*envmapidx)))
{
for(i = 0; i < cl.worldmodel->numsurfaces; i++)
envmapidx[i] = Mod_NearestCubeForSurf(cl.worldmodel->surfaces+i, envmap, nenvmap);
}
Mod_BSPXRW_SetLump(&bspctx, "ENVMAP", envmap, nenvmap*sizeof(*envmap));
Mod_BSPXRW_SetLump(&bspctx, "SURFENVMAP", envmapidx, cl.worldmodel->numsurfaces*sizeof(*envmapidx));
Mod_BSPXRW_Write(&bspctx);
}
else
{
Con_Printf("No cubemaps found on map\n");
Mod_BSPXRW_Free(&bspctx);
}
Z_Free(envmapidx);
Z_Free(envmap);
}
}
void Mod_Realign_f(void)
{
struct bspxrw bspctx;
if (Mod_BSPXRW_Read(&bspctx, cl.worldmodel->name))
Mod_BSPXRW_Write(&bspctx);
}
void Mod_BSPX_List_f(void)
{
int i;
struct bspxrw ctx;
char *fname = Cmd_Argv(1);
if (!*fname && cl.worldmodel)
fname = cl.worldmodel->name;
if (Mod_BSPXRW_Read(&ctx, fname))
{
for (i = 0; i < ctx.corelumps; i++)
{
Con_Printf("%s: %u\n", ctx.lumps[i].lumpname, (unsigned int)ctx.lumps[i].filelen);
}
for ( ; i < ctx.totallumps; i++)
{
Con_Printf("%s: %u\n", ctx.lumps[i].lumpname, (unsigned int)ctx.lumps[i].filelen);
}
Mod_BSPXRW_Free(&ctx);
}
}
void Mod_BSPX_Strip_f(void)
{
int i;
struct bspxrw ctx;
qboolean found = false;
if (Cmd_Argc() != 3)
Con_Printf("%s FILENAME NAME: removes an extended lump from the named bsp file\n", Cmd_Argv(0));
else if (Mod_BSPXRW_Read(&ctx, Cmd_Argv(1)))
{
for (i = ctx.corelumps; i < ctx.totallumps;)
{
if (!Q_strcasecmp(ctx.lumps[i].lumpname, Cmd_Argv(2)))
{
found = true;
memmove(&ctx.lumps[i], &ctx.lumps[i+1], sizeof(ctx.lumps[0])*(ctx.totallumps-(i+1)));
ctx.totallumps--;
}
else
i++;
}
if (found)
Mod_BSPXRW_Write(&ctx);
else
Mod_BSPXRW_Free(&ctx);
}
}
image_t *Mod_CubemapForOrigin(model_t *wmodel, vec3_t org)
{
int i;
menvmap_t *e;
float bestdist = FLT_MAX, dist;
image_t *ret = NULL;
vec3_t move;
if (!wmodel || wmodel->loadstate != MLS_LOADED)
return NULL;
for ( i=0 , e=wmodel->envmaps ; i<wmodel->numenvmaps ; i++, e++)
{
VectorSubtract(org, e->origin, move);
dist = DotProduct(move,move);
if (bestdist > dist)
{
bestdist = dist;
ret = e->image;
}
}
return ret;
}
#endif