1
0
Fork 0
forked from fte/fteqw
fteqw/engine/gl/gl_hlmdl.c
Spoike 9cd425e945 rework hlmdl subblends. apparently they're some sort of grid.
fix decals again. clampmap should work properly with them, also removed the extra part.
fix rtlight pvs issue with respect to portals
fix vid_reload causing the d3d9 renderer to use nearest sampling
terrain system should now mostly work with d3d9. still has issues.
fix q3 volumetric fog not applying to models

git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5174 fc73d0e0-1445-4013-8a0c-d673dee63da5
2017-11-30 17:59:11 +00:00

1435 lines
44 KiB
C

#include "quakedef.h"
#ifdef HALFLIFEMODELS
#include "shader.h"
#include "com_mesh.h"
/*
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Half-Life Model Renderer (Experimental) Copyright (C) 2001 James 'Ender' Brown [ender@quakesrc.org] This program is
free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. fromquake.h -
render.c - apart from calculations (mostly range checking or value conversion code is a mix of standard Quake 1
meshing, and vertex deforms. The rendering loop uses standard Quake 1 drawing, after SetupBones deforms the vertex.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Note: this code has since been greatly modified to fix skin, submodels, hitboxes, attachments, etc.
Also, please note that it won't do all hl models....
Nor will it work 100%
*/
qboolean HLMDL_Trace (struct model_s *model, int hulloverride, framestate_t *framestate, vec3_t axis[3], vec3_t p1, vec3_t p2, vec3_t mins, vec3_t maxs, qboolean capsule, unsigned int against, struct trace_s *trace);
unsigned int HLMDL_Contents (struct model_s *model, int hulloverride, framestate_t *framestate, vec3_t axis[3], vec3_t p, vec3_t mins, vec3_t maxs);
void QuaternionGLMatrix(float x, float y, float z, float w, vec4_t *GLM)
{
GLM[0][0] = 1 - 2 * y * y - 2 * z * z;
GLM[1][0] = 2 * x * y + 2 * w * z;
GLM[2][0] = 2 * x * z - 2 * w * y;
GLM[0][1] = 2 * x * y - 2 * w * z;
GLM[1][1] = 1 - 2 * x * x - 2 * z * z;
GLM[2][1] = 2 * y * z + 2 * w * x;
GLM[0][2] = 2 * x * z + 2 * w * y;
GLM[1][2] = 2 * y * z - 2 * w * x;
GLM[2][2] = 1 - 2 * x * x - 2 * y * y;
}
/*
=======================================================================================================================
QuaternionGLAngle - Convert a GL angle to a quaternion matrix
=======================================================================================================================
*/
void QuaternionGLAngle(const vec3_t angles, vec4_t quaternion)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
float yaw = angles[2] * 0.5;
float pitch = angles[1] * 0.5;
float roll = angles[0] * 0.5;
float siny = sin(yaw);
float cosy = cos(yaw);
float sinp = sin(pitch);
float cosp = cos(pitch);
float sinr = sin(roll);
float cosr = cos(roll);
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
quaternion[0] = sinr * cosp * cosy - cosr * sinp * siny;
quaternion[1] = cosr * sinp * cosy + sinr * cosp * siny;
quaternion[2] = cosr * cosp * siny - sinr * sinp * cosy;
quaternion[3] = cosr * cosp * cosy + sinr * sinp * siny;
}
matrix3x4 transform_matrix[MAX_BONES]; /* Vertex transformation matrix */
#ifndef SERVERONLY
void GL_Draw_HL_AliasFrame(short *order, vec3_t *transformed, float tex_w, float tex_h);
struct hlvremaps
{
unsigned short vertidx;
unsigned short normalidx;
unsigned short scoord;
unsigned short tcoord;
};
static index_t HLMDL_DeDupe(unsigned short *order, struct hlvremaps *rem, size_t *count, size_t max)
{
size_t i;
for (i = *count; i-- > 0;)
{
if (rem[i].vertidx == order[0] && rem[i].normalidx == order[1] && rem[i].scoord == order[2] && rem[i].tcoord == order[3])
return i;
}
i = *count;
if (i < max)
{
rem[i].vertidx = order[0];
rem[i].normalidx = order[1];
rem[i].scoord = order[2];
rem[i].tcoord = order[3];
}
*count += 1;
return i;
}
//parse the vertex info, pull out what we can
static void HLMDL_PrepareVerticies (hlmodel_t *model, hlmdl_submodel_t *amodel, struct hlalternative_s *submodel)
{
struct hlvremaps *uvert;
size_t uvertcount, uvertstart;
unsigned short count;
int i;
size_t idx = 0, v, m, maxidx=65536*3;
size_t maxverts = 65536;
mesh_t *mesh = &submodel->mesh;
index_t *index;
vec3_t *verts = (vec3_t *) ((qbyte *) model->header + amodel->vertindex);
qbyte *bone = ((qbyte *) model->header + amodel->vertinfoindex);
vec3_t *norms = (vec3_t *) ((qbyte *) model->header + amodel->normindex);
uvertcount = 0;
uvert = malloc(sizeof(*uvert)*maxverts);
index = malloc(sizeof(*mesh->colors4b_array)*maxidx);
for(m = 0; m < amodel->nummesh; m++)
{
hlmdl_mesh_t *inmesh = (hlmdl_mesh_t *) ((qbyte *) model->header + amodel->meshindex) + m;
unsigned short *order = (unsigned short *) ((qbyte *) model->header + inmesh->index);
uvertstart = uvertcount;
submodel->submesh[m].firstindex = mesh->numindexes;
submodel->submesh[m].numindexes = 0;
for(;;)
{
count = *order++; /* get the vertex count and primitive type */
if(!count) break; /* done */
if(count & 0x8000)
{ //fan
int first = HLMDL_DeDupe(order+0*4, uvert, &uvertcount, maxverts);
int prev = HLMDL_DeDupe(order+1*4, uvert, &uvertcount, maxverts);
count = (unsigned short)-(short)count;
if (idx + (count-2)*3 > maxidx)
break; //would overflow. fixme: extend
for (i = min(2,count); i < count; i++)
{
index[idx++] = first;
index[idx++] = prev;
index[idx++] = prev = HLMDL_DeDupe(order+i*4, uvert, &uvertcount, maxverts);
}
}
else
{
int v0 = HLMDL_DeDupe(order+0*4, uvert, &uvertcount, maxverts);
int v1 = HLMDL_DeDupe(order+1*4, uvert, &uvertcount, maxverts);
//emit (count-2)*3 indicies as a strip
//012 213, etc
if (idx + (count-2)*3 > maxidx)
break; //would overflow. fixme: extend
for (i = min(2,count); i < count; i++)
{
if (i & 1)
{
index[idx++] = v1;
index[idx++] = v0;
}
else
{
index[idx++] = v0;
index[idx++] = v1;
}
v0 = v1;
index[idx++] = v1 = HLMDL_DeDupe(order+i*4, uvert, &uvertcount, maxverts);
}
}
order += i*4;
}
if (uvertcount >= maxverts)
{
//if we're overflowing our verts, rewind, as we cannot generate this mesh. we'll just end up with a 0-index mesh, with no extra verts either
uvertcount = uvertstart;
idx = submodel->submesh[m].firstindex;
}
submodel->submesh[m].numindexes = idx - submodel->submesh[m].firstindex;
}
mesh->numindexes = idx;
mesh->numvertexes = uvertcount;
mesh->indexes = ZG_Malloc(model->memgroup, sizeof(*mesh->indexes)*idx);
memcpy(mesh->indexes, index, sizeof(*mesh->indexes)*idx);
mesh->colors4b_array = ZG_Malloc(model->memgroup, sizeof(*mesh->colors4b_array)*uvertcount);
mesh->st_array = ZG_Malloc(model->memgroup, sizeof(*mesh->st_array)*uvertcount);
mesh->lmst_array[0] = ZG_Malloc(model->memgroup, sizeof(*mesh->lmst_array[0])*uvertcount);
mesh->xyz_array = ZG_Malloc(model->memgroup, sizeof(*mesh->xyz_array)*uvertcount);
mesh->normals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->normals_array)*uvertcount);
#if defined(RTLIGHTS)
mesh->snormals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->snormals_array)*uvertcount);
mesh->tnormals_array = ZG_Malloc(model->memgroup, sizeof(*mesh->tnormals_array)*uvertcount);
#endif
mesh->bonenums = ZG_Malloc(model->memgroup, sizeof(*mesh->bonenums)*uvertcount);
mesh->boneweights = ZG_Malloc(model->memgroup, sizeof(*mesh->boneweights)*uvertcount);
//prepare the verticies now that we have the mappings
for(v = 0; v < uvertcount; v++)
{
mesh->bonenums[v][0] = mesh->bonenums[v][1] = mesh->bonenums[v][2] = mesh->bonenums[v][3] = bone[uvert[v].vertidx];
Vector4Set(mesh->boneweights[v], 1, 0, 0, 0);
Vector4Set(mesh->colors4b_array[v], 255, 255, 255, 255); //why bytes? why not?
mesh->lmst_array[0][v][0] = uvert[v].scoord;
mesh->lmst_array[0][v][1] = uvert[v].tcoord;
VectorCopy(verts[uvert[v].vertidx], mesh->xyz_array[v]);
//Warning: these models use different tables for vertex and normals.
//this means they might be transformed by different bones. we ignore that and just assume that the normals will want the same bone.
VectorCopy(norms[uvert[v].normalidx], mesh->normals_array[v]);
}
//don't need that mapping any more
free(uvert);
free(index);
#if defined(RTLIGHTS)
//treat this as the base pose, and calculate the sdir+tdir for bumpmaps.
R_Generate_Mesh_ST_Vectors(mesh);
#endif
}
#endif
/*
=======================================================================================================================
Mod_LoadHLModel - read in the model's constituent parts
=======================================================================================================================
*/
qboolean QDECL Mod_LoadHLModel (model_t *mod, void *buffer, size_t fsize)
{
#ifndef SERVERONLY
int i;
int body;
struct hlmodelshaders_s *shaders;
hlmdl_tex_t *tex;
#endif
hlmodel_t *model;
hlmdl_header_t *header;
hlmdl_header_t *texheader;
hlmdl_bone_t *bones;
hlmdl_bonecontroller_t *bonectls;
void *texmem = NULL;
//load the model into hunk
model = ZG_Malloc(&mod->memgroup, sizeof(hlmodel_t));
model->memgroup = &mod->memgroup;
header = ZG_Malloc(&mod->memgroup, fsize);
memcpy(header, buffer, fsize);
#if defined(HLSERVER) && (defined(__powerpc__) || defined(__ppc__))
//this is to let anyone who tries porting it know that there is a serious issue. And I'm lazy.
#ifdef warningmsg
#pragma warningmsg("-----------------------------------------")
#pragma warningmsg("FIXME: No byteswapping on halflife models") //hah, yeah, good luck with that, you'll need it.
#pragma warningmsg("-----------------------------------------")
#endif
#endif
if (header->version != 10)
{
Con_Printf(CON_ERROR "Cannot load model %s - unknown version %i\n", mod->name, header->version);
return false;
}
if (header->numcontrollers > MAX_BONE_CONTROLLERS)
{
Con_Printf(CON_ERROR "Cannot load model %s - too many controllers %i\n", mod->name, header->numcontrollers);
return false;
}
if (header->numbones > MAX_BONES)
{
Con_Printf(CON_ERROR "Cannot load model %s - too many bones %i\n", mod->name, header->numbones);
return false;
}
texheader = NULL;
if (!header->numtextures)
{
size_t fz;
char texmodelname[MAX_QPATH];
COM_StripExtension(mod->name, texmodelname, sizeof(texmodelname));
Q_strncatz(texmodelname, "t.mdl", sizeof(texmodelname));
//no textures? eesh. They must be stored externally.
texheader = texmem = (hlmdl_header_t*)FS_LoadMallocFile(texmodelname, &fz);
if (texheader)
{
if (texheader->version != 10)
texheader = NULL;
}
}
if (!texheader)
texheader = header;
else
header->numtextures = texheader->numtextures;
bones = (hlmdl_bone_t *) ((qbyte *) header + header->boneindex);
bonectls = (hlmdl_bonecontroller_t *) ((qbyte *) header + header->controllerindex);
model->header = header;
model->bones = bones;
model->bonectls = bonectls;
#ifndef SERVERONLY
tex = (hlmdl_tex_t *) ((qbyte *) texheader + texheader->textures);
shaders = ZG_Malloc(&mod->memgroup, texheader->numtextures*sizeof(shader_t));
model->shaders = shaders;
for(i = 0; i < texheader->numtextures; i++)
{
Q_snprintfz(shaders[i].name, sizeof(shaders[i].name), "%s/%s", mod->name, COM_SkipPath(tex[i].name));
memset(&shaders[i].defaulttex, 0, sizeof(shaders[i].defaulttex));
shaders[i].defaulttex.base = Image_GetTexture(shaders[i].name, "", IF_NOALPHA, (qbyte *) texheader + tex[i].offset, (qbyte *) texheader + tex[i].w * tex[i].h + tex[i].offset, tex[i].w, tex[i].h, TF_8PAL24);
shaders[i].w = tex[i].w;
shaders[i].h = tex[i].h;
}
model->numskinrefs = texheader->skinrefs;
model->numskingroups = texheader->skingroups;
model->skinref = ZG_Malloc(&mod->memgroup, model->numskinrefs*model->numskingroups*sizeof(*model->skinref));
memcpy(model->skinref, (short *) ((qbyte *) texheader + texheader->skins), model->numskinrefs*model->numskingroups*sizeof(*model->skinref));
#endif
if (texmem)
Z_Free(texmem);
mod->funcs.NativeContents = HLMDL_Contents;
mod->funcs.NativeTrace = HLMDL_Trace;
mod->type = mod_halflife;
mod->numframes = model->header->numseq;
mod->meshinfo = model;
#ifndef SERVERONLY
model->numgeomsets = model->header->numbodyparts;
model->geomset = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset) * model->numgeomsets);
for (body = 0; body < model->numgeomsets; body++)
{
hlmdl_bodypart_t *bodypart = (hlmdl_bodypart_t *) ((qbyte *) model->header + model->header->bodypartindex) + body;
int bodyindex;
model->geomset[body].numalternatives = bodypart->nummodels;
model->geomset[body].alternatives = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset[body].alternatives) * bodypart->nummodels);
for (bodyindex = 0; bodyindex < bodypart->nummodels; bodyindex++)
{
hlmdl_submodel_t *amodel = (hlmdl_submodel_t *) ((qbyte *) model->header + bodypart->modelindex) + bodyindex;
model->geomset[body].alternatives[bodyindex].numsubmeshes = amodel->nummesh;
model->geomset[body].alternatives[bodyindex].submesh = ZG_Malloc(&mod->memgroup, sizeof(*model->geomset[body].alternatives[bodyindex].submesh) * amodel->nummesh);
HLMDL_PrepareVerticies(model, amodel, &model->geomset[body].alternatives[bodyindex]);
}
}
//FIXME: No VBOs used.
#endif
return true;
}
#ifdef HLSERVER
void *Mod_GetHalfLifeModelData(model_t *mod)
{
hlmodelcache_t *mc;
if (!mod || mod->type != mod_halflife)
return NULL; //halflife models only, please
mc = Mod_Extradata(mod);
return (void*)mc->header;
}
#endif
int HLMDL_FrameForName(model_t *mod, const char *name)
{
int i;
hlmdl_header_t *h;
hlmdl_sequencelist_t *seqs;
hlmodel_t *mc;
if (!mod || mod->type != mod_halflife)
return -1; //halflife models only, please
mc = Mod_Extradata(mod);
h = mc->header;
seqs = (hlmdl_sequencelist_t*)((char*)h+h->seqindex);
for (i = 0; i < h->numseq; i++)
{
if (!strcmp(seqs[i].name, name))
return i;
}
return -1;
}
qboolean HLMDL_GetModelEvent(model_t *model, int animation, int eventidx, float *timestamp, int *eventcode, char **eventdata)
{
hlmodel_t *mc = Mod_Extradata(model);
hlmdl_header_t *h = mc->header;
hlmdl_event_t *ev;
hlmdl_sequencelist_t *seq = animation + (hlmdl_sequencelist_t*)((char*)h+h->seqindex);
if (animation < 0 || animation >= h->numseq || eventidx < 0 || eventidx >= seq->num_events)
return false;
ev = eventidx + (hlmdl_event_t*)((char*)h+seq->ofs_events);
*timestamp = ev->pose / seq->timing;
*eventcode = ev->code;
*eventdata = ev->data;
return true;
}
int HLMDL_BoneForName(model_t *mod, const char *name)
{
int i;
hlmdl_header_t *h;
hlmdl_bone_t *bones;
hlmodel_t *mc;
if (!mod || mod->type != mod_halflife)
return -1; //halflife models only, please
mc = Mod_Extradata(mod);
h = mc->header;
bones = (hlmdl_bone_t*)((char*)h+h->boneindex);
for (i = 0; i < h->numbones; i++)
{
if (!strcmp(bones[i].name, name))
return i+1;
}
//FIXME: hlmdl has tags as well as bones.
return 0;
}
/*
=======================================================================================================================
HL_CalculateBones - calculate bone positions - quaternion+vector in one function
=======================================================================================================================
*/
void HL_CalculateBones
(
int frame,
vec4_t adjust,
hlmdl_bone_t *bone,
hlmdl_anim_t *animation,
float *organg
)
{
int i;
/* For each vector */
for(i = 0; i < 6; i++)
{
organg[i] = bone->value[i]; /* Take the bone value */
if(animation->offset[i] != 0)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int tempframe;
hlmdl_animvalue_t *animvalue = (hlmdl_animvalue_t *) ((qbyte *) animation + animation->offset[i]);
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* find values including the required frame */
tempframe = frame;
while(animvalue->num.total <= tempframe)
{
tempframe -= animvalue->num.total;
animvalue += animvalue->num.valid + 1;
}
if (tempframe >= animvalue->num.valid)
tempframe = animvalue->num.valid;
else
tempframe += 1;
organg[i] += animvalue[tempframe].value * bone->scale[i];
}
if(bone->bonecontroller[i] != -1)
{ /* Add the programmable offset. */
organg[i] += adjust[bone->bonecontroller[i]];
}
}
}
/*
=======================================================================================================================
HL_CalcBoneAdj - Calculate the adjustment values for the programmable controllers
=======================================================================================================================
*/
void HL_CalcBoneAdj(hlmodel_t *model)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int i;
float value;
hlmdl_bonecontroller_t *control = (hlmdl_bonecontroller_t *)
((qbyte *) model->header + model->header->controllerindex);
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
for(i = 0; i < model->header->numcontrollers; i++)
{
/*~~~~~~~~~~~~~~~~~~~~~*/
int j = control[i].index;
/*~~~~~~~~~~~~~~~~~~~~~*/
if(control[i].type & 0x8000)
{ //wraps normally
value = model->controller[j];// + control[i].start;
}
else
{
// value = (model->controller[j]+1)*0.5; //shifted to give a valid range between -1 and 1, with 0 being mid-range.
// if(value < 0)
// value = 0;
// else if(value > 1.0)
// value = 1.0;
// value = (1.0 - value) * control[i].start + value * control[i].end;
value = model->controller[j];
if (value < control[i].start)
value = control[i].start;
if (value > control[i].end)
value = control[i].end;
}
/* Rotational controllers need their values converted */
if(control[i].type >= 0x0008 && control[i].type <= 0x0020)
model->adjust[i] = M_PI * value / 180;
else
model->adjust[i] = value;
}
}
/*
=======================================================================================================================
HL_SetupBones - determine where vertex should be using bone movements
=======================================================================================================================
*/
void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt );
void HL_SetupBones(hlmodel_t *model, int seqnum, int firstbone, int lastbone, float subblendfrac1, float subblendfrac2, float frametime, float *matrix)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int i, j;
vec3_t organg1[2];
vec3_t organg2[2];
vec3_t organgb[2];
vec4_t quat1, quat2;
int frame1, frame2;
hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) +
((unsigned int)seqnum>=model->header->numseq?0:seqnum);
hlmdl_sequencedata_t *sequencedata = (hlmdl_sequencedata_t *)
((qbyte *) model->header + model->header->seqgroups) +
sequence->seqindex;
hlmdl_anim_t *animation;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
matrix += firstbone*12;
if (sequencedata->name[32])
{
size_t fz;
if (sequence->seqindex >= MAX_ANIM_GROUPS)
{
Sys_Error("Too many animation sequence cache groups\n");
return;
}
if (!model->animcache[sequence->seqindex])
model->animcache[sequence->seqindex] = FS_LoadMallocGroupFile(model->memgroup, sequencedata->name+32, &fz);
if (!model->animcache[sequence->seqindex] || model->animcache[sequence->seqindex]->magic != (('I'<<0)|('D'<<8)|('S'<<16)|('Q'<<24)) || model->animcache[sequence->seqindex]->version != 10)
{
Sys_Error("Unable to load %s\n", sequencedata->name+32);
return;
}
animation = (hlmdl_anim_t *)((qbyte*)model->animcache[sequence->seqindex] + sequence->index);
}
else
animation = (hlmdl_anim_t *) ((qbyte *) model->header + sequencedata->data + sequence->index);
frametime *= sequence->timing;
if (frametime < 0)
frametime = 0;
frame1 = (int)frametime;
frametime -= frame1;
frame2 = frame1+1;
if (!sequence->numframes)
return;
//halflife seems to dupe the last frame in looping animations, so don't use it.
if(frame1 >= sequence->numframes)
{
if (sequence->loop)
frame1 %= sequence->numframes-1;
else
frame1 = sequence->numframes-1;
}
if(frame2 >= sequence->numframes)
{
if (sequence->loop)
frame2 %= sequence->numframes-1;
else
frame2 = sequence->numframes-1;
}
if (frame2 < frame1)
{
i = frame2;
frame2 = frame1;
frame1 = i;
frametime = 1-frametime;
}
if (lastbone > model->header->numbones)
lastbone = model->header->numbones;
HL_CalcBoneAdj(model); /* Deal with programmable controllers */
/*FIXME:this is useless*/
/*
if(sequence->motiontype & 0x0001)
positions[sequence->motionbone][0] = 0.0;
if(sequence->motiontype & 0x0002)
positions[sequence->motionbone][1] = 0.0;
if(sequence->motiontype & 0x0004)
positions[sequence->motionbone][2] = 0.0;
*/
/*
this is hellish.
a hl model blends:
4 controllers (on a player, it seems each one of them twists a separate bone in the chest)
a mouth (not used on players)
its a sequence (to be smooth we need to blend between two frames in the sequence)
up to four source animations (ironically used to pitch up/down)
alternate sequence (walking+firing)
frame2 (quake expectations.)
this is madness, quite frankly.
luckily...
controllers and mouth control the entire thing. they should be interpolated outside, and have no affect on blending here
alternate sequences replace. we can just call this function twice (so long as bone ranges are incremental).
autoanimating sequence is handled inside HL_CalculateBones (sequences are weird and it has to be handled there anyway)
this means we only have sources and alternate frames left to cope with.
FIXME: we don't handle frame2.
*/
if (sequence->hasblendseq>1)
{
int bf0, bf1;
int bweights;
struct
{
int frame;
float weight;
hlmdl_anim_t *anim;
} blend[8];
//right, so, this stuff is annoying.
//we have two different blend factors.
//we have up to 9 blend weights. figure out which frames are what
switch(sequence->hasblendseq)
{
case 0: //erk?
return;
case 1: //no blending.
bf0 = bf1 = 1;
break;
default:
case 2: //mix(0, 1, weight0)
case 3: //mix(0, 1, 2, weight0);
case 8: //weight0 only...
bf0 = sequence->hasblendseq;
bf1 = 1;
break;
case 4: //mix(mix(0, 1, weight0), mix(2, 3, weight0), weight1)
bf0 = bf1 = 2;
break;
//case 6: //???
// bf[0] = 3; bf[1] = 2;
// break;
case 9: //mix(mix(0, 1, 2, weight0), mix(2, 3, 4, weight0), mix(5, 6, 7, weight0), weight1)
bf0 = bf1 = 3;
break;
}
subblendfrac1 = (subblendfrac1+1)/2;
subblendfrac2 = (subblendfrac2+1)/2;
bweights = 0;
if (bf0 > 1)
{
float frac = (bf0-1) * bound(0, subblendfrac1, 1);
int f1 = bound(0, frac, bf0-1);
int f2 = bound(0, f1+1, bf0-1);
frac = (frac-f1);
frac = bound(0, frac, 1);
if (bf1 > 1)
{
float frac2 = (bf1-1) * bound(0, subblendfrac2, 1);
int a1 = bound(0, frac2, bf1-1);
int a2 = bound(0, a1+1, bf1-1);
frac2 = (frac2-a1);
frac2 = bound(0, frac2, 1);
if (frac2)
{
if (frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * (f2 + a2*bf0);
blend[bweights++].weight = frac*frac2;
}
if (1-frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * (f1 + a2*bf0);
blend[bweights++].weight = (1-frac)*frac2;
}
}
if (1-frac2)
{
if (frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * (f2 + a1*bf0);
blend[bweights++].weight = frac*(1-frac2);
}
if (1-frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * (f1 + a1*bf0);
blend[bweights++].weight = (1-frac)*(1-frac2);
}
}
}
else
{
if (frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * f1;
blend[bweights++].weight = frac;
}
if (1-frac)
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation + model->header->numbones * f2;
blend[bweights++].weight = 1-frac;
}
}
}
else
{
blend[bweights].frame = frame1;
blend[bweights].anim = animation;
blend[bweights++].weight = 1;
}
if (frame1 != frame2)
{
for (i = 0; i < bweights; i++)
{
blend[bweights+i].frame = frame2;
blend[bweights+i].anim = blend[i].anim;
blend[bweights+i].weight = blend[i].weight;
blend[i].weight *= 1-frametime;
blend[bweights+i].weight *= frametime;
}
bweights *= 2;
}
for(i = firstbone; i < lastbone; i++, matrix+=12)
{
vec3_t t;
float len;
HL_CalculateBones(blend[0].frame, model->adjust, model->bones + i, blend[0].anim + i, organgb[0]);
QuaternionGLAngle(organgb[1], quat2);
Vector4Scale(quat2, blend[0].weight, quat1);
VectorScale(organgb[0], blend[0].weight, t);
for (j = 1; j < bweights; j++)
{
HL_CalculateBones(blend[j].frame, model->adjust, model->bones + i, blend[j].anim + i, organgb[0]);
QuaternionGLAngle(organgb[1], quat2);
if (DotProduct4(quat2, quat1) < 0) //negative quats are annoying
Vector4MA(quat1, -blend[j].weight, quat2, quat1);
else
Vector4MA(quat1, blend[j].weight, quat2, quat1);
VectorMA(t, blend[j].weight, organgb[0], t);
}
//we were lame and didn't use slerp. boo hiss. now we need to normalise the things and hope we didn't hit any singularities
len = sqrt(DotProduct4(quat1,quat1));
if (len && len != 1)
{
len = 1/len;
quat1[0] *= len;
quat1[1] *= len;
quat1[2] *= len;
quat1[3] *= len;
}
QuaternionGLMatrix(quat1[0], quat1[1], quat1[2], quat1[3], (vec4_t*)matrix);
matrix[0*4+3] = t[0];
matrix[1*4+3] = t[1];
matrix[2*4+3] = t[2];
}
}
else
{
for(i = firstbone; i < lastbone; i++, matrix+=12)
{
HL_CalculateBones(frame1, model->adjust, model->bones + i, animation + i, organg1[0]);
QuaternionGLAngle(organg1[1], quat1); /* A quaternion */
if (frame1 != frame2)
{
HL_CalculateBones(frame2, model->adjust, model->bones + i, animation + i, organg2[0]);
QuaternionGLAngle(organg2[1], quat2); /* A quaternion */
//lerp the quats properly rather than poorly lerping eular angles.
QuaternionSlerp(quat1, quat2, frametime, quat1);
VectorInterpolate(organg1[0], frametime, organg2[0], organg1[0]);
}
//figure out the relative bone matrix.
//we probably ought to keep them as quats or something.
QuaternionGLMatrix(quat1[0], quat1[1], quat1[2], quat1[3], (vec4_t*)matrix);
matrix[0*4+3] = organg1[0][0];
matrix[1*4+3] = organg1[0][1];
matrix[2*4+3] = organg1[0][2];
}
}
}
int HLMDL_GetNumBones(model_t *mod, qboolean tags)
{
hlmodel_t *mc;
if (!mod || mod->type != mod_halflife)
return -1; //halflife models only, please
mc = Mod_Extradata(mod);
if (tags)
return mc->header->numbones + mc->header->num_attachments;
return mc->header->numbones;
}
int HLMDL_GetBoneParent(model_t *mod, int bonenum)
{
hlmodel_t *model = Mod_Extradata(mod);
if (bonenum >= 0 && bonenum < model->header->numbones)
return model->bones[bonenum].parent;
bonenum -= model->header->numbones;
if (bonenum >= 0 && bonenum < model->header->num_attachments)
{
hlmdl_attachment_t *attachments = bonenum+(hlmdl_attachment_t*)((char*)model->header + model->header->ofs_attachments);
return attachments->bone;
}
return -1;
}
const char *HLMDL_GetBoneName(model_t *mod, int bonenum)
{
hlmodel_t *model = Mod_Extradata(mod);
if (bonenum >= 0 && bonenum < model->header->numbones)
return model->bones[bonenum].name;
bonenum -= model->header->numbones;
if (bonenum >= 0 && bonenum < model->header->num_attachments)
{
hlmdl_attachment_t *attachments = bonenum+(hlmdl_attachment_t*)((char*)model->header + model->header->ofs_attachments);
if (*attachments->name)
return attachments->name;
return "Unnamed Attachment";
}
return NULL;
}
int HLMDL_GetAttachment(model_t *mod, int tagnum, float *resultmatrix)
{
hlmodel_t *model = Mod_Extradata(mod);
if (tagnum >= 0 && tagnum < model->header->num_attachments)
{
hlmdl_attachment_t *attachments = tagnum+(hlmdl_attachment_t*)((char*)model->header + model->header->ofs_attachments);
resultmatrix[3] = attachments->org[0];
resultmatrix[7] = attachments->org[1];
resultmatrix[11] = attachments->org[2];
return attachments->bone;
}
return -1;
}
static int HLMDL_GetBoneData_Internal(hlmodel_t *model, int firstbone, int lastbone, framestate_t *fstate, float *result)
{
int b, cbone, bgroup;
for (b = 0; b < MAX_BONE_CONTROLLERS; b++)
model->controller[b] = fstate->bonecontrols[b];
for (cbone = 0, bgroup = 0; bgroup < FS_COUNT; bgroup++)
{
lastbone = fstate->g[bgroup].endbone;
if (bgroup == FS_COUNT-1)
lastbone = model->header->numbones;
if (cbone >= lastbone)
continue;
HL_SetupBones(model, fstate->g[bgroup].frame[0], cbone, lastbone, fstate->g[bgroup].subblendfrac, fstate->g[bgroup].subblend2frac, fstate->g[bgroup].frametime[0], result); /* Setup the bones */
cbone = lastbone;
}
return cbone;
}
int HLMDL_GetBoneData(model_t *mod, int firstbone, int lastbone, framestate_t *fstate, float *result)
{
return HLMDL_GetBoneData_Internal(Mod_Extradata(mod), firstbone, lastbone, fstate, result);
}
const char *HLMDL_FrameNameForNum(model_t *mod, int surfaceidx, int seqnum)
{
hlmodel_t *model = Mod_Extradata(mod);
hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) +
((unsigned int)seqnum>=model->header->numseq?0:seqnum);
return sequence->name;
}
qboolean HLMDL_FrameInfoForNum(model_t *mod, int surfaceidx, int seqnum, char **name, int *numframes, float *duration, qboolean *loop)
{
hlmodel_t *model = Mod_Extradata(mod);
hlmdl_sequencelist_t *sequence = (hlmdl_sequencelist_t *) ((qbyte *) model->header + model->header->seqindex) +
((unsigned int)seqnum>=model->header->numseq?0:seqnum);
*name = sequence->name;
*numframes = sequence->numframes;
*duration = (sequence->numframes-1)/sequence->timing;
*loop = sequence->loop;
return true;
}
qboolean HLMDL_Trace (model_t *model, int hulloverride, framestate_t *framestate, vec3_t axis[3], vec3_t p1, vec3_t p2, vec3_t mins, vec3_t maxs, qboolean capsule, unsigned int against, struct trace_s *trace)
{
hlmodel_t *hm = Mod_Extradata(model);
float *relbones;
float calcrelbones[MAX_BONES*12];
int bonecount;
int b, i;
vec3_t norm, p1l, p2l;
float inverse[12];
hlmdl_hitbox_t *hitbox = (hlmdl_hitbox_t*)((char*)hm->header+hm->header->ofs_hitboxes);
float dist, d1, d2, f, enterfrac, enterdist, exitfrac;
qboolean startout, endout;
int enterplane;
memset (trace, 0, sizeof(trace_t));
trace->fraction = trace->truefraction = 1;
if (!(against & FTECONTENTS_BODY))
return false;
if (framestate->bonestate && framestate->skeltype == SKEL_ABSOLUTE)
{
relbones = framestate->bonestate;
bonecount = framestate->bonecount;
if (axis)
{
for (b = 0; b < bonecount; b++)
R_ConcatTransformsAxis(axis, (void*)(relbones+b*12), transform_matrix[b]);
}
else
memcpy(transform_matrix, relbones, bonecount * 12 * sizeof(float));
}
else
{
//get relative bones from th emodel.
if (framestate->bonestate)
{
relbones = framestate->bonestate;
bonecount = framestate->bonecount;
}
else
{
relbones = calcrelbones;
bonecount = HLMDL_GetBoneData(model, 0, MAX_BONES, framestate, calcrelbones);
}
//convert relative to absolutes
for (b = 0; b < bonecount; b++)
{
/* If we have a parent, take the addition. Otherwise just copy the values */
if(hm->bones[b].parent>=0)
R_ConcatTransforms(transform_matrix[hm->bones[b].parent], (void*)(relbones+b*12), transform_matrix[b]);
else if (axis)
R_ConcatTransformsAxis(axis, (void*)(relbones+b*12), transform_matrix[b]);
else
memcpy(transform_matrix[b], relbones+b*12, 12 * sizeof(float));
}
}
for (b = 0; b < hm->header->num_hitboxes; b++, hitbox++)
{
startout = false;
endout = false;
enterplane = 0;
enterfrac = -1;
exitfrac = 10;
enterdist = 0;
//fixme: would be nice to check if there's a possible collision a bit faster, without needing to do lots of excess maths.
//transform start+end into the bbox, so everything is axial and simple.
Matrix3x4_Invert_Simple((void*)transform_matrix[hitbox->bone], inverse);
Matrix3x4_RM_Transform3(inverse, p1, p1l);
Matrix3x4_RM_Transform3(inverse, p2, p2l);
//fixme: would it be faster to just generate the plane and transform that, colliding non-axially? would probably be better for sized impactors.
//clip against the 6 axial faces
for (i = 0; i < 6; i++)
{
if (i < 3)
{ //normal>0
dist = hitbox->maxs[i] - mins[i];
d1 = p1l[i] - dist;
d2 = p2l[i] - dist;
}
else
{//normal<0
dist = maxs[i-3] - hitbox->mins[i-3];
d1 = -p1l[i-3] - dist;
d2 = -p2l[i-3] - dist;
}
//FIXME: if the trace has size, we should insert 6 extra planes for the shape of the impactor
//FIXME: capsules
if (d1 >= 0)
startout = true;
if (d2 > 0)
endout = true;
//if we're fully outside any plane, then we cannot possibly enter the brush, skip to the next one
if (d1 > 0 && d2 >= 0)
goto nextbrush;
//if we're fully inside the plane, then whatever is happening is not relevent for this plane
if (d1 < 0 && d2 <= 0)
continue;
f = d1 / (d1-d2);
if (d1 > d2)
{
//entered the brush. favour the furthest fraction to avoid extended edges (yay for convex shapes)
if (enterfrac < f)
{
enterfrac = f;
enterplane = i;
enterdist = dist;
}
}
else
{
//left the brush, favour the nearest plane (smallest frac)
if (exitfrac > f)
{
exitfrac = f;
}
}
}
if (!startout)
{
trace->startsolid = true;
if (!endout)
trace->allsolid = true;
trace->contents = FTECONTENTS_BODY;
trace->brush_face = 0;
trace->bone_id = hitbox->bone+1;
trace->brush_id = b+1;
trace->surface_id = hitbox->body;
break;
}
if (enterfrac != -1 && enterfrac < exitfrac)
{
//impact!
if (enterfrac < trace->fraction)
{
trace->fraction = trace->truefraction = enterfrac;
trace->plane.dist = enterdist;
trace->contents = FTECONTENTS_BODY;
trace->brush_face = enterplane+1;
trace->bone_id = hitbox->bone+1;
trace->brush_id = b+1;
trace->surface_id = hitbox->body;
}
}
nextbrush:
;
}
if (trace->brush_face)
{
VectorClear(norm);
if (trace->brush_face < 4)
norm[trace->brush_face-1] = 1;
else
norm[trace->brush_face-4] = -1;
Matrix3x4_RM_Transform3x3((void*)transform_matrix[trace->bone_id-1], norm, trace->plane.normal);
}
else
VectorClear(trace->plane.normal);
VectorInterpolate(p1, trace->fraction, p2, trace->endpos);
return trace->truefraction != 1;
}
unsigned int HLMDL_Contents (model_t *model, int hulloverride, framestate_t *framestate, vec3_t axis[3], vec3_t p, vec3_t mins, vec3_t maxs)
{
trace_t tr;
HLMDL_Trace(model, hulloverride, framestate, axis, p, p, mins, maxs, false, ~0, &tr);
return tr.contents;
}
#ifndef SERVERONLY
void R_HL_BuildFrame(hlmodel_t *model, hlmdl_submodel_t *amodel, entity_t *curent, int bodypart, int bodyidx, int meshidx, float tex_s, float tex_t, mesh_t *mesh, qboolean gpubones)
{
int b;
int cbone;
// int bgroup;
// int lastbone;
int v;
*mesh = model->geomset[bodypart].alternatives[bodyidx].mesh;
//FIXME: cache this!
if (curent->framestate.bonecount >= model->header->numbones)
{
if (curent->framestate.skeltype == SKEL_RELATIVE)
{
mesh->numbones = model->header->numbones;
for (b = 0; b < mesh->numbones; b++)
{
/* If we have a parent, take the addition. Otherwise just copy the values */
if(model->bones[b].parent>=0)
{
R_ConcatTransforms(transform_matrix[model->bones[b].parent], (void*)(curent->framestate.bonestate+b*12), transform_matrix[b]);
}
else
{
memcpy(transform_matrix[b], curent->framestate.bonestate+b*12, 12 * sizeof(float));
}
}
mesh->bones = transform_matrix[0][0];
}
else
{
mesh->bones = curent->framestate.bonestate;
mesh->numbones = curent->framestate.bonecount;
}
}
else
{
float relatives[12*MAX_BONES];
mesh->bones = transform_matrix[0][0];
mesh->numbones = model->header->numbones;
/* //FIXME: needs caching.
for (b = 0; b < MAX_BONE_CONTROLLERS; b++)
model->controller[b] = curent->framestate.bonecontrols[b];
for (cbone = 0, bgroup = 0; bgroup < FS_COUNT; bgroup++)
{
lastbone = curent->framestate.g[bgroup].endbone;
if (bgroup == FS_COUNT-1)
lastbone = model->header->numbones;
if (cbone >= lastbone)
continue;
HL_SetupBones(model, curent->framestate.g[bgroup].frame[0], cbone, lastbone, curent->framestate.g[bgroup].subblendfrac, curent->framestate.g[bgroup].frametime[0], relatives); // Setup the bones
cbone = lastbone;
}
*/
cbone = HLMDL_GetBoneData_Internal(model, 0, model->header->numbones, &curent->framestate, relatives);
//convert relative to absolutes
for (b = 0; b < cbone; b++)
{
/* If we have a parent, take the addition. Otherwise just copy the values */
if(model->bones[b].parent>=0)
{
R_ConcatTransforms(transform_matrix[model->bones[b].parent], (void*)(relatives+b*12), transform_matrix[b]);
}
else
{
memcpy(transform_matrix[b], relatives+b*12, 12 * sizeof(float));
}
}
}
mesh->indexes += model->geomset[bodypart].alternatives[bodyidx].submesh[meshidx].firstindex;
mesh->numindexes = model->geomset[bodypart].alternatives[bodyidx].submesh[meshidx].numindexes;
if (gpubones)
{ //get the backend to do the skeletal stuff (read: glsl)
for(v = 0; v < mesh->numvertexes; v++)
{ //should really come up with a better way to deal with this, like rect textures.
mesh->st_array[v][0] = mesh->lmst_array[0][v][0] * tex_s;
mesh->st_array[v][1] = mesh->lmst_array[0][v][1] * tex_t;
}
}
else
{ //backend can't handle it, apparently. do it in software.
static vecV_t nxyz[2048];
static vec3_t nnorm[2048];
for(v = 0; v < mesh->numvertexes; v++)
{ //should really come up with a better way to deal with this, like rect textures.
mesh->st_array[v][0] = mesh->lmst_array[0][v][0] * tex_s;
mesh->st_array[v][1] = mesh->lmst_array[0][v][1] * tex_t;
VectorTransform(mesh->xyz_array[v], (void *)transform_matrix[mesh->bonenums[v][0]], nxyz[v]);
nnorm[v][0] = DotProduct(mesh->normals_array[v], transform_matrix[mesh->bonenums[v][0]][0]);
nnorm[v][1] = DotProduct(mesh->normals_array[v], transform_matrix[mesh->bonenums[v][0]][1]);
nnorm[v][2] = DotProduct(mesh->normals_array[v], transform_matrix[mesh->bonenums[v][0]][2]);
//FIXME: svector, tvector!
}
mesh->xyz_array = nxyz;
mesh->normals_array = nnorm;
mesh->bonenums = NULL;
mesh->boneweights = NULL;
mesh->bones = NULL;
mesh->numbones = 0;
}
}
static void R_HalfLife_WalkMeshes(entity_t *rent, batch_t *b, batch_t **batches);
static void R_HL_BuildMesh(struct batch_s *b)
{
R_HalfLife_WalkMeshes(b->ent, b, NULL);
}
static void R_HalfLife_WalkMeshes(entity_t *rent, batch_t *b, batch_t **batches)
{
hlmodel_t *model = Mod_Extradata(rent->model);
int body, m;
int batchid = 0;
static mesh_t bmesh, *mptr = &bmesh;
skinfile_t *sk = NULL;
unsigned int entity_body = 0;
if (rent->customskin)
sk = Mod_LookupSkin(rent->customskin);
//entity_body = rent->body; //hey, if its there, lets use it.
for (body = 0; body < model->numgeomsets; body++)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
hlmdl_bodypart_t *bodypart = (hlmdl_bodypart_t *) ((qbyte *) model->header + model->header->bodypartindex) + body;
int bodyindex = ((sk && body < MAX_GEOMSETS && sk->geomset[body] >= 1)?sk->geomset[body]-1:(entity_body / bodypart->base)) % bodypart->nummodels;
hlmdl_submodel_t *amodel = (hlmdl_submodel_t *) ((qbyte *) model->header + bodypart->modelindex) + bodyindex;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/* Draw each mesh */
for(m = 0; m < amodel->nummesh; m++)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
hlmdl_mesh_t *mesh = (hlmdl_mesh_t *) ((qbyte *) model->header + amodel->meshindex) + m;
float tex_w;
float tex_h;
struct hlmodelshaders_s *s;
int skinidx = mesh->skinindex;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
if (skinidx >= model->numskinrefs)
continue; //can happen from bad mesh/skin mixing
if (rent->skinnum < model->numskingroups)
skinidx += rent->skinnum * model->numskinrefs;
s = &model->shaders[model->skinref[skinidx]];
if (batches)
{
int sort, j;
b = BE_GetTempBatch();
if (!b)
return;
if (!s->shader)
{
s->shader = R_RegisterSkin(s->name, rent->model->name);
R_BuildDefaultTexnums(&s->defaulttex, s->shader);
}
b->skin = NULL;
b->shader = s->shader;
if (sk)
{
int i;
for (i = 0; i < sk->nummappings; i++)
{
if (!strcmp(sk->mappings[i].surface, s->name))
{
b->skin = &sk->mappings[i].texnums;
b->shader = sk->mappings[i].shader;
break;
}
}
}
if ( rent->forcedshader ) {
b->shader = rent->forcedshader;
}
b->buildmeshes = R_HL_BuildMesh;
b->ent = rent;
b->mesh = NULL;
b->firstmesh = 0;
b->meshes = 1;
b->texture = NULL;
for (j = 0; j < MAXRLIGHTMAPS; j++)
b->lightmap[j] = -1;
b->surf_first = batchid;
b->flags = 0;
sort = b->shader->sort;
//fixme: we probably need to force some blend modes based on the surface flags.
if (rent->flags & RF_FORCECOLOURMOD)
b->flags |= BEF_FORCECOLOURMOD;
if (rent->flags & RF_ADDITIVE)
{
b->flags |= BEF_FORCEADDITIVE;
if (sort < SHADER_SORT_ADDITIVE)
sort = SHADER_SORT_ADDITIVE;
}
if (rent->flags & RF_TRANSLUCENT)
{
b->flags |= BEF_FORCETRANSPARENT;
if (SHADER_SORT_PORTAL < sort && sort < SHADER_SORT_BLEND)
sort = SHADER_SORT_BLEND;
}
if (rent->flags & RF_NODEPTHTEST)
{
b->flags |= BEF_FORCENODEPTH;
if (sort < SHADER_SORT_NEAREST)
sort = SHADER_SORT_NEAREST;
}
if (rent->flags & RF_NOSHADOW)
b->flags |= BEF_NOSHADOWS;
b->vbo = NULL;
b->next = batches[sort];
batches[sort] = b;
}
else
{
if (batchid == b->surf_first)
{
tex_w = 1.0f / s->w;
tex_h = 1.0f / s->h;
b->mesh = &mptr;
R_HL_BuildFrame(model, amodel, b->ent, body, bodyindex, m, tex_w, tex_h, b->mesh[0], b->shader->prog && (b->shader->prog->supportedpermutations & PERMUTATION_SKELETAL));
return;
}
}
batchid++;
}
}
}
qboolean R_CalcModelLighting(entity_t *e, model_t *clmodel);
void R_HalfLife_GenerateBatches(entity_t *e, batch_t **batches)
{
R_CalcModelLighting(e, e->model);
R_HalfLife_WalkMeshes(e, NULL, batches);
}
void HLMDL_DrawHitBoxes(entity_t *rent)
{
hlmodel_t *model = Mod_Extradata(rent->model);
hlmdl_hitbox_t *hitbox = (hlmdl_hitbox_t*)((char*)model->header+model->header->ofs_hitboxes);
matrix3x4 entitymatrix;
shader_t *shader = R_RegisterShader("hitbox_nodepth", SUF_NONE,
"{\n"
"polygonoffset\n"
"{\n"
"map $whiteimage\n"
"blendfunc gl_src_alpha gl_one\n"
"rgbgen vertex\n"
"alphagen vertex\n"
"nodepthtest\n"
"}\n"
"}\n");
float relbones[MAX_BONES*12];
int bonecount = HLMDL_GetBoneData(rent->model, 0, MAX_BONES, &rent->framestate, relbones);
int b;
entitymatrix[0][0] = rent->axis[0][0];
entitymatrix[0][1] = rent->axis[1][0];
entitymatrix[0][2] = rent->axis[2][0];
entitymatrix[1][0] = rent->axis[0][1];
entitymatrix[1][1] = rent->axis[1][1];
entitymatrix[1][2] = rent->axis[2][1];
entitymatrix[2][0] = rent->axis[0][2];
entitymatrix[2][1] = rent->axis[1][2];
entitymatrix[2][2] = rent->axis[2][2];
entitymatrix[0][3] = rent->origin[0];
entitymatrix[1][3] = rent->origin[1];
entitymatrix[2][3] = rent->origin[2];
//convert relative to absolutes
for (b = 0; b < bonecount; b++)
{
//If we have a parent, take the addition. Otherwise just copy the values
if(model->bones[b].parent>=0)
R_ConcatTransforms(transform_matrix[model->bones[b].parent], (void*)(relbones+b*12), transform_matrix[b]);
else
R_ConcatTransforms(entitymatrix, (void*)(relbones+b*12), transform_matrix[b]);
}
for (b = 0; b < model->header->num_hitboxes; b++, hitbox++)
CLQ1_AddOrientedCube(shader, hitbox->mins, hitbox->maxs, transform_matrix[hitbox->bone][0], 1, 1, 1, 0.2);
}
#endif
#endif