#include "quakedef.h" #ifndef SERVERONLY #include "glquake.h" #endif #include "com_mesh.h" #ifdef _WIN32 #include #else #include #endif #define MAX_Q3MAP_INDICES 0x8000000 //just a sanity limit #define MAX_Q3MAP_VERTEXES 0x800000 //just a sanity limit //#define MAX_CM_PATCH_VERTS (4096) //#define MAX_CM_FACES (MAX_Q2MAP_FACES) #ifdef FTE_TARGET_WEB #define MAX_CM_PATCHES (0x1000) //fixme #else #define MAX_CM_PATCHES (0x10000) //fixme #endif //#define MAX_CM_LEAFFACES (MAX_Q2MAP_LEAFFACES) #define MAX_CM_AREAS MAX_Q2MAP_AREAS //#define Q3SURF_NODAMAGE 0x00000001 //#define Q3SURF_SLICK 0x00000002 //#define Q3SURF_SKY 0x00000004 //#define Q3SURF_LADDER 0x00000008 //#define Q3SURF_NOIMPACT 0x00000010 //#define Q3SURF_NOMARKS 0x00000020 //#define Q3SURF_FLESH 0x00000040 #define Q3SURF_NODRAW 0x00000080 // don't generate a drawsurface at all //#define Q3SURF_HINT 0x00000100 #define Q3SURF_SKIP 0x00000200 // completely ignore, allowing non-closed brushes //#define Q3SURF_NOLIGHTMAP 0x00000400 //#define Q3SURF_POINTLIGHT 0x00000800 //#define Q3SURF_METALSTEPS 0x00001000 //#define Q3SURF_NOSTEPS 0x00002000 #define Q3SURF_NONSOLID 0x00004000 // don't collide against curves with this set //#define Q3SURF_LIGHTFILTER 0x00008000 //#define Q3SURF_ALPHASHADOW 0x00010000 //#define Q3SURF_NODLIGHT 0x00020000 //#define Q3SURF_DUST 0x00040000 cvar_t q3bsp_surf_meshcollision_flag = CVARD("q3bsp_surf_meshcollision_flag", "0x80000000", "The surfaceparm flag(s) that enables q3bsp trisoup collision"); cvar_t q3bsp_surf_meshcollision_force = CVARD("q3bsp_surf_meshcollision_force", "0", "Force mesh-based collisions on all q3bsp trisoup surfaces."); #if Q3SURF_NODRAW != TI_NODRAW #error "nodraw isn't constant" #endif extern cvar_t r_shadow_bumpscale_basetexture; //these are in model.c (or gl_model.c) qboolean Mod_LoadVertexes (model_t *loadmodel, qbyte *mod_base, lump_t *l); qboolean Mod_LoadVertexNormals (model_t *loadmodel, qbyte *mod_base, lump_t *l); qboolean Mod_LoadEdges (model_t *loadmodel, qbyte *mod_base, lump_t *l, qboolean lm); qboolean Mod_LoadMarksurfaces (model_t *loadmodel, qbyte *mod_base, lump_t *l, qboolean lm); qboolean Mod_LoadSurfedges (model_t *loadmodel, qbyte *mod_base, lump_t *l); static qboolean CM_NativeTrace(model_t *model, int forcehullnum, int frame, vec3_t axis[3], vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, qboolean capsule, unsigned int contents, trace_t *trace); static unsigned int CM_NativeContents(struct model_s *model, int hulloverride, int frame, vec3_t axis[3], vec3_t p, vec3_t mins, vec3_t maxs); static unsigned int Q2BSP_PointContents(model_t *mod, vec3_t axis[3], vec3_t p); static int CM_PointCluster (model_t *mod, vec3_t p); float RadiusFromBounds (vec3_t mins, vec3_t maxs) { int i; vec3_t corner; for (i=0 ; i<3 ; i++) { corner[i] = fabs(mins[i]) > fabs(maxs[i]) ? fabs(mins[i]) : fabs(maxs[i]); } return Length (corner); } void CalcSurfaceExtents (model_t *mod, msurface_t *s) { float mins[2], maxs[2], val; int i,j, e; mvertex_t *v; mtexinfo_t *tex; int bmins[2], bmaxs[2]; mins[0] = mins[1] = 999999; maxs[0] = maxs[1] = -99999; tex = s->texinfo; for (i=0 ; inumedges ; i++) { e = mod->surfedges[s->firstedge+i]; if (e >= 0) v = &mod->vertexes[mod->edges[e].v[0]]; else v = &mod->vertexes[mod->edges[-e].v[1]]; for (j=0 ; j<2 ; j++) { val = v->position[0] * tex->vecs[j][0] + v->position[1] * tex->vecs[j][1] + v->position[2] * tex->vecs[j][2] + tex->vecs[j][3]; if (val < mins[j]) mins[j] = val; if (val > maxs[j]) maxs[j] = val; } } for (i=0 ; i<2 ; i++) { bmins[i] = floor(mins[i]/(1<lmshift)); bmaxs[i] = ceil(maxs[i]/(1<lmshift)); s->texturemins[i] = bmins[i] << s->lmshift; s->extents[i] = (bmaxs[i] - bmins[i]) << s->lmshift; // if ( !(tex->flags & TEX_SPECIAL) && s->extents[i] > 8176 ) //q2 uses 512. probably for skys. // Con_Printf ("Bad surface extents (texture %s)\n", s->texinfo->texture->name); } } void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs) { int i; vec_t val; for (i=0 ; i<3 ; i++) { val = v[i]; if (val < mins[i]) mins[i] = val; if (val > maxs[i]) maxs[i] = val; } } void ClearBounds (vec3_t mins, vec3_t maxs) { mins[0] = mins[1] = mins[2] = FLT_MAX; maxs[0] = maxs[1] = maxs[2] = -FLT_MAX; } void Mod_SortShaders(model_t *mod) { //surely this isn't still needed? texture_t *textemp; int i, j; //sort loadmodel->textures for (i = 0; i < mod->numtextures; i++) { for (j = i+1; j < mod->numtextures; j++) { if ((mod->textures[i]->shader && mod->textures[j]->shader) && (mod->textures[j]->shader->sort < mod->textures[i]->shader->sort)) { textemp = mod->textures[j]; mod->textures[j] = mod->textures[i]; mod->textures[i] = textemp; } } } } #ifdef Q2BSPS qbyte *ReadPCXPalette(qbyte *buf, int len, qbyte *out); #ifdef SERVERONLY #define Host_Error SV_Error #endif extern qbyte *mod_base; #define capsuledist(dist,plane,mins,maxs) \ case shape_iscapsule: \ dist = DotProduct(trace_up, plane->normal); \ dist = dist*(trace_capsulesize[(dist<0)?1:2]) - trace_capsulesize[0]; \ dist = plane->dist - dist; \ break; unsigned char d_q28to24table[1024]; /* typedef struct q2csurface_s { char name[16]; int flags; int value; } q2csurface_t; */ typedef struct q2mapsurface_s // used internally due to name len probs //ZOID { q2csurface_t c; char rname[32]; } q2mapsurface_t; typedef struct { char shader[64]; int brushNum; int visibleSide; // the brush side that ray tests need to clip against (-1 == none) } dfog_t; typedef struct { mplane_t *plane; q2mapsurface_t *surface; } q2cbrushside_t; typedef struct { int contents; int numsides; q2cbrushside_t *brushside; int checkcount; // to avoid repeated testings } q2cbrush_t; typedef struct { int numareaportals; int firstareaportal; int floodnum; // if two areas have equal floodnums, they are connected int floodvalid; } q2carea_t; typedef struct { int numareaportals[MAX_CM_AREAS]; } q3carea_t; typedef struct { vec3_t absmins, absmaxs; int numfacets; q2cbrush_t *facets; #define numbrushes numfacets #define brushes facets q2mapsurface_t *surface; int checkcount; // to avoid repeated testings } q3cpatch_t; typedef struct { vec3_t absmins, absmaxs; vecV_t *xyz_array; size_t numverts; index_t *indicies; size_t numincidies; q2mapsurface_t *surface; int checkcount; // to avoid repeated testings } q3cmesh_t; typedef struct { int facetype; int numverts; int firstvert; int shadernum; union { struct { int cp[2]; } patch; struct { int firstindex; int numindicies; } soup; }; } q3cface_t; typedef struct cmodel_s { vec3_t mins, maxs; vec3_t origin; // for sounds or lights mnode_t *headnode; mleaf_t *headleaf; int numsurfaces; int firstsurface; int firstbrush; //q3 submodels are considered small enough that you will never need to walk any sort of tree. int num_brushes;//the brushes are checked instead. } cmodel_t; /*used to trace*/ static int checkcount; typedef struct cminfo_s { int numbrushsides; q2cbrushside_t *brushsides; q2mapsurface_t *surfaces; int numleafbrushes; q2cbrush_t *leafbrushes[MAX_Q2MAP_LEAFBRUSHES]; int numcmodels; cmodel_t *cmodels; int numbrushes; q2cbrush_t *brushes; int numvisibility; q2dvis_t *q2vis; q3dvis_t *q3pvs; q3dvis_t *q3phs; int numareas; q2carea_t q2areas[MAX_Q2MAP_AREAS]; q3carea_t q3areas[MAX_CM_AREAS]; int numareaportals; q2dareaportal_t areaportals[MAX_Q2MAP_AREAPORTALS]; //list of mesh surfaces within the leaf q3cmesh_t cmeshes[MAX_CM_PATCHES]; int numcmeshes; int *leafcmeshes; int numleafcmeshes; int maxleafcmeshes; //FIXME: remove the below //(deprecated) patch collisions q3cpatch_t patches[MAX_CM_PATCHES]; int numpatches; int *leafpatches; int numleafpatches; int maxleafpatches; //FIXME: remove the above int floodvalid; qbyte portalopen[MAX_Q2MAP_AREAPORTALS]; //memset will work if it's a qbyte, really it should be a qboolean int mapisq3; } cminfo_t; static q2mapsurface_t nullsurface; cvar_t map_noareas = SCVAR("map_noareas", "0"); //1 for lack of mod support. cvar_t map_noCurves = SCVARF("map_noCurves", "0", CVAR_CHEAT); cvar_t map_autoopenportals = CVARD("map_autoopenportals", "0", "When set to 1, force-opens all area portals. Normally these start closed and are opened by doors when they move, but this requires the gamecode to signal this."); //1 for lack of mod support. cvar_t r_subdivisions = SCVAR("r_subdivisions", "2"); static int CM_NumInlineModels (model_t *model); static cmodel_t *CM_InlineModel (model_t *model, char *name); void CM_InitBoxHull (void); static void FloodAreaConnections (cminfo_t *prv); static int numvertexes; static vecV_t *map_verts; //3points static vec2_t *map_vertstmexcoords; static vec2_t *map_vertlstmexcoords[MAXRLIGHTMAPS]; static vec4_t *map_colors4f_array[MAXRLIGHTMAPS]; static vec3_t *map_normals_array; //static vec3_t *map_svector_array; //static vec3_t *map_tvector_array; static index_t *map_surfindexes; static int map_numsurfindexes; q3cface_t *map_faces; static int numfaces; int PlaneTypeForNormal ( vec3_t normal ) { vec_t ax, ay, az; // NOTE: should these have an epsilon around 1.0? if ( normal[0] >= 1.0) return PLANE_X; if ( normal[1] >= 1.0 ) return PLANE_Y; if ( normal[2] >= 1.0 ) return PLANE_Z; ax = fabs( normal[0] ); ay = fabs( normal[1] ); az = fabs( normal[2] ); if ( ax >= ay && ax >= az ) return PLANE_ANYX; if ( ay >= ax && ay >= az ) return PLANE_ANYY; return PLANE_ANYZ; } void CategorizePlane ( mplane_t *plane ) { int i; plane->signbits = 0; plane->type = PLANE_ANYZ; for (i = 0; i < 3; i++) { if (plane->normal[i] < 0) plane->signbits |= 1<normal[i] == 1.0f) plane->type = i; } plane->type = PlaneTypeForNormal(plane->normal); } void PlaneFromPoints ( vec3_t verts[3], mplane_t *plane ) { vec3_t v1, v2; VectorSubtract( verts[1], verts[0], v1 ); VectorSubtract( verts[2], verts[0], v2 ); CrossProduct( v2, v1, plane->normal ); VectorNormalize( plane->normal ); plane->dist = DotProduct( verts[0], plane->normal ); } qboolean BoundsIntersect (vec3_t mins1, vec3_t maxs1, vec3_t mins2, vec3_t maxs2) { return (mins1[0] <= maxs2[0] && mins1[1] <= maxs2[1] && mins1[2] <= maxs2[2] && maxs1[0] >= mins2[0] && maxs1[1] >= mins2[1] && maxs1[2] >= mins2[2]); } /* =============== Patch_FlatnessTest =============== */ static int Patch_FlatnessTest( float maxflat2, const float *point0, const float *point1, const float *point2 ) { float d; int ft0, ft1; vec3_t t, n; vec3_t v1, v2, v3; VectorSubtract( point2, point0, n ); if( !VectorNormalize( n ) ) return 0; VectorSubtract( point1, point0, t ); d = -DotProduct( t, n ); VectorMA( t, d, n, t ); if( DotProduct( t, t ) < maxflat2 ) return 0; VectorAvg( point1, point0, v1 ); VectorAvg( point2, point1, v2 ); VectorAvg( v1, v2, v3 ); ft0 = Patch_FlatnessTest( maxflat2, point0, v1, v3 ); ft1 = Patch_FlatnessTest( maxflat2, v3, v2, point2 ); return 1 + (int)( floor( max( ft0, ft1 ) ) + 0.5f ); } /* =============== Patch_GetFlatness =============== */ void Patch_GetFlatness( float maxflat, const float *points, int comp, const int *patch_cp, int *flat ) { int i, p, u, v; float maxflat2 = maxflat * maxflat; flat[0] = flat[1] = 0; for( v = 0; v < patch_cp[1] - 1; v += 2 ) { for( u = 0; u < patch_cp[0] - 1; u += 2 ) { p = v * patch_cp[0] + u; i = Patch_FlatnessTest( maxflat2, &points[p*comp], &points[( p+1 )*comp], &points[( p+2 )*comp] ); flat[0] = max( flat[0], i ); i = Patch_FlatnessTest( maxflat2, &points[( p+patch_cp[0] )*comp], &points[( p+patch_cp[0]+1 )*comp], &points[( p+patch_cp[0]+2 )*comp] ); flat[0] = max( flat[0], i ); i = Patch_FlatnessTest( maxflat2, &points[( p+2*patch_cp[0] )*comp], &points[( p+2*patch_cp[0]+1 )*comp], &points[( p+2*patch_cp[0]+2 )*comp] ); flat[0] = max( flat[0], i ); i = Patch_FlatnessTest( maxflat2, &points[p*comp], &points[( p+patch_cp[0] )*comp], &points[( p+2*patch_cp[0] )*comp] ); flat[1] = max( flat[1], i ); i = Patch_FlatnessTest( maxflat2, &points[( p+1 )*comp], &points[( p+patch_cp[0]+1 )*comp], &points[( p+2*patch_cp[0]+1 )*comp] ); flat[1] = max( flat[1], i ); i = Patch_FlatnessTest( maxflat2, &points[( p+2 )*comp], &points[( p+patch_cp[0]+2 )*comp], &points[( p+2*patch_cp[0]+2 )*comp] ); flat[1] = max( flat[1], i ); } } } /* =============== Patch_Evaluate_QuadricBezier =============== */ static void Patch_Evaluate_QuadricBezier( float t, const vec_t *point0, const vec_t *point1, const vec_t *point2, vec_t *out, int comp ) { int i; vec_t qt = t * t; vec_t dt = 2.0f * t, tt, tt2; tt = 1.0f - dt + qt; tt2 = dt - 2.0f * qt; for( i = 0; i < comp; i++ ) out[i] = point0[i] * tt + point1[i] * tt2 + point2[i] * qt; } /* =============== Patch_Evaluate =============== */ void Patch_Evaluate( const vec_t *p, const int *numcp, const int *tess, vec_t *dest, int comp ) { int num_patches[2], num_tess[2]; int index[3], dstpitch, i, u, v, x, y; float s, t, step[2]; vec_t *tvec, *tvec2; const vec_t *pv[3][3]; vec4_t v1, v2, v3; num_patches[0] = numcp[0] / 2; num_patches[1] = numcp[1] / 2; dstpitch = ( num_patches[0] * tess[0] + 1 ) * comp; step[0] = 1.0f / (float)tess[0]; step[1] = 1.0f / (float)tess[1]; for( v = 0; v < num_patches[1]; v++ ) { // last patch has one more row if( v < num_patches[1] - 1 ) num_tess[1] = tess[1]; else num_tess[1] = tess[1] + 1; for( u = 0; u < num_patches[0]; u++ ) { // last patch has one more column if( u < num_patches[0] - 1 ) num_tess[0] = tess[0]; else num_tess[0] = tess[0] + 1; index[0] = ( v * numcp[0] + u ) * 2; index[1] = index[0] + numcp[0]; index[2] = index[1] + numcp[0]; // current 3x3 patch control points for( i = 0; i < 3; i++ ) { pv[i][0] = &p[( index[0]+i ) * comp]; pv[i][1] = &p[( index[1]+i ) * comp]; pv[i][2] = &p[( index[2]+i ) * comp]; } tvec = dest + v * tess[1] * dstpitch + u * tess[0] * comp; for( y = 0, t = 0.0f; y < num_tess[1]; y++, t += step[1], tvec += dstpitch ) { Patch_Evaluate_QuadricBezier( t, pv[0][0], pv[0][1], pv[0][2], v1, comp ); Patch_Evaluate_QuadricBezier( t, pv[1][0], pv[1][1], pv[1][2], v2, comp ); Patch_Evaluate_QuadricBezier( t, pv[2][0], pv[2][1], pv[2][2], v3, comp ); for( x = 0, tvec2 = tvec, s = 0.0f; x < num_tess[0]; x++, s += step[0], tvec2 += comp ) Patch_Evaluate_QuadricBezier( s, v1, v2, v3, tvec2, comp ); } } } } #define PLANE_NORMAL_EPSILON 0.00001 #define PLANE_DIST_EPSILON 0.01 static qboolean ComparePlanes( const vec3_t p1normal, vec_t p1dist, const vec3_t p2normal, vec_t p2dist ) { if( fabs( p1normal[0] - p2normal[0] ) < PLANE_NORMAL_EPSILON && fabs( p1normal[1] - p2normal[1] ) < PLANE_NORMAL_EPSILON && fabs( p1normal[2] - p2normal[2] ) < PLANE_NORMAL_EPSILON && fabs( p1dist - p2dist ) < PLANE_DIST_EPSILON ) return true; return false; } static void SnapVector( vec3_t normal ) { int i; for( i = 0; i < 3; i++ ) { if( fabs( normal[i] - 1 ) < PLANE_NORMAL_EPSILON ) { VectorClear( normal ); normal[i] = 1; break; } if( fabs( normal[i] + 1 ) < PLANE_NORMAL_EPSILON ) { VectorClear( normal ); normal[i] = -1; break; } } } #define Q_rint( x ) ( ( x ) < 0 ? ( (int)( ( x )-0.5f ) ) : ( (int)( ( x )+0.5f ) ) ) static void SnapPlane( vec3_t normal, vec_t *dist ) { SnapVector( normal ); if( fabs( *dist - Q_rint( *dist ) ) < PLANE_DIST_EPSILON ) { *dist = Q_rint( *dist ); } } /* =============================================================================== PATCH LOADING =============================================================================== */ #define MAX_FACET_PLANES 32 #define cm_subdivlevel 15 /* * CM_CreateFacetFromPoints */ static int CM_CreateFacetFromPoints(q2cbrush_t *facet, vec3_t *verts, int numverts, q2mapsurface_t *shaderref, mplane_t *brushplanes ) { int i, j; int axis, dir; vec3_t normal, mins, maxs; float d, dist; mplane_t mainplane; vec3_t vec, vec2; int numbrushplanes; // set default values for brush facet->numsides = 0; facet->brushside = NULL; facet->contents = shaderref->c.value; // calculate plane for this triangle PlaneFromPoints( verts, &mainplane ); if( ComparePlanes( mainplane.normal, mainplane.dist, vec3_origin, 0 ) ) return 0; // test a quad case if( numverts > 3 ) { d = DotProduct( verts[3], mainplane.normal ) - mainplane.dist; if( d < -0.1 || d > 0.1 ) return 0; if( 0 ) { vec3_t v[3]; mplane_t plane; // try different combinations of planes for( i = 1; i < 4; i++ ) { VectorCopy( verts[i], v[0] ); VectorCopy( verts[( i+1 )%4], v[1] ); VectorCopy( verts[( i+2 )%4], v[2] ); PlaneFromPoints( v, &plane ); if( fabs( DotProduct( mainplane.normal, plane.normal ) ) < 0.9 ) return 0; } } } numbrushplanes = 0; // add front plane SnapPlane( mainplane.normal, &mainplane.dist ); VectorCopy( mainplane.normal, brushplanes[numbrushplanes].normal ); brushplanes[numbrushplanes].dist = mainplane.dist; numbrushplanes++; // calculate mins & maxs ClearBounds( mins, maxs ); for( i = 0; i < numverts; i++ ) AddPointToBounds( verts[i], mins, maxs ); // add the axial planes for( axis = 0; axis < 3; axis++ ) { for( dir = -1; dir <= 1; dir += 2 ) { for( i = 0; i < numbrushplanes; i++ ) { if( brushplanes[i].normal[axis] == dir ) break; } if( i == numbrushplanes ) { VectorClear( normal ); normal[axis] = dir; if( dir == 1 ) dist = maxs[axis]; else dist = -mins[axis]; VectorCopy( normal, brushplanes[numbrushplanes].normal ); brushplanes[numbrushplanes].dist = dist; numbrushplanes++; } } } // add the edge bevels for( i = 0; i < numverts; i++ ) { j = ( i + 1 ) % numverts; // k = ( i + 2 ) % numverts; VectorSubtract( verts[i], verts[j], vec ); if( VectorNormalize( vec ) < 0.5 ) continue; SnapVector( vec ); for( j = 0; j < 3; j++ ) { if( vec[j] == 1 || vec[j] == -1 ) break; // axial } if( j != 3 ) continue; // only test non-axial edges // try the six possible slanted axials from this edge for( axis = 0; axis < 3; axis++ ) { for( dir = -1; dir <= 1; dir += 2 ) { // construct a plane VectorClear( vec2 ); vec2[axis] = dir; CrossProduct( vec, vec2, normal ); if( VectorNormalize( normal ) < 0.5 ) continue; dist = DotProduct( verts[i], normal ); for( j = 0; j < numbrushplanes; j++ ) { // if this plane has already been used, skip it if( ComparePlanes( brushplanes[j].normal, brushplanes[j].dist, normal, dist ) ) break; } if( j != numbrushplanes ) continue; // if all other points are behind this plane, it is a proper edge bevel for( j = 0; j < numverts; j++ ) { if( j != i ) { d = DotProduct( verts[j], normal ) - dist; if( d > 0.1 ) break; // point in front: this plane isn't part of the outer hull } } if( j != numverts ) continue; // add this plane VectorCopy( normal, brushplanes[numbrushplanes].normal ); brushplanes[numbrushplanes].dist = dist; numbrushplanes++; if( numbrushplanes == MAX_FACET_PLANES ) break; } } } return ( facet->numsides = numbrushplanes ); } /* * CM_CreatePatch */ static void CM_CreatePatch(model_t *loadmodel, q3cpatch_t *patch, q2mapsurface_t *shaderref, const vec_t *verts, const int *patch_cp ) { int step[2], size[2], flat[2]; int i, j, k ,u, v; int numsides, totalsides; q2cbrush_t *facets, *facet; vecV_t *points; vec3_t tverts[4]; qbyte *data; mplane_t *brushplanes; patch->surface = shaderref; // find the degree of subdivision in the u and v directions Patch_GetFlatness( cm_subdivlevel, verts, sizeof(vecV_t)/sizeof(vec_t), patch_cp, flat ); step[0] = 1 << flat[0]; step[1] = 1 << flat[1]; size[0] = ( patch_cp[0] >> 1 ) * step[0] + 1; size[1] = ( patch_cp[1] >> 1 ) * step[1] + 1; if( size[0] <= 0 || size[1] <= 0 ) return; data = BZ_Malloc( size[0] * size[1] * sizeof( vecV_t ) + ( size[0]-1 ) * ( size[1]-1 ) * 2 * ( sizeof( q2cbrush_t ) + 32 * sizeof( mplane_t ) ) ); points = ( vecV_t * )data; data += size[0] * size[1] * sizeof( vecV_t ); facets = ( q2cbrush_t * )data; data += ( size[0]-1 ) * ( size[1]-1 ) * 2 * sizeof( q2cbrush_t ); brushplanes = ( mplane_t * )data; data += ( size[0]-1 ) * ( size[1]-1 ) * 2 * MAX_FACET_PLANES * sizeof( mplane_t ); // fill in Patch_Evaluate(verts, patch_cp, step, points[0], sizeof(vecV_t)/sizeof(vec_t)); totalsides = 0; patch->numfacets = 0; patch->facets = NULL; ClearBounds( patch->absmins, patch->absmaxs ); // create a set of facets for( v = 0; v < size[1]-1; v++ ) { for( u = 0; u < size[0]-1; u++ ) { i = v * size[0] + u; VectorCopy( points[i], tverts[0] ); VectorCopy( points[i + size[0]], tverts[1] ); VectorCopy( points[i + size[0] + 1], tverts[2] ); VectorCopy( points[i + 1], tverts[3] ); for( i = 0; i < 4; i++ ) AddPointToBounds( tverts[i], patch->absmins, patch->absmaxs ); // try to create one facet from a quad numsides = CM_CreateFacetFromPoints( &facets[patch->numfacets], tverts, 4, shaderref, brushplanes + totalsides ); if( !numsides ) { // create two facets from triangles VectorCopy( tverts[3], tverts[2] ); numsides = CM_CreateFacetFromPoints( &facets[patch->numfacets], tverts, 3, shaderref, brushplanes + totalsides ); if( numsides ) { totalsides += numsides; patch->numfacets++; } VectorCopy( tverts[2], tverts[0] ); VectorCopy( points[v *size[0] + u + size[0] + 1], tverts[2] ); numsides = CM_CreateFacetFromPoints( &facets[patch->numfacets], tverts, 3, shaderref, brushplanes + totalsides ); } if( numsides ) { totalsides += numsides; patch->numfacets++; } } } if (patch->numfacets) { qbyte *data; data = ZG_Malloc(&loadmodel->memgroup, patch->numfacets * sizeof( q2cbrush_t ) + totalsides * ( sizeof( q2cbrushside_t ) + sizeof( mplane_t ) )); patch->facets = ( q2cbrush_t * )data; data += patch->numfacets * sizeof( q2cbrush_t ); memcpy( patch->facets, facets, patch->numfacets * sizeof( q2cbrush_t ) ); for( i = 0, k = 0, facet = patch->facets; i < patch->numfacets; i++, facet++ ) { mplane_t *planes; q2cbrushside_t *s; facet->brushside = ( q2cbrushside_t * )data; data += facet->numsides * sizeof( q2cbrushside_t ); planes = ( mplane_t * )data; data += facet->numsides * sizeof( mplane_t ); for( j = 0, s = facet->brushside; j < facet->numsides; j++, s++ ) { planes[j] = brushplanes[k++]; s->plane = &planes[j]; SnapPlane( s->plane->normal, &s->plane->dist ); CategorizePlane( s->plane ); s->surface = shaderref; } } for( i = 0; i < 3; i++ ) { // spread the mins / maxs by a pixel patch->absmins[i] -= 1; patch->absmaxs[i] += 1; } } BZ_Free( points ); } //====================================================== /* ================= CM_CreatePatchesForLeafs ================= */ qboolean CM_CreatePatchesForLeafs (model_t *loadmodel, cminfo_t *prv) { int i, j, k; mleaf_t *leaf; q3cface_t *face; q2mapsurface_t *surf; q3cpatch_t *patch; q3cmesh_t *cmesh; int *checkout = alloca(sizeof(int)*numfaces); if (map_noCurves.ival) return true; memset (checkout, -1, sizeof(int)*numfaces); for (i = 0, leaf = loadmodel->leafs; i < loadmodel->numleafs; i++, leaf++) { leaf->numleafpatches = 0; leaf->firstleafpatch = prv->numleafpatches; leaf->numleafcmeshes = 0; leaf->firstleafcmesh = prv->numleafcmeshes; if (leaf->cluster == -1) continue; for (j=0 ; jnummarksurfaces ; j++) { k = leaf->firstmarksurface[j] - loadmodel->surfaces; if (k >= numfaces) { Con_Printf (CON_ERROR "CM_CreatePatchesForLeafs: corrupt map\n"); break; } face = &map_faces[k]; if (face->numverts <= 0) continue; if (face->shadernum < 0 || face->shadernum >= loadmodel->numtextures) continue; surf = &prv->surfaces[face->shadernum]; if (!surf->c.value) //surface has no contents value, so can't ever block anything. continue; switch(face->facetype) { case MST_TRIANGLE_SOUP: if (!face->soup.numindicies) continue; //only enable mesh collisions if its meant to be enabled. //we haven't parsed any shaders, so we depend upon the stuff that the bsp compiler left lying around. if (!(surf->c.flags & q3bsp_surf_meshcollision_flag.ival) && !q3bsp_surf_meshcollision_force.ival) continue; if (prv->numleafcmeshes >= prv->maxleafcmeshes) { prv->maxleafcmeshes *= 2; prv->maxleafcmeshes += 16; if (prv->numleafcmeshes > prv->maxleafcmeshes) { //detect overflow Con_Printf (CON_ERROR "CM_CreateCMeshesForLeafs: map is insanely huge!\n"); return false; } prv->leafcmeshes = realloc(prv->leafcmeshes, sizeof(*prv->leafcmeshes) * prv->maxleafcmeshes); } // the patch was already built if (checkout[k] != -1) { prv->leafcmeshes[prv->numleafcmeshes] = checkout[k]; cmesh = &prv->cmeshes[checkout[k]]; } else { if (prv->numcmeshes >= MAX_CM_PATCHES) { Con_Printf (CON_ERROR "CM_CreatePatchesForLeafs: map has too many patches\n"); return false; } cmesh = &prv->cmeshes[prv->numcmeshes]; prv->leafcmeshes[prv->numleafcmeshes] = prv->numcmeshes; checkout[k] = prv->numcmeshes++; //gcc warns without this cast cmesh->surface = surf; cmesh->numverts = face->numverts; cmesh->numincidies = face->soup.numindicies; cmesh->xyz_array = ZG_Malloc(&loadmodel->memgroup, cmesh->numverts * sizeof(*cmesh->xyz_array) + cmesh->numincidies * sizeof(*cmesh->indicies)); cmesh->indicies = (index_t*)(cmesh->xyz_array + cmesh->numverts); VectorCopy(map_verts[face->firstvert+0], cmesh->xyz_array[0]); VectorCopy(cmesh->xyz_array[0], cmesh->absmaxs); VectorCopy(cmesh->xyz_array[0], cmesh->absmins); for (k = 1; k < cmesh->numverts; k++) { VectorCopy(map_verts[face->firstvert+k], cmesh->xyz_array[k]); AddPointToBounds(cmesh->xyz_array[k], cmesh->absmins, cmesh->absmaxs); } for (k = 0; k < cmesh->numincidies; k++) cmesh->indicies[k] = map_surfindexes[face->soup.firstindex+k]; } leaf->contents |= surf->c.value; leaf->numleafcmeshes++; prv->numleafcmeshes++; break; case MST_PATCH: if (face->patch.cp[0] <= 0 || face->patch.cp[1] <= 0) continue; if ( !surf->c.value || (surf->c.flags & Q3SURF_NONSOLID) ) continue; if (prv->numleafpatches >= prv->maxleafpatches) { prv->maxleafpatches *= 2; prv->maxleafpatches += 16; if (prv->numleafpatches > prv->maxleafpatches) { //detect overflow Con_Printf (CON_ERROR "CM_CreatePatchesForLeafs: map is insanely huge!\n"); return false; } prv->leafpatches = realloc(prv->leafpatches, sizeof(*prv->leafpatches) * prv->maxleafpatches); } // the patch was already built if (checkout[k] != -1) { prv->leafpatches[prv->numleafpatches] = checkout[k]; patch = &prv->patches[checkout[k]]; } else { if (prv->numpatches >= MAX_CM_PATCHES) { Con_Printf (CON_ERROR "CM_CreatePatchesForLeafs: map has too many patches\n"); return false; } patch = &prv->patches[prv->numpatches]; prv->leafpatches[prv->numleafpatches] = prv->numpatches; checkout[k] = prv->numpatches++; //gcc warns without this cast CM_CreatePatch (loadmodel, patch, surf, (const vec_t *)(map_verts + face->firstvert), face->patch.cp ); } leaf->contents |= patch->surface->c.value; leaf->numleafpatches++; prv->numleafpatches++; break; } } } return true; } /* =============================================================================== MAP LOADING =============================================================================== */ /* ================= CMod_LoadSubmodels ================= */ qboolean CModQ2_LoadSubmodels (model_t *loadmodel, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)loadmodel->meshinfo; q2dmodel_t *in; cmodel_t *out; int i, j, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no models\n"); return false; } if (count > SANITY_MAX_Q2MAP_MODELS) { Con_Printf (CON_ERROR "Map has too many models\n"); return false; } out = prv->cmodels = ZG_Malloc(&loadmodel->memgroup, count * sizeof(*prv->cmodels)); prv->numcmodels = count; for (i=0 ; imins[j] = LittleFloat (in->mins[j]) - 1; out->maxs[j] = LittleFloat (in->maxs[j]) + 1; out->origin[j] = LittleFloat (in->origin[j]); } out->headnode = loadmodel->nodes + LittleLong (in->headnode); out->firstsurface = LittleLong (in->firstface); out->numsurfaces = LittleLong (in->numfaces); } AddPointToBounds(prv->cmodels[0].mins, loadmodel->mins, loadmodel->maxs); AddPointToBounds(prv->cmodels[0].maxs, loadmodel->mins, loadmodel->maxs); return true; } /* ================= CMod_LoadSurfaces ================= */ qboolean CModQ2_LoadSurfaces (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; q2texinfo_t *in; q2mapsurface_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no surfaces\n"); return false; } // if (count > MAX_Q2MAP_TEXINFO) // Host_Error ("Map has too many surfaces"); mod->numtexinfo = count; out = prv->surfaces = ZG_Malloc(&mod->memgroup, count * sizeof(*prv->surfaces)); for ( i=0 ; ic.name, in->texture, sizeof(out->c.name)); Q_strncpyz (out->rname, in->texture, sizeof(out->rname)); out->c.flags = LittleLong (in->flags); out->c.value = LittleLong (in->value); } return true; } #ifndef SERVERONLY texture_t *Mod_LoadWall(model_t *loadmodel, char *mapname, char *texname, char *shadername, unsigned int imageflags) { char name[MAX_QPATH]; q2miptex_t replacementwal; texture_t *tex; q2miptex_t *wal; image_t *base; Q_snprintfz (name, sizeof(name), "textures/%s.wal", texname); wal = (void *)FS_LoadMallocFile (name, NULL); if (!wal) { wal = &replacementwal; memset(wal, 0, sizeof(*wal)); Q_strncpyz(wal->name, texname, sizeof(wal->name)); wal->width = 64; wal->height = 64; } wal->width = LittleLong(wal->width); wal->height = LittleLong(wal->height); { int i; for (i = 0; i < MIPLEVELS; i++) wal->offsets[i] = LittleLong(wal->offsets[i]); } wal->flags = LittleLong(wal->flags); wal->contents = LittleLong(wal->contents); wal->value = LittleLong(wal->value); tex = ZG_Malloc(&loadmodel->memgroup, sizeof(texture_t)); tex->width = wal->width; tex->height = wal->height; if (!tex->width || !tex->height || wal == &replacementwal) { imageflags |= IF_LOADNOW; //make sure the size is known BEFORE it returns. if (wal->offsets[0]) base = R_LoadReplacementTexture(wal->name, "bmodels", imageflags, (qbyte *)wal+wal->offsets[0], wal->width, wal->height, TF_SOLID8); else base = R_LoadReplacementTexture(wal->name, "bmodels", imageflags, NULL, 0, 0, TF_INVALID); } else base = NULL; if (wal == &replacementwal) { if (base) { if (base->status == TEX_LOADED||base->status==TEX_LOADING) { tex->width = base->width; tex->height = base->height; } else Con_Printf("Unable to load textures/%s.wal\n", wal->name); } } else { unsigned int size = (wal->width>>0)*(wal->height>>0) + (wal->width>>1)*(wal->height>>1) + (wal->width>>2)*(wal->height>>2) + (wal->width>>3)*(wal->height>>3); tex->mips[0] = BZ_Malloc(size); tex->palette = host_basepal; tex->mips[1] = tex->mips[0] + (wal->width>>0)*(wal->height>>0); tex->mips[2] = tex->mips[1] + (wal->width>>1)*(wal->height>>1); tex->mips[3] = tex->mips[2] + (wal->width>>2)*(wal->height>>2); memcpy(tex->mips[0], (qbyte *)wal + wal->offsets[0], (wal->width>>0)*(wal->height>>0)); memcpy(tex->mips[1], (qbyte *)wal + wal->offsets[1], (wal->width>>1)*(wal->height>>1)); memcpy(tex->mips[2], (qbyte *)wal + wal->offsets[2], (wal->width>>2)*(wal->height>>2)); memcpy(tex->mips[3], (qbyte *)wal + wal->offsets[3], (wal->width>>3)*(wal->height>>3)); BZ_Free(wal); } return tex; } qboolean CModQ2_LoadTexInfo (model_t *mod, qbyte *mod_base, lump_t *l, char *mapname) //yes I know these load from the same place { q2texinfo_t *in; mtexinfo_t *out; int i, j, count; char name[MAX_QPATH], *lwr; char sname[MAX_QPATH]; int texcount; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf ("MOD_LoadBmodel: funny lump size in %s\n", mod->name); return false; } count = l->filelen / sizeof(*in); out = ZG_Malloc(&mod->memgroup, count*sizeof(*out)); mod->textures = ZG_Malloc(&mod->memgroup, sizeof(texture_t *)*count); texcount = 0; mod->texinfo = out; mod->numtexinfo = count; if (in[0].nexttexinfo != -1) { for (i = 1; i < count && in[i].nexttexinfo == in[0].nexttexinfo; i++) ; if (i == count) { Con_Printf("WARNING: invalid texture animations in \"%s\"\n", mod->name); for (i = 0; i < count; i++) in[i].nexttexinfo = -1; } } for ( i=0 ; iflags = LittleLong (in->flags); for (j=0 ; j<4 ; j++) out->vecs[0][j] = LittleFloat (in->vecs[0][j]); for (j=0 ; j<4 ; j++) out->vecs[1][j] = LittleFloat (in->vecs[1][j]); out->vecscale[0] = 1.0/Length (out->vecs[0]); out->vecscale[1] = 1.0/Length (out->vecs[1]); if (out->flags & TI_SKY) Q_snprintfz(sname, sizeof(sname), "sky/%s", in->texture); else if (out->flags & (TI_WARP|TI_FLOWING)) Q_snprintfz(sname, sizeof(sname), "warp/%s", in->texture); else if (out->flags & (TI_TRANS33|TI_TRANS66)) Q_snprintfz(sname, sizeof(sname), "trans/%s", in->texture); else Q_snprintfz(sname, sizeof(sname), "wall/%s", in->texture); if (out->flags & TI_FLOWING) Q_strncatz(sname, "#FLOW", sizeof(sname)); if (out->flags & TI_TRANS66) Q_strncatz(sname, "#ALPHA=0.66", sizeof(sname)); else if (out->flags & TI_TRANS33) Q_strncatz(sname, "#ALPHA=0.33", sizeof(sname)); else if (out->flags & (TI_WARP|TI_FLOWING)) Q_strncatz(sname, "#ALPHA=1", sizeof(sname)); if (in->nexttexinfo != -1) //used to ensure non-looping and looping don't conflict and get confused. Q_strncatz(sname, "#ANIMLOOP", sizeof(sname)); //in q2, 'TEX_SPECIAL' is TI_LIGHT, and that conflicts. out->flags &= ~TI_LIGHT; if (out->flags & (TI_SKY|TI_TRANS33|TI_TRANS66|TI_WARP|TI_FLOWING)) out->flags |= TEX_SPECIAL; //compact the textures. for (j=0; j < texcount; j++) { if (!strcmp(sname, mod->textures[j]->name)) { out->texture = mod->textures[j]; break; } } if (j == texcount) //load a new one { for (lwr = in->texture; *lwr; lwr++) { if (*lwr >= 'A' && *lwr <= 'Z') *lwr = *lwr - 'A' + 'a'; } out->texture = Mod_LoadWall (mod, mapname, in->texture, sname, (out->flags&TEX_SPECIAL)?0:IF_NOALPHA); if (!out->texture || !out->texture->width || !out->texture->height) { out->texture = ZG_Malloc(&mod->memgroup, sizeof(texture_t) + 16*16+8*8+4*4+2*2); Con_Printf (CON_WARNING "Couldn't load %s\n", name); memcpy(out->texture, r_notexture_mip, sizeof(texture_t) + 16*16+8*8+4*4+2*2); } Q_strncpyz(out->texture->name, sname, sizeof(out->texture->name)); mod->textures[texcount++] = out->texture; } // if (in->nexttexinfo != -1) // { // Con_DPrintf("FIXME: %s should animate to %s\n", in->texture, (in->nexttexinfo+(q2texinfo_t *)(mod_base + l->fileofs))->texture); // } } in = (void *)(mod_base + l->fileofs); out = mod->texinfo; for (i=0 ; i= 0 && in[i].nexttexinfo < count) out[i].texture->anim_next = out[in[i].nexttexinfo].texture; } for (i=0 ; ianim_next) continue; out[i].texture->anim_total = 1; for (tex = out[i].texture->anim_next ; tex && tex != out[i].texture && out[i].texture->anim_total < 100; tex=tex->anim_next) out[i].texture->anim_total++; } mod->numtextures = texcount; Mod_SortShaders(mod); return true; } #endif /* void CalcSurfaceExtents (msurface_t *s) { float mins[2], maxs[2], val; int i,j, e; mvertex_t *v; mtexinfo_t *tex; int bmins[2], bmaxs[2]; mins[0] = mins[1] = 999999; maxs[0] = maxs[1] = -99999; tex = s->texinfo; for (i=0 ; inumedges ; i++) { e = loadmodel->surfedges[s->firstedge+i]; if (e >= 0) v = &loadmodel->vertexes[loadmodel->edges[e].v[0]]; else v = &loadmodel->vertexes[loadmodel->edges[-e].v[1]]; for (j=0 ; j<2 ; j++) { val = v->position[0] * tex->vecs[j][0] + v->position[1] * tex->vecs[j][1] + v->position[2] * tex->vecs[j][2] + tex->vecs[j][3]; if (val < mins[j]) mins[j] = val; if (val > maxs[j]) maxs[j] = val; } } for (i=0 ; i<2 ; i++) { bmins[i] = floor(mins[i]/16); bmaxs[i] = ceil(maxs[i]/16); s->texturemins[i] = bmins[i] * 16; s->extents[i] = (bmaxs[i] - bmins[i]) * 16; // if ( !(tex->flags & TEX_SPECIAL) && s->extents[i] > 512 )// 256 ) // Sys_Error ("Bad surface extents"); } }*/ /* ================= Mod_LoadFaces ================= */ #ifndef SERVERONLY qboolean CModQ2_LoadFaces (model_t *mod, qbyte *mod_base, lump_t *l, qboolean lightofsisdouble) { dsface_t *in; msurface_t *out; int i, count, surfnum; int planenum, side; int ti; unsigned short lmshift, lmscale; char buf[64]; lmscale = atoi(Mod_ParseWorldspawnKey(mod->entities, "lightmap_scale", buf, sizeof(buf))); if (!lmscale) lmshift = LMSHIFT_DEFAULT; else { for(lmshift = 0; lmscale > 1; lmshift++) lmscale >>= 1; } in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf ("MOD_LoadBmodel: funny lump size in %s\n",mod->name); return false; } count = l->filelen / sizeof(*in); out = ZG_Malloc(&mod->memgroup, (count+6)*sizeof(*out)); //spare for skybox mod->surfaces = out; mod->numsurfaces = count; for ( surfnum=0 ; surfnumfirstedge = LittleLong(in->firstedge); out->numedges = (unsigned short)LittleShort(in->numedges); out->flags = 0; planenum = (unsigned short)LittleShort(in->planenum); side = (unsigned short)LittleShort(in->side); if (side) out->flags |= SURF_PLANEBACK; out->plane = mod->planes + planenum; ti = (unsigned short)LittleShort (in->texinfo); if (ti < 0 || ti >= mod->numtexinfo) { Con_Printf (CON_ERROR "MOD_LoadBmodel: bad texinfo number\n"); return false; } out->texinfo = mod->texinfo + ti; #ifndef SERVERONLY if (out->texinfo->flags & TI_SKY) { out->flags |= SURF_DRAWSKY; } if (out->texinfo->flags & TI_WARP) { out->flags |= SURF_DRAWTURB|SURF_DRAWTILED; } #endif out->lmshift = lmshift; CalcSurfaceExtents (mod, out); // lighting info for (i=0 ; istyles[i] = in->styles[i]; i = LittleLong(in->lightofs); if (i == -1) out->samples = NULL; else if (lightofsisdouble) out->samples = mod->lightdata + (i/2); else out->samples = mod->lightdata + i; // set the drawing flags if (out->texinfo->flags & TI_WARP) { out->flags |= SURF_DRAWTURB; for (i=0 ; i<2 ; i++) { out->extents[i] = 16384; out->texturemins[i] = -8192; } } } return true; } #endif void CMod_SetParent (mnode_t *node, mnode_t *parent) { node->parent = parent; if (node->contents != -1) return; CMod_SetParent (node->children[0], node); CMod_SetParent (node->children[1], node); } /* ================= CMod_LoadNodes ================= */ qboolean CModQ2_LoadNodes (model_t *mod, qbyte *mod_base, lump_t *l) { q2dnode_t *in; int child; mnode_t *out; int i, j, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map has no nodes\n"); return false; } if (count > SANITY_MAX_MAP_NODES) { Con_Printf (CON_ERROR "Map has too many nodes\n"); return false; } out = ZG_Malloc(&mod->memgroup, sizeof(mnode_t)*count); mod->nodes = out; mod->numnodes = count; for (i=0 ; iminmaxs[j] = LittleShort (in->mins[j]); out->minmaxs[3+j] = LittleShort (in->maxs[j]); } out->plane = mod->planes + LittleLong(in->planenum); out->firstsurface = (unsigned short)LittleShort (in->firstface); out->numsurfaces = (unsigned short)LittleShort (in->numfaces); out->contents = -1; // differentiate from leafs for (j=0 ; j<2 ; j++) { child = LittleLong (in->children[j]); out->childnum[j] = child; if (child < 0) out->children[j] = (mnode_t *)(mod->leafs + -1-child); else out->children[j] = mod->nodes + child; } } CMod_SetParent (mod->nodes, NULL); // sets nodes and leafs return true; } /* ================= CMod_LoadBrushes ================= */ qboolean CModQ2_LoadBrushes (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; q2dbrush_t *in; q2cbrush_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > SANITY_MAX_MAP_BRUSHES) { Con_Printf (CON_ERROR "Map has too many brushes"); return false; } prv->brushes = ZG_Malloc(&mod->memgroup, sizeof(*out) * (count+1)); out = prv->brushes; prv->numbrushes = count; for (i=0 ; ibrushside = &prv->brushsides[LittleLong(in->firstside)]; out->numsides = LittleLong(in->numsides); out->contents = LittleLong(in->contents); } return true; } /* ================= CMod_LoadLeafs ================= */ qboolean CModQ2_LoadLeafs (model_t *mod, qbyte *mod_base, lump_t *l) { int i, j; mleaf_t *out; q2dleaf_t *in; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no leafs\n"); return false; } // need to save space for box planes if (count > MAX_MAP_LEAFS) { Con_Printf (CON_ERROR "Map has too many leafs\n"); return false; } out = ZG_Malloc(&mod->memgroup, sizeof(*out) * (count+1)); mod->numclusters = 0; mod->leafs = out; mod->numleafs = count; for ( i=0 ; iminmaxs[j] = LittleShort (in->mins[j]); out->minmaxs[3+j] = LittleShort (in->maxs[j]); } out->contents = LittleLong (in->contents); out->cluster = (unsigned short)LittleShort (in->cluster); if (out->cluster == 0xffff) out->cluster = -1; out->area = (unsigned short)LittleShort (in->area); out->firstleafbrush = (unsigned short)LittleShort (in->firstleafbrush); out->numleafbrushes = (unsigned short)LittleShort (in->numleafbrushes); out->firstmarksurface = mod->marksurfaces + (unsigned short)LittleShort(in->firstleafface); out->nummarksurfaces = (unsigned short)LittleShort(in->numleaffaces); if (out->cluster >= mod->numclusters) mod->numclusters = out->cluster + 1; } out = mod->leafs; if (out[0].contents != Q2CONTENTS_SOLID) { Con_Printf (CON_ERROR "Map leaf 0 is not CONTENTS_SOLID\n"); return false; } return true; } /* ================= CMod_LoadPlanes ================= */ qboolean CModQ2_LoadPlanes (model_t *mod, qbyte *mod_base, lump_t *l) { int i, j; mplane_t *out; dplane_t *in; int count; int bits; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no planes\n"); return false; } // need to save space for box planes if (count >= SANITY_MAX_MAP_PLANES) { Con_Printf (CON_ERROR "Map has too many planes (%i)\n", count); return false; } mod->planes = out = ZG_Malloc(&mod->memgroup, sizeof(*out) * count); mod->numplanes = count; for ( i=0 ; inormal[j] = LittleFloat (in->normal[j]); if (out->normal[j] < 0) bits |= 1<dist = LittleFloat (in->dist); out->type = LittleLong (in->type); out->signbits = bits; } return true; } /* ================= CMod_LoadLeafBrushes ================= */ qboolean CModQ2_LoadLeafBrushes (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i; q2cbrush_t **out; unsigned short *in; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no planes\n"); return false; } // need to save space for box planes if (count > MAX_Q2MAP_LEAFBRUSHES) { Con_Printf (CON_ERROR "Map has too many leafbrushes\n"); return false; } out = prv->leafbrushes; prv->numleafbrushes = count; for ( i=0 ; ibrushes + (unsigned short)(short)LittleShort (*in); return true; } /* ================= CMod_LoadBrushSides ================= */ qboolean CModQ2_LoadBrushSides (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; unsigned int i, j; q2cbrushside_t *out; q2dbrushside_t *in; int count; int num; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); // need to save space for box planes if (count > SANITY_MAX_MAP_BRUSHSIDES) { Con_Printf (CON_ERROR "Map has too many brushsides (%i)\n", count); return false; } out = prv->brushsides = ZG_Malloc(&mod->memgroup, sizeof(*out) * count); prv->numbrushsides = count; for ( i=0 ; iplanenum); out->plane = &mod->planes[num]; j = (unsigned short)LittleShort (in->texinfo); if (j >= mod->numtexinfo) out->surface = &nullsurface; else out->surface = &prv->surfaces[j]; } return true; } /* ================= CMod_LoadAreas ================= */ qboolean CModQ2_LoadAreas (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i; q2carea_t *out; q2darea_t *in; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q2MAP_AREAS) { Con_Printf (CON_ERROR "Map has too many areas\n"); return false; } out = prv->q2areas; prv->numareas = count; for ( i=0 ; inumareaportals = LittleLong (in->numareaportals); out->firstareaportal = LittleLong (in->firstareaportal); out->floodvalid = 0; out->floodnum = 0; } return true; } /* ================= CMod_LoadAreaPortals ================= */ qboolean CModQ2_LoadAreaPortals (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i; q2dareaportal_t *out; q2dareaportal_t *in; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q2MAP_AREAS) { Con_Printf (CON_ERROR "Map has too many areas\n"); return false; } out = prv->areaportals; prv->numareaportals = count; for ( i=0 ; iportalnum = LittleLong (in->portalnum); out->otherarea = LittleLong (in->otherarea); } return true; } /* ================= CMod_LoadVisibility ================= */ qboolean CModQ2_LoadVisibility (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i; prv->numvisibility = l->filelen; // if (l->filelen > MAX_Q2MAP_VISIBILITY) // { // Con_Printf (CON_ERROR "Map has too large visibility lump\n"); // return false; // } prv->q2vis = ZG_Malloc(&mod->memgroup, l->filelen); memcpy (prv->q2vis, mod_base + l->fileofs, l->filelen); mod->vis = prv->q2vis; prv->q2vis->numclusters = LittleLong (prv->q2vis->numclusters); for (i=0 ; iq2vis->numclusters ; i++) { prv->q2vis->bitofs[i][0] = LittleLong (prv->q2vis->bitofs[i][0]); prv->q2vis->bitofs[i][1] = LittleLong (prv->q2vis->bitofs[i][1]); } mod->numclusters = prv->q2vis->numclusters; return true; } /* ================= CMod_LoadEntityString ================= */ void CMod_LoadEntityString (model_t *mod, qbyte *mod_base, lump_t *l) { // if (l->filelen > MAX_Q2MAP_ENTSTRING) // Host_Error ("Map has too large entity lump"); mod->entities = ZG_Malloc(&mod->memgroup, l->filelen+1); memcpy (mod->entities, mod_base + l->fileofs, l->filelen); } #ifdef Q3BSPS qboolean CModQ3_LoadMarksurfaces (model_t *loadmodel, qbyte *mod_base, lump_t *l) { int i, j, count; int *in; msurface_t **out; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "CModQ3_LoadMarksurfaces: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out)); loadmodel->marksurfaces = out; loadmodel->nummarksurfaces = count; for ( i=0 ; i= loadmodel->numsurfaces) { Con_Printf (CON_ERROR "Mod_ParseMarksurfaces: bad surface number\n"); return false; } out[i] = loadmodel->surfaces + j; } return true; } qboolean CModQ3_LoadSubmodels (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; q3dmodel_t *in; cmodel_t *out; int i, j, count; q2cbrush_t **leafbrush; mleaf_t *bleaf; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no models\n"); return false; } if (count > SANITY_MAX_Q2MAP_MODELS) { Con_Printf (CON_ERROR "Map has too many models\n"); return false; } out = prv->cmodels = ZG_Malloc(&mod->memgroup, count * sizeof(*prv->cmodels)); prv->numcmodels = count; if (count > 1) bleaf = ZG_Malloc(&mod->memgroup, (count-1) * sizeof(*bleaf)); else bleaf = NULL; prv->mapisq3 = true; for (i=0 ; imins[j] = LittleFloat (in->mins[j]) - 1; out->maxs[j] = LittleFloat (in->maxs[j]) + 1; out->origin[j] = (out->maxs[j] + out->mins[j])/2; } out->firstsurface = LittleLong (in->firstsurface); out->numsurfaces = LittleLong (in->num_surfaces); if (!i) { out->headnode = mod->nodes; out->headleaf = NULL; } else { //create a new leaf to hold the brushes and be directly clipped out->headleaf = bleaf; out->headnode = NULL; // out->firstbrush = LittleLong(in->firstbrush); // out->num_brushes = LittleLong(in->num_brushes); bleaf->numleafbrushes = LittleLong ( in->num_brushes ); bleaf->firstleafbrush = prv->numleafbrushes; bleaf->contents = 0; leafbrush = &prv->leafbrushes[prv->numleafbrushes]; for ( j = 0; j < bleaf->numleafbrushes; j++, leafbrush++ ) { *leafbrush = prv->brushes + LittleLong ( in->firstbrush ) + j; bleaf->contents |= (*leafbrush)->contents; } prv->numleafbrushes += bleaf->numleafbrushes; bleaf++; } //submodels } AddPointToBounds(prv->cmodels[0].mins, mod->mins, mod->maxs); AddPointToBounds(prv->cmodels[0].maxs, mod->mins, mod->maxs); return true; } qboolean CModQ3_LoadShaders (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; dq3shader_t *in; q2mapsurface_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no shaders\n"); return false; } // else if (count > MAX_Q2MAP_TEXINFO) // Host_Error ("Map has too many shaders"); mod->numtexinfo = count; out = prv->surfaces = ZG_Malloc(&mod->memgroup, count*sizeof(*out)); mod->texinfo = ZG_Malloc(&mod->memgroup, sizeof(mtexinfo_t)*(count*2+1)); //+1 is 'noshader' for flares. mod->numtextures = count*2+1; mod->textures = ZG_Malloc(&mod->memgroup, sizeof(texture_t*)*(count*2+1)); for ( i=0 ; itexinfo[i].texture = ZG_Malloc(&mod->memgroup, sizeof(texture_t)); Q_strncpyz(mod->texinfo[i].texture->name, in->shadername, sizeof(mod->texinfo[i].texture->name)); mod->textures[i] = mod->texinfo[i].texture; out->c.flags = LittleLong ( in->surfflags ); out->c.value = LittleLong ( in->contents ); } for ( i=0, in-=count ; itexinfo[i+count].texture = ZG_Malloc(&mod->memgroup, sizeof(texture_t)); Q_strncpyz(mod->texinfo[i+count].texture->name, in->shadername, sizeof(mod->texinfo[i+count].texture->name)); mod->textures[i+count] = mod->texinfo[i+count].texture; } //and for flares, which are not supported at this time. mod->texinfo[count*2].texture = ZG_Malloc(&mod->memgroup, sizeof(texture_t)); Q_strncpyz(mod->texinfo[count*2].texture->name, "noshader", sizeof(mod->texinfo[count*2].texture->name)); mod->textures[count*2] = mod->texinfo[count*2].texture; return true; } qboolean CModQ3_LoadVertexes (model_t *mod, qbyte *mod_base, lump_t *l) { q3dvertex_t *in; vecV_t *out; vec3_t *nout; //, *sout, *tout; int i, count, j; vec2_t *lmout, *stout; vec4_t *cout; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "CMOD_LoadVertexes: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q3MAP_VERTEXES) { Con_Printf (CON_ERROR "Map has too many vertexes\n"); return false; } out = ZG_Malloc(&mod->memgroup, count*sizeof(*out)); stout = ZG_Malloc(&mod->memgroup, count*sizeof(*stout)); lmout = ZG_Malloc(&mod->memgroup, count*sizeof(*lmout)); cout = ZG_Malloc(&mod->memgroup, count*sizeof(*cout)); nout = ZG_Malloc(&mod->memgroup, count*sizeof(*nout)); // sout = ZG_Malloc(&mod->memgroup, count*sizeof(*nout)); // tout = ZG_Malloc(&mod->memgroup, count*sizeof(*nout)); map_verts = out; map_vertstmexcoords = stout; for (i = 0; i < MAXRLIGHTMAPS; i++) { map_vertlstmexcoords[i] = lmout; map_colors4f_array[i] = cout; } map_normals_array = nout; // map_svector_array = sout; // map_tvector_array = tout; numvertexes = count; for ( i=0 ; ipoint[j] ); nout[i][j] = LittleFloat (in->normal[j]); } for ( j=0 ; j < 2 ; j++) { stout[i][j] = LittleFloat ( ((float *)in->texcoords)[j] ); lmout[i][j] = LittleFloat ( ((float *)in->texcoords)[j+2] ); } for ( j=0 ; j < 4 ; j++) { cout[i][j] = in->color[j]/255.0f; } } return true; } qboolean CModRBSP_LoadVertexes (model_t *mod, qbyte *mod_base, lump_t *l) { rbspvertex_t *in; vecV_t *out; vec3_t *nout; //, *sout, *tout; int i, count, j; vec2_t *lmout, *stout; vec4_t *cout; int sty; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "CMOD_LoadVertexes: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > MAX_Q3MAP_VERTEXES) { Con_Printf (CON_ERROR "Map has too many vertexes\n"); return false; } out = ZG_Malloc(&mod->memgroup, count*sizeof(*out)); stout = ZG_Malloc(&mod->memgroup, count*sizeof(*stout)); lmout = ZG_Malloc(&mod->memgroup, MAXRLIGHTMAPS*count*sizeof(*lmout)); cout = ZG_Malloc(&mod->memgroup, MAXRLIGHTMAPS*count*sizeof(*cout)); nout = ZG_Malloc(&mod->memgroup, count*sizeof(*nout)); // sout = ZG_Malloc(&mod->memgroup, count*sizeof(*sout)); // tout = ZG_Malloc(&mod->memgroup, count*sizeof(*tout)); map_verts = out; map_vertstmexcoords = stout; for (sty = 0; sty < MAXRLIGHTMAPS; sty++) { map_vertlstmexcoords[sty] = lmout + sty*count; map_colors4f_array[sty] = cout + sty*count; } map_normals_array = nout; // map_svector_array = sout; // map_tvector_array = tout; numvertexes = count; for ( i=0 ; ipoint[j] ); nout[i][j] = LittleFloat (in->normal[j]); } for ( j=0 ; j < 2 ; j++) { stout[i][j] = LittleFloat ( ((float *)in->texcoords)[j] ); for (sty = 0; sty < MAXRLIGHTMAPS; sty++) map_vertlstmexcoords[sty][i][j] = LittleFloat ( ((float *)in->texcoords)[j+2*(sty+1)] ); } for (sty = 0; sty < MAXRLIGHTMAPS; sty++) { for ( j=0 ; j < 4 ; j++) { map_colors4f_array[sty][i][j] = in->color[sty][j]/255.0f; } } } return true; } qboolean CModQ3_LoadIndexes (model_t *loadmodel, qbyte *mod_base, lump_t *l) { int i, count; int *in; index_t *out; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n", loadmodel->name); return false; } count = l->filelen / sizeof(*in); if (count < 1 || count >= MAX_Q3MAP_INDICES) { Con_Printf (CON_ERROR "MOD_LoadBmodel: too many indicies in %s: %i\n", loadmodel->name, count); return false; } out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out)); map_surfindexes = out; map_numsurfindexes = count; for ( i=0 ; ifileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > SANITY_MAX_MAP_FACES) { Con_Printf (CON_ERROR "Map has too many faces\n"); return false; } out = BZ_Malloc ( count*sizeof(*out) ); map_faces = out; numfaces = count; for ( i=0 ; ifacetype = LittleLong ( in->facetype ); out->shadernum = LittleLong ( in->shadernum ); out->numverts = LittleLong ( in->num_vertices ); out->firstvert = LittleLong ( in->firstvertex ); if (out->facetype == MST_PATCH) { out->patch.cp[0] = LittleLong ( in->patchwidth ); out->patch.cp[1] = LittleLong ( in->patchheight ); } else { out->soup.firstindex = LittleLong(in->firstindex); out->soup.numindicies = LittleLong(in->num_indexes); } } mod->numsurfaces = i; return true; } qboolean CModRBSP_LoadFaces (model_t *mod, qbyte *mod_base, lump_t *l) { rbspface_t *in; q3cface_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > SANITY_MAX_MAP_FACES) { Con_Printf (CON_ERROR "Map has too many faces\n"); return false; } out = BZ_Malloc ( count*sizeof(*out) ); map_faces = out; numfaces = count; for ( i=0 ; ifacetype = LittleLong ( in->facetype ); out->shadernum = LittleLong ( in->shadernum ); out->numverts = LittleLong ( in->num_vertices ); out->firstvert = LittleLong ( in->firstvertex ); if (out->facetype == MST_PATCH) { out->patch.cp[0] = LittleLong ( in->patchwidth ); out->patch.cp[1] = LittleLong ( in->patchheight ); } else { out->soup.firstindex = LittleLong(in->firstindex); out->soup.numindicies = LittleLong(in->num_indexes); } } mod->numsurfaces = i; return true; } #ifndef SERVERONLY /* ================= Mod_LoadFogs ================= */ qboolean CModQ3_LoadFogs (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; dfog_t *in; mfog_t *out; q2cbrush_t *brush; q2cbrushside_t *visibleside, *brushsides; int i, j, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n", mod->name); return false; } count = l->filelen / sizeof(*in); out = ZG_Malloc(&mod->memgroup, count*sizeof(*out)); mod->fogs = out; mod->numfogs = count; for ( i=0 ; ivisibleSide ) == -1 ) { continue; } brush = prv->brushes + LittleLong ( in->brushNum ); brushsides = brush->brushside; visibleside = brushsides + LittleLong ( in->visibleSide ); out->visibleplane = visibleside->plane; Q_strncpyz(out->shadername, in->shader, sizeof(out->shadername)); out->numplanes = brush->numsides; out->planes = ZG_Malloc(&mod->memgroup, out->numplanes*sizeof(cplane_t *)); for ( j = 0; j < out->numplanes; j++ ) { out->planes[j] = brushsides[j].plane; } } return true; } mfog_t *Mod_FogForOrigin(model_t *wmodel, vec3_t org) { int i, j; mfog_t *ret; float dot; if (!wmodel || wmodel->loadstate != MLS_LOADED) return NULL; for ( i=0 , ret=wmodel->fogs ; inumfogs ; i++, ret++) { if (!ret->shader) continue; for (j = 0; j < ret->numplanes; j++) { dot = DotProduct(ret->planes[j]->normal, org); if (dot - ret->planes[j]->dist > 0) break; } if (j == ret->numplanes) { return ret; } } return NULL; } //Convert a patch in to a list of glpolys #define MAX_ARRAY_VERTS 65535 index_t tempIndexesArray[MAX_ARRAY_VERTS*6]; void GL_SizePatch(mesh_t *mesh, int patchwidth, int patchheight, int numverts, int firstvert) { int patch_cp[2], step[2], size[2], flat[2]; float subdivlevel; patch_cp[0] = patchwidth; patch_cp[1] = patchheight; if (patch_cp[0] <= 0 || patch_cp[1] <= 0 ) { mesh->numindexes = 0; mesh->numvertexes = 0; return; } subdivlevel = r_subdivisions.value; if ( subdivlevel < 1 ) subdivlevel = 1; // find the degree of subdivision in the u and v directions Patch_GetFlatness ( subdivlevel, map_verts[firstvert], sizeof(vecV_t)/sizeof(vec_t), patch_cp, flat ); // allocate space for mesh step[0] = (1 << flat[0]); step[1] = (1 << flat[1]); size[0] = (patch_cp[0] / 2) * step[0] + 1; size[1] = (patch_cp[1] / 2) * step[1] + 1; mesh->numvertexes = size[0] * size[1]; mesh->numindexes = (size[0]-1) * (size[1]-1) * 6; } //mesh_t *GL_CreateMeshForPatch ( model_t *mod, q3dface_t *surf ) void GL_CreateMeshForPatch (model_t *mod, mesh_t *mesh, int patchwidth, int patchheight, int numverts, int firstvert) { int numindexes, patch_cp[2], step[2], size[2], flat[2], i, u, v, p; index_t *indexes; float subdivlevel; int sty; patch_cp[0] = patchwidth; patch_cp[1] = patchheight; if (patch_cp[0] <= 0 || patch_cp[1] <= 0 ) { mesh->numindexes = 0; mesh->numvertexes = 0; return; } subdivlevel = r_subdivisions.value; if ( subdivlevel < 1 ) subdivlevel = 1; // find the degree of subdivision in the u and v directions Patch_GetFlatness ( subdivlevel, map_verts[firstvert], sizeof(vecV_t)/sizeof(vec_t), patch_cp, flat ); // allocate space for mesh step[0] = (1 << flat[0]); step[1] = (1 << flat[1]); size[0] = (patch_cp[0] / 2) * step[0] + 1; size[1] = (patch_cp[1] / 2) * step[1] + 1; numverts = size[0] * size[1]; if ( numverts < 0 || numverts > MAX_ARRAY_VERTS ) { mesh->numindexes = 0; mesh->numvertexes = 0; return; } if (mesh->numvertexes != numverts) { mesh->numindexes = 0; mesh->numvertexes = 0; return; } // fill in Patch_Evaluate ( map_verts[firstvert], patch_cp, step, mesh->xyz_array[0], sizeof(vecV_t)/sizeof(vec_t)); for (sty = 0; sty < MAXRLIGHTMAPS; sty++) { if (mesh->colors4f_array[sty]) Patch_Evaluate ( map_colors4f_array[sty][firstvert], patch_cp, step, mesh->colors4f_array[sty][0], 4 ); } Patch_Evaluate ( map_normals_array[firstvert], patch_cp, step, mesh->normals_array[0], 3 ); Patch_Evaluate ( map_vertstmexcoords[firstvert], patch_cp, step, mesh->st_array[0], 2 ); for (sty = 0; sty < MAXRLIGHTMAPS; sty++) { if (mesh->lmst_array[sty]) Patch_Evaluate ( map_vertlstmexcoords[sty][firstvert], patch_cp, step, mesh->lmst_array[sty][0], 2 ); } // compute new indexes avoiding adding invalid triangles numindexes = 0; indexes = tempIndexesArray; for (v = 0, i = 0; v < size[1]-1; v++) { for (u = 0; u < size[0]-1; u++, i += 6) { indexes[0] = p = v * size[0] + u; indexes[1] = p + size[0]; indexes[2] = p + 1; // if ( !VectorEquals(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[1]]) && // !VectorEquals(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[2]]) && // !VectorEquals(mesh->xyz_array[indexes[1]], mesh->xyz_array[indexes[2]]) ) { indexes += 3; numindexes += 3; } indexes[0] = p + 1; indexes[1] = p + size[0]; indexes[2] = p + size[0] + 1; // if ( !VectorEquals(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[1]]) && // !VectorEquals(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[2]]) && // !VectorEquals(mesh->xyz_array[indexes[1]], mesh->xyz_array[indexes[2]]) ) { indexes += 3; numindexes += 3; } } } // allocate and fill index table mesh->numindexes = numindexes; memcpy (mesh->indexes, tempIndexesArray, numindexes * sizeof(index_t) ); } void CModRBSP_BuildSurfMesh(model_t *mod, msurface_t *out, builddata_t *bd) { rbspface_t *in = (rbspface_t*)(bd+1); int idx = (out - mod->surfaces) - mod->firstmodelsurface; int sty; in += idx; if (LittleLong(in->facetype) == MST_PATCH) { GL_CreateMeshForPatch(mod, out->mesh, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex)); } else if (LittleLong(in->facetype) == MST_PLANAR || LittleLong(in->facetype) == MST_TRIANGLE_SOUP) { unsigned int fv = LittleLong(in->firstvertex), i; for (i = 0; i < out->mesh->numvertexes; i++) { VectorCopy(map_verts[fv + i], out->mesh->xyz_array[i]); Vector2Copy(map_vertstmexcoords[fv + i], out->mesh->st_array[i]); for (sty = 0; sty < MAXRLIGHTMAPS; sty++) { Vector2Copy(map_vertlstmexcoords[sty][fv + i], out->mesh->lmst_array[sty][i]); Vector4Copy(map_colors4f_array[sty][fv + i], out->mesh->colors4f_array[sty][i]); } VectorCopy(map_normals_array[fv + i], out->mesh->normals_array[i]); } fv = LittleLong(in->firstindex); for (i = 0; i < out->mesh->numindexes; i++) { out->mesh->indexes[i] = map_surfindexes[fv + i]; } } else { /* //flare int r, g, b; extern index_t r_quad_indexes[6]; static vec2_t st[4] = {{0,0},{0,1},{1,1},{1,0}}; mesh = out->mesh = (mesh_t *)Hunk_Alloc(sizeof(mesh_t)); mesh->xyz_array = (vecV_t *)Hunk_Alloc(sizeof(vecV_t)*4); mesh->colors4b_array = (byte_vec4_t *)Hunk_Alloc(sizeof(byte_vec4_t)*4); mesh->numvertexes = 4; mesh->indexes = r_quad_indexes; mesh->st_array = st; mesh->numindexes = 6; VectorCopy (in->lightmap_origin, mesh->xyz_array[0]); VectorCopy (in->lightmap_origin, mesh->xyz_array[1]); VectorCopy (in->lightmap_origin, mesh->xyz_array[2]); VectorCopy (in->lightmap_origin, mesh->xyz_array[3]); r = LittleFloat(in->lightmap_vecs[0][0]) * 255.0f; r = bound (0, r, 255); g = LittleFloat(in->lightmap_vecs[0][1]) * 255.0f; g = bound (0, g, 255); b = LittleFloat(in->lightmap_vecs[0][2]) * 255.0f; b = bound (0, b, 255); mesh->colors4b_array[0][0] = r; mesh->colors4b_array[0][1] = g; mesh->colors4b_array[0][2] = b; mesh->colors4b_array[0][3] = 255; Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[1]); Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[2]); Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[3]); */ } Mod_AccumulateMeshTextureVectors(out->mesh); Mod_NormaliseTextureVectors(out->mesh->normals_array, out->mesh->snormals_array, out->mesh->tnormals_array, out->mesh->numvertexes); } void CModQ3_BuildSurfMesh(model_t *mod, msurface_t *out, builddata_t *bd) { q3dface_t *in = (q3dface_t*)(bd+1); int idx = (out - mod->surfaces) - mod->firstmodelsurface; in += idx; if (LittleLong(in->facetype) == MST_PATCH) { GL_CreateMeshForPatch(mod, out->mesh, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex)); } else if (LittleLong(in->facetype) == MST_PLANAR || LittleLong(in->facetype) == MST_TRIANGLE_SOUP) { unsigned int fv = LittleLong(in->firstvertex), i; for (i = 0; i < out->mesh->numvertexes; i++) { VectorCopy(map_verts[fv + i], out->mesh->xyz_array[i]); Vector2Copy(map_vertstmexcoords[fv + i], out->mesh->st_array[i]); Vector2Copy(map_vertlstmexcoords[0][fv + i], out->mesh->lmst_array[0][i]); Vector4Copy(map_colors4f_array[0][fv + i], out->mesh->colors4f_array[0][i]); VectorCopy(map_normals_array[fv + i], out->mesh->normals_array[i]); } fv = LittleLong(in->firstindex); for (i = 0; i < out->mesh->numindexes; i++) { out->mesh->indexes[i] = map_surfindexes[fv + i]; } } else { /* //flare int r, g, b; extern index_t r_quad_indexes[6]; static vec2_t st[4] = {{0,0},{0,1},{1,1},{1,0}}; mesh = out->mesh = (mesh_t *)Hunk_Alloc(sizeof(mesh_t)); mesh->xyz_array = (vecV_t *)Hunk_Alloc(sizeof(vecV_t)*4); mesh->colors4b_array = (byte_vec4_t *)Hunk_Alloc(sizeof(byte_vec4_t)*4); mesh->numvertexes = 4; mesh->indexes = r_quad_indexes; mesh->st_array = st; mesh->numindexes = 6; VectorCopy (in->lightmap_origin, mesh->xyz_array[0]); VectorCopy (in->lightmap_origin, mesh->xyz_array[1]); VectorCopy (in->lightmap_origin, mesh->xyz_array[2]); VectorCopy (in->lightmap_origin, mesh->xyz_array[3]); r = LittleFloat(in->lightmap_vecs[0][0]) * 255.0f; r = bound (0, r, 255); g = LittleFloat(in->lightmap_vecs[0][1]) * 255.0f; g = bound (0, g, 255); b = LittleFloat(in->lightmap_vecs[0][2]) * 255.0f; b = bound (0, b, 255); mesh->colors4b_array[0][0] = r; mesh->colors4b_array[0][1] = g; mesh->colors4b_array[0][2] = b; mesh->colors4b_array[0][3] = 255; Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[1]); Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[2]); Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[3]); */ } Mod_AccumulateMeshTextureVectors(out->mesh); Mod_NormaliseTextureVectors(out->mesh->normals_array, out->mesh->snormals_array, out->mesh->tnormals_array, out->mesh->numvertexes); } qboolean CModQ3_LoadRFaces (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; extern cvar_t r_vertexlight; q3dface_t *in; msurface_t *out; mplane_t *pl; int facetype; int count; int surfnum; int fv; int sty; mesh_t *mesh; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",mod->name); return false; } count = l->filelen / sizeof(*in); out = ZG_Malloc(&mod->memgroup, count*sizeof(*out)); pl = ZG_Malloc(&mod->memgroup, count*sizeof(*pl));//create a new array of planes for speed. mesh = ZG_Malloc(&mod->memgroup, count*sizeof(*mesh)); mod->surfaces = out; mod->numsurfaces = count; for (surfnum = 0; surfnum < count; surfnum++, out++, in++, pl++) { out->plane = pl; facetype = LittleLong(in->facetype); out->texinfo = mod->texinfo + LittleLong(in->shadernum); if (in->facetype == MST_FLARE) out->texinfo = mod->texinfo + mod->numtexinfo*2; else if (in->facetype == MST_TRIANGLE_SOUP || r_vertexlight.value) out->texinfo += mod->numtexinfo; //soup/vertex light uses a different version of the same shader (with all the lightmaps collapsed) out->lightmaptexturenums[0] = LittleLong(in->lightmapnum); out->light_s[0] = LittleLong(in->lightmap_x); out->light_t[0] = LittleLong(in->lightmap_y); out->styles[0] = 255; for (sty = 1; sty < MAXRLIGHTMAPS; sty++) { out->styles[sty] = 255; out->lightmaptexturenums[sty] = -1; } out->lmshift = LMSHIFT_DEFAULT; out->extents[0] = (LittleLong(in->lightmap_width)-1)<lmshift; out->extents[1] = (LittleLong(in->lightmap_height)-1)<lmshift; out->samples=NULL; if (mod->lightmaps.count < out->lightmaptexturenums[0]+1) mod->lightmaps.count = out->lightmaptexturenums[0]+1; fv = LittleLong(in->firstvertex); { vec3_t v[3]; VectorCopy(map_verts[fv+0], v[0]); VectorCopy(map_verts[fv+1], v[1]); VectorCopy(map_verts[fv+2], v[2]); PlaneFromPoints(v, pl); CategorizePlane(pl); } if (prv->surfaces[LittleLong(in->shadernum)].c.value == 0 || prv->surfaces[LittleLong(in->shadernum)].c.value & Q3CONTENTS_TRANSLUCENT) //q3dm10's thingie is 0 out->flags |= SURF_DRAWALPHA; if (mod->texinfo[LittleLong(in->shadernum)].flags & TI_SKY) out->flags |= SURF_DRAWSKY; if (LittleLong(in->fognum) == -1 || !mod->numfogs) out->fog = NULL; else out->fog = mod->fogs + LittleLong(in->fognum); if (prv->surfaces[LittleLong(in->shadernum)].c.flags & (Q3SURF_NODRAW | Q3SURF_SKIP)) { out->mesh = &mesh[surfnum]; out->mesh->numindexes = 0; out->mesh->numvertexes = 0; } else if (facetype == MST_PATCH) { out->mesh = &mesh[surfnum]; GL_SizePatch(out->mesh, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex)); } else if (facetype == MST_PLANAR || facetype == MST_TRIANGLE_SOUP) { out->mesh = &mesh[surfnum]; out->mesh->numindexes = LittleLong(in->num_indexes); out->mesh->numvertexes = LittleLong(in->num_vertices); /* Mod_AccumulateMeshTextureVectors(out->mesh); */ } else { out->mesh = &mesh[surfnum]; out->mesh->numindexes = 6; out->mesh->numvertexes = 4; } } Mod_SortShaders(mod); return true; } qboolean CModRBSP_LoadRFaces (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; extern cvar_t r_vertexlight; rbspface_t *in; msurface_t *out; mplane_t *pl; int facetype; int count; int surfnum; int fv; int j; mesh_t *mesh; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",mod->name); return false; } count = l->filelen / sizeof(*in); out = ZG_Malloc(&mod->memgroup, count*sizeof(*out)); pl = ZG_Malloc(&mod->memgroup, count*sizeof(*pl));//create a new array of planes for speed. mesh = ZG_Malloc(&mod->memgroup, count*sizeof(*mesh)); mod->surfaces = out; mod->numsurfaces = count; for (surfnum = 0; surfnum < count; surfnum++, out++, in++, pl++) { out->plane = pl; facetype = LittleLong(in->facetype); out->texinfo = mod->texinfo + LittleLong(in->shadernum); if (facetype == MST_FLARE) out->texinfo = mod->texinfo + mod->numtexinfo*2; else if (facetype == MST_TRIANGLE_SOUP || r_vertexlight.value) out->texinfo += mod->numtexinfo; //soup/vertex light uses a different version of the same shader (with all the lightmaps collapsed) for (j = 0; j < 4 && j < MAXRLIGHTMAPS; j++) { out->lightmaptexturenums[j] = LittleLong(in->lightmapnum[j]); out->light_s[j] = LittleLong(in->lightmap_offs[0][j]); out->light_t[j] = LittleLong(in->lightmap_offs[1][j]); out->styles[j] = in->lm_styles[j]; if (mod->lightmaps.count < out->lightmaptexturenums[j]+1) mod->lightmaps.count = out->lightmaptexturenums[j]+1; } out->lmshift = LMSHIFT_DEFAULT; out->extents[0] = (LittleLong(in->lightmap_width)-1)<lmshift; out->extents[1] = (LittleLong(in->lightmap_height)-1)<lmshift; out->samples=NULL; fv = LittleLong(in->firstvertex); { vec3_t v[3]; VectorCopy(map_verts[fv+0], v[0]); VectorCopy(map_verts[fv+1], v[1]); VectorCopy(map_verts[fv+2], v[2]); PlaneFromPoints(v, pl); CategorizePlane(pl); } if (prv->surfaces[in->shadernum].c.value == 0 || prv->surfaces[in->shadernum].c.value & Q3CONTENTS_TRANSLUCENT) //q3dm10's thingie is 0 out->flags |= SURF_DRAWALPHA; if (mod->texinfo[in->shadernum].flags & TI_SKY) out->flags |= SURF_DRAWSKY; if (in->fognum < 0 || in->fognum >= mod->numfogs) out->fog = NULL; else out->fog = mod->fogs + in->fognum; if (prv->surfaces[LittleLong(in->shadernum)].c.flags & (Q3SURF_NODRAW | Q3SURF_SKIP)) { out->mesh = &mesh[surfnum]; out->mesh->numindexes = 0; out->mesh->numvertexes = 0; } else if (facetype == MST_PATCH) { out->mesh = &mesh[surfnum]; GL_SizePatch(out->mesh, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex)); } else if (facetype == MST_PLANAR || facetype == MST_TRIANGLE_SOUP) { out->mesh = &mesh[surfnum]; out->mesh->numindexes = LittleLong(in->num_indexes); out->mesh->numvertexes = LittleLong(in->num_vertices); /* Mod_AccumulateMeshTextureVectors(out->mesh); */ } else { out->mesh = &mesh[surfnum]; out->mesh->numindexes = 6; out->mesh->numvertexes = 4; } } Mod_SortShaders(mod); return true; } #endif qboolean CModQ3_LoadNodes (model_t *loadmodel, qbyte *mod_base, lump_t *l) { int i, j, count, p; q3dnode_t *in; mnode_t *out; //dnode_t in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out)); if (count > SANITY_MAX_MAP_NODES) { Con_Printf (CON_ERROR "Too many nodes on map\n"); return false; } loadmodel->nodes = out; loadmodel->numnodes = count; for ( i=0 ; iminmaxs[j] = LittleLong (in->mins[j]); out->minmaxs[3+j] = LittleLong (in->maxs[j]); } AddPointToBounds(out->minmaxs, loadmodel->mins, loadmodel->maxs); AddPointToBounds(out->minmaxs+3, loadmodel->mins, loadmodel->maxs); p = LittleLong(in->plane); out->plane = loadmodel->planes + p; out->firstsurface = 0;//LittleShort (in->firstface); out->numsurfaces = 0;//LittleShort (in->numfaces); out->contents = -1; for (j=0 ; j<2 ; j++) { p = LittleLong (in->children[j]); out->childnum[j] = p; if (p >= 0) { out->children[j] = loadmodel->nodes + p; } else out->children[j] = (mnode_t *)(loadmodel->leafs + (-1 - p)); } } CMod_SetParent (loadmodel->nodes, NULL); // sets nodes and leafs return true; } qboolean CModQ3_LoadBrushes (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; q3dbrush_t *in; q2cbrush_t *out; int i, count; int shaderref; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count > SANITY_MAX_MAP_BRUSHES) { Con_Printf (CON_ERROR "Map has too many brushes"); return false; } prv->brushes = ZG_Malloc(&mod->memgroup, sizeof(*out) * (count+1)); out = prv->brushes; prv->numbrushes = count; for (i=0 ; ishadernum ); out->contents = prv->surfaces[shaderref].c.value; out->brushside = &prv->brushsides[LittleLong ( in->firstside )]; out->numsides = LittleLong ( in->num_sides ); } return true; } qboolean CModQ3_LoadLeafs (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i, j; mleaf_t *out; q3dleaf_t *in; int count; q2cbrush_t *brush; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no leafs\n"); return false; } // need to save space for box planes if (count > MAX_MAP_LEAFS) { Con_Printf (CON_ERROR "Too many leaves on map"); return false; } out = ZG_Malloc(&mod->memgroup, sizeof(*out) * (count+1)); mod->leafs = out; mod->numleafs = count; for ( i=0 ; iminmaxs[0+j] = LittleLong(in->mins[j]); out->minmaxs[3+j] = LittleLong(in->maxs[j]); } out->cluster = LittleLong(in->cluster); out->area = LittleLong(in->area); // out->firstleafface = LittleLong(in->firstleafsurface); // out->numleaffaces = LittleLong(in->num_leafsurfaces); out->contents = 0; out->firstleafbrush = LittleLong(in->firstleafbrush); out->numleafbrushes = LittleLong(in->num_leafbrushes); out->firstmarksurface = mod->marksurfaces + LittleLong(in->firstleafsurface); out->nummarksurfaces = LittleLong(in->num_leafsurfaces); if (out->minmaxs[0] > out->minmaxs[3+0] || out->minmaxs[1] > out->minmaxs[3+1] || out->minmaxs[2] > out->minmaxs[3+2])// || VectorEquals (out->minmaxs, out->minmaxs+3)) { out->nummarksurfaces = 0; } for (j=0 ; jnumleafbrushes ; j++) { brush = prv->leafbrushes[out->firstleafbrush + j]; out->contents |= brush->contents; } if (out->area >= prv->numareas) { prv->numareas = out->area + 1; } } return true; } qboolean CModQ3_LoadPlanes (model_t *loadmodel, qbyte *mod_base, lump_t *l) { int i, j; mplane_t *out; Q3PLANE_t *in; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); if (count > SANITY_MAX_MAP_PLANES) { Con_Printf (CON_ERROR "Too many planes on map (%i)\n", count); return false; } loadmodel->planes = out = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * count); loadmodel->numplanes = count; for ( i=0 ; inormal[j] = LittleFloat (in->n[j]); } out->dist = LittleFloat (in->d); CategorizePlane(out); } return true; } qboolean CModQ3_LoadLeafBrushes (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i; q2cbrush_t **out; int *in; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); if (count < 1) { Con_Printf (CON_ERROR "Map with no leafbrushes\n"); return false; } // need to save space for box planes if (count > MAX_Q2MAP_LEAFBRUSHES) { Con_Printf (CON_ERROR "Map has too many leafbrushes\n"); return false; } out = prv->leafbrushes; prv->numleafbrushes = count; for ( i=0 ; ibrushes + LittleLong (*in); return true; } qboolean CModQ3_LoadBrushSides (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i, j; q2cbrushside_t *out; q3dbrushside_t *in; int count; int num; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); // need to save space for box planes if (count > SANITY_MAX_MAP_BRUSHSIDES) { Con_Printf (CON_ERROR "Map has too many brushsides (%i)\n", count); return false; } out = prv->brushsides = ZG_Malloc(&mod->memgroup, sizeof(*out) * count); prv->numbrushsides = count; for ( i=0 ; iplanenum); out->plane = &mod->planes[num]; j = LittleLong (in->texinfo); if (j >= mod->numtexinfo) { Con_Printf (CON_ERROR "Bad brushside texinfo\n"); return false; } out->surface = &prv->surfaces[j]; } return true; } qboolean CModRBSP_LoadBrushSides (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i, j; q2cbrushside_t *out; rbspbrushside_t *in; int count; int num; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n"); return false; } count = l->filelen / sizeof(*in); // need to save space for box planes if (count > SANITY_MAX_MAP_BRUSHSIDES) { Con_Printf (CON_ERROR "Map has too many brushsides (%i)\n", count); return false; } out = prv->brushsides = ZG_Malloc(&mod->memgroup, sizeof(*out) * count); prv->numbrushsides = count; for ( i=0 ; iplanenum); out->plane = &mod->planes[num]; j = LittleLong (in->texinfo); if (j >= mod->numtexinfo) { Con_Printf (CON_ERROR "Bad brushside texinfo\n"); return false; } out->surface = &prv->surfaces[j]; } return true; } qboolean CModQ3_LoadVisibility (model_t *mod, qbyte *mod_base, lump_t *l) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; unsigned int numclusters; if (l->filelen == 0) { int i; numclusters = 0; for (i = 0; i < mod->numleafs; i++) if (numclusters <= mod->leafs[i].cluster) numclusters = mod->leafs[i].cluster+1; numclusters++; prv->q3pvs = ZG_Malloc(&mod->memgroup, sizeof(*prv->q3pvs) + (numclusters+7)/8 * numclusters); memset (prv->q3pvs, 0xff, sizeof(*prv->q3pvs) + (numclusters+7)/8 * numclusters); prv->q3pvs->numclusters = numclusters; prv->numvisibility = 0; prv->q3pvs->rowsize = (prv->q3pvs->numclusters+7)/8; } else { prv->numvisibility = l->filelen; prv->q3pvs = ZG_Malloc(&mod->memgroup, l->filelen); mod->vis = (q2dvis_t *)prv->q3pvs; memcpy (prv->q3pvs, mod_base + l->fileofs, l->filelen); numclusters = prv->q3pvs->numclusters = LittleLong (prv->q3pvs->numclusters); prv->q3pvs->rowsize = LittleLong (prv->q3pvs->rowsize); } mod->numclusters = numclusters; return true; } #ifndef SERVERONLY void CModQ3_LoadLighting (model_t *loadmodel, qbyte *mod_base, lump_t *l) { qbyte *in = mod_base + l->fileofs; qbyte *out; unsigned int samples = l->filelen; int m, s; int mapsize = loadmodel->lightmaps.width*loadmodel->lightmaps.height*3; int maps; extern cvar_t gl_overbright; extern qbyte lmgamma[256]; extern void BuildLightMapGammaTable (float g, float c); loadmodel->engineflags &= ~MDLF_RGBLIGHTING; //round up the samples, in case the last one is partial. maps = ((samples+mapsize-1)&~(mapsize-1)) / mapsize; //q3 maps have built in 4-fold overbright. //if we're not rendering with that, we need to brighten the lightmaps in order to keep the darker parts the same brightness. we loose the 2 upper bits. those bright areas become uniform and indistinct. gl_overbright.flags |= CVAR_LATCH; BuildLightMapGammaTable(1, (1<<(2-gl_overbright.ival))); if (!samples) return; loadmodel->engineflags |= MDLF_RGBLIGHTING; loadmodel->lightdata = out = ZG_Malloc(&loadmodel->memgroup, samples); //be careful here, q3bsp deluxemapping is done using interleaving. we want to unoverbright ONLY lightmaps and not deluxemaps. for (m = 0; m < maps; m++) { if (loadmodel->lightmaps.deluxemapping && (m & 1)) { //no gamma for deluxemap for(s = 0; s < mapsize; s+=3) { *out++ = in[0]; *out++ = in[1]; *out++ = in[2]; in += 3; } } else { for(s = 0; s < mapsize; s++) { *out++ = lmgamma[*in++]; } if (r_lightmap_saturation.value != 1.0f) SaturateR8G8B8(out - mapsize, mapsize, r_lightmap_saturation.value); } } } qboolean CModQ3_LoadLightgrid (model_t *loadmodel, qbyte *mod_base, lump_t *l) { dq3gridlight_t *in; dq3gridlight_t *out; q3lightgridinfo_t *grid; int count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } count = l->filelen / sizeof(*in); grid = ZG_Malloc(&loadmodel->memgroup, sizeof(q3lightgridinfo_t) + count*sizeof(*out)); grid->lightgrid = (dq3gridlight_t*)(grid+1); out = grid->lightgrid; loadmodel->lightgrid = grid; grid->numlightgridelems = count; // lightgrid is all 8 bit memcpy ( out, in, count*sizeof(*out) ); return true; } qboolean CModRBSP_LoadLightgrid (model_t *loadmodel, qbyte *mod_base, lump_t *elements, lump_t *indexes) { unsigned short *iin; rbspgridlight_t *ein; unsigned short *iout; rbspgridlight_t *eout; q3lightgridinfo_t *grid; int ecount; int icount; int i; ein = (void *)(mod_base + elements->fileofs); iin = (void *)(mod_base + indexes->fileofs); if (indexes->filelen % sizeof(*iin) || elements->filelen % sizeof(*ein)) { Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name); return false; } icount = indexes->filelen / sizeof(*iin); ecount = elements->filelen / sizeof(*ein); grid = ZG_Malloc(&loadmodel->memgroup, sizeof(q3lightgridinfo_t) + ecount*sizeof(*eout) + icount*sizeof(*iout)); grid->rbspelements = (rbspgridlight_t*)((char *)grid + sizeof(q3lightgridinfo_t)); grid->rbspindexes = (unsigned short*)((char *)grid + sizeof(q3lightgridinfo_t) + ecount*sizeof(*eout)); eout = grid->rbspelements; iout = grid->rbspindexes; loadmodel->lightgrid = grid; grid->numlightgridelems = icount; // elements are all 8 bit memcpy ( eout, ein, ecount*sizeof(*eout) ); for (i = 0; i < icount; i++) iout[i] = LittleShort(iin[i]); return true; } #endif #endif #ifndef SERVERONLY qbyte *ReadPCXPalette(qbyte *buf, int len, qbyte *out); int CM_GetQ2Palette (void) { char *f; size_t sz; sz = FS_LoadFile("pics/colormap.pcx", (void**)&f); if (!f) { Con_Printf (CON_WARNING "Couldn't find pics/colormap.pcx\n"); return -1; } if (!ReadPCXPalette(f, sz, d_q28to24table)) { Con_Printf (CON_WARNING "Couldn't read pics/colormap.pcx\n"); FS_FreeFile(f); return -1; } FS_FreeFile(f); #if 1 { float inf; qbyte palette[768]; qbyte *pal; int i; pal = d_q28to24table; for (i=0 ; i<768 ; i++) { inf = ((pal[i]+1)/256.0)*255 + 0.5; if (inf < 0) inf = 0; if (inf > 255) inf = 255; palette[i] = inf; } memcpy (d_q28to24table, palette, sizeof(palette)); } #endif return 0; } #endif void CM_OpenAllPortals(model_t *mod, char *ents) //this is a compleate hack. About as compleate as possible. { //q2 levels contain a thingie called area portals. Basically, doors can seperate two areas and //the engine knows when this portal is open, and weather to send ents from both sides of the door //or not. It's not just ents, but also walls. We want to just open them by default and hope the //progs knows how to close them. char style[8]; char name[64]; if (!map_autoopenportals.value) return; while(*ents) { if (*ents == '{') //an entity { ents++; *style = '\0'; *name = '\0'; while (*ents) { ents = COM_Parse(ents); if (!strcmp(com_token, "classname")) { ents = COM_ParseOut(ents, name, sizeof(name)); } else if (!strcmp(com_token, "style")) { ents = COM_ParseOut(ents, style, sizeof(style)); } else if (*com_token == '}') break; else ents = COM_Parse(ents); //other field ents++; } if (!strcmp(name, "func_areaportal")) { CMQ2_SetAreaPortalState(mod, atoi(style), true); } } ents++; } } #ifndef CLIENTONLY void CMQ3_CalcPHS (model_t *mod) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int rowbytes, rowwords; int i, j, k, l, index; int bitbyte; unsigned int *dest, *src; qbyte *scan; int count, vcount; int numclusters; qboolean buggytools = false; Con_DPrintf ("Building PHS...\n"); prv->q3phs = ZG_Malloc(&mod->memgroup, sizeof(*prv->q3phs) + prv->q3pvs->rowsize * prv->q3pvs->numclusters); rowwords = prv->q3pvs->rowsize / sizeof(int); rowbytes = prv->q3pvs->rowsize; memset ( prv->q3phs, 0, sizeof(*prv->q3phs) + prv->q3pvs->rowsize * prv->q3pvs->numclusters ); prv->q3phs->rowsize = prv->q3pvs->rowsize; prv->q3phs->numclusters = numclusters = prv->q3pvs->numclusters; if (!numclusters) return; vcount = 0; for (i=0 ; i>3] & (1<<(j&7)) ) { vcount++; } } } count = 0; scan = (qbyte *)prv->q3pvs->data; dest = (unsigned int *)(prv->q3phs->data); for (i=0 ; i= numclusters) { if (!buggytools) Con_Printf ("CM_CalcPHS: Bad bit(s) in PVS (%i >= %i)\n", index, numclusters); // pad bits should be 0 buggytools = true; } else { src = (unsigned int *)(prv->q3pvs->data) + index*rowwords; for (l=0 ; l>3] & (1<<(j&7)) ) count++; } Con_DPrintf ("Average clusters visible / hearable / total: %i / %i / %i\n" , vcount/numclusters, count/numclusters, numclusters); } #endif /* static qbyte *CM_LeafnumPVS (model_t *model, int leafnum, qbyte *buffer, unsigned int buffersize) { return CM_ClusterPVS(model, CM_LeafCluster(model, leafnum), buffer, buffersize); } */ #ifndef SERVERONLY #define GLQ2BSP_LightPointValues GLQ1BSP_LightPointValues extern int r_dlightframecount; static void Q2BSP_MarkLights (dlight_t *light, int bit, mnode_t *node) { mplane_t *splitplane; float dist; msurface_t *surf; int i; if (node->contents != -1) { mleaf_t *leaf = (mleaf_t *)node; msurface_t **mark; i = leaf->nummarksurfaces; mark = leaf->firstmarksurface; while(i--!=0) { surf = *mark++; if (surf->dlightframe != r_dlightframecount) { surf->dlightbits = 0; surf->dlightframe = r_dlightframecount; } surf->dlightbits |= bit; } return; } splitplane = node->plane; dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist; if (dist > light->radius) { Q2BSP_MarkLights (light, bit, node->children[0]); return; } if (dist < -light->radius) { Q2BSP_MarkLights (light, bit, node->children[1]); return; } // mark the polygons surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->dlightframe != r_dlightframecount) { surf->dlightbits = 0; surf->dlightframe = r_dlightframecount; } surf->dlightbits |= bit; } Q2BSP_MarkLights (light, bit, node->children[0]); Q2BSP_MarkLights (light, bit, node->children[1]); } #ifndef SERVERONLY static void GLR_Q2BSP_StainNode (mnode_t *node, float *parms) { mplane_t *splitplane; float dist; msurface_t *surf; int i; if (node->contents != -1) return; splitplane = node->plane; dist = DotProduct ((parms+1), splitplane->normal) - splitplane->dist; if (dist > (*parms)) { GLR_Q2BSP_StainNode (node->children[0], parms); return; } if (dist < (-*parms)) { GLR_Q2BSP_StainNode (node->children[1], parms); return; } // mark the polygons surf = cl.worldmodel->surfaces + node->firstsurface; for (i=0 ; inumsurfaces ; i++, surf++) { if (surf->flags&~(SURF_DONTWARP|SURF_PLANEBACK)) continue; Surf_StainSurf(surf, parms); } GLR_Q2BSP_StainNode (node->children[0], parms); GLR_Q2BSP_StainNode (node->children[1], parms); } #endif #endif void GLQ2BSP_LightPointValues(model_t *mod, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir); /* ================== CM_LoadMap Loads in the map and all submodels ================== */ static cmodel_t *CM_LoadMap (model_t *mod, qbyte *filein, size_t filelen, qboolean clientload, unsigned *checksum) { unsigned *buf; int i; q2dheader_t header; int length; static unsigned last_checksum; qboolean noerrors = true; model_t *wmod = mod; char loadname[32]; qbyte *mod_base = (qbyte *)filein; void (*buildmeshes)(model_t *mod, msurface_t *surf, builddata_t *cookie) = NULL; qbyte *facedata = NULL; unsigned int facesize = 0; cminfo_t *prv; COM_FileBase (mod->name, loadname, sizeof(loadname)); // free old stuff mod->meshinfo = prv = ZG_Malloc(&mod->memgroup, sizeof(*prv)); prv->numcmodels = 0; prv->numvisibility = 0; mod->type = mod_brush; if (!mod->name[0]) { prv->cmodels = ZG_Malloc(&mod->memgroup, 1 * sizeof(*prv->cmodels)); mod->leafs = ZG_Malloc(&mod->memgroup, 1 * sizeof(*mod->leafs)); prv->numcmodels = 1; prv->numareas = 1; *checksum = 0; prv->cmodels[0].headnode = (mnode_t*)mod->leafs; //directly start with the empty leaf return &prv->cmodels[0]; // cinematic servers won't have anything at all } // // load the file // buf = (unsigned *)filein; length = filelen; if (!buf) { Con_Printf (CON_ERROR "Couldn't load %s\n", mod->name); return NULL; } last_checksum = LittleLong (Com_BlockChecksum (buf, length)); *checksum = last_checksum; header = *(q2dheader_t *)(buf); header.ident = LittleLong(header.ident); header.version = LittleLong(header.version); ClearBounds(mod->mins, mod->maxs); switch(header.version) { default: Con_Printf (CON_ERROR "Quake 2 or Quake 3 based BSP with unknown header (%s: %i should be %i or %i)\n" , mod->name, header.version, BSPVERSION_Q2, BSPVERSION_Q3); return NULL; break; #ifdef Q3BSPS case BSPVERSION_RBSP: //rbsp/fbsp case BSPVERSION_RTCW: //rtcw case BSPVERSION_Q3: if (header.ident == (('F'<<0)+('B'<<8)+('S'<<16)+('P'<<24))) { mod->lightmaps.width = 512; mod->lightmaps.height = 512; } else { mod->lightmaps.width = 128; mod->lightmaps.height = 128; } prv->mapisq3 = true; mod->fromgame = fg_quake3; for (i=0 ; i filelen) { Con_Printf (CON_ERROR "WARNING: q3bsp %s truncated (lump %i, %i+%i > %u)\n", mod->name, i, header.lumps[i].fileofs, header.lumps[i].filelen, (unsigned int)filelen); header.lumps[i].filelen = filelen - header.lumps[i].fileofs; if (header.lumps[i].filelen < 0) header.lumps[i].filelen = 0; } } } /* #ifndef SERVERONLY GLMod_LoadVertexes (mod, cmod_base, &header.lumps[Q3LUMP_DRAWVERTS]); // GLMod_LoadEdges (mod, cmod_base, &header.lumps[Q3LUMP_EDGES]); // GLMod_LoadSurfedges (mod, cmod_base, &header.lumps[Q3LUMP_SURFEDGES]); GLMod_LoadLighting (mod, cmod_base, &header.lumps[Q3LUMP_LIGHTMAPS]); #endif CModQ3_LoadShaders (mod, cmod_base, &header.lumps[Q3LUMP_SHADERS]); CModQ3_LoadPlanes (mod, cmod_base, &header.lumps[Q3LUMP_PLANES]); CModQ3_LoadLeafBrushes (mod, cmod_base, &header.lumps[Q3LUMP_LEAFBRUSHES]); CModQ3_LoadBrushes (mod, cmod_base, &header.lumps[Q3LUMP_BRUSHES]); CModQ3_LoadBrushSides (mod, cmod_base, &header.lumps[Q3LUMP_BRUSHSIDES]); #ifndef SERVERONLY CMod_LoadTexInfo (mod, cmod_base, &header.lumps[Q3LUMP_SHADERS]); CMod_LoadFaces (mod, cmod_base, &header.lumps[Q3LUMP_SURFACES]); // GLMod_LoadMarksurfaces (mod, cmod_base, &header.lumps[Q3LUMP_LEAFFACES]); #endif CMod_LoadVisibility (mod, cmod_base, &header.lumps[Q3LUMP_VISIBILITY]); CModQ3_LoadSubmodels (mod, cmod_base, &header.lumps[Q3LUMP_MODELS]); CModQ3_LoadLeafs (mod, cmod_base, &header.lumps[Q3LUMP_LEAFS]); CModQ3_LoadNodes (mod, cmod_base, &header.lumps[Q3LUMP_NODES]); // CMod_LoadAreas (mod, cmod_base, &header.lumps[Q3LUMP_AREAS]); // CMod_LoadAreaPortals (mod, cmod_base, &header.lumps[Q3LUMP_AREAPORTALS]); CMod_LoadEntityString (mod, cmod_base, &header.lumps[Q3LUMP_ENTITIES]); */ map_faces = NULL; Q1BSPX_Setup(mod, mod_base, filelen, header.lumps, Q3LUMPS_TOTAL); prv->mapisq3 = true; noerrors = noerrors && CModQ3_LoadShaders (mod, mod_base, &header.lumps[Q3LUMP_SHADERS]); noerrors = noerrors && CModQ3_LoadPlanes (mod, mod_base, &header.lumps[Q3LUMP_PLANES]); if (header.version == BSPVERSION_RBSP) { noerrors = noerrors && CModRBSP_LoadBrushSides (mod, mod_base, &header.lumps[Q3LUMP_BRUSHSIDES]); noerrors = noerrors && CModRBSP_LoadVertexes (mod, mod_base, &header.lumps[Q3LUMP_DRAWVERTS]); } else { noerrors = noerrors && CModQ3_LoadBrushSides (mod, mod_base, &header.lumps[Q3LUMP_BRUSHSIDES]); noerrors = noerrors && CModQ3_LoadVertexes (mod, mod_base, &header.lumps[Q3LUMP_DRAWVERTS]); } noerrors = noerrors && CModQ3_LoadBrushes (mod, mod_base, &header.lumps[Q3LUMP_BRUSHES]); noerrors = noerrors && CModQ3_LoadLeafBrushes (mod, mod_base, &header.lumps[Q3LUMP_LEAFBRUSHES]); if (header.version == 1) noerrors = noerrors && CModRBSP_LoadFaces (mod, mod_base, &header.lumps[Q3LUMP_SURFACES]); else noerrors = noerrors && CModQ3_LoadFaces (mod, mod_base, &header.lumps[Q3LUMP_SURFACES]); #ifndef SERVERONLY if (qrenderer != QR_NONE) { if (header.version == BSPVERSION_RBSP) noerrors = noerrors && CModRBSP_LoadLightgrid (mod, mod_base, &header.lumps[Q3LUMP_LIGHTGRID], &header.lumps[RBSPLUMP_LIGHTINDEXES]); else noerrors = noerrors && CModQ3_LoadLightgrid (mod, mod_base, &header.lumps[Q3LUMP_LIGHTGRID]); noerrors = noerrors && CModQ3_LoadIndexes (mod, mod_base, &header.lumps[Q3LUMP_DRAWINDEXES]); if (header.version != BSPVERSION_RTCW) noerrors = noerrors && CModQ3_LoadFogs (mod, mod_base, &header.lumps[Q3LUMP_FOGS]); else mod->numfogs = 0; facedata = (void *)(mod_base + header.lumps[Q3LUMP_SURFACES].fileofs); if (header.version == BSPVERSION_RBSP) { noerrors = noerrors && CModRBSP_LoadRFaces (mod, mod_base, &header.lumps[Q3LUMP_SURFACES]); buildmeshes = CModRBSP_BuildSurfMesh; facesize = sizeof(rbspface_t); mod->lightmaps.surfstyles = 4; } else { noerrors = noerrors && CModQ3_LoadRFaces (mod, mod_base, &header.lumps[Q3LUMP_SURFACES]); buildmeshes = CModQ3_BuildSurfMesh; facesize = sizeof(q3dface_t); mod->lightmaps.surfstyles = 1; } if (noerrors && mod->fromgame == fg_quake3) { i = header.lumps[Q3LUMP_LIGHTMAPS].filelen / (mod->lightmaps.width*mod->lightmaps.height*3); mod->lightmaps.deluxemapping = !(i&1); mod->lightmaps.count = max(mod->lightmaps.count, i); for (i = 0; i < mod->numsurfaces && mod->lightmaps.deluxemapping; i++) { if (mod->surfaces[i].lightmaptexturenums[0] >= 0 && (mod->surfaces[i].lightmaptexturenums[0] & 1)) mod->lightmaps.deluxemapping = false; } } if (noerrors) CModQ3_LoadLighting (mod, mod_base, &header.lumps[Q3LUMP_LIGHTMAPS]); //fixme: duplicated loading. } #endif noerrors = noerrors && CModQ3_LoadMarksurfaces (mod, mod_base, &header.lumps[Q3LUMP_LEAFSURFACES]); noerrors = noerrors && CModQ3_LoadLeafs (mod, mod_base, &header.lumps[Q3LUMP_LEAFS]); noerrors = noerrors && CModQ3_LoadNodes (mod, mod_base, &header.lumps[Q3LUMP_NODES]); noerrors = noerrors && CModQ3_LoadSubmodels (mod, mod_base, &header.lumps[Q3LUMP_MODELS]); noerrors = noerrors && CModQ3_LoadVisibility (mod, mod_base, &header.lumps[Q3LUMP_VISIBILITY]); if (noerrors) CMod_LoadEntityString (mod, mod_base, &header.lumps[Q3LUMP_ENTITIES]); if (!noerrors) { if (map_faces) BZ_Free(map_faces); return NULL; } #ifndef CLIENTONLY mod->funcs.FatPVS = Q2BSP_FatPVS; mod->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; mod->funcs.FindTouchedLeafs = Q2BSP_FindTouchedLeafs; #endif mod->funcs.ClusterPVS = CM_ClusterPVS; mod->funcs.ClusterForPoint = CM_PointCluster; #ifndef SERVERONLY mod->funcs.LightPointValues = GLQ3_LightGrid; mod->funcs.StainNode = GLR_Q2BSP_StainNode; mod->funcs.MarkLights = Q2BSP_MarkLights; #endif mod->funcs.PointContents = Q2BSP_PointContents; mod->funcs.NativeTrace = CM_NativeTrace; mod->funcs.NativeContents = CM_NativeContents; #ifndef SERVERONLY //light grid info if (mod->lightgrid) { float maxs; q3lightgridinfo_t *lg = mod->lightgrid; if ( lg->gridSize[0] < 1 || lg->gridSize[1] < 1 || lg->gridSize[2] < 1 ) { lg->gridSize[0] = 64; lg->gridSize[1] = 64; lg->gridSize[2] = 128; } for ( i = 0; i < 3; i++ ) { lg->gridMins[i] = lg->gridSize[i] * ceil( (prv->cmodels->mins[i] + 1) / lg->gridSize[i] ); maxs = lg->gridSize[i] * floor( (prv->cmodels->maxs[i] - 1) / lg->gridSize[i] ); lg->gridBounds[i] = (maxs - lg->gridMins[i])/lg->gridSize[i] + 1; } lg->gridBounds[3] = lg->gridBounds[1] * lg->gridBounds[0]; } #endif if (!CM_CreatePatchesForLeafs (mod, prv)) //for clipping { BZ_Free(map_faces); return NULL; } #ifndef CLIENTONLY CMQ3_CalcPHS(mod); #endif // BZ_Free(map_verts); BZ_Free(map_faces); break; #endif case BSPVERSION_Q2: case BSPVERSION_Q2W: mod->lightmaps.width = LMBLOCK_SIZE_MAX; mod->lightmaps.height = LMBLOCK_SIZE_MAX; prv->mapisq3 = false; mod->engineflags |= MDLF_NEEDOVERBRIGHT; for (i=0 ; ifuncs.FatPVS = Q2BSP_FatPVS; mod->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; mod->funcs.FindTouchedLeafs = Q2BSP_FindTouchedLeafs; #endif mod->funcs.LightPointValues = NULL; mod->funcs.StainNode = NULL; mod->funcs.MarkLights = NULL; mod->funcs.ClusterPVS = CM_ClusterPVS; mod->funcs.ClusterForPoint = CM_PointCluster; mod->funcs.PointContents = Q2BSP_PointContents; mod->funcs.NativeTrace = CM_NativeTrace; mod->funcs.NativeContents = CM_NativeContents; break; #ifndef SERVERONLY default: // load into heap noerrors = noerrors && Mod_LoadVertexes (mod, mod_base, &header.lumps[Q2LUMP_VERTEXES]); if (header.version == BSPVERSION_Q2W) /*noerrors = noerrors &&*/ Mod_LoadVertexNormals(mod, mod_base, &header.lumps[19]); noerrors = noerrors && Mod_LoadEdges (mod, mod_base, &header.lumps[Q2LUMP_EDGES], false); noerrors = noerrors && Mod_LoadSurfedges (mod, mod_base, &header.lumps[Q2LUMP_SURFEDGES]); if (noerrors) Mod_LoadLighting (mod, mod_base, &header.lumps[Q2LUMP_LIGHTING], header.version == BSPVERSION_Q2W, NULL); noerrors = noerrors && CModQ2_LoadSurfaces (mod, mod_base, &header.lumps[Q2LUMP_TEXINFO]); noerrors = noerrors && CModQ2_LoadPlanes (mod, mod_base, &header.lumps[Q2LUMP_PLANES]); noerrors = noerrors && CModQ2_LoadTexInfo (mod, mod_base, &header.lumps[Q2LUMP_TEXINFO], loadname); if (noerrors) CMod_LoadEntityString (mod, mod_base, &header.lumps[Q2LUMP_ENTITIES]); noerrors = noerrors && CModQ2_LoadFaces (mod, mod_base, &header.lumps[Q2LUMP_FACES], header.version == BSPVERSION_Q2W); noerrors = noerrors && Mod_LoadMarksurfaces (mod, mod_base, &header.lumps[Q2LUMP_LEAFFACES], false); noerrors = noerrors && CModQ2_LoadVisibility (mod, mod_base, &header.lumps[Q2LUMP_VISIBILITY]); noerrors = noerrors && CModQ2_LoadBrushSides (mod, mod_base, &header.lumps[Q2LUMP_BRUSHSIDES]); noerrors = noerrors && CModQ2_LoadBrushes (mod, mod_base, &header.lumps[Q2LUMP_BRUSHES]); noerrors = noerrors && CModQ2_LoadLeafBrushes (mod, mod_base, &header.lumps[Q2LUMP_LEAFBRUSHES]); noerrors = noerrors && CModQ2_LoadLeafs (mod, mod_base, &header.lumps[Q2LUMP_LEAFS]); noerrors = noerrors && CModQ2_LoadNodes (mod, mod_base, &header.lumps[Q2LUMP_NODES]); noerrors = noerrors && CModQ2_LoadSubmodels (mod, mod_base, &header.lumps[Q2LUMP_MODELS]); noerrors = noerrors && CModQ2_LoadAreas (mod, mod_base, &header.lumps[Q2LUMP_AREAS]); noerrors = noerrors && CModQ2_LoadAreaPortals (mod, mod_base, &header.lumps[Q2LUMP_AREAPORTALS]); if (!noerrors) { return NULL; } #ifndef CLIENTONLY mod->funcs.FatPVS = Q2BSP_FatPVS; mod->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; mod->funcs.FindTouchedLeafs = Q2BSP_FindTouchedLeafs; #endif mod->funcs.LightPointValues = GLQ2BSP_LightPointValues; mod->funcs.StainNode = GLR_Q2BSP_StainNode; mod->funcs.MarkLights = Q2BSP_MarkLights; mod->funcs.ClusterPVS = CM_ClusterPVS; mod->funcs.ClusterForPoint = CM_PointCluster; mod->funcs.PointContents = Q2BSP_PointContents; mod->funcs.NativeTrace = CM_NativeTrace; mod->funcs.NativeContents = CM_NativeContents; break; #endif } } CM_InitBoxHull (); if (map_autoopenportals.value) memset (prv->portalopen, 1, sizeof(prv->portalopen)); //open them all. Used for progs that havn't got a clue. else memset (prv->portalopen, 0, sizeof(prv->portalopen)); //make them start closed. FloodAreaConnections (prv); mod->checksum = mod->checksum2 = *checksum; mod->nummodelsurfaces = mod->numsurfaces; memset(&mod->batches, 0, sizeof(mod->batches)); mod->vbos = NULL; mod->numsubmodels = CM_NumInlineModels(mod); mod->hulls[0].firstclipnode = prv->cmodels[0].headnode-mod->nodes; mod->rootnode = prv->cmodels[0].headnode; mod->nummodelsurfaces = prv->cmodels[0].numsurfaces; #ifndef SERVERONLY if (qrenderer != QR_NONE) { builddata_t *bd = NULL; if (buildmeshes) { bd = BZ_Malloc(sizeof(*bd) + facesize*mod->nummodelsurfaces); bd->buildfunc = buildmeshes; memcpy(bd+1, facedata + mod->firstmodelsurface*facesize, facesize*mod->nummodelsurfaces); } COM_AddWork(0, ModBrush_LoadGLStuff, mod, bd, 0, 0); } #endif for (i=1 ; i< mod->numsubmodels ; i++) { cmodel_t *bm; char name[MAX_QPATH]; Q_snprintfz (name, sizeof(name), "*%i:%s", i, wmod->name); mod = Mod_FindName (name); *mod = *wmod; Q_strncpyz(mod->name, name, sizeof(mod->name)); memset(&mod->memgroup, 0, sizeof(mod->memgroup)); bm = CM_InlineModel (wmod, name); mod->hulls[0].firstclipnode = -1; //no nodes, if (bm->headleaf) { mod->leafs = bm->headleaf; mod->nodes = NULL; mod->hulls[0].firstclipnode = -1; //make it refer directly to the first leaf, for things that still use numbers. mod->rootnode = (mnode_t*)bm->headleaf; } else { mod->leafs = wmod->leafs; mod->nodes = wmod->nodes; mod->hulls[0].firstclipnode = bm->headnode - mod->nodes; //determine the correct node index mod->rootnode = bm->headnode; } mod->nummodelsurfaces = bm->numsurfaces; mod->firstmodelsurface = bm->firstsurface; memset(&mod->batches, 0, sizeof(mod->batches)); mod->vbos = NULL; VectorCopy (bm->maxs, mod->maxs); VectorCopy (bm->mins, mod->mins); #ifndef SERVERONLY mod->radius = RadiusFromBounds (mod->mins, mod->maxs); if (qrenderer != QR_NONE) { builddata_t *bd = NULL; if (buildmeshes) { bd = BZ_Malloc(sizeof(*bd) + facesize*mod->nummodelsurfaces); bd->buildfunc = buildmeshes; memcpy(bd+1, facedata + mod->firstmodelsurface*facesize, facesize*mod->nummodelsurfaces); } COM_AddWork(0, ModBrush_LoadGLStuff, mod, bd, i, 0); } #endif COM_AddWork(0, Mod_ModelLoaded, mod, NULL, MLS_LOADED, 0); } #ifdef TERRAIN mod->terrain = Mod_LoadTerrainInfo(mod, loadname, false); #endif return &prv->cmodels[0]; } /* ================== CM_InlineModel ================== */ static cmodel_t *CM_InlineModel (model_t *model, char *name) { cminfo_t *prv = (cminfo_t*)model->meshinfo; int num; if (!name) Host_Error("Bad model\n"); else if (name[0] != '*') Host_Error("Bad model\n"); num = atoi (name+1); if (num < 1 || num >= prv->numcmodels) Host_Error ("CM_InlineModel: bad number"); return &prv->cmodels[num]; } int CM_NumClusters (model_t *model) { return model->numclusters; } int CM_ClusterSize (model_t *model) { cminfo_t *prv = (cminfo_t*)model->meshinfo; return prv->q3pvs->rowsize ? prv->q3pvs->rowsize : MAX_MAP_LEAFS / 8; } static int CM_NumInlineModels (model_t *model) { cminfo_t *prv = (cminfo_t*)model->meshinfo; return prv->numcmodels; } int CM_LeafContents (model_t *model, int leafnum) { if (leafnum < 0 || leafnum >= model->numleafs) Host_Error ("CM_LeafContents: bad number"); return model->leafs[leafnum].contents; } int CM_LeafCluster (model_t *model, int leafnum) { if (leafnum < 0 || leafnum >= model->numleafs) Host_Error ("CM_LeafCluster: bad number"); return model->leafs[leafnum].cluster; } int CM_LeafArea (model_t *model, int leafnum) { if (leafnum < 0 || leafnum >= model->numleafs) Host_Error ("CM_LeafArea: bad number"); return model->leafs[leafnum].area; } //======================================================================= #define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist) mplane_t box_planes[6]; model_t box_model; q2cbrush_t box_brush; q2cbrushside_t box_sides[6]; static qboolean BM_NativeTrace(model_t *model, int forcehullnum, int frame, vec3_t axis[3], vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, qboolean capsule, unsigned int contents, trace_t *trace); static unsigned int BM_NativeContents(struct model_s *model, int hulloverride, int frame, vec3_t axis[3], vec3_t p, vec3_t mins, vec3_t maxs) { unsigned int j; q2cbrushside_t *brushside = box_sides; for ( j = 0; j < 6; j++, brushside++ ) { if ( PlaneDiff (p, brushside->plane) > 0 ) return 0; } return FTECONTENTS_BODY; } /* =================== CM_InitBoxHull Set up the planes and nodes so that the six floats of a bounding box can just be stored out and get a proper clipping hull structure. =================== */ void CM_InitBoxHull (void) { int i; int side; mplane_t *p; q2cbrushside_t *s; /* #ifndef CLIENTONLY box_model.funcs.FatPVS = Q2BSP_FatPVS; box_model.funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS; box_model.funcs.FindTouchedLeafs = Q2BSP_FindTouchedLeafs; #endif #ifndef SERVERONLY box_model.funcs.MarkLights = Q2BSP_MarkLights; #endif box_model.funcs.ClusterPVS = CM_ClusterPVS; box_model.funcs.ClusterForPoint = CM_PointCluster; */ box_model.funcs.NativeContents = BM_NativeContents; box_model.funcs.NativeTrace = BM_NativeTrace; box_model.loadstate = MLS_LOADED; box_brush.contents = FTECONTENTS_BODY; box_brush.numsides = 6; box_brush.brushside = box_sides; for (i=0 ; i<6 ; i++) { side = i&1; // brush sides s = &box_sides[i]; s->plane = box_planes + (i*2+side); s->surface = &nullsurface; // planes p = &box_planes[i*2]; p->type = i>>1; p->signbits = 0; VectorClear (p->normal); p->normal[i>>1] = 1; p = &box_planes[i*2+1]; p->type = 3 + (i>>1); p->signbits = 0; VectorClear (p->normal); p->normal[i>>1] = -1; } } /* =================== CM_HeadnodeForBox To keep everything totally uniform, bounding boxes are turned into small BSP trees instead of being compared directly. =================== */ void CM_SetTempboxSize (vec3_t mins, vec3_t maxs) { box_planes[0].dist = maxs[0]; box_planes[1].dist = -maxs[0]; box_planes[2].dist = mins[0]; box_planes[3].dist = -mins[0]; box_planes[4].dist = maxs[1]; box_planes[5].dist = -maxs[1]; box_planes[6].dist = mins[1]; box_planes[7].dist = -mins[1]; box_planes[8].dist = maxs[2]; box_planes[9].dist = -maxs[2]; box_planes[10].dist = mins[2]; box_planes[11].dist = -mins[2]; } model_t *CM_TempBoxModel(vec3_t mins, vec3_t maxs) { if (box_planes == NULL) CM_InitBoxHull(); CM_SetTempboxSize(mins, maxs); return &box_model; } /* ================== CM_PointLeafnum_r ================== */ static int CM_PointLeafnum_r (model_t *mod, vec3_t p, int num) { float d; mnode_t *node; mplane_t *plane; while (num >= 0) { node = mod->nodes + num; plane = node->plane; if (plane->type < 3) d = p[plane->type] - plane->dist; else d = DotProduct (plane->normal, p) - plane->dist; if (d < 0) num = node->childnum[1]; else num = node->childnum[0]; } return -1 - num; } int CM_PointLeafnum (model_t *mod, vec3_t p) { if (!mod || mod->loadstate != MLS_LOADED) return 0; // sound may call this without map loaded return CM_PointLeafnum_r (mod, p, 0); } static int CM_PointCluster (model_t *mod, vec3_t p) { if (!mod || mod->loadstate != MLS_LOADED) return 0; // sound may call this without map loaded return CM_LeafCluster(mod, CM_PointLeafnum_r (mod, p, 0)); } /* ============= CM_BoxLeafnums Fills in a list of all the leafs touched ============= */ int leaf_count, leaf_maxcount; int *leaf_list; float *leaf_mins, *leaf_maxs; int leaf_topnode; void CM_BoxLeafnums_r (model_t *mod, int nodenum) { mplane_t *plane; mnode_t *node; int s; while (1) { if (nodenum < 0) { if (leaf_count >= leaf_maxcount) { // Com_Printf ("CM_BoxLeafnums_r: overflow\n"); return; } leaf_list[leaf_count++] = -1 - nodenum; return; } node = &mod->nodes[nodenum]; plane = node->plane; // s = BoxOnPlaneSide (leaf_mins, leaf_maxs, plane); s = BOX_ON_PLANE_SIDE(leaf_mins, leaf_maxs, plane); if (s == 1) nodenum = node->childnum[0]; else if (s == 2) nodenum = node->childnum[1]; else { // go down both if (leaf_topnode == -1) leaf_topnode = nodenum; CM_BoxLeafnums_r (mod, node->childnum[0]); nodenum = node->childnum[1]; } } } int CM_BoxLeafnums_headnode (model_t *mod, vec3_t mins, vec3_t maxs, int *list, int listsize, int headnode, int *topnode) { leaf_list = list; leaf_count = 0; leaf_maxcount = listsize; leaf_mins = mins; leaf_maxs = maxs; leaf_topnode = -1; CM_BoxLeafnums_r (mod, headnode); if (topnode) *topnode = leaf_topnode; return leaf_count; } int CM_BoxLeafnums (model_t *mod, vec3_t mins, vec3_t maxs, int *list, int listsize, int *topnode) { return CM_BoxLeafnums_headnode (mod, mins, maxs, list, listsize, mod->hulls[0].firstclipnode, topnode); } /* ================== CM_PointContents ================== */ int CM_PointContents (model_t *mod, vec3_t p) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i, j, contents; mleaf_t *leaf; q2cbrush_t *brush; q2cbrushside_t *brushside; if (!mod) // map not loaded return 0; i = CM_PointLeafnum_r (mod, p, mod->hulls[0].firstclipnode); if (mod->fromgame == fg_quake2) contents = mod->leafs[i].contents; //q2 is simple. else { leaf = &mod->leafs[i]; // if ( leaf->contents & CONTENTS_NODROP ) { // contents = CONTENTS_NODROP; // } else { contents = 0; // } for (i = 0; i < leaf->numleafbrushes; i++) { brush = prv->leafbrushes[leaf->firstleafbrush + i]; // check if brush actually adds something to contents if ( (contents & brush->contents) == brush->contents ) { continue; } brushside = brush->brushside; for ( j = 0; j < brush->numsides; j++, brushside++ ) { if ( PlaneDiff (p, brushside->plane) > 0 ) break; } if (j == brush->numsides) contents |= brush->contents; } } #ifdef TERRAIN if (mod->terrain) contents |= Heightmap_PointContents(mod, NULL, p); #endif return contents; } unsigned int CM_NativeContents(struct model_s *model, int hulloverride, int frame, vec3_t axis[3], vec3_t p, vec3_t mins, vec3_t maxs) { cminfo_t *prv = (cminfo_t*)model->meshinfo; int contents; if (!DotProduct(mins, mins) && !DotProduct(maxs, maxs)) return CM_PointContents(model, p); if (!model) // map not loaded return 0; { int i, j, k; mleaf_t *leaf; q2cbrush_t *brush; q2cbrushside_t *brushside; vec3_t absmin, absmax; int leaflist[64]; k = CM_BoxLeafnums (model, absmin, absmax, leaflist, 64, NULL); contents = 0; for (k--; k >= 0; k--) { leaf = &model->leafs[leaflist[k]]; if (model->fromgame != fg_quake2) { //q3 is more complex for (i = 0; i < leaf->numleafbrushes; i++) { brush = prv->leafbrushes[leaf->firstleafbrush + i]; // check if brush actually adds something to contents if ( (contents & brush->contents) == brush->contents ) { continue; } brushside = brush->brushside; for ( j = 0; j < brush->numsides; j++, brushside++ ) { if ( PlaneDiff (p, brushside->plane) > 0 ) break; } if (j == brush->numsides) contents |= brush->contents; } } else //q2 is simple contents |= leaf->contents; } } return contents; } /* ================== CM_TransformedPointContents Handles offseting and rotation of the end points for moving and rotating entities ================== */ int CM_TransformedPointContents (model_t *mod, vec3_t p, int headnode, vec3_t origin, vec3_t angles) { vec3_t p_l; vec3_t temp; vec3_t forward, right, up; // subtract origin offset VectorSubtract (p, origin, p_l); // rotate start and end into the models frame of reference if (angles[0] || angles[1] || angles[2]) { AngleVectors (angles, forward, right, up); VectorCopy (p_l, temp); p_l[0] = DotProduct (temp, forward); p_l[1] = -DotProduct (temp, right); p_l[2] = DotProduct (temp, up); } return CM_PointContents(mod, p); } /* =============================================================================== BOX TRACING =============================================================================== */ // 1/32 epsilon to keep floating point happy #define DIST_EPSILON (0.03125) static vec3_t trace_start, trace_end; static vec3_t trace_mins, trace_maxs; static vec3_t trace_extents; static vec3_t trace_absmins, trace_absmaxs; static vec3_t trace_up; //capsule points upwards in this direction static vec3_t trace_capsulesize; //radius, up, down static float trace_truefraction; static float trace_nearfraction; static trace_t trace_trace; static int trace_contents; static enum { shape_isbox, shape_iscapsule, shape_ispoint } trace_shape; // optimized case /* ================ CM_ClipBoxToBrush ================ */ static void CM_ClipBoxToBrush (vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2, trace_t *trace, q2cbrush_t *brush) { int i, j; mplane_t *plane, *clipplane; float dist; float enterfrac, leavefrac; vec3_t ofs; float d1, d2; qboolean getout, startout; float f; q2cbrushside_t *side, *leadside; float nearfrac=0; enterfrac = -1; leavefrac = 2; clipplane = NULL; if (!brush->numsides) return; getout = false; startout = false; leadside = NULL; for (i=0 ; inumsides ; i++) { side = brush->brushside+i; plane = side->plane; switch(trace_shape) { default: case shape_isbox: // general box case // push the plane out apropriately for mins/maxs // FIXME: use signbits into 8 way lookup for each mins/maxs for (j=0 ; j<3 ; j++) { if (plane->normal[j] < 0) ofs[j] = maxs[j]; else ofs[j] = mins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; break; capsuledist(dist,plane,mins,maxs) case shape_ispoint: // special point case dist = plane->dist; break; } d1 = DotProduct (p1, plane->normal) - dist; d2 = DotProduct (p2, plane->normal) - dist; if (d2 > 0) getout = true; // endpoint is not in solid if (d1 > 0) startout = true; // if completely in front of face, no intersection if (d1 > 0 && d2 >= d1) return; if (d1 <= 0 && d2 <= 0) continue; // crosses face if (d1 > d2) { // enter f = (d1) / (d1-d2); if (f > enterfrac) { enterfrac = f; nearfrac = (d1-DIST_EPSILON) / (d1-d2); clipplane = plane; leadside = side; } } else { // leave f = (d1) / (d1-d2); if (f < leavefrac) leavefrac = f; } } if (!startout) { // original point was inside brush trace->startsolid = true; if (!getout) trace->allsolid = true; return; } if (enterfrac <= leavefrac) { if (enterfrac > -1 && enterfrac <= trace_truefraction) { if (enterfrac < 0) enterfrac = 0; trace_nearfraction = nearfrac; trace_truefraction = enterfrac; trace->plane.dist = clipplane->dist; VectorCopy(clipplane->normal, trace->plane.normal); trace->surface = &(leadside->surface->c); trace->contents = brush->contents; } } } static void CM_ClipBoxToPlanes (vec3_t trmins, vec3_t trmaxs, vec3_t p1, vec3_t p2, trace_t *trace, vec3_t plmins, vec3_t plmaxs, mplane_t *plane, int numplanes, q2csurface_t *surf) { int i, j; mplane_t *clipplane; float dist; float enterfrac, leavefrac; vec3_t ofs; float d1, d2; qboolean getout, startout; float f; // q2cbrushside_t *side, *leadside; static mplane_t bboxplanes[6] = //we change the dist, but nothing else { {{1, 0, 0}}, {{0, 1, 0}}, {{0, 0, 1}}, {{-1, 0, 0}}, {{0, -1, 0}}, {{0, 0, -1}}, }; float nearfrac=0; enterfrac = -1; leavefrac = 2; clipplane = NULL; getout = false; startout = false; // leadside = NULL; for (i=0 ; inormal[j] < 0) ofs[j] = trmaxs[j]; else ofs[j] = trmins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; break; capsuledist(dist,plane,trmins,trmaxs) case shape_ispoint: // special point case dist = plane->dist; break; } d1 = DotProduct (p1, plane->normal) - dist; d2 = DotProduct (p2, plane->normal) - dist; if (d2 > 0) getout = true; // endpoint is not in solid if (d1 > 0) startout = true; // if completely in front of face, no intersection if (d1 > 0 && d2 >= d1) return; if (d1 <= 0 && d2 <= 0) continue; // crosses face if (d1 > d2) { // enter f = (d1) / (d1-d2); if (f > enterfrac) { enterfrac = f; nearfrac = (d1-DIST_EPSILON) / (d1-d2); clipplane = plane; // leadside = side; } } else { // leave f = (d1) / (d1-d2); if (f < leavefrac) leavefrac = f; } } //bevel the brush axially (to match the player's bbox), in case that wasn't already done for (i=0, plane = bboxplanes; i<6 ; i++, plane++) { if (i < 3) { //positive normal dist = trmins[i]; plane->dist = plmaxs[i]; dist = plane->dist - dist; d1 = p1[i] - dist; d2 = p2[i] - dist; } else { //negative normal j = i-3; dist = -trmaxs[j]; plane->dist = -plmins[j]; dist = plane->dist - dist; d1 = -p1[j] - dist; d2 = -p2[j] - dist; } if (d2 > 0) getout = true; // endpoint is not in solid if (d1 > 0) startout = true; // if completely in front of face, no intersection if (d1 > 0 && d2 >= d1) return; if (d1 <= 0 && d2 <= 0) continue; // crosses face if (d1 > d2) { // enter f = (d1) / (d1-d2); if (f > enterfrac) { enterfrac = f; nearfrac = (d1-DIST_EPSILON) / (d1-d2); clipplane = plane; // leadside = side; } } else { // leave f = (d1) / (d1-d2); if (f < leavefrac) leavefrac = f; } } if (!startout) { // original point was inside brush trace->startsolid = true; if (!getout) trace->allsolid = true; return; } if (enterfrac <= leavefrac) { if (enterfrac > -1 && enterfrac <= trace_truefraction) { if (enterfrac < 0) enterfrac = 0; trace_nearfraction = nearfrac; trace_truefraction = enterfrac; trace->plane.dist = clipplane->dist; VectorCopy(clipplane->normal, trace->plane.normal); trace->surface = surf; trace->contents = surf->value; } } } static void Mod_Trace_Trisoup_(vecV_t *posedata, index_t *indexes, size_t numindexes, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, trace_t *trace, q2csurface_t *surf) { size_t i; int j; float *p1, *p2, *p3; vec3_t edge1, edge2, edge3; mplane_t planes[5]; vec3_t tmins, tmaxs; for (i = 0; i < numindexes; i+=3) { p1 = posedata[indexes[i+0]]; p2 = posedata[indexes[i+1]]; p3 = posedata[indexes[i+2]]; //determine the triangle extents, and skip the triangle if we're completely out of bounds for (j = 0; j < 3; j++) { tmins[j] = p1[j]; if (tmins[j] > p2[j]) tmins[j] = p2[j]; if (tmins[j] > p3[j]) tmins[j] = p3[j]; if (trace_absmaxs[j]+(1/8.f) < tmins[j]) break; tmaxs[j] = p1[j]; if (tmaxs[j] < p2[j]) tmaxs[j] = p2[j]; if (tmaxs[j] < p3[j]) tmaxs[j] = p3[j]; if (trace_absmins[j]-(1/8.f) > tmaxs[j]) break; } //skip any triangles which are completely outside the trace bounds if (j < 3) continue; VectorSubtract(p1, p2, edge1); VectorSubtract(p3, p2, edge2); VectorSubtract(p1, p3, edge3); CrossProduct(edge1, edge2, planes[0].normal); VectorNormalize(planes[0].normal); planes[0].dist = DotProduct(p1, planes[0].normal); VectorNegate(planes[0].normal, planes[1].normal); planes[1].dist = -planes[0].dist + 4; //determine edges //FIXME: use adjacency info CrossProduct(edge1, planes[0].normal, planes[2].normal); VectorNormalize(planes[2].normal); planes[2].dist = DotProduct(p2, planes[2].normal); CrossProduct(planes[0].normal, edge2, planes[3].normal); VectorNormalize(planes[3].normal); planes[3].dist = DotProduct(p3, planes[3].normal); CrossProduct(planes[0].normal, edge3, planes[4].normal); VectorNormalize(planes[4].normal); planes[4].dist = DotProduct(p1, planes[4].normal); CM_ClipBoxToPlanes(mins, maxs, start, end, trace, tmins, tmaxs, planes, 5, surf); } } /* static void CM_ClipBoxToMesh (vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2, trace_t *trace, mesh_t *mesh) { trace_truefraction = trace->truefraction; trace_nearfraction = trace->fraction; Mod_Trace_Trisoup_(mesh->xyz_array, mesh->indexes, mesh->numindexes, p1, p2, mins, maxs, trace, &nullsurface.c); trace->truefraction = trace_truefraction; trace->fraction = trace_nearfraction; } */ static void CM_ClipBoxToPatch (vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2, trace_t *trace, q2cbrush_t *brush) { int i, j; mplane_t *plane, *clipplane; float enterfrac, leavefrac, nearfrac = 0; vec3_t ofs; float d1, d2; float dist; qboolean startout; float f; q2cbrushside_t *side, *leadside; if (!brush->numsides) return; enterfrac = -1; leavefrac = 2; clipplane = NULL; startout = false; leadside = NULL; for (i=0 ; inumsides ; i++) { side = brush->brushside+i; plane = side->plane; // push the plane out apropriately for mins/maxs switch(trace_shape) { default: case shape_isbox: // general box case // FIXME: use signbits into 8 way lookup for each mins/maxs for (j=0 ; j<3 ; j++) { if (plane->normal[j] < 0) ofs[j] = maxs[j]; else ofs[j] = mins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; break; capsuledist(dist,plane,mins,maxs) case shape_ispoint: // special point case dist = plane->dist; break; } d1 = DotProduct (p1, plane->normal) - dist; d2 = DotProduct (p2, plane->normal) - dist; // if completely in front of face, no intersection if (d1 > 0 && d2 >= d1) return; if (d1 > 0) startout = true; if (d1 <= 0 && d2 <= 0) continue; // crosses face if (d1 > d2) { // enter f = (d1) / (d1-d2); if (f > enterfrac) { enterfrac = f; nearfrac = (d1-DIST_EPSILON) / (d1-d2); clipplane = plane; leadside = side; } } else { // leave f = (d1) / (d1-d2); if (f < leavefrac) leavefrac = f; } } if (!startout) { trace->startsolid = true; return; // original point is inside the patch } if (nearfrac <= leavefrac) { if (leadside && leadside->surface && enterfrac <= trace_truefraction) { if (enterfrac < 0) enterfrac = 0; trace_truefraction = enterfrac; trace_nearfraction = nearfrac; trace->plane.dist = clipplane->dist; VectorCopy(clipplane->normal, trace->plane.normal); trace->surface = &leadside->surface->c; trace->contents = brush->contents; } else if (enterfrac < trace_truefraction) leavefrac=0; } } /* ================ CM_TestBoxInBrush ================ */ static void CM_TestBoxInBrush (vec3_t mins, vec3_t maxs, vec3_t p1, trace_t *trace, q2cbrush_t *brush) { int i, j; mplane_t *plane; float dist; vec3_t ofs; float d1; q2cbrushside_t *side; if (!brush->numsides) return; for (i=0 ; inumsides ; i++) { side = brush->brushside+i; plane = side->plane; switch(trace_shape) { default: case shape_isbox: // general box case // push the plane out apropriately for mins/maxs // FIXME: use signbits into 8 way lookup for each mins/maxs for (j=0 ; j<3 ; j++) { if (plane->normal[j] < 0) ofs[j] = maxs[j]; else ofs[j] = mins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; break; capsuledist(dist,plane,mins,maxs) case shape_ispoint: dist = plane->dist; break; } d1 = DotProduct (p1, plane->normal) - dist; // if completely in front of face, no intersection if (d1 > 0) return; } // inside this brush trace->startsolid = trace->allsolid = true; trace->contents |= brush->contents; } static void CM_TestBoxInPatch (vec3_t mins, vec3_t maxs, vec3_t p1, trace_t *trace, q2cbrush_t *brush) { int i, j; mplane_t *plane; vec3_t ofs; float dist; float d1, maxdist; q2cbrushside_t *side; if (!brush->numsides) return; maxdist = -9999; for (i=0 ; inumsides ; i++) { side = brush->brushside+i; plane = side->plane; switch(trace_shape) { default: case shape_isbox: // general box case // push the plane out apropriately for mins/maxs // FIXME: use signbits into 8 way lookup for each mins/maxs for (j=0 ; j<3 ; j++) { if (plane->normal[j] < 0) ofs[j] = maxs[j]; else ofs[j] = mins[j]; } dist = DotProduct (ofs, plane->normal); dist = plane->dist - dist; break; capsuledist(dist,plane,mins,maxs) case shape_ispoint: dist = plane->dist; break; } d1 = DotProduct (p1, plane->normal) - dist; // if completely in front of face, no intersection if (d1 > 0) return; if (side->surface && d1 > maxdist) maxdist = d1; } // FIXME if (maxdist < -0.25) return; // deep inside the patch // inside this patch trace->startsolid = trace->allsolid = true; trace->contents = brush->contents; } /* ================ CM_TraceToLeaf ================ */ static void CM_TraceToLeaf (cminfo_t *prv, mleaf_t *leaf) { int k, j; q2cbrush_t *b; int patchnum; q3cpatch_t *patch; q3cmesh_t *cmesh; if ( !(leaf->contents & trace_contents)) return; // trace line against all brushes in the leaf for (k=0 ; knumleafbrushes ; k++) { b = prv->leafbrushes[leaf->firstleafbrush+k]; if (b->checkcount == checkcount) continue; // already checked this brush in another leaf b->checkcount = checkcount; if ( !(b->contents & trace_contents)) continue; CM_ClipBoxToBrush (trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, b); if (trace_nearfraction <= 0) return; } if (!prv->mapisq3 || map_noCurves.value) return; // trace line against all patches in the leaf for (k = 0; k < leaf->numleafpatches; k++) { patchnum = prv->leafpatches[leaf->firstleafpatch+k]; patch = &prv->patches[patchnum]; if (patch->checkcount == checkcount) continue; // already checked this patch in another leaf patch->checkcount = checkcount; if ( !(patch->surface->c.value & trace_contents) ) continue; if ( !BoundsIntersect(patch->absmins, patch->absmaxs, trace_absmins, trace_absmaxs) ) continue; for (j = 0; j < patch->numbrushes; j++) { CM_ClipBoxToPatch (trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, &patch->brushes[j]); if (trace_nearfraction<=0) return; } } for (k = 0; k < leaf->numleafcmeshes; k++) { patchnum = prv->leafcmeshes[leaf->firstleafcmesh+k]; cmesh = &prv->cmeshes[patchnum]; if (cmesh->checkcount == checkcount) continue; // already checked this patch in another leaf cmesh->checkcount = checkcount; if ( !(cmesh->surface->c.value & trace_contents) ) continue; if ( !BoundsIntersect(cmesh->absmins, cmesh->absmaxs, trace_absmins, trace_absmaxs) ) continue; Mod_Trace_Trisoup_(cmesh->xyz_array, cmesh->indicies, cmesh->numincidies, trace_start, trace_end, trace_mins, trace_maxs, &trace_trace, &cmesh->surface->c); if (trace_nearfraction<=0) return; } } /* ================ CM_TestInLeaf ================ */ static void CM_TestInLeaf (cminfo_t *prv, mleaf_t *leaf) { int k, j; int patchnum; q2cbrush_t *b; q3cmesh_t *cmesh; q3cpatch_t *patch; if ( !(leaf->contents & trace_contents)) return; // trace line against all brushes in the leaf for (k=0 ; knumleafbrushes ; k++) { b = prv->leafbrushes[leaf->firstleafbrush+k]; if (b->checkcount == checkcount) continue; // already checked this brush in another leaf b->checkcount = checkcount; if ( !(b->contents & trace_contents)) continue; CM_TestBoxInBrush (trace_mins, trace_maxs, trace_start, &trace_trace, b); if (!trace_trace.fraction) return; } if (!prv->mapisq3 || map_noCurves.value) return; // trace line against all patches in the leaf for (k = 0; k < leaf->numleafpatches; k++) { patchnum = prv->leafpatches[leaf->firstleafpatch+k]; patch = &prv->patches[patchnum]; if (patch->checkcount == checkcount) continue; // already checked this patch in another leaf patch->checkcount = checkcount; if ( !(patch->surface->c.value & trace_contents) ) continue; if ( !BoundsIntersect(patch->absmins, patch->absmaxs, trace_absmins, trace_absmaxs) ) continue; for (j = 0; j < patch->numbrushes; j++) { CM_TestBoxInPatch (trace_mins, trace_maxs, trace_start, &trace_trace, &patch->brushes[j]); if (!trace_trace.fraction) return; } } for (k = 0; k < leaf->numleafcmeshes; k++) { patchnum = prv->leafcmeshes[leaf->firstleafcmesh+k]; cmesh = &prv->cmeshes[patchnum]; if (cmesh->checkcount == checkcount) continue; // already checked this patch in another leaf cmesh->checkcount = checkcount; if ( !(cmesh->surface->c.value & trace_contents) ) continue; if ( !BoundsIntersect(cmesh->absmins, cmesh->absmaxs, trace_absmins, trace_absmaxs) ) continue; Mod_Trace_Trisoup_(cmesh->xyz_array, cmesh->indicies, cmesh->numincidies, trace_start, trace_end, trace_mins, trace_maxs, &trace_trace, &cmesh->surface->c); if (trace_nearfraction<=0) return; } } /* ================== CM_RecursiveHullCheck ================== */ static void CM_RecursiveHullCheck (model_t *mod, int num, float p1f, float p2f, vec3_t p1, vec3_t p2) { mnode_t *node; mplane_t *plane; float t1, t2, offset; float frac, frac2; float idist; int i; vec3_t mid; int side; float midf; if (trace_truefraction <= p1f) return; // already hit something nearer // if < 0, we are in a leaf node if (num < 0) { CM_TraceToLeaf (mod->meshinfo, &mod->leafs[-1-num]); return; } // // find the point distances to the seperating plane // and the offset for the size of the box // node = mod->nodes + num; plane = node->plane; if (plane->type < 3) { t1 = p1[plane->type] - plane->dist; t2 = p2[plane->type] - plane->dist; offset = trace_extents[plane->type]; } else { t1 = DotProduct (plane->normal, p1) - plane->dist; t2 = DotProduct (plane->normal, p2) - plane->dist; if (trace_shape == shape_ispoint) offset = 0; else offset = fabs(trace_extents[0]*plane->normal[0]) + fabs(trace_extents[1]*plane->normal[1]) + fabs(trace_extents[2]*plane->normal[2]); } #if 0 CM_RecursiveHullCheck (node->childnum[0], p1f, p2f, p1, p2); CM_RecursiveHullCheck (node->childnum[1], p1f, p2f, p1, p2); return; #endif // see which sides we need to consider if (t1 >= offset && t2 >= offset) { CM_RecursiveHullCheck (mod, node->childnum[0], p1f, p2f, p1, p2); return; } if (t1 < -offset && t2 < -offset) { CM_RecursiveHullCheck (mod, node->childnum[1], p1f, p2f, p1, p2); return; } // put the crosspoint DIST_EPSILON pixels on the near side if (t1 < t2) { idist = 1.0/(t1-t2); side = 1; frac2 = (t1 + offset + DIST_EPSILON)*idist; frac = (t1 - offset + DIST_EPSILON)*idist; } else if (t1 > t2) { idist = 1.0/(t1-t2); side = 0; frac2 = (t1 - offset - DIST_EPSILON)*idist; frac = (t1 + offset + DIST_EPSILON)*idist; } else { side = 0; frac = 1; frac2 = 0; } // move up to the node if (frac < 0) frac = 0; if (frac > 1) frac = 1; midf = p1f + (p2f - p1f)*frac; for (i=0 ; i<3 ; i++) mid[i] = p1[i] + frac*(p2[i] - p1[i]); CM_RecursiveHullCheck (mod, node->childnum[side], p1f, midf, p1, mid); // go past the node if (frac2 < 0) frac2 = 0; if (frac2 > 1) frac2 = 1; midf = p1f + (p2f - p1f)*frac2; for (i=0 ; i<3 ; i++) mid[i] = p1[i] + frac2*(p2[i] - p1[i]); CM_RecursiveHullCheck (mod, node->childnum[side^1], midf, p2f, mid, p2); } //====================================================================== /* ================== CM_BoxTrace ================== */ static trace_t CM_BoxTrace (model_t *mod, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, qboolean capsule, int brushmask) { int i; vec3_t point; checkcount++; // for multi-check avoidance // fill in a default trace memset (&trace_trace, 0, sizeof(trace_trace)); trace_truefraction = 1; trace_nearfraction = 1; trace_trace.fraction = 1; trace_trace.truefraction = 1; trace_trace.surface = &(nullsurface.c); if (!mod) // map not loaded return trace_trace; trace_contents = brushmask; VectorCopy (start, trace_start); VectorCopy (end, trace_end); VectorCopy (mins, trace_mins); VectorCopy (maxs, trace_maxs); // build a bounding box of the entire move (for patches) ClearBounds (trace_absmins, trace_absmaxs); //determine the type of trace that we're going to use, and the max extents if (trace_mins[0] == 0 && trace_mins[1] == 0 && trace_mins[2] == 0 && trace_maxs[0] == 0 && trace_maxs[1] == 0 && trace_maxs[2] == 0) { trace_shape = shape_ispoint; VectorSet (trace_extents, 1/32.0, 1/32.0, 1/32.0); //acedemic AddPointToBounds (start, trace_absmins, trace_absmaxs); AddPointToBounds (end, trace_absmins, trace_absmaxs); } else if (capsule) { float ext; trace_shape = shape_iscapsule; //determine the capsule sizes trace_capsulesize[0] = ((maxs[0]-mins[0]) + (maxs[1]-mins[1]))/4.0; trace_capsulesize[1] = maxs[2]; trace_capsulesize[2] = mins[2]; ext = (trace_capsulesize[1] > -trace_capsulesize[2])?trace_capsulesize[1]:-trace_capsulesize[2]; trace_capsulesize[1] -= trace_capsulesize[0]; trace_capsulesize[2] += trace_capsulesize[0]; trace_extents[0] = ext+1; trace_extents[1] = ext+1; trace_extents[2] = ext+1; //determine the total range VectorSubtract (start, trace_extents, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorAdd (start, trace_extents, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorSubtract (end, trace_extents, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorAdd (end, trace_extents, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); } else { VectorAdd (start, trace_mins, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorAdd (start, trace_maxs, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorAdd (end, trace_mins, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); VectorAdd (end, trace_maxs, point); AddPointToBounds (point, trace_absmins, trace_absmaxs); trace_shape = shape_isbox; trace_extents[0] = ((-trace_mins[0] > trace_maxs[0]) ? -trace_mins[0] : trace_maxs[0])+1; trace_extents[1] = ((-trace_mins[1] > trace_maxs[1]) ? -trace_mins[1] : trace_maxs[1])+1; trace_extents[2] = ((-trace_mins[2] > trace_maxs[2]) ? -trace_mins[2] : trace_maxs[2])+1; } #if 0 if (0) { //treat *ALL* tests against the actual geometry instead of using any brushes. //also ignores the bsp etc. not fast. testing only. trace_ispoint = trace_mins[0] == 0 && trace_mins[1] == 0 && trace_mins[2] == 0 && trace_maxs[0] == 0 && trace_maxs[1] == 0 && trace_maxs[2] == 0; for (i = 0; i < mod->numsurfaces; i++) { CM_ClipBoxToMesh(trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, mod->surfaces[i].mesh); } } else if (0) { trace_ispoint = trace_mins[0] == 0 && trace_mins[1] == 0 && trace_mins[2] == 0 && trace_maxs[0] == 0 && trace_maxs[1] == 0 && trace_maxs[2] == 0; for (i = 0; i < mod->numleafs; i++) CM_TraceToLeaf(&mod->leafs[i]); } else #endif // // check for position test special case // if (start[0] == end[0] && start[1] == end[1] && start[2] == end[2]) { int leafs[1024]; int i, numleafs; vec3_t c1, c2; int topnode; VectorAdd (start, mins, c1); VectorAdd (start, maxs, c2); for (i=0 ; i<3 ; i++) { c1[i] -= 1; c2[i] += 1; } numleafs = CM_BoxLeafnums_headnode (mod, c1, c2, leafs, sizeof(leafs)/sizeof(leafs[0]), mod->hulls[0].firstclipnode, &topnode); for (i=0 ; imeshinfo, &mod->leafs[leafs[i]]); if (trace_trace.allsolid) break; } VectorCopy (start, trace_trace.endpos); return trace_trace; } // // general aabb trace // else { CM_RecursiveHullCheck (mod, mod->hulls[0].firstclipnode, 0, 1, trace_start, trace_end); } if (trace_nearfraction == 1) { trace_trace.fraction = 1; VectorCopy (trace_end, trace_trace.endpos); } else { if (trace_nearfraction<0) trace_nearfraction=0; trace_trace.fraction = trace_nearfraction; for (i=0 ; i<3 ; i++) trace_trace.endpos[i] = trace_start[i] + trace_trace.fraction * (trace_end[i] - trace_start[i]); } return trace_trace; } static qboolean BM_NativeTrace(model_t *model, int forcehullnum, int frame, vec3_t axis[3], vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, qboolean capsule, unsigned int contents, trace_t *trace) { int i; memset (trace, 0, sizeof(*trace)); trace_truefraction = 1; trace_nearfraction = 1; trace->fraction = 1; trace->truefraction = 1; trace->surface = &(nullsurface.c); if (contents & FTECONTENTS_BODY) { if (trace_mins[0] == 0 && trace_mins[1] == 0 && trace_mins[2] == 0 && trace_maxs[0] == 0 && trace_maxs[1] == 0 && trace_maxs[2] == 0) trace_shape = shape_ispoint; else if (capsule) trace_shape = shape_iscapsule; else trace_shape = shape_isbox; trace_contents = contents; VectorCopy (start, trace_start); VectorCopy (end, trace_end); VectorCopy (mins, trace_mins); VectorCopy (maxs, trace_maxs); CM_ClipBoxToBrush (trace_mins, trace_maxs, trace_start, trace_end, trace, &box_brush); } if (trace_nearfraction == 1) { trace->fraction = 1; VectorCopy (trace_end, trace->endpos); } else { if (trace_nearfraction<0) trace_nearfraction=0; trace->fraction = trace_nearfraction; trace->truefraction = trace_truefraction; for (i=0 ; i<3 ; i++) trace->endpos[i] = trace_start[i] + trace->fraction * (trace_end[i] - trace_start[i]); } return trace->fraction != 1; } static qboolean CM_NativeTrace(model_t *model, int forcehullnum, int frame, vec3_t axis[3], vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, qboolean capsule, unsigned int contents, trace_t *trace) { if (axis) { vec3_t start_l; vec3_t end_l; start_l[0] = DotProduct(start, axis[0]); start_l[1] = DotProduct(start, axis[1]); start_l[2] = DotProduct(start, axis[2]); end_l[0] = DotProduct(end, axis[0]); end_l[1] = DotProduct(end, axis[1]); end_l[2] = DotProduct(end, axis[2]); VectorSet(trace_up, axis[0][2], -axis[1][2], axis[2][2]); *trace = CM_BoxTrace(model, start_l, end_l, mins, maxs, capsule, contents); #ifdef TERRAIN if (model->terrain) { trace_t hmt; Heightmap_Trace(model, forcehullnum, frame, NULL, start, end, mins, maxs, capsule, contents, &hmt); if (hmt.fraction < trace->fraction) *trace = hmt; } #endif if (trace->fraction == 1) { VectorCopy (end, trace->endpos); } else { vec3_t iaxis[3]; vec3_t norm; Matrix3x3_RM_Invert_Simple((void *)axis, iaxis); VectorCopy(trace->plane.normal, norm); trace->plane.normal[0] = DotProduct(norm, iaxis[0]); trace->plane.normal[1] = DotProduct(norm, iaxis[1]); trace->plane.normal[2] = DotProduct(norm, iaxis[2]); /*just interpolate it, its easier than inverse matrix rotations*/ VectorInterpolate(start, trace->fraction, end, trace->endpos); } } else { VectorSet(trace_up, 0, 0, 1); *trace = CM_BoxTrace(model, start, end, mins, maxs, capsule, contents); #ifdef TERRAIN if (model->terrain) { trace_t hmt; Heightmap_Trace(model, forcehullnum, frame, NULL, start, end, mins, maxs, capsule, contents, &hmt); if (hmt.fraction < trace->fraction) *trace = hmt; } #endif } return trace->fraction != 1; } /* =============================================================================== PVS / PHS =============================================================================== */ /* =================== CM_DecompressVis =================== */ /* qbyte *Mod_Q2DecompressVis (qbyte *in, model_t *model) { static qbyte decompressed[MAX_MAP_LEAFS/8]; int c; qbyte *out; int row; row = (model->vis->numclusters+7)>>3; out = decompressed; if (!in) { // no vis info, so make all visible while (row) { *out++ = 0xff; row--; } return decompressed; } do { if (*in) { *out++ = *in++; continue; } c = in[1]; in += 2; while (c) { *out++ = 0; c--; } } while (out - decompressed < row); return decompressed; } #define DVIS_PVS 0 #define DVIS_PHS 1 qbyte *Mod_ClusterPVS (int cluster, model_t *model) { if (cluster == -1 || !model->vis) return mod_novis; return Mod_Q2DecompressVis ( (qbyte *)model->vis + model->vis->bitofs[cluster][DVIS_PVS], model); } */ static void CM_DecompressVis (model_t *mod, qbyte *in, qbyte *out) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int c; qbyte *out_p; int row; row = (mod->numclusters+7)>>3; out_p = out; if (!in || !prv->numvisibility) { // no vis info, so make all visible while (row) { *out_p++ = 0xff; row--; } return; } do { if (*in) { *out_p++ = *in++; continue; } c = in[1]; in += 2; if ((out_p - out) + c > row) { c = row - (out_p - out); Con_DPrintf ("warning: Vis decompression overrun\n"); } while (c) { *out_p++ = 0; c--; } } while (out_p - out < row); } static qbyte pvsrow[MAX_MAP_LEAFS/8]; static qbyte phsrow[MAX_MAP_LEAFS/8]; qbyte *CM_ClusterPVS (model_t *mod, int cluster, qbyte *buffer, unsigned int buffersize) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; if (!buffer) { buffer = pvsrow; buffersize = sizeof(pvsrow); } if (buffersize < (mod->numclusters+7)>>3) Sys_Error("CM_ClusterPVS with too small a buffer\n"); if (mod->fromgame != fg_quake2) { if (cluster != -1 && prv->q3pvs->numclusters) { return (qbyte *)prv->q3pvs->data + cluster * prv->q3pvs->rowsize; } else { memset (buffer, 0, (mod->numclusters+7)>>3); return buffer; } } if (cluster == -1) memset (buffer, 0, (mod->numclusters+7)>>3); else CM_DecompressVis (mod, ((qbyte*)prv->q2vis) + prv->q2vis->bitofs[cluster][DVIS_PVS], buffer); return buffer; } qbyte *CM_ClusterPHS (model_t *mod, int cluster) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; if (mod->fromgame != fg_quake2) { if (cluster != -1 && prv->q3phs->numclusters) { return (qbyte *)prv->q3phs->data + cluster * prv->q3phs->rowsize; } else { memset (phsrow, 0, (mod->numclusters+7)>>3); return phsrow; } } if (cluster == -1) memset (phsrow, 0, (mod->numclusters+7)>>3); else CM_DecompressVis (mod, ((qbyte*)prv->q2vis) + prv->q2vis->bitofs[cluster][DVIS_PHS], phsrow); return phsrow; } /* =============================================================================== AREAPORTALS =============================================================================== */ static void FloodArea_r (cminfo_t *prv, q2carea_t *area, int floodnum) { int i; if (area->floodvalid == prv->floodvalid) { if (area->floodnum == floodnum) return; Con_Printf ("FloodArea_r: reflooded\n"); return; } area->floodnum = floodnum; area->floodvalid = prv->floodvalid; if (prv->mapisq3) { for (i=0 ; inumareas ; i++) { if (prv->q3areas[area - prv->q2areas].numareaportals[i]>0) FloodArea_r (prv, &prv->q2areas[i], floodnum); } } else { q2dareaportal_t *p = &prv->areaportals[area->firstareaportal]; for (i=0 ; inumareaportals ; i++, p++) { if (prv->portalopen[p->portalnum]) FloodArea_r (prv, &prv->q2areas[p->otherarea], floodnum); } } } /* ==================== FloodAreaConnections ==================== */ static void FloodAreaConnections (cminfo_t *prv) { int i; q2carea_t *area; int floodnum; // all current floods are now invalid prv->floodvalid++; floodnum = 0; // area 0 is not used for (i=0 ; inumareas ; i++) { area = &prv->q2areas[i]; if (area->floodvalid == prv->floodvalid) continue; // already flooded into floodnum++; FloodArea_r (prv, area, floodnum); } } void CMQ2_SetAreaPortalState (model_t *mod, unsigned int portalnum, qboolean open) { cminfo_t *prv; if (!mod) return; prv = (cminfo_t*)mod->meshinfo; if (prv->mapisq3) return; if (portalnum > prv->numareaportals) Host_Error ("areaportal > numareaportals"); if (prv->portalopen[portalnum] == open) return; prv->portalopen[portalnum] = open; FloodAreaConnections (prv); return; } void CMQ3_SetAreaPortalState (model_t *mod, unsigned int area1, unsigned int area2, qboolean open) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; if (!prv->mapisq3) return; // Host_Error ("CMQ3_SetAreaPortalState on non-q3 map"); if (area1 >= prv->numareas || area2 >= prv->numareas) Host_Error ("CMQ3_SetAreaPortalState: area > numareas"); if (open) { prv->q3areas[area1].numareaportals[area2]++; prv->q3areas[area2].numareaportals[area1]++; } else { prv->q3areas[area1].numareaportals[area2]--; prv->q3areas[area2].numareaportals[area1]--; } FloodAreaConnections(prv); } qboolean VARGS CM_AreasConnected (model_t *mod, unsigned int area1, unsigned int area2) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; if (map_noareas.value) return true; if (area1 == ~0 || area2 == ~0) return area1 == area2; if (area1 > prv->numareas || area2 > prv->numareas) Host_Error ("area > numareas"); if (prv->q2areas[area1].floodnum == prv->q2areas[area2].floodnum) return true; return false; } /* ================= CM_WriteAreaBits Writes a length qbyte followed by a bit vector of all the areas that area in the same flood as the area parameter This is used by the client refreshes to cull visibility ================= */ int CM_WriteAreaBits (model_t *mod, qbyte *buffer, int area) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; int i; int floodnum; int bytes; bytes = (prv->numareas+7)>>3; if (map_noareas.value) { // for debugging, send everything memset (buffer, 255, bytes); } else { memset (buffer, 0, bytes); floodnum = prv->q2areas[area].floodnum; for (i=0 ; inumareas ; i++) { if (prv->q2areas[i].floodnum == floodnum || !area) buffer[i>>3] |= 1<<(i&7); } } return bytes; } /* =================== CM_WritePortalState Writes the portal state to a savegame file =================== */ void CM_WritePortalState (model_t *mod, vfsfile_t *f) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; VFS_WRITE(f, prv->portalopen, sizeof(prv->portalopen)); } /* =================== CM_ReadPortalState Reads the portal state from a savegame file and recalculates the area connections =================== */ void CM_ReadPortalState (model_t *mod, vfsfile_t *f) { cminfo_t *prv = (cminfo_t*)mod->meshinfo; size_t result; result = VFS_READ(f, prv->portalopen, sizeof(prv->portalopen)); // do something with result if (result != sizeof(prv->portalopen)) Con_Printf("CM_ReadPortalState() fread: expected %u, result was %u\n",(unsigned int)sizeof(prv->portalopen),(unsigned int)result); FloodAreaConnections (prv); } /* ============= CM_HeadnodeVisible Returns true if any leaf under headnode has a cluster that is potentially visible ============= */ qboolean CM_HeadnodeVisible (model_t *mod, int nodenum, qbyte *visbits) { int leafnum; int cluster; mnode_t *node; if (nodenum < 0) { leafnum = -1-nodenum; cluster = mod->leafs[leafnum].cluster; if (cluster == -1) return false; if (visbits[cluster>>3] & (1<<(cluster&7))) return true; return false; } node = &mod->nodes[nodenum]; if (CM_HeadnodeVisible(mod, node->childnum[0], visbits)) return true; return CM_HeadnodeVisible(mod, node->childnum[1], visbits); } unsigned int Q2BSP_PointContents(model_t *mod, vec3_t axis[3], vec3_t p) { int pc; pc = CM_PointContents (mod, p); return pc; } int map_checksum; qboolean QDECL Mod_LoadQ2BrushModel (model_t *mod, void *buffer, size_t fsize) { mod->fromgame = fg_quake2; return CM_LoadMap(mod, buffer, fsize, true, &map_checksum) != NULL; } void CM_Init(void) //register cvars. { #define MAPOPTIONS "Map Cvar Options" Cvar_Register(&map_noareas, MAPOPTIONS); Cvar_Register(&map_noCurves, MAPOPTIONS); Cvar_Register(&map_autoopenportals, MAPOPTIONS); Cvar_Register(&q3bsp_surf_meshcollision_flag, MAPOPTIONS); Cvar_Register(&q3bsp_surf_meshcollision_force, MAPOPTIONS); Cvar_Register(&r_subdivisions, MAPOPTIONS); } void CM_Shutdown(void) { } #endif