#ifndef MINIMAL #include "qcc.h" void QCC_PR_ParseAsm(void); #define MEMBERFIELDNAME "__m%s" #define STRCMP(s1,s2) (((*s1)!=(*s2)) || strcmp(s1+1,s2+1)) //saves about 2-6 out of 120 - expansion of idea from fastqcc #define STRNCMP(s1,s2,l) (((*s1)!=(*s2)) || strncmp(s1+1,s2+1,l)) //pathetic saving here. extern char *compilingfile; int conditional; //standard qcc keywords #define keyword_do 1 #define keyword_return 1 #define keyword_if 1 #define keyword_else 1 #define keyword_local 1 #define keyword_while 1 //extended keywords. pbool keyword_asm; pbool keyword_break; pbool keyword_case; pbool keyword_class; pbool keyword_const; //fixme pbool keyword_continue; pbool keyword_default; pbool keyword_entity; //for skipping the local pbool keyword_float; //for skipping the local pbool keyword_for; pbool keyword_goto; pbool keyword_int; //for skipping the local pbool keyword_integer; //for skipping the local pbool keyword_state; pbool keyword_string; //for skipping the local pbool keyword_struct; pbool keyword_switch; pbool keyword_thinktime; pbool keyword_var; //allow it to be initialised and set around the place. pbool keyword_vector; //for skipping the local pbool keyword_enum; //kinda like in c, but typedef not supported. pbool keyword_enumflags; //like enum, but doubles instead of adds 1. pbool keyword_typedef; //fixme #define keyword_codesys flag_acc //reacc needs this (forces the resultant crc) #define keyword_function flag_acc //reacc needs this (reacc has this on all functions, wierd eh?) #define keyword_objdata flag_acc //reacc needs this (following defs are fields rather than globals, use var to disable) #define keyword_object flag_acc //reacc needs this (an entity) #define keyword_pfunc flag_acc //reacc needs this (pointer to function) #define keyword_system flag_acc //reacc needs this (potatos) #define keyword_real flag_acc //reacc needs this (a float) #define keyword_exit flag_acc //emits an OP_DONE opcode. #define keyword_external flag_acc //reacc needs this (a builtin) pbool keyword_extern; //function is external, don't error or warn if the body was not found pbool keyword_shared; //mark global to be copied over when progs changes (part of FTE_MULTIPROGS) pbool keyword_noref; //nowhere else references this, don't strip it. pbool keyword_nosave; //don't write the def to the output. pbool keyword_union; //you surly know what a union is! #define keyword_not 1 //hexenc support needs this, and fteqcc can optimise without it, but it adds an extra token after the if, so it can cause no namespace conflicts pbool keywords_coexist; //don't disable a keyword simply because a var was made with the same name. pbool output_parms; //emit some PARMX fields. confuses decompilers. pbool autoprototype; //take two passes over the source code. First time round doesn't enter and functions or initialise variables. pbool pr_subscopedlocals; //causes locals to be valid ONLY within their statement block. (they simply can't be referenced by name outside of it) pbool flag_ifstring; //makes if (blah) equivelent to if (blah != "") which resolves some issues in multiprogs situations. pbool flag_acc; //reacc like behaviour of src files (finds *.qc in start dir and compiles all in alphabetical order) pbool flag_caseinsensative; //symbols will be matched to an insensative case if the specified case doesn't exist. This should b usable for any mod pbool flag_laxcasts; //Allow lax casting. This'll produce loadsa warnings of course. But allows compilation of certain dodgy code. pbool flag_hashonly; //Allows use of only #constant for precompiler constants, allows certain preqcc using mods to compile pbool flag_fasttrackarrays; //Faster arrays, dynamically detected, activated only in supporting engines. pbool opt_overlaptemps; //reduce numpr_globals by reuse of temps. When they are not needed they are freed for reuse. The way this is implemented is better than frikqcc's. (This is the single most important optimisation) pbool opt_assignments; //STORE_F isn't used if an operation wrote to a temp. pbool opt_shortenifnots; //if(!var) is made an IF rather than NOT IFNOT pbool opt_noduplicatestrings; //brute force string check. time consuming but more effective than the equivelent in frikqcc. pbool opt_constantarithmatic; //3*5 appears as 15 instead of the extra statement. pbool opt_nonvec_parms; //store_f instead of store_v on function calls, where possible. pbool opt_constant_names; //take out the defs and name strings of constants. pbool opt_constant_names_strings;//removes the defs of strings too. plays havok with multiprogs. pbool opt_precache_file; //remove the call, the parameters, everything. pbool opt_filenames; //strip filenames. hinders older decompilers. pbool opt_unreferenced; //strip defs that are not referenced. pbool opt_function_names; //strip out the names of builtin functions. pbool opt_locals; //strip out the names of locals and immediates. pbool opt_dupconstdefs; //float X = 5; and float Y = 5; occupy the same global with this. pbool opt_return_only; //RETURN; DONE; at the end of a function strips out the done statement if there is no way to get to it. pbool opt_compound_jumps; //jumps to jump statements jump to the final point. pbool opt_stripfunctions; //if a functions is only ever called directly or by exe, don't emit the def. pbool opt_locals_marshalling; //make the local vars of all functions occupy the same globals. pbool opt_logicops; //don't make conditions enter functions if the return value will be discarded due to a previous value. (C style if statements) pbool opt_vectorcalls; //vectors can be packed into 3 floats, which can yield lower numpr_globals, but cost two more statements per call (only works for q1 calling conventions). pbool opt_simplifiedifs; //if (f != 0) -> if (f). if (f == 0) -> ifnot (f) //bool opt_comexprremoval; //these are the results of the opt_. The values are printed out when compilation is compleate, showing effectivness. int optres_shortenifnots; int optres_assignments; int optres_overlaptemps; int optres_noduplicatestrings; int optres_constantarithmatic; int optres_nonvec_parms; int optres_constant_names; int optres_constant_names_strings; int optres_precache_file; int optres_filenames; int optres_unreferenced; int optres_function_names; int optres_locals; int optres_dupconstdefs; int optres_return_only; int optres_compound_jumps; //int optres_comexprremoval; int optres_stripfunctions; int optres_locals_marshalling; int optres_logicops; int optres_test1; int optres_test2; void *(*pHash_Get)(hashtable_t *table, char *name); void *(*pHash_GetNext)(hashtable_t *table, char *name, void *old); void *(*pHash_Add)(hashtable_t *table, char *name, void *data, bucket_t *); QCC_def_t *QCC_PR_DummyDef(QCC_type_t *type, char *name, QCC_def_t *scope, int arraysize, unsigned int ofs, int referable, pbool saved); QCC_type_t *QCC_PR_NewType (char *name, int basictype); QCC_type_t *QCC_PR_FindType (QCC_type_t *type); QCC_type_t *QCC_PR_PointerType (QCC_type_t *pointsto); QCC_type_t *QCC_PR_FieldType (QCC_type_t *pointsto); void QCC_PR_ParseState (void); pbool simplestore; QCC_pr_info_t pr; //QCC_def_t **pr_global_defs/*[MAX_REGS]*/; // to find def for a global variable //keeps track of how many funcs are called while parsing a statement //int qcc_functioncalled; //======================================== QCC_def_t *pr_scope; // the function being parsed, or NULL QCC_type_t *pr_classtype; pbool pr_dumpasm; QCC_string_t s_file, s_file2; // filename for function definition unsigned int locals_start; // for tracking local variables vs temps unsigned int locals_end; // for tracking local variables vs temps jmp_buf pr_parse_abort; // longjump with this on parse error void QCC_PR_ParseDefs (char *classname); pbool qcc_usefulstatement; int max_breaks; int max_continues; int max_cases; int num_continues; int num_breaks; int num_cases; int *pr_breaks; int *pr_continues; int *pr_cases; QCC_def_t **pr_casesdef; QCC_def_t **pr_casesdef2; typedef struct { int statementno; int lineno; char name[256]; } gotooperator_t; int max_labels; int max_gotos; gotooperator_t *pr_labels; gotooperator_t *pr_gotos; int num_gotos; int num_labels; QCC_def_t *extra_parms[MAX_EXTRA_PARMS]; #define ASSOC_RIGHT_RESULT ASSOC_RIGHT //======================================== //FIXME: modifiy list so most common GROUPS are first //use look up table for value of first char and sort by first char and most common...? //if true, effectivly {b=a; return a;} QCC_opcode_t pr_opcodes[] = { {6, "", "DONE", -1, ASSOC_LEFT, &type_void, &type_void, &type_void}, {6, "*", "MUL_F", 3, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "*", "MUL_V", 3, ASSOC_LEFT, &type_vector, &type_vector, &type_float}, {6, "*", "MUL_FV", 3, ASSOC_LEFT, &type_float, &type_vector, &type_vector}, {6, "*", "MUL_VF", 3, ASSOC_LEFT, &type_vector, &type_float, &type_vector}, {6, "/", "DIV_F", 3, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "+", "ADD_F", 4, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "+", "ADD_V", 4, ASSOC_LEFT, &type_vector, &type_vector, &type_vector}, {6, "-", "SUB_F", 4, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "-", "SUB_V", 4, ASSOC_LEFT, &type_vector, &type_vector, &type_vector}, {6, "==", "EQ_F", 5, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "==", "EQ_V", 5, ASSOC_LEFT, &type_vector, &type_vector, &type_float}, {6, "==", "EQ_S", 5, ASSOC_LEFT, &type_string, &type_string, &type_float}, {6, "==", "EQ_E", 5, ASSOC_LEFT, &type_entity, &type_entity, &type_float}, {6, "==", "EQ_FNC", 5, ASSOC_LEFT, &type_function, &type_function, &type_float}, {6, "!=", "NE_F", 5, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "!=", "NE_V", 5, ASSOC_LEFT, &type_vector, &type_vector, &type_float}, {6, "!=", "NE_S", 5, ASSOC_LEFT, &type_string, &type_string, &type_float}, {6, "!=", "NE_E", 5, ASSOC_LEFT, &type_entity, &type_entity, &type_float}, {6, "!=", "NE_FNC", 5, ASSOC_LEFT, &type_function, &type_function, &type_float}, {6, "<=", "LE", 5, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, ">=", "GE", 5, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "<", "LT", 5, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, ">", "GT", 5, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, ".", "INDIRECT_F", 1, ASSOC_LEFT, &type_entity, &type_field, &type_float}, {6, ".", "INDIRECT_V", 1, ASSOC_LEFT, &type_entity, &type_field, &type_vector}, {6, ".", "INDIRECT_S", 1, ASSOC_LEFT, &type_entity, &type_field, &type_string}, {6, ".", "INDIRECT_E", 1, ASSOC_LEFT, &type_entity, &type_field, &type_entity}, {6, ".", "INDIRECT_FI", 1, ASSOC_LEFT, &type_entity, &type_field, &type_field}, {6, ".", "INDIRECT_FU", 1, ASSOC_LEFT, &type_entity, &type_field, &type_function}, {6, ".", "ADDRESS", 1, ASSOC_LEFT, &type_entity, &type_field, &type_pointer}, {6, "=", "STORE_F", 6, ASSOC_RIGHT, &type_float, &type_float, &type_float}, {6, "=", "STORE_V", 6, ASSOC_RIGHT, &type_vector, &type_vector, &type_vector}, {6, "=", "STORE_S", 6, ASSOC_RIGHT, &type_string, &type_string, &type_string}, {6, "=", "STORE_ENT", 6, ASSOC_RIGHT, &type_entity, &type_entity, &type_entity}, {6, "=", "STORE_FLD", 6, ASSOC_RIGHT, &type_field, &type_field, &type_field}, {6, "=", "STORE_FNC", 6, ASSOC_RIGHT, &type_function, &type_function, &type_function}, {6, "=", "STOREP_F", 6, ASSOC_RIGHT, &type_pointer, &type_float, &type_float}, {6, "=", "STOREP_V", 6, ASSOC_RIGHT, &type_pointer, &type_vector, &type_vector}, {6, "=", "STOREP_S", 6, ASSOC_RIGHT, &type_pointer, &type_string, &type_string}, {6, "=", "STOREP_ENT", 6, ASSOC_RIGHT, &type_pointer, &type_entity, &type_entity}, {6, "=", "STOREP_FLD", 6, ASSOC_RIGHT, &type_pointer, &type_field, &type_field}, {6, "=", "STOREP_FNC", 6, ASSOC_RIGHT, &type_pointer, &type_function, &type_function}, {6, "", "RETURN", -1, ASSOC_LEFT, &type_float, &type_void, &type_void}, {6, "!", "NOT_F", -1, ASSOC_LEFT, &type_float, &type_void, &type_float}, {6, "!", "NOT_V", -1, ASSOC_LEFT, &type_vector, &type_void, &type_float}, {6, "!", "NOT_S", -1, ASSOC_LEFT, &type_vector, &type_void, &type_float}, {6, "!", "NOT_ENT", -1, ASSOC_LEFT, &type_entity, &type_void, &type_float}, {6, "!", "NOT_FNC", -1, ASSOC_LEFT, &type_function, &type_void, &type_float}, {6, "", "IF", -1, ASSOC_RIGHT, &type_float, NULL, &type_void}, {6, "", "IFNOT", -1, ASSOC_RIGHT, &type_float, NULL, &type_void}, // calls returns REG_RETURN {6, "", "CALL0", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "CALL1", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "CALL2", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "CALL3", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "CALL4", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "CALL5", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "CALL6", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "CALL7", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "CALL8", -1, ASSOC_LEFT, &type_function, &type_void, &type_void}, {6, "", "STATE", -1, ASSOC_LEFT, &type_float, &type_float, &type_void}, {6, "", "GOTO", -1, ASSOC_RIGHT, NULL, &type_void, &type_void}, {6, "&&", "AND", 7, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "||", "OR", 7, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "&", "BITAND", 3, ASSOC_LEFT, &type_float, &type_float, &type_float}, {6, "|", "BITOR", 3, ASSOC_LEFT, &type_float, &type_float, &type_float}, //version 6 are in normal progs. //these are hexen2 {7, "*=", "MULSTORE_F", 6, ASSOC_RIGHT_RESULT, &type_float, &type_float, &type_float}, {7, "*=", "MULSTORE_V", 6, ASSOC_RIGHT_RESULT, &type_vector, &type_float, &type_vector}, {7, "*=", "MULSTOREP_F", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_float}, {7, "*=", "MULSTOREP_V", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_vector}, {7, "/=", "DIVSTORE_F", 6, ASSOC_RIGHT_RESULT, &type_float, &type_float, &type_float}, {7, "/=", "DIVSTOREP_F", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_float}, {7, "+=", "ADDSTORE_F", 6, ASSOC_RIGHT_RESULT, &type_float, &type_float, &type_float}, {7, "+=", "ADDSTORE_V", 6, ASSOC_RIGHT_RESULT, &type_vector, &type_vector, &type_vector}, {7, "+=", "ADDSTOREP_F", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_float}, {7, "+=", "ADDSTOREP_V", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_vector, &type_vector}, {7, "-=", "SUBSTORE_F", 6, ASSOC_RIGHT_RESULT, &type_float, &type_float, &type_float}, {7, "-=", "SUBSTORE_V", 6, ASSOC_RIGHT_RESULT, &type_vector, &type_vector, &type_vector}, {7, "-=", "SUBSTOREP_F", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_float}, {7, "-=", "SUBSTOREP_V", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_vector, &type_vector}, {7, "", "FETCH_GBL_F", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "", "FETCH_GBL_V", -1, ASSOC_LEFT, &type_vector, &type_float, &type_vector}, {7, "", "FETCH_GBL_S", -1, ASSOC_LEFT, &type_string, &type_float, &type_string}, {7, "", "FETCH_GBL_E", -1, ASSOC_LEFT, &type_entity, &type_float, &type_entity}, {7, "", "FETCH_GBL_FNC", -1, ASSOC_LEFT, &type_function, &type_float, &type_function}, {7, "", "CSTATE", -1, ASSOC_LEFT, &type_float, &type_float, &type_void}, {7, "", "CWSTATE", -1, ASSOC_LEFT, &type_float, &type_float, &type_void}, {7, "", "THINKTIME", -1, ASSOC_LEFT, &type_entity, &type_float, &type_void}, {7, "|=", "BITSET_F", 6, ASSOC_RIGHT, &type_float, &type_float, &type_float}, {7, "|=", "BITSETP_F", 6, ASSOC_RIGHT, &type_pointer, &type_float, &type_float}, {7, "(-)", "BITCLR_F", 6, ASSOC_RIGHT, &type_float, &type_float, &type_float}, {7, "(-)", "BITCLRP_F", 6, ASSOC_RIGHT, &type_pointer, &type_float, &type_float}, {7, "", "RAND0", -1, ASSOC_LEFT, &type_void, &type_void, &type_float}, {7, "", "RAND1", -1, ASSOC_LEFT, &type_float, &type_void, &type_float}, {7, "", "RAND2", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "", "RANDV0", -1, ASSOC_LEFT, &type_void, &type_void, &type_vector}, {7, "", "RANDV1", -1, ASSOC_LEFT, &type_vector, &type_void, &type_vector}, {7, "", "RANDV2", -1, ASSOC_LEFT, &type_vector, &type_vector, &type_vector}, {7, "", "SWITCH_F", -1, ASSOC_LEFT, &type_void, NULL, &type_void}, {7, "", "SWITCH_V", -1, ASSOC_LEFT, &type_void, NULL, &type_void}, {7, "", "SWITCH_S", -1, ASSOC_LEFT, &type_void, NULL, &type_void}, {7, "", "SWITCH_E", -1, ASSOC_LEFT, &type_void, NULL, &type_void}, {7, "", "SWITCH_FNC", -1, ASSOC_LEFT, &type_void, NULL, &type_void}, {7, "", "CASE", -1, ASSOC_LEFT, &type_void, NULL, &type_void}, {7, "", "CASERANGE", -1, ASSOC_LEFT, &type_void, &type_void, NULL}, //Later are additions by DMW. {7, "", "CALL1H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_void}, {7, "", "CALL2H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector}, {7, "", "CALL3H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector}, {7, "", "CALL4H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector}, {7, "", "CALL5H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector}, {7, "", "CALL6H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector}, {7, "", "CALL7H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector}, {7, "", "CALL8H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector}, {7, "=", "STORE_I", 6, ASSOC_RIGHT, &type_integer, &type_integer, &type_integer}, {7, "=", "STORE_IF", 6, ASSOC_RIGHT, &type_integer, &type_float, &type_integer}, {7, "=", "STORE_FI", 6, ASSOC_RIGHT, &type_float, &type_integer, &type_float}, {7, "+", "ADD_I", 4, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "+", "ADD_FI", 4, ASSOC_LEFT, &type_float, &type_integer, &type_float}, {7, "+", "ADD_IF", 4, ASSOC_LEFT, &type_integer, &type_float, &type_float}, {7, "-", "SUB_I", 4, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "-", "SUB_FI", 4, ASSOC_LEFT, &type_float, &type_integer, &type_float}, {7, "-", "SUB_IF", 4, ASSOC_LEFT, &type_integer, &type_float, &type_float}, {7, "", "C_ITOF", -1, ASSOC_LEFT, &type_integer, &type_void, &type_float}, {7, "", "C_FTOI", -1, ASSOC_LEFT, &type_float, &type_void, &type_integer}, {7, "", "CP_ITOF", -1, ASSOC_LEFT, &type_pointer, &type_integer, &type_float}, {7, "", "CP_FTOI", -1, ASSOC_LEFT, &type_pointer, &type_float, &type_integer}, {7, ".", "INDIRECT", 1, ASSOC_LEFT, &type_entity, &type_field, &type_integer}, {7, "=", "STOREP_I", 6, ASSOC_RIGHT, &type_pointer, &type_integer, &type_integer}, {7, "=", "STOREP_IF", 6, ASSOC_RIGHT, &type_pointer, &type_float, &type_integer}, {7, "=", "STOREP_FI", 6, ASSOC_RIGHT, &type_pointer, &type_integer, &type_float}, {7, "&", "BITAND_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "|", "BITOR_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "*", "MUL_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "/", "DIV_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "==", "EQ_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "!=", "NE_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "", "IFNOTS", -1, ASSOC_RIGHT, &type_string, NULL, &type_void}, {7, "", "IFS", -1, ASSOC_RIGHT, &type_string, NULL, &type_void}, {7, "!", "NOT_I", -1, ASSOC_LEFT, &type_integer, &type_void, &type_integer}, {7, "/", "DIV_VF", 3, ASSOC_LEFT, &type_vector, &type_float, &type_float}, {7, "^", "POWER_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, ">>", "RSHIFT_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "<<", "LSHIFT_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, //var, offset return {7, "", "GET_POINTER", -1, ASSOC_LEFT, &type_float, &type_integer, &type_pointer}, {7, "", "ARRAY_OFS", -1, ASSOC_LEFT, &type_pointer, &type_integer, &type_pointer}, {7, "=", "LOADA_F", 6, ASSOC_LEFT, &type_float, &type_integer, &type_float}, {7, "=", "LOADA_V", 6, ASSOC_LEFT, &type_vector, &type_integer, &type_vector}, {7, "=", "LOADA_S", 6, ASSOC_LEFT, &type_string, &type_integer, &type_string}, {7, "=", "LOADA_ENT", 6, ASSOC_LEFT, &type_entity, &type_integer, &type_entity}, {7, "=", "LOADA_FLD", 6, ASSOC_LEFT, &type_field, &type_integer, &type_field}, {7, "=", "LOADA_FNC", 6, ASSOC_LEFT, &type_function, &type_integer, &type_function}, {7, "=", "LOADA_I", 6, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "=", "STORE_P", 6, ASSOC_RIGHT, &type_pointer, &type_pointer, &type_void}, {7, ".", "INDIRECT_P", 1, ASSOC_LEFT, &type_entity, &type_field, &type_pointer}, {7, "=", "LOADP_F", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_float}, {7, "=", "LOADP_V", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_vector}, {7, "=", "LOADP_S", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_string}, {7, "=", "LOADP_ENT", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_entity}, {7, "=", "LOADP_FLD", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_field}, {7, "=", "LOADP_FNC", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_function}, {7, "=", "LOADP_I", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_integer}, {7, "<=", "LE_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, ">=", "GE_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "<", "LT_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, ">", "GT_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "<=", "LE_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, ">=", "GE_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "<", "LT_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, ">", "GT_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "<=", "LE_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_integer}, {7, ">=", "GE_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_integer}, {7, "<", "LT_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_integer}, {7, ">", "GT_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_integer}, {7, "==", "EQ_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "==", "EQ_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float}, //------------------------------------- //string manipulation. {7, "+", "ADD_SF", 4, ASSOC_LEFT, &type_string, &type_float, &type_string}, {7, "-", "SUB_S", 4, ASSOC_LEFT, &type_string, &type_string, &type_float}, {7, "", "STOREP_C", 1, ASSOC_RIGHT, &type_string, &type_float, &type_float}, {7, "", "LOADP_C", 1, ASSOC_LEFT, &type_string, &type_void, &type_float}, //------------------------------------- {7, "*", "MUL_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "*", "MUL_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float}, {7, "*", "MUL_VI", 5, ASSOC_LEFT, &type_vector, &type_integer, &type_vector}, {7, "*", "MUL_IV", 5, ASSOC_LEFT, &type_integer, &type_vector, &type_vector}, {7, "/", "DIV_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "/", "DIV_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float}, {7, "&", "BITAND_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "|", "BITOR_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "&", "BITAND_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float}, {7, "|", "BITOR_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float}, {7, "&&", "AND_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "||", "OR_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer}, {7, "&&", "AND_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "||", "OR_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "&&", "AND_FI", 5, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "||", "OR_FI", 5, ASSOC_LEFT, &type_float, &type_float, &type_integer}, {7, "!=", "NE_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "!=", "NE_FI", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer}, {7, "<>", "GSTOREP_I", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GSTOREP_F", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GSTOREP_ENT", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GSTOREP_FLD", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GSTOREP_S", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GSTORE_PFNC", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GSTOREP_V", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GADDRESS", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GLOAD_I", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GLOAD_F", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GLOAD_FLD", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GLOAD_ENT", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GLOAD_S", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "GLOAD_FNC", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "<>", "BOUNDCHECK", -1, ASSOC_LEFT, &type_float, &type_float, &type_float}, {7, "=", "STOREP_P", 6, ASSOC_RIGHT, &type_pointer, &type_pointer, &type_void}, {7, "", "PUSH", -1, ASSOC_RIGHT, &type_float, &type_void, &type_pointer}, {7, "", "POP", -1, ASSOC_RIGHT, &type_float, &type_void, &type_void}, {7, "|=", "BITSET_I", 6, ASSOC_RIGHT, &type_integer, &type_integer, &type_integer}, {7, "|=", "BITSETP_I", 6, ASSOC_RIGHT, &type_pointer, &type_integer, &type_integer}, {7, "*=", "MULSTORE_I", 6, ASSOC_RIGHT_RESULT, &type_integer, &type_integer, &type_integer}, {7, "*=", "MULSTOREP_I", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_integer, &type_vector}, {7, "/=", "DIVSTORE_I", 6, ASSOC_RIGHT_RESULT, &type_integer, &type_integer, &type_integer}, {7, "/=", "DIVSTOREP_I", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_integer, &type_vector}, {7, "+=", "ADDSTORE_I", 6, ASSOC_RIGHT_RESULT, &type_integer, &type_integer, &type_integer}, {7, "+=", "ADDSTOREP_I", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_integer, &type_integer}, {7, "-=", "SUBSTORE_I", 6, ASSOC_RIGHT_RESULT, &type_integer, &type_integer, &type_integer}, {7, "-=", "SUBSTOREP_I", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_vector, &type_vector}, {0, NULL} }; pbool OpAssignsToC(unsigned int op) { // calls, switches and cases DON'T if(pr_opcodes[op].type_c == &type_void) return false; if(op >= OP_SWITCH_F && op <= OP_CALL8H) return false; if(op >= OP_RAND0 && op <= OP_RANDV2) return false; // they use a and b, but have 3 types // safety if(op >= OP_BITSET && op <= OP_BITCLRP) return false; /*if(op >= OP_STORE_I && op <= OP_STORE_FI) return false; <- add STOREP_*?*/ if(op == OP_STOREP_C || op == OP_LOADP_C) return false; if(op >= OP_MULSTORE_F && op <= OP_SUBSTOREP_V) return false; return true; } pbool OpAssignsToB(unsigned int op) { if(op >= OP_BITSET && op <= OP_BITCLRP) return true; if(op >= OP_STORE_I && op <= OP_STORE_FI) return true; if(op == OP_STOREP_C || op == OP_LOADP_C) return true; if(op >= OP_MULSTORE_F && op <= OP_SUBSTOREP_V) return true; if(op >= OP_STORE_F && op <= OP_STOREP_FNC) return true; return false; } pbool OpAssignedTo(QCC_def_t *v, unsigned int op) { if(OpAssignsToC(op)) { } else if(OpAssignsToB(op)) { } return false; } #undef ASSOC_RIGHT_RESULT #define TOP_PRIORITY 7 #define NOT_PRIORITY 5 //conditional and/or #define CONDITION_PRIORITY 7 //this system cuts out 10/120 //these evaluate as top first. QCC_opcode_t *opcodeprioritized[TOP_PRIORITY+1][64] = { { //don't use /* &pr_opcodes[OP_DONE], &pr_opcodes[OP_RETURN], &pr_opcodes[OP_NOT_F], &pr_opcodes[OP_NOT_V], &pr_opcodes[OP_NOT_S], &pr_opcodes[OP_NOT_ENT], &pr_opcodes[OP_NOT_FNC], &pr_opcodes[OP_IF], &pr_opcodes[OP_IFNOT], &pr_opcodes[OP_CALL0], &pr_opcodes[OP_CALL1], &pr_opcodes[OP_CALL2], &pr_opcodes[OP_CALL3], &pr_opcodes[OP_CALL4], &pr_opcodes[OP_CALL5], &pr_opcodes[OP_CALL6], &pr_opcodes[OP_CALL7], &pr_opcodes[OP_CALL8], &pr_opcodes[OP_STATE], &pr_opcodes[OP_GOTO], &pr_opcodes[OP_IFNOTS], &pr_opcodes[OP_IFS], &pr_opcodes[OP_NOT_I], */ NULL }, { //1 &pr_opcodes[OP_LOAD_F], &pr_opcodes[OP_LOAD_V], &pr_opcodes[OP_LOAD_S], &pr_opcodes[OP_LOAD_ENT], &pr_opcodes[OP_LOAD_FLD], &pr_opcodes[OP_LOAD_FNC], &pr_opcodes[OP_LOAD_I], &pr_opcodes[OP_LOAD_P], &pr_opcodes[OP_ADDRESS], NULL }, { //2 /* //conversion. don't use &pr_opcodes[OP_C_ITOF], &pr_opcodes[OP_C_FTOI], &pr_opcodes[OP_CP_ITOF], &pr_opcodes[OP_CP_FTOI], */ NULL }, { //3 &pr_opcodes[OP_MUL_F], &pr_opcodes[OP_MUL_V], &pr_opcodes[OP_MUL_FV], &pr_opcodes[OP_MUL_VF], &pr_opcodes[OP_MUL_I], &pr_opcodes[OP_DIV_F], &pr_opcodes[OP_DIV_I], &pr_opcodes[OP_DIV_VF], &pr_opcodes[OP_BITAND], &pr_opcodes[OP_BITAND_I], &pr_opcodes[OP_BITOR], &pr_opcodes[OP_BITOR_I], &pr_opcodes[OP_POWER_I], &pr_opcodes[OP_RSHIFT_I], &pr_opcodes[OP_LSHIFT_I], NULL }, { //4 &pr_opcodes[OP_ADD_F], &pr_opcodes[OP_ADD_V], &pr_opcodes[OP_ADD_I], &pr_opcodes[OP_ADD_FI], &pr_opcodes[OP_ADD_IF], &pr_opcodes[OP_ADD_SF], &pr_opcodes[OP_SUB_F], &pr_opcodes[OP_SUB_V], &pr_opcodes[OP_SUB_I], &pr_opcodes[OP_SUB_FI], &pr_opcodes[OP_SUB_IF], &pr_opcodes[OP_SUB_S], NULL }, { //5 &pr_opcodes[OP_EQ_F], &pr_opcodes[OP_EQ_V], &pr_opcodes[OP_EQ_S], &pr_opcodes[OP_EQ_E], &pr_opcodes[OP_EQ_FNC], &pr_opcodes[OP_EQ_I], &pr_opcodes[OP_EQ_IF], &pr_opcodes[OP_EQ_FI], &pr_opcodes[OP_NE_F], &pr_opcodes[OP_NE_V], &pr_opcodes[OP_NE_S], &pr_opcodes[OP_NE_E], &pr_opcodes[OP_NE_FNC], &pr_opcodes[OP_NE_I], &pr_opcodes[OP_LE], &pr_opcodes[OP_LE_I], &pr_opcodes[OP_LE_IF], &pr_opcodes[OP_LE_FI], &pr_opcodes[OP_GE], &pr_opcodes[OP_GE_I], &pr_opcodes[OP_GE_IF], &pr_opcodes[OP_GE_FI], &pr_opcodes[OP_LT], &pr_opcodes[OP_LT_I], &pr_opcodes[OP_LT_IF], &pr_opcodes[OP_LT_FI], &pr_opcodes[OP_GT], &pr_opcodes[OP_GT_I], &pr_opcodes[OP_GT_IF], &pr_opcodes[OP_GT_FI], NULL }, { //6 &pr_opcodes[OP_STORE_F], &pr_opcodes[OP_STORE_V], &pr_opcodes[OP_STORE_S], &pr_opcodes[OP_STORE_ENT], &pr_opcodes[OP_STORE_FLD], &pr_opcodes[OP_STORE_FNC], &pr_opcodes[OP_STORE_I], &pr_opcodes[OP_STORE_IF], &pr_opcodes[OP_STORE_FI], &pr_opcodes[OP_STORE_P], &pr_opcodes[OP_STOREP_F], &pr_opcodes[OP_STOREP_V], &pr_opcodes[OP_STOREP_S], &pr_opcodes[OP_STOREP_ENT], &pr_opcodes[OP_STOREP_FLD], &pr_opcodes[OP_STOREP_FNC], &pr_opcodes[OP_STOREP_I], &pr_opcodes[OP_STOREP_IF], &pr_opcodes[OP_STOREP_FI], &pr_opcodes[OP_STOREP_P], &pr_opcodes[OP_DIVSTORE_F], &pr_opcodes[OP_DIVSTOREP_F], &pr_opcodes[OP_MULSTORE_F], &pr_opcodes[OP_MULSTORE_V], &pr_opcodes[OP_MULSTOREP_F], &pr_opcodes[OP_MULSTOREP_V], &pr_opcodes[OP_ADDSTORE_F], &pr_opcodes[OP_ADDSTORE_V], &pr_opcodes[OP_ADDSTOREP_F], &pr_opcodes[OP_ADDSTOREP_V], &pr_opcodes[OP_SUBSTORE_F], &pr_opcodes[OP_SUBSTORE_V], &pr_opcodes[OP_SUBSTOREP_F], &pr_opcodes[OP_SUBSTOREP_V], &pr_opcodes[OP_BITSET], &pr_opcodes[OP_BITSETP], &pr_opcodes[OP_BITCLR], &pr_opcodes[OP_BITCLRP], NULL }, { //7 &pr_opcodes[OP_AND], &pr_opcodes[OP_OR], NULL } }; pbool QCC_OPCodeValid(QCC_opcode_t *op) { int num; num = op - pr_opcodes; switch(qcc_targetformat) { case QCF_STANDARD: case QCF_KK7: if (num < OP_MULSTORE_F) return true; return false; case QCF_HEXEN2: if (num >= OP_SWITCH_V && num <= OP_SWITCH_FNC) //these were assigned numbers but were never actually implemtented in standard h2. return false; // if (num >= OP_MULSTORE_F && num <= OP_SUBSTOREP_V) // return false; if (num <= OP_CALL8H) //CALLXH are fixed up. This is to provide more dynamic switching...?? return true; return false; case QCF_FTE: case QCF_FTEDEBUG: return true; } return false; } QCC_def_t *QCC_PR_Expression (int priority, pbool allowcomma); int QCC_AStatementJumpsTo(int targ, int first, int last); pbool QCC_StatementIsAJump(int stnum, int notifdest); temp_t *functemps; //floats/strings/funcs/ents... //=========================================================================== /* ============ PR_Statement Emits a primitive statement, returning the var it places it's value in ============ */ QCC_def_t *QCC_PR_Statement ( QCC_opcode_t *op, QCC_def_t *var_a, QCC_def_t *var_b, QCC_dstatement_t **outstatement); int inline QCC_ShouldConvert(QCC_def_t *var, etype_t wanted) { if (var->type->type == ev_integer && wanted == ev_function) return 0; if (var->type->type == ev_pointer && var->type->aux_type) { if (var->type->aux_type->type == ev_float && wanted == ev_integer) return OP_CP_FTOI; if (var->type->aux_type->type == ev_integer && wanted == ev_float) return OP_CP_ITOF; } else { if (var->type->type == ev_float && wanted == ev_integer) return OP_CONV_FTOI; if (var->type->type == ev_integer && wanted == ev_float) return OP_CONV_ITOF; } return -1; } QCC_def_t *QCC_SupplyConversion(QCC_def_t *var, etype_t wanted) { int o; if (pr_classtype && var->type->type == ev_field && wanted != ev_field) { if (pr_classtype) { //load self.var into a temp QCC_def_t *self; self = QCC_PR_GetDef(type_entity, "self", NULL, true, 1, false); switch(wanted) { case ev_float: return QCC_PR_Statement(pr_opcodes+OP_LOAD_F, self, var, NULL); case ev_string: return QCC_PR_Statement(pr_opcodes+OP_LOAD_S, self, var, NULL); case ev_function: return QCC_PR_Statement(pr_opcodes+OP_LOAD_FNC, self, var, NULL); case ev_vector: return QCC_PR_Statement(pr_opcodes+OP_LOAD_V, self, var, NULL); case ev_entity: return QCC_PR_Statement(pr_opcodes+OP_LOAD_ENT, self, var, NULL); default: QCC_Error(ERR_INTERNAL, "Inexplicit field load failed, try explicit"); } } } o = QCC_ShouldConvert(var, wanted); if (o <= 0) //no conversion return var; return QCC_PR_Statement(&pr_opcodes[o], var, NULL, NULL); //conversion return value } QCC_def_t *QCC_MakeStringDef(char *value); QCC_def_t *QCC_MakeFloatDef(float value); QCC_def_t *QCC_MakeIntDef(int value); QCC_def_t *QCC_MakeVectorDef(float a, float b, float c); typedef struct freeoffset_s { struct freeoffset_s *next; gofs_t ofs; unsigned int size; } freeoffset_t; freeoffset_t *freeofs; //assistant functions. This can safly be bipassed with the old method for more complex things. gofs_t QCC_GetFreeOffsetSpace(unsigned int size) { int ofs; if (opt_locals_marshalling) { freeoffset_t *fofs, *prev; for (fofs = freeofs, prev = NULL; fofs; fofs=fofs->next) { if (fofs->size == size) { if (prev) prev->next = fofs->next; else freeofs = fofs->next; return fofs->ofs; } prev = fofs; } for (fofs = freeofs, prev = NULL; fofs; fofs=fofs->next) { if (fofs->size > size) { fofs->size -= size; fofs->ofs += size; return fofs->ofs-size; } prev = fofs; } } ofs = numpr_globals; numpr_globals+=size; if (numpr_globals >= MAX_REGS) { if (!opt_overlaptemps || !opt_locals_marshalling) QCC_Error(ERR_TOOMANYGLOBALS, "numpr_globals exceeded MAX_REGS - you'll need to use more optimisations"); else QCC_Error(ERR_TOOMANYGLOBALS, "numpr_globals exceeded MAX_REGS"); } return ofs; } void QCC_FreeOffset(gofs_t ofs, unsigned int size) { freeoffset_t *fofs; if (ofs+size == numpr_globals) { //fixme: is this a bug? numpr_globals -= size; return; } for (fofs = freeofs; fofs; fofs=fofs->next) { //fixme: if this means the last block becomes free, free them all. if (fofs->ofs == ofs + size) { fofs->ofs -= size; fofs->size += size; return; } if (fofs->ofs+fofs->size == ofs) { fofs->size += size; return; } } fofs = qccHunkAlloc(sizeof(freeoffset_t)); fofs->next = freeofs; fofs->ofs = ofs; fofs->size = size; freeofs = fofs; return; } static QCC_def_t *QCC_GetTemp(QCC_type_t *type) { //#define CRAZYTEMPOPTS //not worth it. saves 2 temps with hexen2 (without even touching numpr_globals) QCC_def_t *var_c; temp_t *t; #ifdef CRAZYTEMPOPTS temp_t *best = NULL; #endif var_c = (void *)qccHunkAlloc (sizeof(QCC_def_t)); memset (var_c, 0, sizeof(QCC_def_t)); var_c->type = type; var_c->name = "temp"; if (opt_overlaptemps) //don't exceed. This lets us allocate a huge block, and still be able to compile smegging big funcs. { for (t = functemps; t; t = t->next) { if (!t->used && t->size == type->size) { #ifdef CRAZYTEMPOPTS best = t; if (t->scope == pr_scope) #endif break; } } #ifdef CRAZYTEMPOPTS t = best; #endif if (t && t->scope && t->scope != pr_scope) QCC_Error(ERR_INTERNAL, "Internal error temp has scope not equal to current scope"); if (!t) { //allocate a new one t = qccHunkAlloc(sizeof(temp_t)); t->size = type->size; t->next = functemps; functemps = t; t->ofs = QCC_GetFreeOffsetSpace(t->size); numtemps+=t->size; } else optres_overlaptemps+=t->size; //use a previous one. var_c->ofs = t->ofs; var_c->temp = t; t->lastfunc = pr_scope; } else if (opt_locals_marshalling) { //allocate a new one t = qccHunkAlloc(sizeof(temp_t)); t->size = type->size; t->next = functemps; functemps = t; t->ofs = QCC_GetFreeOffsetSpace(t->size); numtemps+=t->size; var_c->ofs = t->ofs; var_c->temp = t; t->lastfunc = pr_scope; } else { // we're not going to reallocate any temps so allocate permanently var_c->ofs = QCC_GetFreeOffsetSpace(type->size); numtemps+=type->size; } var_c->s_file = s_file; var_c->s_line = pr_source_line; if (var_c->temp) var_c->temp->used = true; return var_c; } //nothing else references this temp. static void QCC_FreeTemp(QCC_def_t *t) { if (t && t->temp) t->temp->used = false; } static void QCC_UnFreeTemp(QCC_def_t *t) { if (t->temp) t->temp->used = true; } //We've just parsed a statement. //We can gaurentee that any used temps are now not used. #ifdef _DEBUG static void QCC_FreeTemps(void) { temp_t *t; t = functemps; while(t) { if (t->used && !pr_error_count) //don't print this after an error jump out. { QCC_PR_ParseWarning(WARN_DEBUGGING, "Temp was used in %s", pr_scope->name); t->used = false; } t = t->next; } } #else #define QCC_FreeTemps() #endif //temps that are still in use over a function call can be considered dodgy. //we need to remap these to locally defined temps, on return from the function so we know we got them all. static void QCC_LockActiveTemps(void) { temp_t *t; t = functemps; while(t) { if (t->used) t->scope = pr_scope; t = t->next; } } static void QCC_RemapLockedTemp(temp_t *t, int firststatement, int laststatement) { #ifdef WRITEASM char buffer[128]; #endif QCC_def_t *def; int newofs; QCC_dstatement_t *st; int i; newofs = 0; for (i = firststatement, st = &statements[i]; i < laststatement; i++, st++) { if (pr_opcodes[st->op].type_a && st->a == t->ofs) { if (!newofs) { newofs = QCC_GetFreeOffsetSpace(t->size); numtemps+=t->size; def = QCC_PR_DummyDef(type_float, NULL, pr_scope, t->size, newofs, false, false); def->nextlocal = pr.localvars; def->constant = false; #ifdef WRITEASM sprintf(buffer, "locked_%i", t->ofs); def->name = qccHunkAlloc(strlen(buffer)+1); strcpy(def->name, buffer); #endif pr.localvars = def; } st->a = newofs; } if (pr_opcodes[st->op].type_b && st->b == t->ofs) { if (!newofs) { newofs = QCC_GetFreeOffsetSpace(t->size); numtemps+=t->size; def = QCC_PR_DummyDef(type_float, NULL, pr_scope, t->size, newofs, false, false); def->nextlocal = pr.localvars; def->constant = false; #ifdef WRITEASM sprintf(buffer, "locked_%i", t->ofs); def->name = qccHunkAlloc(strlen(buffer)+1); strcpy(def->name, buffer); #endif pr.localvars = def; } st->b = newofs; } if (pr_opcodes[st->op].type_c && st->c == t->ofs) { if (!newofs) { newofs = QCC_GetFreeOffsetSpace(t->size); numtemps+=t->size; def = QCC_PR_DummyDef(type_float, NULL, pr_scope, t->size, newofs, false, false); def->nextlocal = pr.localvars; def->constant = false; #ifdef WRITEASM sprintf(buffer, "locked_%i", t->ofs); def->name = qccHunkAlloc(strlen(buffer)+1); strcpy(def->name, buffer); #endif pr.localvars = def; } st->c = newofs; } } } static void QCC_RemapLockedTemps(int firststatement, int laststatement) { temp_t *t; t = functemps; while(t) { if (t->scope || opt_locals_marshalling) { QCC_RemapLockedTemp(t, firststatement, laststatement); t->scope = NULL; t->lastfunc = NULL; } t = t->next; } } static void QCC_fprintfLocals(FILE *f, gofs_t paramstart, gofs_t paramend) { QCC_def_t *var; temp_t *t; int i; for (var = pr.localvars; var; var = var->nextlocal) { if (var->ofs >= paramstart && var->ofs < paramend) continue; fprintf(f, "local %s %s;\n", TypeName(var->type), var->name); } for (t = functemps, i = 0; t; t = t->next, i++) { if (t->lastfunc == pr_scope) { fprintf(f, "local %s temp_%i;\n", (t->size == 1)?"float":"vector", i); } } } #ifdef WRITEASM void QCC_WriteAsmFunction(QCC_def_t *sc, unsigned int firststatement, gofs_t firstparm); static const char *QCC_VarAtOffset(unsigned int ofs, unsigned int size) { static char message[1024]; QCC_def_t *var; //check the temps temp_t *t; int i; for (t = functemps, i = 0; t; t = t->next, i++) { if (ofs >= t->ofs && ofs < t->ofs + t->size) { if (size < t->size) sprintf(message, "temp_%i_%c", i, 'x' + (ofs-t->ofs)%3); else sprintf(message, "temp_%i", i); return message; } } for (var = pr.localvars; var; var = var->nextlocal) { if (var->scope && var->scope != pr_scope) continue; //this should be an error if (ofs >= var->ofs && ofs < var->ofs + var->type->size) { if (*var->name) { if (!STRCMP(var->name, "IMMEDIATE")) //continue, don't get bogged down by multiple bits of code continue; if (size < var->type->size) sprintf(message, "%s_%c", var->name, 'x' + (ofs-var->ofs)%3); else sprintf(message, "%s", var->name); return message; } } } for (var = pr.def_head.next; var; var = var->next) { if (var->scope && var->scope != pr_scope) continue; if (ofs >= var->ofs && ofs < var->ofs + var->type->size) { if (*var->name) { if (!STRCMP(var->name, "IMMEDIATE")) { switch(var->type->type) { case ev_string: sprintf(message, "\"%.1020s\"", &strings[((int *)qcc_pr_globals)[var->ofs]]); return message; case ev_integer: sprintf(message, "%i", ((int *)qcc_pr_globals)[var->ofs]); return message; case ev_float: sprintf(message, "%f", qcc_pr_globals[var->ofs]); return message; case ev_vector: sprintf(message, "'%f %f %f'", qcc_pr_globals[var->ofs], qcc_pr_globals[var->ofs+1], qcc_pr_globals[var->ofs+2]); return message; default: sprintf(message, "IMMEDIATE"); return message; } } if (size < var->type->size) sprintf(message, "%s_%c", var->name, 'x' + (ofs-var->ofs)%3); else sprintf(message, "%s", var->name); return message; } } } if (size >= 3) { if (ofs >= OFS_RETURN && ofs < OFS_PARM0) sprintf(message, "return"); else if (ofs >= OFS_PARM0 && ofs < RESERVED_OFS) sprintf(message, "parm%i", (ofs-OFS_PARM0)/3); else sprintf(message, "offset_%i", ofs); } else { if (ofs >= OFS_RETURN && ofs < OFS_PARM0) sprintf(message, "return_%c", 'x' + ofs-OFS_RETURN); else if (ofs >= OFS_PARM0 && ofs < RESERVED_OFS) sprintf(message, "parm%i_%c", (ofs-OFS_PARM0)/3, 'x' + (ofs-OFS_PARM0)%3); else sprintf(message, "offset_%i", ofs); } return message; } #endif QCC_def_t *QCC_PR_Statement ( QCC_opcode_t *op, QCC_def_t *var_a, QCC_def_t *var_b, QCC_dstatement_t **outstatement) { QCC_dstatement_t *statement; QCC_def_t *var_c=NULL, *temp=NULL; if (outstatement == (QCC_dstatement_t **)0xffffffff) outstatement = NULL; else if (op->priority != -1) { if (op->associative!=ASSOC_LEFT) { if (op->type_a == &type_pointer) var_b = QCC_SupplyConversion(var_b, (*op->type_b)->type); else var_b = QCC_SupplyConversion(var_b, (*op->type_a)->type); } else { if (var_a) var_a = QCC_SupplyConversion(var_a, (*op->type_a)->type); if (var_b) var_b = QCC_SupplyConversion(var_b, (*op->type_b)->type); // if (op->type_a == &def_pointer) // var_a = QCC_SupplyConversion(var_a, (*op->type_b)->type); // else // var_a = QCC_SupplyConversion(var_a, (*op->type_a)->type); // } // //can't convert the left componant of an assignment operation // if (var_b && var_b->type && var_b->type != op->type_b->type) // var_b = QCC_SupplyConversion(var_b, op->type_b->type->type); } } if (var_a) { var_a->references++; QCC_FreeTemp(var_a); } if (var_b) { var_b->references++; QCC_FreeTemp(var_b); } if (keyword_class && var_a && var_b) { if (var_a->type->type == ev_entity && var_b->type->type == ev_entity) if (var_a->type != var_b->type) if (strcmp(var_a->type->name, var_b->type->name)) QCC_PR_ParseWarning(0, "Implicit cast from '%s' to '%s'", var_a->type->name, var_b->type->name); } //maths operators if (opt_constantarithmatic && (var_a && var_a->constant) && (var_b && var_b->constant)) { switch (op - pr_opcodes) //improve some of the maths. { case OP_BITOR: optres_constantarithmatic++; return QCC_MakeFloatDef((float)((int)G_FLOAT(var_a->ofs) | (int)G_FLOAT(var_b->ofs))); case OP_BITAND: optres_constantarithmatic++; return QCC_MakeFloatDef((float)((int)G_FLOAT(var_a->ofs) & (int)G_FLOAT(var_b->ofs))); case OP_MUL_F: optres_constantarithmatic++; return QCC_MakeFloatDef(G_FLOAT(var_a->ofs) * G_FLOAT(var_b->ofs)); case OP_DIV_F: optres_constantarithmatic++; return QCC_MakeFloatDef(G_FLOAT(var_a->ofs) / G_FLOAT(var_b->ofs)); case OP_ADD_F: optres_constantarithmatic++; return QCC_MakeFloatDef(G_FLOAT(var_a->ofs) + G_FLOAT(var_b->ofs)); case OP_SUB_F: optres_constantarithmatic++; return QCC_MakeFloatDef(G_FLOAT(var_a->ofs) - G_FLOAT(var_b->ofs)); case OP_BITOR_I: optres_constantarithmatic++; return QCC_MakeIntDef(G_INT(var_a->ofs) | G_INT(var_b->ofs)); case OP_BITAND_I: optres_constantarithmatic++; return QCC_MakeIntDef(G_INT(var_a->ofs) & G_INT(var_b->ofs)); case OP_MUL_I: optres_constantarithmatic++; return QCC_MakeIntDef(G_INT(var_a->ofs) * G_INT(var_b->ofs)); case OP_DIV_I: optres_constantarithmatic++; return QCC_MakeIntDef(G_INT(var_a->ofs) / G_INT(var_b->ofs)); case OP_ADD_I: optres_constantarithmatic++; return QCC_MakeIntDef(G_INT(var_a->ofs) + G_INT(var_b->ofs)); case OP_SUB_I: optres_constantarithmatic++; return QCC_MakeIntDef(G_INT(var_a->ofs) - G_INT(var_b->ofs)); case OP_AND: optres_constantarithmatic++; return QCC_MakeIntDef(G_INT(var_a->ofs) && G_INT(var_b->ofs)); case OP_OR: optres_constantarithmatic++; return QCC_MakeIntDef(G_INT(var_a->ofs) || G_INT(var_b->ofs)); case OP_MUL_V: //mul_f is actually a dot-product optres_constantarithmatic++; return QCC_MakeFloatDef( G_FLOAT(var_a->ofs) * G_FLOAT(var_b->ofs+0) + G_FLOAT(var_a->ofs) * G_FLOAT(var_b->ofs+1) + G_FLOAT(var_a->ofs) * G_FLOAT(var_b->ofs+2)); case OP_MUL_FV: optres_constantarithmatic++; return QCC_MakeVectorDef( G_FLOAT(var_a->ofs) * G_FLOAT(var_b->ofs+0), G_FLOAT(var_a->ofs) * G_FLOAT(var_b->ofs+1), G_FLOAT(var_a->ofs) * G_FLOAT(var_b->ofs+2)); case OP_MUL_VF: optres_constantarithmatic++; return QCC_MakeVectorDef( G_FLOAT(var_a->ofs+0) * G_FLOAT(var_b->ofs), G_FLOAT(var_a->ofs+1) * G_FLOAT(var_b->ofs), G_FLOAT(var_a->ofs+2) * G_FLOAT(var_b->ofs)); case OP_ADD_V: optres_constantarithmatic++; return QCC_MakeVectorDef( G_FLOAT(var_a->ofs+0) + G_FLOAT(var_b->ofs+0), G_FLOAT(var_a->ofs+1) + G_FLOAT(var_b->ofs+1), G_FLOAT(var_a->ofs+2) + G_FLOAT(var_b->ofs+2)); case OP_SUB_V: optres_constantarithmatic++; return QCC_MakeVectorDef( G_FLOAT(var_a->ofs+0) - G_FLOAT(var_b->ofs+0), G_FLOAT(var_a->ofs+1) - G_FLOAT(var_b->ofs+1), G_FLOAT(var_a->ofs+2) - G_FLOAT(var_b->ofs+2)); } } switch (op - pr_opcodes) { case OP_AND: if (var_a->ofs == var_b->ofs) QCC_PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Parameter offsets for && are the same"); if (var_a->constant || var_b->constant) QCC_PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant"); break; case OP_OR: if (var_a->ofs == var_b->ofs) QCC_PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Parameters for || are the same"); if (var_a->constant || var_b->constant) QCC_PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant"); break; case OP_EQ_F: case OP_EQ_S: case OP_EQ_E: case OP_EQ_FNC: // if (opt_shortenifnots) // if (var_b->constant && ((int*)qcc_pr_globals)[var_b->ofs]==0) // (a == 0) becomes (!a) // op = &pr_opcodes[(op - pr_opcodes) - OP_EQ_F + OP_NOT_F]; case OP_EQ_V: case OP_NE_F: case OP_NE_V: case OP_NE_S: case OP_NE_E: case OP_NE_FNC: case OP_LE: case OP_GE: case OP_LT: case OP_GT: if ((var_a->constant && var_b->constant && !var_a->temp && !var_b->temp) || var_a->ofs == var_b->ofs) QCC_PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant"); break; case OP_IFS: case OP_IFNOTS: case OP_IF: case OP_IFNOT: // if (var_a->type->type == ev_function && !var_a->temp) // QCC_PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant"); if (var_a->constant && !var_a->temp) QCC_PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant"); break; default: break; } if (numstatements) { //optimise based on last statement. if (op - pr_opcodes == OP_IFNOT) { if (opt_shortenifnots && var_a && (statements[numstatements-1].op == OP_NOT_F || statements[numstatements-1].op == OP_NOT_FNC || statements[numstatements-1].op == OP_NOT_ENT)) { if (statements[numstatements-1].c == var_a->ofs) { static QCC_def_t nvara; op = &pr_opcodes[OP_IF]; numstatements--; QCC_FreeTemp(var_a); memcpy(&nvara, var_a, sizeof(nvara)); nvara.ofs = statements[numstatements].a; var_a = &nvara; optres_shortenifnots++; } } } else if (op - pr_opcodes == OP_IFNOTS) { if (opt_shortenifnots && var_a && statements[numstatements-1].op == OP_NOT_S) { if (statements[numstatements-1].c == var_a->ofs) { static QCC_def_t nvara; op = &pr_opcodes[OP_IFS]; numstatements--; QCC_FreeTemp(var_a); memcpy(&nvara, var_a, sizeof(nvara)); nvara.ofs = statements[numstatements].a; var_a = &nvara; optres_shortenifnots++; } } } else if (((unsigned) ((op - pr_opcodes) - OP_STORE_F) < 6)) { // remove assignments if what should be assigned is the 3rd operand of the previous statement? // don't if it's a call, callH, switch or case // && var_a->ofs >RESERVED_OFS) if (OpAssignsToC(statements[numstatements-1].op) && opt_assignments && var_a && var_a->ofs == statements[numstatements-1].c) { if (var_a->type->type == var_b->type->type) { if (var_a->temp) { statement = &statements[numstatements-1]; statement->c = var_b->ofs; if (var_a->type->type != var_b->type->type) QCC_PR_ParseWarning(0, "store type mismatch"); var_b->references++; var_a->references--; QCC_FreeTemp(var_a); optres_assignments++; simplestore=true; QCC_UnFreeTemp(var_b); return var_b; } } } } } simplestore=false; statement = &statements[numstatements]; numstatements++; if (!QCC_OPCodeValid(op)) { switch(op - pr_opcodes) { case OP_IFS: var_c = QCC_PR_GetDef(type_string, "string_null", NULL, true, 1, false); numstatements--; var_a = QCC_PR_Statement(&pr_opcodes[OP_NE_S], var_a, var_c, NULL); statement = &statements[numstatements]; numstatements++; QCC_FreeTemp(var_a); op = &pr_opcodes[OP_IF]; break; case OP_IFNOTS: var_c = QCC_PR_GetDef(type_string, "string_null", NULL, true, 1, false); numstatements--; var_a = QCC_PR_Statement(&pr_opcodes[OP_NE_S], var_a, var_c, NULL); statement = &statements[numstatements]; numstatements++; QCC_FreeTemp(var_a); op = &pr_opcodes[OP_IFNOT]; break; case OP_ADDSTORE_F: op = &pr_opcodes[OP_ADD_F]; var_c = var_b; var_b = var_a; var_a = var_c; var_c = var_a; break; case OP_SUBSTORE_F: op = &pr_opcodes[OP_SUB_F]; var_c = var_b; var_b = var_a; var_a = var_c; var_c = var_a; break; case OP_DIVSTORE_F: op = &pr_opcodes[OP_DIV_F]; var_c = var_b; var_b = var_a; var_a = var_c; var_c = var_a; break; case OP_MULSTORE_F: op = &pr_opcodes[OP_MUL_F]; var_c = var_b; var_b = var_a; var_a = var_c; var_c = var_a; break; case OP_ADDSTORE_V: op = &pr_opcodes[OP_ADD_V]; var_c = var_b; var_b = var_a; var_a = var_c; var_c = var_a; break; case OP_SUBSTORE_V: op = &pr_opcodes[OP_SUB_V]; var_c = var_b; var_b = var_a; var_a = var_c; var_c = var_a; break; case OP_MULSTORE_V: op = &pr_opcodes[OP_MUL_V]; var_c = var_b; var_b = var_a; var_a = var_c; var_c = var_a; break; case OP_BITSET: op = &pr_opcodes[OP_BITOR]; var_c = var_b; var_b = var_a; var_a = var_c; var_c = var_a; break; case OP_BITCLR: //b = var, a = bit field. QCC_UnFreeTemp(var_a); QCC_UnFreeTemp(var_b); numstatements--; var_c = QCC_PR_Statement(&pr_opcodes[OP_BITAND], var_b, var_a, NULL); QCC_FreeTemp(var_c); statement = &statements[numstatements]; numstatements++; QCC_FreeTemp(var_a); QCC_FreeTemp(var_b); op = &pr_opcodes[OP_SUB_F]; var_a = var_b; var_b = var_c; var_c = var_a; break; case OP_SUBSTOREP_F: case OP_ADDSTOREP_F: case OP_MULSTOREP_F: case OP_DIVSTOREP_F: case OP_BITSETP: case OP_BITCLRP: // QCC_PR_ParseWarning(0, "XSTOREP_F emulation is still experimental"); QCC_UnFreeTemp(var_a); QCC_UnFreeTemp(var_b); //don't chain these... this expansion is not the same. { int st; for (st = numstatements-2; st>=0; st--) { if (statements[st].op == OP_ADDRESS) if (statements[st].c == var_b->ofs) break; if (statements[st].c == var_b->ofs) QCC_PR_ParseWarning(0, "Temp-reuse may have broken your %s", op->name); } if (st < 0) QCC_PR_ParseError(ERR_INTERNAL, "XSTOREP_F: pointer was not generated from previous statement"); var_c = QCC_GetTemp(*op->type_c); statement_linenums[statement-statements] = statement_linenums[st]; statement->op = OP_ADDRESS; statement->a = statements[st].a; statement->b = statements[st].b; statement->c = statements[st].c; statement_linenums[st] = pr_source_line; statements[st].op = OP_LOAD_F; statements[st].a = statements[st].a; statements[st].b = statements[st].b; statements[st].c = var_c->ofs; } statement = &statements[numstatements]; numstatements++; statement_linenums[statement-statements] = pr_source_line; switch(op - pr_opcodes) { case OP_SUBSTOREP_F: statement->op = OP_SUB_F; break; case OP_ADDSTOREP_F: statement->op = OP_ADD_F; break; case OP_MULSTOREP_F: statement->op = OP_MUL_F; break; case OP_DIVSTOREP_F: statement->op = OP_DIV_F; break; case OP_BITSETP: statement->op = OP_BITOR; break; case OP_BITCLRP: //float pointer float temp = QCC_GetTemp(type_float); statement->op = OP_BITAND; statement->a = var_c ? var_c->ofs : 0; statement->b = var_a ? var_a->ofs : 0; statement->c = temp->ofs; statement = &statements[numstatements]; numstatements++; statement_linenums[statement-statements] = pr_source_line; statement->op = OP_SUB_F; //t = c & i //c = c - t break; default: //no way will this be hit... QCC_PR_ParseError(ERR_INTERNAL, "opcode invalid 3 times %i", op - pr_opcodes); } if (op - pr_opcodes == OP_BITCLRP) { statement->a = var_c ? var_c->ofs : 0; statement->b = temp ? temp->ofs : 0; statement->c = var_c->ofs; QCC_FreeTemp(temp); var_b = var_b; //this is the ptr. QCC_FreeTemp(var_a); var_a = var_c; //this is the value. } else { statement->a = var_c ? var_c->ofs : 0; statement->b = var_a ? var_a->ofs : 0; statement->c = var_c->ofs; var_b = var_b; //this is the ptr. QCC_FreeTemp(var_a); var_a = var_c; //this is the value. } op = &pr_opcodes[OP_STOREP_F]; QCC_FreeTemp(var_c); var_c = NULL; QCC_FreeTemp(var_b); statement = &statements[numstatements]; numstatements++; break; case OP_MULSTOREP_V: case OP_SUBSTOREP_V: case OP_ADDSTOREP_V: // QCC_PR_ParseWarning(0, "XSTOREP_V emulation is still experimental"); QCC_UnFreeTemp(var_a); QCC_UnFreeTemp(var_b); //don't chain these... this expansion is not the same. { int st; for (st = numstatements-2; st>=0; st--) { if (statements[st].op == OP_ADDRESS) if (statements[st].c == var_b->ofs) break; if (statements[st].c == var_b->ofs) QCC_PR_ParseWarning(0, "Temp-reuse may have broken your %s", op->name); } if (st < 0) QCC_PR_ParseError(ERR_INTERNAL, "XSTOREP_V couldn't find pointer generation"); var_c = QCC_GetTemp(*op->type_c); statement_linenums[statement-statements] = statement_linenums[st]; statement->op = OP_ADDRESS; statement->a = statements[st].a; statement->b = statements[st].b; statement->c = statements[st].c; statement_linenums[st] = pr_source_line; statements[st].op = OP_LOAD_V; statements[st].a = statements[st].a; statements[st].b = statements[st].b; statements[st].c = var_c->ofs; } statement = &statements[numstatements]; numstatements++; statement_linenums[statement-statements] = pr_source_line; switch(op - pr_opcodes) { case OP_SUBSTOREP_V: statement->op = OP_SUB_V; break; case OP_ADDSTOREP_V: statement->op = OP_ADD_V; break; case OP_MULSTOREP_V: statement->op = OP_MUL_V; break; default: //no way will this be hit... QCC_PR_ParseError(ERR_INTERNAL, "opcode invalid 3 times %i", op - pr_opcodes); } statement->a = var_a ? var_a->ofs : 0; statement->b = var_c ? var_c->ofs : 0; QCC_FreeTemp(var_c); var_c = QCC_GetTemp(*op->type_c); statement->c = var_c ? var_c->ofs : 0; var_b = var_b; //this is the ptr. QCC_FreeTemp(var_a); var_a = var_c; //this is the value. op = &pr_opcodes[OP_STOREP_V]; QCC_FreeTemp(var_c); var_c = NULL; QCC_FreeTemp(var_b); statement = &statements[numstatements]; numstatements++; break; default: QCC_PR_ParseError(ERR_BADEXTENSION, "Opcode \"%s|%s\" not valid for target", op->name, op->opname); break; } } if (outstatement) *outstatement = statement; statement_linenums[statement-statements] = pr_source_line; statement->op = op - pr_opcodes; statement->a = var_a ? var_a->ofs : 0; statement->b = var_b ? var_b->ofs : 0; if (var_c != NULL) { statement->c = var_c->ofs; } else if (op->type_c == &type_void || op->associative==ASSOC_RIGHT || op->type_c == NULL) { var_c = NULL; statement->c = 0; // ifs, gotos, and assignments // don't need vars allocated } else { // allocate result space var_c = QCC_GetTemp(*op->type_c); statement->c = var_c->ofs; if (op->type_b == &type_field) { var_c->name = var_b->name; var_c->s_file = var_b->s_file; var_c->s_line = var_b->s_line; } } if ((op - pr_opcodes >= OP_LOAD_F && op - pr_opcodes <= OP_LOAD_FNC) || op - pr_opcodes == OP_LOAD_I) { if (var_b->constant == 2) var_c->constant = true; } if (!var_c) { if (var_a) QCC_UnFreeTemp(var_a); return var_a; } return var_c; } /* ============ QCC_PR_SimpleStatement Emits a primitive statement, returning the var it places it's value in ============ */ QCC_dstatement_t *QCC_PR_SimpleStatement( int op, int var_a, int var_b, int var_c, int force) { QCC_dstatement_t *statement; if (!force && !QCC_OPCodeValid(pr_opcodes+op)) { QCC_PR_ParseError(ERR_BADEXTENSION, "Opcode \"%s|%s\" not valid for target\n", pr_opcodes[op].name, pr_opcodes[op].opname); } statement_linenums[numstatements] = pr_source_line; statement = &statements[numstatements]; numstatements++; statement->op = op; statement->a = var_a; statement->b = var_b; statement->c = var_c; return statement; } void QCC_PR_Statement3 ( QCC_opcode_t *op, QCC_def_t *var_a, QCC_def_t *var_b, QCC_def_t *var_c, int force) { QCC_dstatement_t *statement; if (!force && !QCC_OPCodeValid(op)) { // outputversion = op->extension; // if (noextensions) QCC_PR_ParseError(ERR_BADEXTENSION, "Opcode \"%s|%s\" not valid for target\n", op->name, op->opname); } statement = &statements[numstatements]; numstatements++; statement_linenums[statement-statements] = pr_source_line; statement->op = op - pr_opcodes; statement->a = var_a ? var_a->ofs : 0; statement->b = var_b ? var_b->ofs : 0; statement->c = var_c ? var_c->ofs : 0; } /* ============ PR_ParseImmediate Looks for a preexisting constant ============ */ QCC_def_t *QCC_PR_ParseImmediate (void) { QCC_def_t *cn; if (pr_immediate_type == type_float) { cn = QCC_MakeFloatDef(pr_immediate._float); QCC_PR_Lex (); return cn; } if (pr_immediate_type == type_integer) { cn = QCC_MakeIntDef(pr_immediate._int); QCC_PR_Lex (); return cn; } if (pr_immediate_type == type_string) { cn = QCC_MakeStringDef(pr_immediate_string); QCC_PR_Lex (); return cn; } // check for a constant with the same value for (cn=pr.def_head.next ; cn ; cn=cn->next) //FIXME - hashtable. { if (!cn->initialized) continue; if (!cn->constant) continue; if (cn->type != pr_immediate_type) continue; if (pr_immediate_type == type_string) { if (!STRCMP(G_STRING(cn->ofs), pr_immediate_string) ) { QCC_PR_Lex (); return cn; } } else if (pr_immediate_type == type_float) { if ( G_FLOAT(cn->ofs) == pr_immediate._float ) { QCC_PR_Lex (); return cn; } } else if (pr_immediate_type == type_integer) { if ( G_INT(cn->ofs) == pr_immediate._int ) { QCC_PR_Lex (); return cn; } } else if (pr_immediate_type == type_vector) { if ( ( G_FLOAT(cn->ofs) == pr_immediate.vector[0] ) && ( G_FLOAT(cn->ofs+1) == pr_immediate.vector[1] ) && ( G_FLOAT(cn->ofs+2) == pr_immediate.vector[2] ) ) { QCC_PR_Lex (); return cn; } } else QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "weird immediate type"); } // allocate a new one cn = (void *)qccHunkAlloc (sizeof(QCC_def_t)); cn->next = NULL; pr.def_tail->next = cn; pr.def_tail = cn; cn->type = pr_immediate_type; cn->name = "IMMEDIATE"; cn->constant = true; cn->initialized = 1; cn->scope = NULL; // always share immediates // copy the immediate to the global area cn->ofs = QCC_GetFreeOffsetSpace(type_size[pr_immediate_type->type]); if (pr_immediate_type == type_string) pr_immediate.string = QCC_CopyString (pr_immediate_string); memcpy (qcc_pr_globals + cn->ofs, &pr_immediate, 4*type_size[pr_immediate_type->type]); QCC_PR_Lex (); return cn; } void QCC_PrecacheSound (QCC_def_t *e, int ch) { char *n; int i; if (e->type->type != ev_string) return; if (!e->ofs || e->temp || !e->constant) return; n = G_STRING(e->ofs); if (!*n) return; for (i=0 ; i= '1' && ch <= '9') precache_sounds_block[i] = ch - '0'; else precache_sounds_block[i] = 1; numsounds++; } void QCC_PrecacheModel (QCC_def_t *e, int ch) { char *n; int i; if (e->type->type != ev_string) return; if (!e->ofs || e->temp || !e->constant) return; n = G_STRING(e->ofs); if (!*n) return; for (i=0 ; i= '1' && ch <= '9') precache_models_block[i] = ch - '0'; else precache_models_block[i] = 1; } return; } if (nummodels == MAX_MODELS) return; // QCC_Error ("PrecacheModels: nummodels == MAX_MODELS"); strcpy (precache_models[i], n); if (ch >= '1' && ch <= '9') precache_models_block[i] = ch - '0'; else precache_models_block[i] = 1; nummodels++; } void QCC_SetModel (QCC_def_t *e) { char *n; int i; if (e->type->type != ev_string) return; if (!e->ofs || e->temp || !e->constant) return; n = G_STRING(e->ofs); if (!*n) return; for (i=0 ; itype->type != ev_string) return; if (!e->ofs || e->temp || !e->constant) return; n = G_STRING(e->ofs); if (!*n) return; for (i=0 ; i= '1' && ch <= '9') precache_textures_block[i] = ch - '0'; else precache_textures_block[i] = 1; numtextures++; } void QCC_PrecacheFile (QCC_def_t *e, int ch) { char *n; int i; if (e->type->type != ev_string) return; if (!e->ofs || e->temp || !e->constant) return; n = G_STRING(e->ofs); if (!*n) return; for (i=0 ; i= '1' && ch <= '9') precache_files_block[i] = ch - '0'; else precache_files_block[i] = 1; numfiles++; } void QCC_PrecacheFileOptimised (char *n, int ch) { int i; for (i=0 ; i= '1' && ch <= '9') precache_files_block[i] = ch - '0'; else precache_files_block[i] = 1; numfiles++; } /* ============ PR_ParseFunctionCall ============ */ QCC_def_t *QCC_PR_ParseFunctionCall (QCC_def_t *func) //warning, the func could have no name set if it's a field call. { QCC_def_t *e, *d, *old, *oself; int arg, i; QCC_type_t *t, *p; int extraparms=false; int np; int laststatement = numstatements; int callconvention; QCC_dstatement_t *st; QCC_def_t *param[MAX_PARMS+MAX_EXTRA_PARMS]; func->timescalled++; if (QCC_OPCodeValid(&pr_opcodes[OP_CALL1H])) callconvention = OP_CALL1H; //FTE extended else callconvention = OP_CALL1; //standard t = func->type; if (t->type == ev_variant) { t->aux_type = type_variant; } if (t->type != ev_function && t->type != ev_variant) { QCC_PR_ParseErrorPrintDef (ERR_NOTAFUNCTION, func, "not a function"); } if (!t->num_parms&&t->type != ev_variant) //intrinsics. These base functions have variable arguments. I would check for (...) args too, but that might be used for extended builtin functionality. (this code wouldn't compile otherwise) { if (!strcmp(func->name, "random")) { func->references++; if (!QCC_PR_CheckToken(")")) { e = QCC_PR_Expression (TOP_PRIORITY, false); if (e->type->type != ev_float) QCC_PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i", 1); if (!QCC_PR_CheckToken(")")) { QCC_PR_Expect(","); d = QCC_PR_Expression (TOP_PRIORITY, false); if (d->type->type != ev_float) QCC_PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i", 2); QCC_PR_Expect(")"); } else d = NULL; } else { e = NULL; d = NULL; } if (def_ret.temp->used) { old = QCC_GetTemp(def_ret.type); if (def_ret.type->size == 3) QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_V], &def_ret, old, NULL)); else QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], &def_ret, old, NULL)); QCC_PR_ParseWarning(WARN_FIXEDRETURNVALUECONFLICT, "Return value conflict - output is inefficient"); } else old = NULL; if (QCC_OPCodeValid(&pr_opcodes[OP_RAND0])) { if (e) { if (d) QCC_PR_SimpleStatement(OP_RAND2, e->ofs, d->ofs, OFS_RETURN, false); else QCC_PR_SimpleStatement(OP_RAND1, e->ofs, 0, OFS_RETURN, false); } else QCC_PR_SimpleStatement(OP_RAND0, 0, 0, OFS_RETURN, false); } else { if (e) { if (d) { QCC_dstatement_t *st; QCC_def_t *t; QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); if ((!d->constant || !e->constant) && G_FLOAT(d->ofs) >= G_FLOAT(d->ofs)) { t = QCC_PR_Statement(&pr_opcodes[OP_GT], d, e, NULL); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_IFNOT], t, 0, &st)); st->b = 3; t = QCC_PR_Statement(&pr_opcodes[OP_SUB_F], d, e, NULL); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN, false); QCC_FreeTemp(t); QCC_PR_SimpleStatement(OP_ADD_F, OFS_RETURN, e->ofs, OFS_RETURN, false); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_GOTO], 0, 0, &st)); st->a = 3; } t = QCC_PR_Statement(&pr_opcodes[OP_SUB_F], e, d, NULL); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN, false); QCC_FreeTemp(t); QCC_PR_SimpleStatement(OP_ADD_F, OFS_RETURN, d->ofs, OFS_RETURN, false); } else { QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, e->ofs, OFS_RETURN, false); } } else QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); } if (e) { QCC_FreeTemp(e); e->references++; } if (d) { d->references++; QCC_FreeTemp(d); } if (old) { d = QCC_GetTemp(type_float); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_F, &def_ret, d, NULL)); if (def_ret.type->size == 3) QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_V, old, &def_ret, NULL)); else QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_F, old, &def_ret, NULL)); QCC_FreeTemp(old); return d; } if (def_ret.temp->used) QCC_PR_ParseWarning(0, "Return value conflict - output is likly to be invalid"); def_ret.temp->used = true; def_ret.type = type_float; return &def_ret; } if (!strcmp(func->name, "randomv")) { func->references++; if (!QCC_PR_CheckToken(")")) { e = QCC_PR_Expression (TOP_PRIORITY, false); if (e->type->type != ev_vector) QCC_PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i", 1); if (!QCC_PR_CheckToken(")")) { QCC_PR_Expect(","); d = QCC_PR_Expression (TOP_PRIORITY, false); if (d->type->type != ev_vector) QCC_PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i", 2); QCC_PR_Expect(")"); } else d = NULL; } else { e = NULL; d = NULL; } if (def_ret.temp->used) { old = QCC_GetTemp(def_ret.type); if (def_ret.type->size == 3) QCC_PR_Statement(&pr_opcodes[OP_STORE_V], &def_ret, old, NULL); else QCC_PR_Statement(&pr_opcodes[OP_STORE_F], &def_ret, old, NULL); QCC_PR_ParseWarning(WARN_FIXEDRETURNVALUECONFLICT, "Return value conflict - output is inefficient"); } else old = NULL; if (QCC_OPCodeValid(&pr_opcodes[OP_RANDV0])) { if (e) { if (d) QCC_PR_SimpleStatement(OP_RANDV2, e->ofs, d->ofs, OFS_RETURN, false); else QCC_PR_SimpleStatement(OP_RANDV1, e->ofs, 0, OFS_RETURN, false); } else QCC_PR_SimpleStatement(OP_RANDV0, 0, 0, OFS_RETURN, false); } else { if (e) { if (d) { QCC_def_t *t; QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); if ((!d->constant || !e->constant) && G_FLOAT(d->ofs) >= G_FLOAT(d->ofs)) { t = QCC_GetTemp(type_float); QCC_PR_SimpleStatement(OP_GT, d->ofs+2, e->ofs+2, t->ofs, false); QCC_PR_SimpleStatement(OP_IFNOT, t->ofs, 3, 0, false); QCC_PR_SimpleStatement(OP_SUB_F, d->ofs+2, e->ofs+2, t->ofs, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN+2, false); QCC_FreeTemp(t); QCC_PR_SimpleStatement(OP_ADD_F, OFS_RETURN, e->ofs+2, OFS_RETURN+2, false); QCC_PR_SimpleStatement(OP_GOTO, 3, 0, 0, false); } t = QCC_GetTemp(type_float); QCC_PR_SimpleStatement(OP_SUB_F, d->ofs+2, e->ofs+2, t->ofs, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN+2, false); QCC_FreeTemp(t); QCC_PR_SimpleStatement(OP_ADD_F, OFS_RETURN, d->ofs+2, OFS_RETURN+2, false); QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); if ((!d->constant || !e->constant) && G_FLOAT(d->ofs) >= G_FLOAT(d->ofs)) { t = QCC_GetTemp(type_float); QCC_PR_SimpleStatement(OP_GT, d->ofs+1, e->ofs+1, t->ofs, false); QCC_PR_SimpleStatement(OP_IFNOT, t->ofs, 3, 0, false); QCC_PR_SimpleStatement(OP_SUB_F, d->ofs+1, e->ofs+1, t->ofs, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN+1, false); QCC_FreeTemp(t); QCC_PR_SimpleStatement(OP_ADD_F, OFS_RETURN, e->ofs+1, OFS_RETURN+1, false); QCC_PR_SimpleStatement(OP_GOTO, 3, 0, 0, false); } t = QCC_GetTemp(type_float); QCC_PR_SimpleStatement(OP_SUB_F, d->ofs+1, e->ofs+1, t->ofs, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN+1, false); QCC_FreeTemp(t); QCC_PR_SimpleStatement(OP_ADD_F, OFS_RETURN, d->ofs+1, OFS_RETURN+1, false); QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); if ((!d->constant || !e->constant) && G_FLOAT(d->ofs) >= G_FLOAT(d->ofs)) { t = QCC_GetTemp(type_float); QCC_PR_SimpleStatement(OP_GT, d->ofs, e->ofs, t->ofs, false); QCC_PR_SimpleStatement(OP_IFNOT, t->ofs, 3, 0, false); QCC_PR_SimpleStatement(OP_SUB_F, d->ofs, e->ofs, t->ofs, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN, false); QCC_FreeTemp(t); QCC_PR_SimpleStatement(OP_ADD_F, OFS_RETURN, e->ofs, OFS_RETURN, false); QCC_PR_SimpleStatement(OP_GOTO, 3, 0, 0, false); } t = QCC_GetTemp(type_float); QCC_PR_SimpleStatement(OP_SUB_F, d->ofs, e->ofs, t->ofs, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN, false); QCC_FreeTemp(t); QCC_PR_SimpleStatement(OP_ADD_F, OFS_RETURN, d->ofs, OFS_RETURN, false); } else { QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, e->ofs, OFS_RETURN+2, false); QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, e->ofs, OFS_RETURN+1, false); QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); QCC_PR_SimpleStatement(OP_MUL_F, OFS_RETURN, e->ofs, OFS_RETURN, false); } } else { QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); QCC_PR_SimpleStatement(OP_STORE_F, OFS_RETURN, OFS_RETURN+2, 0, false); QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); QCC_PR_SimpleStatement(OP_STORE_F, OFS_RETURN, OFS_RETURN+1, 0, false); QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); } } if (e) { QCC_FreeTemp(e); e->references++; } if (d) { d->references++; QCC_FreeTemp(d); } if (old) { d = QCC_GetTemp(type_vector); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_V, &def_ret, d, NULL)); if (def_ret.type->size == 3) { QCC_PR_Statement(pr_opcodes+OP_STORE_V, old, &def_ret, NULL); } else { QCC_PR_Statement(pr_opcodes+OP_STORE_F, old, &def_ret, NULL); } QCC_FreeTemp(old); return d; } if (def_ret.temp->used) QCC_PR_ParseWarning(0, "Return value conflict - output is likly to be invalid"); def_ret.temp->used = true; def_ret.type = type_vector; return &def_ret; } else if (!strcmp(func->name, "spawn")) { QCC_type_t *rettype; if (QCC_PR_CheckToken(")")) { rettype = type_entity; } else { rettype = QCC_TypeForName(QCC_PR_ParseName()); if (!rettype || rettype->type != ev_entity) QCC_PR_ParseError(ERR_NOTANAME, "Spawn operator with undefined class"); QCC_PR_Expect(")"); } if (def_ret.temp->used) QCC_PR_ParseWarning(0, "Return value conflict - output is likly to be invalid"); def_ret.temp->used = true; if (rettype != type_entity) { char genfunc[2048]; sprintf(genfunc, "Class*%s", rettype->name); func = QCC_PR_GetDef(type_function, genfunc, NULL, true, 1, false); func->references++; } QCC_PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false); def_ret.type = rettype; return &def_ret; } else if (!strcmp(func->name, "entnum") && !QCC_PR_CheckToken(")")) { //t = (a/%1) / (nextent(world)/%1) //a/%1 does a (int)entity to float conversion type thing e = QCC_PR_Expression(TOP_PRIORITY, false); QCC_PR_Expect(")"); e = QCC_PR_Statement(&pr_opcodes[OP_DIV_F], e, QCC_MakeIntDef(1), (QCC_dstatement_t **)0xffffffff); d = QCC_PR_GetDef(NULL, "nextent", NULL, false, 0, false); if (!d) QCC_PR_ParseError(0, "the nextent builtin is not defined"); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], e, &def_parms[0], (QCC_dstatement_t **)0xffffffff)); d = QCC_PR_Statement(&pr_opcodes[OP_CALL0], d, NULL, NULL); d = QCC_PR_Statement(&pr_opcodes[OP_DIV_F], d, QCC_MakeIntDef(1), (QCC_dstatement_t **)0xffffffff); e = QCC_PR_Statement(&pr_opcodes[OP_DIV_F], e, d, (QCC_dstatement_t **)0xffffffff); return e; } } //so it's not an intrinsic. if (opt_precache_file) //should we strip out all precache_file calls? { if (!strncmp(func->name,"precache_file", 13)) { if (pr_token_type == tt_immediate && pr_immediate_type->type == ev_string) { optres_precache_file += strlen(pr_immediate_string); QCC_PR_Lex(); QCC_PR_Expect(")"); QCC_PrecacheFileOptimised (pr_immediate_string, func->name[13]); def_ret.type = type_void; return &def_ret; } } } // copy the arguments to the global parameter variables arg = 0; if (t->type == ev_variant) { extraparms = true; np = 0; } else if (t->num_parms < 0) { extraparms = true; np = (t->num_parms * -1) - 1; } else np = t->num_parms; if (def_ret.temp->used) { old = QCC_GetTemp(def_ret.type); if (def_ret.type->size == 3) QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_V], &def_ret, old, NULL)); else QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], &def_ret, old, NULL)); QCC_UnFreeTemp(old); QCC_UnFreeTemp(&def_ret); QCC_PR_ParseWarning(WARN_FIXEDRETURNVALUECONFLICT, "Return value conflict - output is inefficient"); } else old = NULL; //we dont need to lock the local containing the function index because its thrown away after the call anyway //(if a function is called in the argument list then it'll be locked as part of that call) QCC_FreeTemp(func); QCC_LockActiveTemps(); //any temps before are likly to be used with the return value. QCC_UnFreeTemp(func); //any temps referenced to build the parameters don't need to be locked. if (opt_vectorcalls && (t->num_parms == 1 && t->param->type == ev_vector)) { //if we're using vectorcalls //if it's a function, takes a vector //vectorcalls is an evil hack //it'll make your mod bigger and less efficient. //however, it'll cut down on numpr_globals, so your mod can become a much greater size. vec3_t arg; if (pr_token_type == tt_immediate && pr_immediate_type == type_vector) { memcpy(arg, pr_immediate.vector, sizeof(arg)); while(*pr_file_p == ' ' || *pr_file_p == '\t' || *pr_file_p == '\n') pr_file_p++; if (*pr_file_p == ')') { //woot def_parms[0].ofs = OFS_PARM0+0; QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_F], QCC_MakeFloatDef(arg[0]), &def_parms[0], (QCC_dstatement_t **)0xffffffff)); def_parms[0].ofs = OFS_PARM0+1; QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_F], QCC_MakeFloatDef(arg[1]), &def_parms[0], (QCC_dstatement_t **)0xffffffff)); def_parms[0].ofs = OFS_PARM0+2; QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_F], QCC_MakeFloatDef(arg[2]), &def_parms[0], (QCC_dstatement_t **)0xffffffff)); def_parms[0].ofs = OFS_PARM0; QCC_PR_Lex(); QCC_PR_Expect(")"); } else { //bum e = QCC_PR_Expression (TOP_PRIORITY, false); if (e->type->type != ev_vector) { if (flag_laxcasts) { QCC_PR_ParseWarning(WARN_LAXCAST, "type mismatch on parm %i - (%s should be %s)", 1, TypeName(e->type), TypeName(type_vector)); QCC_PR_ParsePrintDef(WARN_LAXCAST, func); } else QCC_PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i - (%s should be %s)", 1, TypeName(e->type), TypeName(type_vector)); } QCC_PR_Expect(")"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_V], e, &def_parms[0], (QCC_dstatement_t **)0xffffffff)); } } else { //bother e = QCC_PR_Expression (TOP_PRIORITY, false); if (e->type->type != ev_vector) { if (flag_laxcasts) { QCC_PR_ParseWarning(WARN_LAXCAST, "type mismatch on parm %i - (%s should be %s)", 1, TypeName(e->type), TypeName(type_vector)); QCC_PR_ParsePrintDef(WARN_LAXCAST, func); } else QCC_PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i - (%s should be %s)", 1, TypeName(e->type), TypeName(type_vector)); } QCC_PR_Expect(")"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_V], e, &def_parms[0], (QCC_dstatement_t **)0xffffffff)); } } else { if (!QCC_PR_CheckToken(")")) { p = t->param; do { if (extraparms && arg >= MAX_PARMS) QCC_PR_ParseErrorPrintDef (ERR_TOOMANYPARAMETERSVARARGS, func, "More than %i parameters on varargs function", MAX_PARMS); else if (arg >= MAX_PARMS+MAX_EXTRA_PARMS) QCC_PR_ParseErrorPrintDef (ERR_TOOMANYTOTALPARAMETERS, func, "More than %i parameters", MAX_PARMS+MAX_EXTRA_PARMS); if (!extraparms && arg >= t->num_parms) { QCC_PR_ParseWarning (WARN_TOOMANYPARAMETERSFORFUNC, "too many parameters"); QCC_PR_ParsePrintDef(WARN_TOOMANYPARAMETERSFORFUNC, func); } e = QCC_PR_Expression (TOP_PRIORITY, false); if (arg == 0 && func->name) { // save information for model and sound caching if (!strncmp(func->name,"precache_", 9)) { if (!strncmp(func->name+9,"sound", 5)) QCC_PrecacheSound (e, func->name[14]); else if (!strncmp(func->name+9,"model", 5)) QCC_PrecacheModel (e, func->name[14]); else if (!strncmp(func->name+9,"texture", 7)) QCC_PrecacheTexture (e, func->name[16]); else if (!strncmp(func->name+9,"file", 4)) QCC_PrecacheFile (e, func->name[13]); } } if (arg>=MAX_PARMS) { if (!extra_parms[arg - MAX_PARMS]) { d = (QCC_def_t *) qccHunkAlloc (sizeof(QCC_def_t)); d->name = "extra parm"; d->ofs = QCC_GetFreeOffsetSpace (3); extra_parms[arg - MAX_PARMS] = d; } d = extra_parms[arg - MAX_PARMS]; } else d = &def_parms[arg]; if (pr_classtype && e->type->type == ev_field && p->type != ev_field) { //convert. oself = QCC_PR_GetDef(type_entity, "self", NULL, true, 1, false); switch(e->type->aux_type->type) { case ev_string: e = QCC_PR_Statement(pr_opcodes+OP_LOAD_S, oself, e, NULL); break; case ev_integer: e = QCC_PR_Statement(pr_opcodes+OP_LOAD_I, oself, e, NULL); break; case ev_float: e = QCC_PR_Statement(pr_opcodes+OP_LOAD_F, oself, e, NULL); break; case ev_function: e = QCC_PR_Statement(pr_opcodes+OP_LOAD_FNC, oself, e, NULL); break; case ev_vector: e = QCC_PR_Statement(pr_opcodes+OP_LOAD_V, oself, e, NULL); break; case ev_entity: e = QCC_PR_Statement(pr_opcodes+OP_LOAD_ENT, oself, e, NULL); break; default: QCC_Error(ERR_INTERNAL, "Bad member type. Try forced expansion"); } } if (p) { if (typecmp(e->type, p)) /*if (e->type->type != ev_integer && p->type != ev_function) if (e->type->type != ev_function && p->type != ev_integer) if ( e->type->type != p->type )*/ { if (p->type == ev_integer && e->type->type == ev_float) //convert float -> int... is this a constant? e = QCC_PR_Statement(pr_opcodes+OP_CONV_FTOI, e, NULL, NULL); else if (p->type == ev_float && e->type->type == ev_integer) //convert float -> int... is this a constant? e = QCC_PR_Statement(pr_opcodes+OP_CONV_ITOF, e, NULL, NULL); else if (p->type == ev_function && e->type->type == ev_integer && e->constant && !((int*)qcc_pr_globals)[e->ofs]) { //you're allowed to use int 0 to pass a null function pointer //this is basically because __NULL__ is defined as ~0 (int 0) } else if (p->type != ev_variant) //can cast to variant whatever happens { if (flag_laxcasts || (p->type == ev_function && e->type->type == ev_function)) { QCC_PR_ParseWarning(WARN_LAXCAST, "type mismatch on parm %i - (%s should be %s)", arg+1, TypeName(e->type), TypeName(p)); QCC_PR_ParsePrintDef(WARN_LAXCAST, func); } else QCC_PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i - (%s should be %s)", arg+1, TypeName(e->type), TypeName(p)); } } d->type = p; p=p->next; } // a vector copy will copy everything else d->type = type_void; if (arg == 1 && !STRCMP(func->name, "setmodel")) { QCC_SetModel(e); } param[arg] = e; /* if (e->type->size>1) QCC_PR_Statement (&pr_opcodes[OP_STORE_V], e, d, (QCC_dstatement_t **)0xffffffff); else QCC_PR_Statement (&pr_opcodes[OP_STORE_F], e, d, (QCC_dstatement_t **)0xffffffff); */ arg++; } while (QCC_PR_CheckToken (",")); if (t->num_parms != -1 && arg < np) QCC_PR_ParseWarning (WARN_TOOFEWPARAMS, "too few parameters on call to %s", func->name); QCC_PR_Expect (")"); } else if (np) { QCC_PR_ParseWarning (WARN_TOOFEWPARAMS, "%s: Too few parameters", func->name); QCC_PR_ParsePrintDef (WARN_TOOFEWPARAMS, func); } // qcc_functioncalled++; for (i = 0; i < arg; i++) { if (i>=MAX_PARMS) d = extra_parms[i - MAX_PARMS]; else d = &def_parms[i]; if (callconvention == OP_CALL1H) if (i < 2) { param[i]->references++; d->references++; QCC_FreeTemp(param[i]); continue; } if (param[i]->type->size>1 || !opt_nonvec_parms) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_V], param[i], d, (QCC_dstatement_t **)0xffffffff)); else { d->type = param[i]->type; QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_F], param[i], d, (QCC_dstatement_t **)0xffffffff)); optres_nonvec_parms++; } } } if (strchr(func->name, ':') && laststatement && statements[laststatement-1].op == OP_LOAD_FNC && statements[laststatement-1].c == func->ofs) { //we're entering OO code with a different self. //FIXME: problems could occur with hexen2 calling conventions when parm0/1 is 'self' //thiscall. copy the right ent into 'self' (if it's not the same offset) d = QCC_PR_GetDef(type_entity, "self", NULL, true, 1, false); if (statements[laststatement-1].a != d->ofs) { oself = QCC_GetTemp(type_entity); QCC_PR_SimpleStatement(OP_STORE_ENT, d->ofs, oself->ofs, 0, false); QCC_PR_SimpleStatement(OP_STORE_ENT, statements[laststatement-1].a, d->ofs, 0, false); if (callconvention == OP_CALL1H) //other.function(self) //hexenc calling convention would mean that the //passed parameter is essentually (self=other), //so pass oself instead which won't be affected { QCC_def_t *temp; if (arg>=1 && param[0]->ofs == d->ofs) { temp = QCC_GetTemp(type_entity); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_ENT, oself, temp, NULL)); QCC_UnFreeTemp(temp); param[0] = temp; } if (arg>=2 && param[1]->ofs == d->ofs) { temp = QCC_GetTemp(type_entity); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_ENT, oself, temp, NULL)); QCC_UnFreeTemp(temp); param[1] = temp; } } } else { oself = NULL; d = NULL; } } else { oself = NULL; d = NULL; } if (arg>MAX_PARMS) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[callconvention-1+MAX_PARMS], func, 0, (QCC_dstatement_t **)&st)); else if (arg) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[callconvention-1+arg], func, 0, (QCC_dstatement_t **)&st)); else QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_CALL0], func, 0, (QCC_dstatement_t **)&st)); if (callconvention == OP_CALL1H) { if (arg) { st->b = param[0]->ofs; // QCC_FreeTemp(param[0]); if (arg>1) { st->c = param[1]->ofs; // QCC_FreeTemp(param[1]); } } } if (oself) QCC_PR_SimpleStatement(OP_STORE_ENT, oself->ofs, d->ofs, 0, false); for(; arg; arg--) { QCC_FreeTemp(param[arg-1]); } if (old) { if (t->type == ev_variant) { d = QCC_GetTemp(type_variant); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_F, &def_ret, d, NULL)); } else { d = QCC_GetTemp(t->aux_type); if (t->aux_type->size == 3) QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_V, &def_ret, d, NULL)); else QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_F, &def_ret, d, NULL)); } if (def_ret.type->size == 3) QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_V, old, &def_ret, NULL)); else QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_STORE_F, old, &def_ret, NULL)); QCC_FreeTemp(old); QCC_UnFreeTemp(&def_ret); QCC_UnFreeTemp(d); return d; } if (t->type == ev_variant) def_ret.type = type_variant; else def_ret.type = t->aux_type; if (def_ret.temp->used) QCC_PR_ParseWarning(WARN_FIXEDRETURNVALUECONFLICT, "Return value conflict - output is inefficient"); def_ret.temp->used = true; return &def_ret; } int constchecks; int varchecks; int typechecks; QCC_def_t *QCC_MakeIntDef(int value) { QCC_def_t *cn; // check for a constant with the same value for (cn=pr.def_head.next ; cn ; cn=cn->next) { varchecks++; if (!cn->initialized) continue; if (!cn->constant) continue; constchecks++; if (cn->type != type_integer) continue; typechecks++; if ( G_INT(cn->ofs) == value ) { return cn; } } // allocate a new one cn = (void *)qccHunkAlloc (sizeof(QCC_def_t)); cn->next = NULL; pr.def_tail->next = cn; pr.def_tail = cn; cn->type = type_integer; cn->name = "IMMEDIATE"; cn->constant = true; cn->initialized = 1; cn->scope = NULL; // always share immediates cn->arraysize = 1; // copy the immediate to the global area cn->ofs = QCC_GetFreeOffsetSpace (type_size[type_integer->type]); G_INT(cn->ofs) = value; return cn; } QCC_def_t *QCC_MakeVectorDef(float a, float b, float c) { QCC_def_t *cn; // check for a constant with the same value for (cn=pr.def_head.next ; cn ; cn=cn->next) { varchecks++; if (!cn->initialized) continue; if (!cn->constant) continue; constchecks++; if (cn->type != type_vector) continue; typechecks++; if ( G_FLOAT(cn->ofs+0) == a && G_FLOAT(cn->ofs+1) == b && G_FLOAT(cn->ofs+2) == c) { return cn; } } // allocate a new one cn = (void *)qccHunkAlloc (sizeof(QCC_def_t)); cn->next = NULL; pr.def_tail->next = cn; pr.def_tail = cn; cn->type = type_vector; cn->name = "IMMEDIATE"; cn->constant = true; cn->initialized = 1; cn->scope = NULL; // always share immediates cn->arraysize = 1; // copy the immediate to the global area cn->ofs = QCC_GetFreeOffsetSpace (type_size[type_vector->type]); G_FLOAT(cn->ofs+0) = a; G_FLOAT(cn->ofs+1) = b; G_FLOAT(cn->ofs+2) = c; return cn; } hashtable_t floatconstdefstable; QCC_def_t *QCC_MakeFloatDef(float value) { QCC_def_t *cn; union { float f; int i; } fi; fi.f = value; cn = Hash_GetKey(&floatconstdefstable, fi.i); if (cn) return cn; // allocate a new one cn = (void *)qccHunkAlloc (sizeof(QCC_def_t)); cn->next = NULL; pr.def_tail->next = cn; pr.def_tail = cn; cn->type = type_float; cn->name = "IMMEDIATE"; cn->constant = true; cn->initialized = 1; cn->scope = NULL; // always share immediates cn->arraysize = 1; // copy the immediate to the global area cn->ofs = QCC_GetFreeOffsetSpace (type_size[type_integer->type]); Hash_AddKey(&floatconstdefstable, fi.i, cn, qccHunkAlloc(sizeof(bucket_t))); G_FLOAT(cn->ofs) = value; return cn; } hashtable_t stringconstdefstable; QCC_def_t *QCC_MakeStringDef(char *value) { QCC_def_t *cn; int string; cn = pHash_Get(&stringconstdefstable, value); if (cn) return cn; // allocate a new one cn = (void *)qccHunkAlloc (sizeof(QCC_def_t)); cn->next = NULL; pr.def_tail->next = cn; pr.def_tail = cn; cn->type = type_string; cn->name = "IMMEDIATE"; cn->constant = true; cn->initialized = 1; cn->scope = NULL; // always share immediates cn->arraysize = 1; // copy the immediate to the global area cn->ofs = QCC_GetFreeOffsetSpace (type_size[type_integer->type]); string = QCC_CopyString (value); pHash_Add(&stringconstdefstable, strings+string, cn, qccHunkAlloc(sizeof(bucket_t))); G_INT(cn->ofs) = string; return cn; } QCC_type_t *QCC_PR_NewType (char *name, int basictype); QCC_type_t *QCC_PointerTypeTo(QCC_type_t *type) { QCC_type_t *newtype; newtype = QCC_PR_NewType("POINTER TYPE", ev_pointer); newtype->aux_type = type; return newtype; } int basictypefield[ev_union+1]; char *basictypenames[] = { "void", "string", "float", "vector", "entity", "field", "function", "pointer", "integer", "struct", "union" }; QCC_def_t *QCC_MemberInParentClass(char *name, QCC_type_t *clas) { //if a member exists, return the member field (rather than mapped-to field) QCC_type_t *mt; QCC_def_t *def; int p, np; char membername[2048]; if (!clas) { def = QCC_PR_GetDef(NULL, name, NULL, 0, 0, false); if (def && def->type->type == ev_field) //the member existed as a normal entity field. return def; return NULL; } np = clas->num_parms; for (p = 0, mt = clas->param; p < np; p++, mt = mt->next) { if (strcmp(mt->name, name)) continue; //the parent has it. sprintf(membername, "%s::"MEMBERFIELDNAME, clas->name, mt->name); def = QCC_PR_GetDef(NULL, membername, NULL, false, 0, false); return def; } return QCC_MemberInParentClass(name, clas->parentclass); } //create fields for the types, instanciate the members to the fields. //we retouch the parents each time to guarentee polymorphism works. //FIXME: virtual methods will not work properly. Need to trace down to see if a parent already defined it void QCC_PR_EmitFieldsForMembers(QCC_type_t *clas) { //we created fields for each class when we defined the actual classes. //we need to go through each member and match it to the offset of it's parent class, if overloaded, or create a new field if not.. //basictypefield is cleared before we do this //we emit the parent's fields first (every time), thus ensuring that we don't reuse parent fields on a child class. char membername[2048]; int p, np, a; unsigned int o; QCC_type_t *mt, *ft; QCC_def_t *f, *m; if (clas->parentclass != type_entity) //parents MUST have all their fields set or inheritance would go crazy. QCC_PR_EmitFieldsForMembers(clas->parentclass); np = clas->num_parms; mt = clas->param; for (p = 0; p < np; p++, mt = mt->next) { sprintf(membername, "%s::"MEMBERFIELDNAME, clas->name, mt->name); m = QCC_PR_GetDef(NULL, membername, NULL, false, 0, false); f = QCC_MemberInParentClass(mt->name, clas->parentclass); if (f) { if (m->arraysize>1) QCC_Error(ERR_INTERNAL, "FTEQCC does not support overloaded arrays of members"); a=0; for (o = 0; o < m->type->size; o++) ((int *)qcc_pr_globals)[o+a*mt->size+m->ofs] = ((int *)qcc_pr_globals)[o+f->ofs]; continue; } for (a = 0; a < m->arraysize; a++) { //we need the type in here so saved games can still work without saving ints as floats. (would be evil) ft = QCC_PR_NewType(basictypenames[mt->type], ev_field); ft->aux_type = QCC_PR_NewType(basictypenames[mt->type], mt->type); ft->aux_type->aux_type = type_void; ft->size = ft->aux_type->size; ft = QCC_PR_FindType(ft); sprintf(membername, "__f_%s_%i", ft->name, ++basictypefield[mt->type]); f = QCC_PR_GetDef(ft, membername, NULL, true, 1, true); for (o = 0; o < m->type->size; o++) ((int *)qcc_pr_globals)[o+a*mt->size+m->ofs] = ((int *)qcc_pr_globals)[o+f->ofs]; f->references++; } } } void QCC_PR_EmitClassFunctionTable(QCC_type_t *clas, QCC_type_t *childclas, QCC_def_t *ed, QCC_def_t **constructor) { //go through clas, do the virtual thing only if the child class does not override. char membername[2048]; QCC_type_t *type; QCC_type_t *oc; int p; QCC_def_t *point, *member; QCC_def_t *virt; if (clas->parentclass) QCC_PR_EmitClassFunctionTable(clas->parentclass, childclas, ed, constructor); type = clas->param; for (p = 0; p < clas->num_parms; p++, type = type->next) { for (oc = childclas; oc != clas; oc = oc->parentclass) { sprintf(membername, "%s::"MEMBERFIELDNAME, oc->name, type->name); if (QCC_PR_GetDef(NULL, membername, NULL, false, 0, false)) break; //a child class overrides. } if (oc != clas) continue; if (type->type == ev_function) //FIXME: inheritance will not install all the member functions. { sprintf(membername, "%s::"MEMBERFIELDNAME, clas->name, type->name); member = QCC_PR_GetDef(NULL, membername, NULL, false, 1, false); if (!member) { QCC_PR_Warning(0, NULL, 0, "Member function %s was not defined", membername); continue; } if (!strcmp(type->name, clas->name)) { *constructor = member; } point = QCC_PR_Statement(&pr_opcodes[OP_ADDRESS], ed, member, NULL); sprintf(membername, "%s::%s", clas->name, type->name); virt = QCC_PR_GetDef(type, membername, NULL, false, 1, false); QCC_PR_Statement(&pr_opcodes[OP_STOREP_FNC], virt, point, NULL); } } } //take all functions in the type, and parent types, and make sure the links all work properly. void QCC_PR_EmitClassFromFunction(QCC_def_t *scope, char *tname) { QCC_type_t *basetype; QCC_dfunction_t *df; QCC_def_t *virt; QCC_def_t *ed, *oself, *self; QCC_def_t *constructor = NULL; // int func; basetype = QCC_TypeForName(tname); if (!basetype) QCC_PR_ParseError(ERR_INTERNAL, "Type %s was not defined...", tname); pr_scope = NULL; memset(basictypefield, 0, sizeof(basictypefield)); QCC_PR_EmitFieldsForMembers(basetype); pr_scope = scope; df = &functions[numfunctions]; numfunctions++; df->s_file = 0; df->s_name = 0; df->first_statement = numstatements; df->parm_size[0] = 1; df->numparms = 0; df->parm_start = numpr_globals; G_FUNCTION(scope->ofs) = df - functions; //locals here... ed = QCC_PR_GetDef(type_entity, "ent", pr_scope, true, 1, false); virt = QCC_PR_GetDef(type_function, "spawn", NULL, false, 0, false); if (!virt) QCC_Error(ERR_INTERNAL, "spawn function was not defined\n"); QCC_PR_SimpleStatement(OP_CALL0, virt->ofs, 0, 0, false); //calling convention doesn't come into it. QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_ENT], &def_ret, ed, NULL)); ed->references = 1; //there may be no functions. QCC_PR_EmitClassFunctionTable(basetype, basetype, ed, &constructor); if (constructor) { //self = ent; self = QCC_PR_GetDef(type_entity, "self", NULL, false, 0, false); oself = QCC_PR_GetDef(type_entity, "oself", scope, true, 1, false); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_ENT], self, oself, NULL)); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_ENT], ed, self, NULL)); //return to our old self. boom boom. QCC_PR_SimpleStatement(OP_CALL0, constructor->ofs, 0, 0, false); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_ENT], oself, self, NULL)); } QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_RETURN], ed, NULL, NULL)); //apparently we do actually have to return something. *sigh*... QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_DONE], NULL, NULL, NULL)); QCC_WriteAsmFunction(scope, df->first_statement, df->parm_start); pr.localvars = NULL; locals_end = numpr_globals + basetype->size; df->locals = locals_end - df->parm_start; } /* ============ PR_ParseValue Returns the global ofs for the current token ============ */ QCC_def_t *QCC_PR_ParseValue (QCC_type_t *assumeclass) { QCC_def_t *ao=NULL; //arrayoffset QCC_def_t *d, *nd, *od; char *name; QCC_dstatement_t *st; int i; char membername[2048]; // if the token is an immediate, allocate a constant for it if (pr_token_type == tt_immediate) return QCC_PR_ParseImmediate (); if (QCC_PR_CheckToken("[")) //reacc support { //looks like a funky vector. :) vec3_t v; pr_immediate_type = type_vector; v[0] = pr_immediate._float; QCC_PR_Lex(); v[1] = pr_immediate._float; QCC_PR_Lex(); v[2] = pr_immediate._float; pr_immediate.vector[0] = v[0]; pr_immediate.vector[1] = v[1]; pr_immediate.vector[2] = v[2]; pr_immediate_type = type_vector; d = QCC_PR_ParseImmediate(); QCC_PR_Expect("]"); return d; } name = QCC_PR_ParseName (); if (assumeclass && assumeclass->parentclass) // 'testvar' becomes 'self::testvar' { //try getting a member. QCC_type_t *type; type = assumeclass; d = NULL; while(type != type_entity && type) { sprintf(membername, "%s::"MEMBERFIELDNAME, type->name, name); od = d = QCC_PR_GetDef (NULL, membername, pr_scope, false, 0, false); if (d) break; type = type->parentclass; } if (!d) od = d = QCC_PR_GetDef (NULL, name, pr_scope, false, 0, false); } else // look through the defs od = d = QCC_PR_GetDef (NULL, name, pr_scope, false, 0, false); if (!d) { if ( (!strcmp(name, "random" )) || (!strcmp(name, "randomv")) || (!strcmp(name, "entnum")) ) //intrinsics, any old function with no args will do. od = d = QCC_PR_GetDef (type_function, name, NULL, true, 1, false); else if (keyword_class && !strcmp(name, "this")) { if (!pr_classtype) QCC_PR_ParseError(ERR_NOTANAME, "Cannot use 'this' outside of an OO function\n"); od = QCC_PR_GetDef(NULL, "self", NULL, true, 1, false); od = d = QCC_PR_DummyDef(pr_classtype, "this", pr_scope, 1, od->ofs, true, false); } else if (keyword_class && !strcmp(name, "super")) { if (!pr_classtype) QCC_PR_ParseError(ERR_NOTANAME, "Cannot use 'super' outside of an OO function\n"); od = QCC_PR_GetDef(NULL, "self", NULL, true, 1, false); od = d = QCC_PR_DummyDef(pr_classtype, "super", pr_scope, 1, od->ofs, true, false); } else { od = d = QCC_PR_GetDef (type_variant, name, pr_scope, true, 1, false); if (!d) QCC_PR_ParseError (ERR_UNKNOWNVALUE, "Unknown value \"%s\"", name); else { QCC_PR_ParseWarning (ERR_UNKNOWNVALUE, "Unknown value \"%s\".", name); } } } reloop: //FIXME: Make this work with double arrays/2nd level structures. //Should they just jump back to here? if (QCC_PR_CheckToken("[")) { QCC_type_t *newtype; if (ao) { numstatements--; //remove the last statement nd = QCC_PR_Expression (TOP_PRIORITY, true); QCC_PR_Expect("]"); if (d->type->size != 1) //we need to multiply it to find the offset. { if (ao->type->type == ev_integer) nd = QCC_PR_Statement(&pr_opcodes[OP_MUL_I], nd, QCC_MakeIntDef(d->type->size), NULL); //get add part else if (ao->type->type == ev_float) nd = QCC_PR_Statement(&pr_opcodes[OP_MUL_F], nd, QCC_MakeFloatDef((float)d->type->size), NULL); //get add part else { QCC_PR_ParseError(ERR_BADARRAYINDEXTYPE, "Array offset is not of integer or float type"); nd = NULL; } } if (nd->type->type == ao->type->type) { if (ao->type->type == ev_integer) ao = QCC_PR_Statement(&pr_opcodes[OP_ADD_I], ao, nd, NULL); //get add part else if (ao->type->type == ev_float) ao = QCC_PR_Statement(&pr_opcodes[OP_ADD_F], ao, nd, NULL); //get add part else { QCC_PR_ParseError(ERR_BADARRAYINDEXTYPE, "Array offset is not of integer or float type"); nd = NULL; } } else { if (nd->type->type == ev_float) nd = QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], nd, 0, NULL); ao = QCC_PR_Statement(&pr_opcodes[OP_ADD_I], ao, nd, NULL); //get add part } newtype = d->type; d = od; } else { ao = QCC_PR_Expression (TOP_PRIORITY, true); QCC_PR_Expect("]"); if (QCC_OPCodeValid(&pr_opcodes[OP_LOADA_F]) && d->type->size != 1) //we need to multiply it to find the offset. { if (ao->type->type == ev_integer) ao = QCC_PR_Statement(&pr_opcodes[OP_MUL_I], ao, QCC_MakeIntDef(d->type->size), NULL); //get add part else if (ao->type->type == ev_float) ao = QCC_PR_Statement(&pr_opcodes[OP_MUL_F], ao, QCC_MakeFloatDef((float)d->type->size), NULL); //get add part else { nd = NULL; QCC_PR_ParseError(ERR_BADARRAYINDEXTYPE, "Array offset is not of integer or float type"); } } newtype = d->type; } if (ao->type->type == ev_integer) { switch(newtype->type) { case ev_float: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_F], d, ao, NULL); //get pointer to precise def. break; case ev_string: if (d->arraysize <= 1) { nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_C], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_ITOF], ao, 0, NULL), NULL); //get pointer to precise def. newtype = nd->type;//don't be fooled } else { nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_S], d, ao, NULL); //get pointer to precise def. } break; case ev_vector: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_V], d, ao, NULL); //get pointer to precise def. break; case ev_entity: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_ENT], d, ao, NULL); //get pointer to precise def. break; case ev_field: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_FLD], d, ao, NULL); //get pointer to precise def. break; case ev_function: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_FNC], d, ao, NULL); //get pointer to precise def. nd->type = d->type; break; case ev_integer: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_I], d, ao, NULL); //get pointer to precise def. break; case ev_struct: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_I], d, ao, NULL); //get pointer to precise def. nd->type = d->type; break; default: QCC_PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler"); nd = NULL; break; } d=nd; } else if (ao->type->type == ev_float) { if (qcc_targetformat == QCF_HEXEN2) { //hexen2 style retrieval, mixed with q1 style assignments... if (QCC_PR_CheckToken("=")) //(hideous concept) { QCC_dstatement_t *st; QCC_def_t *funcretr; if (d->scope) QCC_PR_ParseError(0, "Scoped array without specific engine support"); if (def_ret.temp->used && ao != &def_ret) QCC_PR_ParseWarning(0, "RETURN VALUE ALREADY IN USE"); funcretr = QCC_PR_GetDef(type_function, qcva("ArraySet*%s", d->name), NULL, true, 1, false); nd = QCC_PR_Expression(TOP_PRIORITY, true); if (nd->type->type != d->type->type) QCC_PR_ParseErrorPrintDef(ERR_TYPEMISMATCH, d, "Type Mismatch on array assignment"); QCC_LockActiveTemps(); QCC_PR_Statement (&pr_opcodes[OP_CALL2H], funcretr, 0, &st); st->a = ao->ofs; st->b = nd->ofs; QCC_FreeTemp(ao); QCC_FreeTemp(nd); qcc_usefulstatement = true; nd = &def_ret; def_ret.temp->used = true; d=nd; d->type = newtype; return d; } switch(newtype->type) { case ev_float: nd = QCC_PR_Statement(&pr_opcodes[OP_FETCH_GBL_F], d, ao, &st); //get pointer to precise def. st->a = d->ofs; break; case ev_vector: nd = QCC_PR_Statement(&pr_opcodes[OP_FETCH_GBL_V], d, ao, &st); //get pointer to precise def. st->a = d->ofs; break; case ev_string: nd = QCC_PR_Statement(&pr_opcodes[OP_FETCH_GBL_S], d, ao, &st); //get pointer to precise def. st->a = d->ofs; break; case ev_entity: nd = QCC_PR_Statement(&pr_opcodes[OP_FETCH_GBL_E], d, ao, &st); //get pointer to precise def. st->a = d->ofs; break; case ev_function: nd = QCC_PR_Statement(&pr_opcodes[OP_FETCH_GBL_FNC], d, ao, &st); //get pointer to precise def. st->a = d->ofs; break; default: QCC_PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler"); nd = NULL; break; } QCC_FreeTemp(d); QCC_FreeTemp(ao); d=nd; d->type = newtype; return d; } else { if (!QCC_OPCodeValid(&pr_opcodes[OP_LOADA_F])) //q1 compatible. { //you didn't see this, okay? QCC_def_t *funcretr; if (d->scope) QCC_PR_ParseError(0, "Scoped array without specific engine support"); if (def_ret.temp->used && ao != &def_ret) QCC_PR_ParseWarning(0, "RETURN VALUE ALREADY IN USE"); if (QCC_PR_CheckToken("=")) { funcretr = QCC_PR_GetDef(type_function, qcva("ArraySet*%s", d->name), NULL, true, 1, false); nd = QCC_PR_Expression(TOP_PRIORITY, true); if (nd->type->type != d->type->type) QCC_PR_ParseErrorPrintDef(ERR_TYPEMISMATCH, d, "Type Mismatch on array assignment"); def_parms[0].type = type_float; QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_F], ao, &def_parms[0], NULL)); def_parms[1].type = nd->type; QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_V], nd, &def_parms[1], NULL)); QCC_LockActiveTemps(); QCC_PR_Statement (&pr_opcodes[OP_CALL2], funcretr, 0, NULL); qcc_usefulstatement = true; } else { def_parms[0].type = type_float; QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STORE_F], ao, &def_parms[0], NULL)); funcretr = QCC_PR_GetDef(type_function, qcva("ArrayGet*%s", d->name), NULL, true, 1, false); QCC_LockActiveTemps(); QCC_PR_Statement (&pr_opcodes[OP_CALL1], funcretr, 0, NULL); } nd = &def_ret; def_ret.temp->used = true; d=nd; d->type = newtype; return d; } else { switch(newtype->type) { case ev_pointer: if (d->arraysize>1) //use the array { nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_I], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. nd->type = d->type->aux_type; } else { //dereference the pointer. switch(newtype->aux_type->type) { case ev_pointer: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_I], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. nd->type = d->type->aux_type; break; case ev_float: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_F], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. nd->type = d->type->aux_type; break; case ev_integer: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_I], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. nd->type = d->type->aux_type; break; default: QCC_PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler"); nd = NULL; break; } } break; case ev_float: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_F], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. break; case ev_string: if (d->arraysize <= 1) { nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_C], d, ao, NULL); //get pointer to precise def. newtype = nd->type;//don't be fooled } else nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_S], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. break; case ev_vector: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_V], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. break; case ev_entity: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_ENT], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. break; case ev_field: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_FLD], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. break; case ev_function: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_FNC], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. nd->type = d->type; break; case ev_integer: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_I], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. break; case ev_struct: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_I], d, QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def. nd->type = d->type; break; default: QCC_PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler"); nd = NULL; break; } } } d=nd; } else QCC_PR_ParseError(ERR_BADARRAYINDEXTYPE, "Array offset is not of integer or float type"); d->type = newtype; goto reloop; } i = d->type->type; if (i == ev_pointer) { int j; QCC_type_t *type; if (QCC_PR_CheckToken(".") || QCC_PR_CheckToken("->")) { for (i = d->type->num_parms, type = d->type+1; i; i--, type++) { if (QCC_PR_CheckName(type->name)) { //give result if (ao) { numstatements--; //remove the last statement d = od; nd = QCC_MakeIntDef(type->ofs); ao = QCC_PR_Statement(&pr_opcodes[OP_ADD_I], ao, nd, NULL); //get add part //so that we may offset it and readd it. } else ao = QCC_MakeIntDef(type->ofs); switch (type->type) { case ev_float: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_F], d, ao, NULL); //get pointer to precise def. break; case ev_string: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_S], d, ao, NULL); //get pointer to precise def. break; case ev_vector: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_V], d, ao, NULL); //get pointer to precise def. break; case ev_entity: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_ENT], d, ao, NULL); //get pointer to precise def. break; case ev_field: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_FLD], d, ao, NULL); //get pointer to precise def. break; case ev_function: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_FNC], d, ao, NULL); //get pointer to precise def. nd->type = type; break; case ev_integer: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_I], d, ao, NULL); //get pointer to precise def. break; // case ev_struct: //no suitable op. // nd = QCC_PR_Statement(&pr_opcodes[OP_LOADP_I], d, ao, NULL); //get pointer to precise def. // nd->type = type; // break; default: QCC_PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler"); nd = NULL; break; } d=nd; break; } if (type->num_parms) { for (j = type->num_parms; j;j--) type++; } } if (!i) QCC_PR_ParseError (ERR_MEMBERNOTVALID, "\"%s\" is not a member of \"%s\"", pr_token, od->type->name); goto reloop; } } else if (i == ev_struct || i == ev_union) { int j; QCC_type_t *type; if (QCC_PR_CheckToken(".") || QCC_PR_CheckToken("->")) { for (i = d->type->num_parms, type = d->type+1; i; i--, type++) { if (QCC_PR_CheckName(type->name)) { //give result if (ao) { numstatements--; //remove the last statement d = od; nd = QCC_MakeIntDef(type->ofs); ao = QCC_PR_Statement(&pr_opcodes[OP_ADD_I], ao, nd, NULL); //get add part //so that we may offset it and readd it. } else ao = QCC_MakeIntDef(type->ofs); switch (type->type) { case ev_float: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_F], d, ao, NULL); //get pointer to precise def. break; case ev_string: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_S], d, ao, NULL); //get pointer to precise def. break; case ev_vector: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_V], d, ao, NULL); //get pointer to precise def. break; case ev_entity: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_ENT], d, ao, NULL); //get pointer to precise def. break; case ev_field: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_FLD], d, ao, NULL); //get pointer to precise def. break; case ev_function: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_FNC], d, ao, NULL); //get pointer to precise def. nd->type = type; break; case ev_integer: nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_I], d, ao, NULL); //get pointer to precise def. break; // case ev_struct: //no suitable op. // nd = QCC_PR_Statement(&pr_opcodes[OP_LOADA_I], d, ao, NULL); //get pointer to precise def. // nd->type = type; // break; default: QCC_PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler"); nd = NULL; break; } d=nd; break; } if (type->num_parms) { for (j = type->num_parms; j;j--) type++; } } if (!i) QCC_PR_ParseError (ERR_MEMBERNOTVALID, "\"%s\" is not a member of \"%s\"", pr_token, od->type->name); goto reloop; } } /* if (d->type->type == ev_pointer) { //expand now, not in function call/maths parsing switch(d->type->aux_type->type) { case ev_string: d = QCC_PR_Statement(&pr_opcodes[OP_LOADP_S], d, NULL, NULL); break; case ev_float: d = QCC_PR_Statement(&pr_opcodes[OP_LOADP_F], d, NULL, NULL); break; } } */ if (!keyword_class) return d; if (d->type->parentclass||d->type->type == ev_entity) //class { if (QCC_PR_CheckToken(".") || QCC_PR_CheckToken("->")) { QCC_def_t *field; if (QCC_PR_CheckToken("(")) { field = QCC_PR_Expression(TOP_PRIORITY, true); QCC_PR_Expect(")"); } else field = QCC_PR_ParseValue(d->type); if (field->type->type == ev_field) { if (!field->type->aux_type) { QCC_PR_ParseWarning(ERR_INTERNAL, "Field with null aux_type"); return QCC_PR_Statement(&pr_opcodes[OP_LOAD_FLD], d, field, NULL); } else { switch(field->type->aux_type->type) { default: QCC_PR_ParseError(ERR_INTERNAL, "Bad field type"); return d; case ev_integer: return QCC_PR_Statement(&pr_opcodes[OP_LOAD_I], d, field, NULL); case ev_field: d = QCC_PR_Statement(&pr_opcodes[OP_LOAD_FLD], d, field, NULL); nd = (void *)qccHunkAlloc (sizeof(QCC_def_t)); memset (nd, 0, sizeof(QCC_def_t)); nd->type = field->type->aux_type; nd->ofs = d->ofs; nd->temp = d->temp; nd->constant = false; nd->name = d->name; return nd; case ev_float: return QCC_PR_Statement(&pr_opcodes[OP_LOAD_F], d, field, NULL); case ev_string: return QCC_PR_Statement(&pr_opcodes[OP_LOAD_S], d, field, NULL); case ev_vector: return QCC_PR_Statement(&pr_opcodes[OP_LOAD_V], d, field, NULL); case ev_function: { //complicated for a typecast d = QCC_PR_Statement(&pr_opcodes[OP_LOAD_FNC], d, field, NULL); nd = (void *)qccHunkAlloc (sizeof(QCC_def_t)); memset (nd, 0, sizeof(QCC_def_t)); nd->type = field->type->aux_type; nd->ofs = d->ofs; nd->temp = d->temp; nd->constant = false; nd->name = d->name; return nd; } case ev_entity: return QCC_PR_Statement(&pr_opcodes[OP_LOAD_ENT], d, field, NULL); } } } else QCC_PR_IncludeChunk(".", false, NULL); } } return d; } /* ============ PR_Term ============ */ QCC_def_t *QCC_PR_Term (void) { QCC_def_t *e, *e2; etype_t t; if (pr_token_type == tt_punct) //a little extra speed... { if (QCC_PR_CheckToken("++")) { qcc_usefulstatement=true; e = QCC_PR_Term (); if (e->constant) QCC_PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Assignment to constant %s", e->name); if (e->temp) QCC_PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Hey! That's a temp! ++ operators cannot work on temps!"); switch (e->type->type) { case ev_integer: QCC_PR_Statement3(&pr_opcodes[OP_ADD_I], e, QCC_MakeIntDef(1), e, false); break; case ev_float: QCC_PR_Statement3(&pr_opcodes[OP_ADD_F], e, QCC_MakeFloatDef(1), e, false); break; default: QCC_PR_ParseError(ERR_BADPLUSPLUSOPERATOR, "++ operator on unsupported type"); break; } return e; } else if (QCC_PR_CheckToken("--")) { qcc_usefulstatement=true; e = QCC_PR_Term (); if (e->constant) QCC_PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Assignment to constant %s", e->name); if (e->temp) QCC_PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Hey! That's a temp! -- operators cannot work on temps!"); switch (e->type->type) { case ev_integer: QCC_PR_Statement3(&pr_opcodes[OP_SUB_I], e, QCC_MakeIntDef(1), e, false); break; case ev_float: QCC_PR_Statement3(&pr_opcodes[OP_SUB_F], e, QCC_MakeFloatDef(1), e, false); break; default: QCC_PR_ParseError(ERR_BADPLUSPLUSOPERATOR, "-- operator on unsupported type"); break; } return e; } if (QCC_PR_CheckToken ("!")) { e = QCC_PR_Expression (NOT_PRIORITY, false); t = e->type->type; if (t == ev_float) e2 = QCC_PR_Statement (&pr_opcodes[OP_NOT_F], e, 0, NULL); else if (t == ev_string) e2 = QCC_PR_Statement (&pr_opcodes[OP_NOT_S], e, 0, NULL); else if (t == ev_entity) e2 = QCC_PR_Statement (&pr_opcodes[OP_NOT_ENT], e, 0, NULL); else if (t == ev_vector) e2 = QCC_PR_Statement (&pr_opcodes[OP_NOT_V], e, 0, NULL); else if (t == ev_function) e2 = QCC_PR_Statement (&pr_opcodes[OP_NOT_FNC], e, 0, NULL); else if (t == ev_integer) e2 = QCC_PR_Statement (&pr_opcodes[OP_NOT_FNC], e, 0, NULL); //functions are integer values too. else if (t == ev_pointer) e2 = QCC_PR_Statement (&pr_opcodes[OP_NOT_FNC], e, 0, NULL); //Pointers are too. else { e2 = NULL; // shut up compiler warning; QCC_PR_ParseError (ERR_BADNOTTYPE, "type mismatch for !"); } return e2; } else if (QCC_PR_CheckToken ("&")) { int st = numstatements; e = QCC_PR_Expression (NOT_PRIORITY, false); t = e->type->type; if (st != numstatements) //woo, something like ent.field? { if ((unsigned)(statements[numstatements-1].op - OP_LOAD_F) < 6 || statements[numstatements-1].op == OP_LOAD_I || statements[numstatements-1].op == OP_LOAD_P) { statements[numstatements-1].op = OP_ADDRESS; QCC_PR_ParseWarning(0, "debug: &ent.field"); e->type = QCC_PR_PointerType(e->type); return e; } else //this is a restriction that could be lifted, I just want to make sure that I got all the bits first. { QCC_PR_ParseError (ERR_BADNOTTYPE, "type mismatch for '&' Must be singular expression or field reference"); return e; } } // QCC_PR_ParseWarning(0, "debug: &global"); if (!QCC_OPCodeValid(&pr_opcodes[OP_GLOBALADDRESS])) QCC_PR_ParseError (ERR_BADEXTENSION, "Cannot use addressof operator ('&') on a global. Please use the FTE target."); e2 = QCC_PR_Statement (&pr_opcodes[OP_GLOBALADDRESS], e, 0, NULL); e2->type = QCC_PR_PointerType(e->type); return e2; } else if (QCC_PR_CheckToken ("*")) { e = QCC_PR_Expression (NOT_PRIORITY, false); t = e->type->type; if (t != ev_pointer) QCC_PR_ParseError (ERR_BADNOTTYPE, "type mismatch for *"); switch(e->type->aux_type->type) { case ev_float: e2 = QCC_PR_Statement (&pr_opcodes[OP_LOADP_F], e, 0, NULL); break; case ev_string: e2 = QCC_PR_Statement (&pr_opcodes[OP_LOADP_S], e, 0, NULL); break; case ev_vector: e2 = QCC_PR_Statement (&pr_opcodes[OP_LOADP_V], e, 0, NULL); break; case ev_entity: e2 = QCC_PR_Statement (&pr_opcodes[OP_LOADP_ENT], e, 0, NULL); break; case ev_field: e2 = QCC_PR_Statement (&pr_opcodes[OP_LOADP_FLD], e, 0, NULL); break; case ev_function: e2 = QCC_PR_Statement (&pr_opcodes[OP_LOADP_FLD], e, 0, NULL); break; case ev_integer: e2 = QCC_PR_Statement (&pr_opcodes[OP_LOADP_I], e, 0, NULL); break; case ev_pointer: e2 = QCC_PR_Statement (&pr_opcodes[OP_LOADP_I], e, 0, NULL); break; default: QCC_PR_ParseError (ERR_BADNOTTYPE, "type mismatch for * (unrecognised type)"); e2 = NULL; break; } e2->type = e->type->aux_type; return e2; } else if (QCC_PR_CheckToken ("-")) { e = QCC_PR_Expression (NOT_PRIORITY, false); switch(e->type->type) { case ev_float: e2 = QCC_PR_Statement (&pr_opcodes[OP_SUB_F], QCC_MakeFloatDef(0), e, NULL); break; case ev_integer: e2 = QCC_PR_Statement (&pr_opcodes[OP_SUB_I], QCC_MakeIntDef(0), e, NULL); break; default: QCC_PR_ParseError (ERR_BADNOTTYPE, "type mismatch for -"); e2 = NULL; break; } return e2; } else if (QCC_PR_CheckToken ("+")) { e = QCC_PR_Expression (NOT_PRIORITY, false); switch(e->type->type) { case ev_float: e2 = QCC_PR_Statement (&pr_opcodes[OP_ADD_F], QCC_MakeFloatDef(0), e, NULL); break; case ev_integer: e2 = QCC_PR_Statement (&pr_opcodes[OP_ADD_I], QCC_MakeIntDef(0), e, NULL); break; default: QCC_PR_ParseError (ERR_BADNOTTYPE, "type mismatch for +"); e2 = NULL; break; } return e2; } if (QCC_PR_CheckToken ("(")) { if (keyword_float && QCC_PR_CheckToken("float")) //check for type casts { QCC_PR_Expect (")"); e = QCC_PR_Term(); if (e->type->type == ev_float) return e; else if (e->type->type == ev_integer) return QCC_PR_Statement (&pr_opcodes[OP_CONV_ITOF], e, 0, NULL); else if (e->type->type == ev_function) return e; // else // QCC_PR_ParseError ("invalid typecast"); QCC_PR_ParseWarning (0, "Not all vars make sence as floats"); e2 = (void *)qccHunkAlloc (sizeof(QCC_def_t)); memset (e2, 0, sizeof(QCC_def_t)); e2->type = type_float; e2->ofs = e->ofs; e2->constant = true; e2->temp = e->temp; return e2; } else if (QCC_PR_CheckKeyword(keyword_class, "class")) { QCC_type_t *classtype = QCC_TypeForName(QCC_PR_ParseName()); if (!classtype) QCC_PR_ParseError(ERR_NOTANAME, "Class not defined for cast"); QCC_PR_Expect (")"); e = QCC_PR_Term(); e2 = (void *)qccHunkAlloc (sizeof(QCC_def_t)); memset (e2, 0, sizeof(QCC_def_t)); e2->type = classtype; e2->ofs = e->ofs; e2->constant = true; e2->temp = e->temp; return e2; } else if (QCC_PR_CheckKeyword(keyword_integer, "integer")) //check for type casts { QCC_PR_Expect (")"); e = QCC_PR_Term(); if (e->type->type == ev_integer) return e; else if (e->type->type == ev_float) return QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], e, 0, NULL); else QCC_PR_ParseError (ERR_BADTYPECAST, "invalid typecast"); } else if (QCC_PR_CheckKeyword(keyword_int, "int")) //check for type casts { QCC_PR_Expect (")"); e = QCC_PR_Term(); if (e->type->type == ev_integer) return e; else if (e->type->type == ev_float) return QCC_PR_Statement (&pr_opcodes[OP_CONV_FTOI], e, 0, NULL); else QCC_PR_ParseError (ERR_BADTYPECAST, "invalid typecast"); } else { pbool oldcond = conditional; conditional = conditional?2:0; e = QCC_PR_Expression (TOP_PRIORITY, false); QCC_PR_Expect (")"); conditional = oldcond; } return e; } } return QCC_PR_ParseValue (pr_classtype); } int QCC_canConv(QCC_def_t *from, etype_t to) { if (from->type->type == to) return 0; if (from->type->type == ev_vector && to == ev_float) return 4; if (pr_classtype) { if (from->type->type == ev_field) { if (from->type->aux_type->type == to) return 1; } } /* if (from->type->type == ev_pointer && from->type->aux_type->type == to) return 1; if (QCC_ShouldConvert(from, to)>=0) return 1; */ if (from->type->type == ev_integer && to == ev_function) return 1; return -100; } /* ============== PR_Expression ============== */ QCC_def_t *QCC_PR_Expression (int priority, pbool allowcomma) { QCC_dstatement32_t *st; QCC_opcode_t *op, *oldop; QCC_opcode_t *bestop; int numconversions, c; int opnum; QCC_def_t *e, *e2; etype_t type_a, type_b, type_c; if (priority == 0) return QCC_PR_Term (); e = QCC_PR_Expression (priority-1, allowcomma); while (1) { if (priority == 1) { if (QCC_PR_CheckToken ("(") ) { qcc_usefulstatement=true; return QCC_PR_ParseFunctionCall (e); } if (QCC_PR_CheckToken ("?")) { QCC_dstatement32_t *fromj, *elsej; QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_IFNOT], e, NULL, &fromj)); e = QCC_PR_Expression(TOP_PRIORITY, true); e2 = QCC_GetTemp(e->type); QCC_PR_Statement(&pr_opcodes[(e2->type->size>=3)?OP_STORE_V:OP_STORE_F], e, e2, NULL); QCC_PR_Expect(":"); QCC_PR_Statement(&pr_opcodes[OP_GOTO], NULL, NULL, &elsej); fromj->b = &statements[numstatements] - fromj; e = QCC_PR_Expression(TOP_PRIORITY, true); if (typecmp(e->type, e2->type) != 0) QCC_PR_ParseError(0, "Ternary operator with mismatching types\n"); QCC_PR_Statement(&pr_opcodes[(e2->type->size>=3)?OP_STORE_V:OP_STORE_F], e, e2, NULL); elsej->a = &statements[numstatements] - elsej; return e2; } } opnum=0; if (pr_token_type == tt_immediate) { if (pr_immediate_type->type == ev_float) if (pr_immediate._float < 0) //hehehe... was a minus all along... { QCC_PR_IncludeChunk(pr_token, true, NULL); strcpy(pr_token, "+");//two negatives would make a positive. pr_token_type = tt_punct; } } if (pr_token_type != tt_punct) { QCC_PR_ParseWarning(WARN_UNEXPECTEDPUNCT, "Expected punctuation"); } //go straight for the correct priority. for (op = opcodeprioritized[priority][opnum]; op; op = opcodeprioritized[priority][++opnum]) // for (op=pr_opcodes ; op->name ; op++) { // if (op->priority != priority) // continue; if (!QCC_PR_CheckToken (op->name)) continue; st = NULL; if ( op->associative!=ASSOC_LEFT ) { // if last statement is an indirect, change it to an address of if (!simplestore && ((unsigned)(statements[numstatements-1].op - OP_LOAD_F) < 6 || statements[numstatements-1].op == OP_LOAD_I || statements[numstatements-1].op == OP_LOAD_P) && statements[numstatements-1].c == e->ofs) { qcc_usefulstatement=true; statements[numstatements-1].op = OP_ADDRESS; type_pointer->aux_type->type = e->type->type; e->type = type_pointer; } //if last statement retrieved a value, switch it to retrieve a usable pointer. if ( !simplestore && (unsigned)(statements[numstatements-1].op - OP_LOADA_F) < 7)// || statements[numstatements-1].op == OP_LOADA_C) { statements[numstatements-1].op = OP_GLOBALADDRESS; type_pointer->aux_type->type = e->type->type; e->type = type_pointer; } if ( !simplestore && (unsigned)(statements[numstatements-1].op - OP_LOADP_F) < 7) { statements[numstatements-1].op = OP_ADD_I; } if ( !simplestore && statements[numstatements-1].op == OP_LOADP_C && e->ofs == statements[numstatements-1].c) { statements[numstatements-1].op = OP_ADD_SF; e->type = type_string; //now we want to make sure that string = float can't work without it being a dereferenced pointer. (we don't want to allow storep_c without dereferece) e2 = QCC_PR_Expression (priority, allowcomma); if (e2->type->type == ev_float) op = &pr_opcodes[OP_STOREP_C]; } else e2 = QCC_PR_Expression (priority, allowcomma); } else { if (op->priority == 7 && opt_logicops) { optres_logicops++; st = &statements[numstatements]; if (*op->name == '&') //statement 3 because we don't want to optimise this into if from not ifnot QCC_PR_Statement3(&pr_opcodes[OP_IFNOT], e, NULL, NULL, false); else QCC_PR_Statement3(&pr_opcodes[OP_IF], e, NULL, NULL, false); } e2 = QCC_PR_Expression (priority-1, allowcomma); } // type check type_a = e->type->type; type_b = e2->type->type; // if (type_a == ev_pointer && type_b == ev_pointer) // QCC_PR_ParseWarning(0, "Debug: pointer op pointer"); if (op->name[0] == '.')// field access gets type from field { if (e2->type->aux_type) type_c = e2->type->aux_type->type; else type_c = -1; // not a field } else type_c = ev_void; oldop = op; bestop = NULL; numconversions = 32767; while (op) { if (!(type_c != ev_void && type_c != (*op->type_c)->type)) { if (!STRCMP (op->name , oldop->name)) //matches { //return values are never converted - what to? // if (type_c != ev_void && type_c != op->type_c->type->type) // { // op++; // continue; // } if (op->associative!=ASSOC_LEFT) {//assignment if (op->type_a == &type_pointer) //ent var { if (e->type->type != ev_pointer) c = -200; //don't cast to a pointer. else if ((*op->type_c)->type == ev_void && op->type_b == &type_pointer && e2->type->type == ev_pointer) c = 0; //generic pointer... fixme: is this safe? make sure both sides are equivelent else if (e->type->aux_type->type != (*op->type_b)->type) //if e isn't a pointer to a type_b c = -200; //don't let the conversion work else c = QCC_canConv(e2, (*op->type_c)->type); } else { c=QCC_canConv(e2, (*op->type_b)->type); if (type_a != (*op->type_a)->type) //in this case, a is the final assigned value c = -300; //don't use this op, as we must not change var b's type } } else { if (op->type_a == &type_pointer) //ent var { if (e2->type->type != ev_pointer || e2->type->aux_type->type != (*op->type_b)->type) //if e isn't a pointer to a type_b c = -200; //don't let the conversion work else c = 0; } else { c=QCC_canConv(e, (*op->type_a)->type); c+=QCC_canConv(e2, (*op->type_b)->type); } } if (c>=0 && c < numconversions) { bestop = op; numconversions=c; if (c == 0)//can't get less conversions than 0... break; } } else break; } op = opcodeprioritized[priority][++opnum]; } if (bestop == NULL) { if (oldop->priority == CONDITION_PRIORITY) op = oldop; else { if (flag_laxcasts) { op = oldop; QCC_PR_ParseWarning(WARN_LAXCAST, "type mismatch for %s (%s and %s)", oldop->name, e->type->name, e2->type->name); } else QCC_PR_ParseError (ERR_TYPEMISMATCH, "type mismatch for %s (%s and %s)", oldop->name, e->type->name, e2->type->name); } } else { if (numconversions>3) QCC_PR_ParseWarning(WARN_IMPLICITCONVERSION, "Implicit conversion"); op = bestop; } // if (type_a == ev_pointer && type_b != e->type->aux_type->type) // QCC_PR_ParseError ("type mismatch for %s", op->name); if (st) st->b = &statements[numstatements] - st; if (op->associative!=ASSOC_LEFT) { qcc_usefulstatement = true; if (e->constant || e->ofs < OFS_PARM0) { if (e->type->type == ev_function) { QCC_PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANTFUNC, "Assignment to function %s", e->name); QCC_PR_ParsePrintDef(WARN_ASSIGNMENTTOCONSTANTFUNC, e); } else { QCC_PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Assignment to constant %s", e->name); QCC_PR_ParsePrintDef(WARN_ASSIGNMENTTOCONSTANT, e); } #ifndef QCC editbadfile(strings+s_file, pr_source_line); #endif } if (conditional&1) QCC_PR_ParseWarning(WARN_ASSIGNMENTINCONDITIONAL, "Assignment in conditional"); e = QCC_PR_Statement (op, e2, e, NULL); } else e = QCC_PR_Statement (op, e, e2, NULL); if (type_c != ev_void/* && type_c != ev_string*/) // field access gets type from field e->type = e2->type->aux_type; break; } if (!op) { if (e == NULL) QCC_PR_ParseError(ERR_INTERNAL, "e == null"); if (!STRCMP(pr_token, "++")) { //if the last statement was an ent.float (or something) if (((unsigned)(statements[numstatements-1].op - OP_LOAD_F) < 6 || statements[numstatements-1].op == OP_LOAD_I) && statements[numstatements-1].c == e->ofs) { //we have our load. QCC_def_t *e3; //the only inefficiency here is with an extra temp (we can't reuse the original) //this is not a problem, as the optimise temps or locals marshalling can clean these up for us qcc_usefulstatement=true; //load //add to temp //store temp to offset //return original loaded (which is not at the same offset as the pointer we store to) e2 = QCC_GetTemp(type_float); e3 = QCC_GetTemp(type_pointer); QCC_PR_SimpleStatement(OP_ADDRESS, statements[numstatements-1].a, statements[numstatements-1].b, e3->ofs, false); if (e->type->type == ev_float) { QCC_PR_Statement3(&pr_opcodes[OP_ADD_F], e, QCC_MakeFloatDef(1), e2, false); QCC_PR_Statement3(&pr_opcodes[OP_STOREP_F], e2, e3, NULL, false); } else if (e->type->type == ev_integer) { QCC_PR_Statement3(&pr_opcodes[OP_ADD_I], e, QCC_MakeIntDef(1), e2, false); QCC_PR_Statement3(&pr_opcodes[OP_STOREP_I], e2, e3, NULL, false); } else { QCC_PR_ParseError(ERR_PARSEERRORS, "-- suffix operator results in nonstandard behaviour. Use -=1 or prefix form instead"); QCC_PR_IncludeChunk("-=1", false, NULL); } QCC_FreeTemp(e2); QCC_FreeTemp(e3); } else if (e->type->type == ev_float) { //copy to temp //add to original //return temp (which == original) QCC_PR_ParseWarning(WARN_INEFFICIENTPLUSPLUS, "++ suffix operator results in inefficient behaviour. Use +=1 or prefix form instead"); qcc_usefulstatement=true; e2 = QCC_GetTemp(type_float); QCC_PR_Statement3(&pr_opcodes[OP_STORE_F], e, e2, NULL, false); QCC_PR_Statement3(&pr_opcodes[OP_ADD_F], e, QCC_MakeFloatDef(1), e, false); QCC_FreeTemp(e); e = e2; } else if (e->type->type == ev_integer) { QCC_PR_ParseWarning(WARN_INEFFICIENTPLUSPLUS, "++ suffix operator results in inefficient behaviour. Use +=1 or prefix form instead"); qcc_usefulstatement=true; e2 = QCC_GetTemp(type_integer); QCC_PR_Statement3(&pr_opcodes[OP_STORE_I], e, e2, NULL, false); QCC_PR_Statement3(&pr_opcodes[OP_ADD_I], e, QCC_MakeIntDef(1), e, false); QCC_FreeTemp(e); e = e2; } else { QCC_PR_ParseWarning(WARN_NOTSTANDARDBEHAVIOUR, "++ suffix operator results in nonstandard behaviour. Use +=1 or prefix form instead"); QCC_PR_IncludeChunk("+=1", false, NULL); } QCC_PR_Lex(); } else if (!STRCMP(pr_token, "--")) { if (((unsigned)(statements[numstatements-1].op - OP_LOAD_F) < 6 || statements[numstatements-1].op == OP_LOAD_I) && statements[numstatements-1].c == e->ofs) { //we have our load. QCC_def_t *e3; //load //add to temp //store temp to offset //return original loaded (which is not at the same offset as the pointer we store to) e2 = QCC_GetTemp(type_float); e3 = QCC_GetTemp(type_pointer); QCC_PR_SimpleStatement(OP_ADDRESS, statements[numstatements-1].a, statements[numstatements-1].b, e3->ofs, false); if (e->type->type == ev_float) { QCC_PR_Statement3(&pr_opcodes[OP_SUB_F], e, QCC_MakeFloatDef(1), e2, false); QCC_PR_Statement3(&pr_opcodes[OP_STOREP_F], e2, e3, NULL, false); } else if (e->type->type == ev_integer) { QCC_PR_Statement3(&pr_opcodes[OP_SUB_I], e, QCC_MakeIntDef(1), e2, false); QCC_PR_Statement3(&pr_opcodes[OP_STOREP_I], e2, e3, NULL, false); } else { QCC_PR_ParseError(ERR_PARSEERRORS, "-- suffix operator results in nonstandard behaviour. Use -=1 or prefix form instead"); QCC_PR_IncludeChunk("-=1", false, NULL); } QCC_FreeTemp(e2); QCC_FreeTemp(e3); } else if (e->type->type == ev_float) { QCC_PR_ParseWarning(WARN_INEFFICIENTPLUSPLUS, "-- suffix operator results in inefficient behaviour. Use -=1 or prefix form instead"); qcc_usefulstatement=true; e2 = QCC_GetTemp(type_float); QCC_PR_Statement3(&pr_opcodes[OP_STORE_F], e, e2, NULL, false); QCC_PR_Statement3(&pr_opcodes[OP_SUB_F], e, QCC_MakeFloatDef(1), e, false); QCC_FreeTemp(e); e = e2; } else if (e->type->type == ev_integer) { QCC_PR_ParseWarning(WARN_INEFFICIENTPLUSPLUS, "-- suffix operator results in inefficient behaviour. Use -=1 or prefix form instead"); qcc_usefulstatement=true; e2 = QCC_GetTemp(type_integer); QCC_PR_Statement3(&pr_opcodes[OP_STORE_I], e, e2, NULL, false); QCC_PR_Statement3(&pr_opcodes[OP_SUB_I], e, QCC_MakeIntDef(1), e, false); QCC_FreeTemp(e); e = e2; } else { QCC_PR_ParseWarning(WARN_NOTSTANDARDBEHAVIOUR, "-- suffix operator results in nonstandard behaviour. Use -=1 or prefix form instead"); QCC_PR_IncludeChunk("-=1", false, NULL); } QCC_PR_Lex(); } break; // next token isn't at this priority level } } if (e == NULL) QCC_PR_ParseError(ERR_INTERNAL, "e == null"); if (allowcomma && priority == TOP_PRIORITY && QCC_PR_CheckToken (",")) { QCC_FreeTemp(e); return QCC_PR_Expression(TOP_PRIORITY, true); } return e; } void QCC_PR_GotoStatement (QCC_dstatement_t *patch2, char *labelname) { if (num_gotos >= max_gotos) { max_gotos += 8; pr_gotos = realloc(pr_gotos, sizeof(*pr_gotos)*max_gotos); } strncpy(pr_gotos[num_gotos].name, labelname, sizeof(pr_gotos[num_gotos].name) -1); pr_gotos[num_gotos].lineno = pr_source_line; pr_gotos[num_gotos].statementno = patch2 - statements; num_gotos++; } pbool QCC_PR_StatementBlocksMatch(QCC_dstatement_t *p1, int p1count, QCC_dstatement_t *p2, int p2count) { if (p1count != p2count) return false; while(p1count>0) { if (p1->op != p2->op) return false; if (p1->a != p2->a) return false; if (p1->b != p2->b) return false; if (p1->c != p2->c) return false; p1++; p2++; p1count--; } return true; } /* ============ PR_ParseStatement ============ */ void QCC_PR_ParseStatement (void) { int continues; int breaks; int cases; int i; QCC_def_t *e, *e2; QCC_dstatement_t *patch1, *patch2, *patch3; int statementstart = pr_source_line; if (QCC_PR_CheckToken ("{")) { e = pr.localvars; while (!QCC_PR_CheckToken("}")) QCC_PR_ParseStatement (); if (pr_subscopedlocals) { for (e2 = pr.localvars; e2 != e; e2 = e2->nextlocal) { Hash_RemoveData(&localstable, e2->name, e2); } } return; } if (QCC_PR_CheckKeyword(keyword_return, "return")) { /*if (pr_classtype) { e = QCC_PR_GetDef(NULL, "__oself", pr_scope, false, 0); e2 = QCC_PR_GetDef(NULL, "self", NULL, false, 0); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_ENT], e, QCC_PR_DummyDef(pr_classtype, "self", pr_scope, 1, e2->ofs, false), NULL)); }*/ if (QCC_PR_CheckToken (";")) { if (pr_scope->type->aux_type->type != ev_void) QCC_PR_ParseWarning(WARN_MISSINGRETURNVALUE, "\'%s\' should return %s", pr_scope->name, pr_scope->type->aux_type->name); if (opt_return_only) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_DONE], 0, 0, NULL)); else QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_RETURN], 0, 0, NULL)); return; } e = QCC_PR_Expression (TOP_PRIORITY, true); QCC_PR_Expect (";"); if (pr_scope->type->aux_type->type != e->type->type) QCC_PR_ParseWarning(WARN_WRONGRETURNTYPE, "\'%s\' returned %s, expected %s", pr_scope->name, e->type->name, pr_scope->type->aux_type->name); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_RETURN], e, 0, NULL)); return; } if (QCC_PR_CheckKeyword(keyword_exit, "exit")) { QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_DONE], 0, 0, NULL)); QCC_PR_Expect (";"); return; } if (QCC_PR_CheckKeyword(keyword_while, "while")) { continues = num_continues; breaks = num_breaks; QCC_PR_Expect ("("); patch2 = &statements[numstatements]; conditional = 1; e = QCC_PR_Expression (TOP_PRIORITY, true); conditional = 0; if (((e->constant && !e->temp) || !STRCMP(e->name, "IMMEDIATE")) && opt_compound_jumps) { optres_compound_jumps++; if (!G_INT(e->ofs)) { QCC_PR_ParseWarning(0, "while(0)?"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch1)); } else { patch1 = NULL; } } else { if (e->constant && !e->temp) { if (!G_FLOAT(e->ofs)) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch1)); else patch1 = NULL; } else if (!typecmp( e->type, type_string) && flag_ifstring) //special case, as strings are now pointers, not offsets from string table { QCC_PR_ParseWarning(0, "while (string) can result in bizzare behaviour"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IFNOTS], e, 0, &patch1)); } else QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IFNOT], e, 0, &patch1)); } QCC_PR_Expect (")"); //after the line number is noted.. QCC_PR_ParseStatement (); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_GOTO], NULL, 0, &patch3)); patch3->a = patch2 - patch3; if (patch1) { if (patch1->op == OP_GOTO) patch1->a = &statements[numstatements] - patch1; else patch1->b = &statements[numstatements] - patch1; } if (breaks != num_breaks) { for(i = breaks; i < num_breaks; i++) { patch1 = &statements[pr_breaks[i]]; statements[pr_breaks[i]].a = &statements[numstatements] - patch1; //jump to after the return-to-top goto } num_breaks = breaks; } if (continues != num_continues) { for(i = continues; i < num_continues; i++) { patch1 = &statements[pr_continues[i]]; statements[pr_continues[i]].a = patch2 - patch1; //jump back to top } num_continues = continues; } return; } if (QCC_PR_CheckKeyword(keyword_for, "for")) { int old_numstatements; int numtemp, i; int linenum[32]; QCC_dstatement_t temp[sizeof(linenum)/sizeof(linenum[0])]; continues = num_continues; breaks = num_breaks; QCC_PR_Expect("("); if (!QCC_PR_CheckToken(";")) { QCC_FreeTemp(QCC_PR_Expression(TOP_PRIORITY, true)); QCC_PR_Expect(";"); } patch2 = &statements[numstatements]; if (!QCC_PR_CheckToken(";")) { conditional = 1; e = QCC_PR_Expression(TOP_PRIORITY, true); conditional = 0; QCC_PR_Expect(";"); } else e = NULL; if (!QCC_PR_CheckToken(")")) { old_numstatements = numstatements; QCC_FreeTemp(QCC_PR_Expression(TOP_PRIORITY, true)); numtemp = numstatements - old_numstatements; if (numtemp > sizeof(linenum)/sizeof(linenum[0])) QCC_PR_ParseError(ERR_TOOCOMPLEX, "Update expression too large"); numstatements = old_numstatements; for (i = 0 ; i < numtemp ; i++) { linenum[i] = statement_linenums[numstatements + i]; temp[i] = statements[numstatements + i]; } QCC_PR_Expect(")"); } else numtemp = 0; if (e) QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_IFNOT], e, 0, &patch1)); else patch1 = NULL; if (!QCC_PR_CheckToken(";")) QCC_PR_ParseStatement(); //don't give the hanging ';' warning. patch3 = &statements[numstatements]; for (i = 0 ; i < numtemp ; i++) { statement_linenums[numstatements] = linenum[i]; statements[numstatements++] = temp[i]; } QCC_PR_SimpleStatement(OP_GOTO, patch2 - &statements[numstatements], 0, 0, false); if (patch1) patch1->b = &statements[numstatements] - patch1; if (breaks != num_breaks) { for(i = breaks; i < num_breaks; i++) { patch1 = &statements[pr_breaks[i]]; statements[pr_breaks[i]].a = &statements[numstatements] - patch1; } num_breaks = breaks; } if (continues != num_continues) { for(i = continues; i < num_continues; i++) { patch1 = &statements[pr_continues[i]]; statements[pr_continues[i]].a = patch3 - patch1; } num_continues = continues; } return; } if (QCC_PR_CheckKeyword(keyword_do, "do")) { continues = num_continues; breaks = num_breaks; patch1 = &statements[numstatements]; QCC_PR_ParseStatement (); QCC_PR_Expect ("while"); QCC_PR_Expect ("("); conditional = 1; e = QCC_PR_Expression (TOP_PRIORITY, true); conditional = 0; if (e->constant && !e->temp) { if (G_FLOAT(e->ofs)) { QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_GOTO], NULL, 0, &patch2)); patch2->a = patch1 - patch2; } } else { if (!typecmp( e->type, type_string) && flag_ifstring) { QCC_PR_ParseWarning(WARN_IFSTRING_USED, "do {} while(string) can result in bizzare behaviour"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IFS], e, NULL, &patch2)); } else QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IF], e, NULL, &patch2)); patch2->b = patch1 - patch2; } QCC_PR_Expect (")"); QCC_PR_Expect (";"); if (breaks != num_breaks) { for(i = breaks; i < num_breaks; i++) { patch2 = &statements[pr_breaks[i]]; statements[pr_breaks[i]].a = &statements[numstatements] - patch2; } num_breaks = breaks; } if (continues != num_continues) { for(i = continues; i < num_continues; i++) { patch2 = &statements[pr_continues[i]]; statements[pr_continues[i]].a = patch1 - patch2; } num_continues = continues; } return; } if (QCC_PR_CheckKeyword(keyword_local, "local")) { QCC_type_t *functionsclasstype = pr_classtype; // if (locals_end != numpr_globals) //is this breaking because of locals? // QCC_PR_ParseWarning("local vars after temp vars\n"); QCC_PR_ParseDefs (NULL); pr_classtype = functionsclasstype; locals_end = numpr_globals; return; } if (pr_token_type == tt_name) if ((keyword_var && !STRCMP ("var", pr_token)) || (keyword_string && !STRCMP ("string", pr_token)) || (keyword_float && !STRCMP ("float", pr_token)) || (keyword_entity && !STRCMP ("entity", pr_token)) || (keyword_vector && !STRCMP ("vector", pr_token)) || (keyword_integer && !STRCMP ("integer", pr_token)) || (keyword_int && !STRCMP ("int", pr_token)) || (keyword_class && !STRCMP ("class", pr_token)) || (keyword_const && !STRCMP ("const", pr_token))) { // if (locals_end != numpr_globals) //is this breaking because of locals? // QCC_PR_ParseWarning("local vars after temp vars\n"); QCC_PR_ParseDefs (NULL); locals_end = numpr_globals; return; } if (QCC_PR_CheckKeyword(keyword_state, "state")) { QCC_PR_Expect("["); QCC_PR_ParseState(); QCC_PR_Expect(";"); return; } if (QCC_PR_CheckToken("#")) { char *name; float frame = pr_immediate._float; QCC_PR_Lex(); name = QCC_PR_ParseName(); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STATE], QCC_MakeFloatDef(frame), QCC_PR_GetDef(type_function, name, NULL, false, 0, false), NULL)); QCC_PR_Expect(";"); return; } if (QCC_PR_CheckKeyword(keyword_if, "if")) { pbool negate = QCC_PR_CheckKeyword(keyword_not, "not"); QCC_PR_Expect ("("); conditional = 1; e = QCC_PR_Expression (TOP_PRIORITY, true); conditional = 0; // negate = negate != 0; if (negate) { if (!typecmp( e->type, type_string) && flag_ifstring) { QCC_PR_ParseWarning(WARN_IFSTRING_USED, "if not(string) can result in bizzare behaviour"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IFS], e, 0, &patch1)); } else QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IF], e, 0, &patch1)); } else { if (!typecmp( e->type, type_string) && flag_ifstring) { QCC_PR_ParseWarning(WARN_IFSTRING_USED, "if (string) can result in bizzare behaviour"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IFNOTS], e, 0, &patch1)); } else QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IFNOT], e, 0, &patch1)); } QCC_PR_Expect (")"); //close bracket is after we save the statement to mem (so debugger does not show the if statement as being on the line after QCC_PR_ParseStatement (); if (QCC_PR_CheckKeyword (keyword_else, "else")) { int lastwasreturn; lastwasreturn = statements[numstatements-1].op == OP_RETURN || statements[numstatements-1].op == OP_DONE; //the last statement of the if was a return, so we don't need the goto at the end if (lastwasreturn && opt_compound_jumps && !QCC_AStatementJumpsTo(numstatements, patch1-statements, numstatements)) { // QCC_PR_ParseWarning(0, "optimised the else"); optres_compound_jumps++; patch1->b = &statements[numstatements] - patch1; QCC_PR_ParseStatement (); } else { // QCC_PR_ParseWarning(0, "using the else"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch2)); patch1->b = &statements[numstatements] - patch1; QCC_PR_ParseStatement (); patch2->a = &statements[numstatements] - patch2; if (QCC_PR_StatementBlocksMatch(patch1+1, patch2-patch1, patch2+1, &statements[numstatements] - patch2)) QCC_PR_ParseWarning(0, "Two identical blocks each side of an else"); } } else patch1->b = &statements[numstatements] - patch1; return; } if (QCC_PR_CheckKeyword(keyword_switch, "switch")) { int op; int hcstyle; int defaultcase = -1; temp_t *et; int oldst; QCC_type_t *switchtype; breaks = num_breaks; cases = num_cases; QCC_PR_Expect ("("); conditional = 1; e = QCC_PR_Expression (TOP_PRIORITY, true); conditional = 0; if (e == &def_ret) { //copy it out, so our hack just below doesn't crash us /* if (e->type->type == ev_vector) e = QCC_PR_Statement(pr_opcodes+OP_STORE_V, e, QCC_GetTemp(type_vector), NULL); else e = QCC_PR_Statement(pr_opcodes+OP_STORE_F, e, QCC_GetTemp(type_float), NULL); if (e == &def_ret) //this shouldn't be happening QCC_Error(ERR_INTERNAL, "internal error: switch: e == &def_ret"); */ et = NULL; } else { et = e->temp; e->temp = NULL; //so noone frees it until we finish this loop } //expands //switch (CONDITION) //{ //case 1: // break; //case 2: //default: // break; //} //to // x = CONDITION, goto start // l1: // goto end // l2: // def: // goto end // goto end P1 // start: // if (x == 1) goto l1; // if (x == 2) goto l2; // goto def // end: //x is emitted in an opcode, stored as a register that we cannot access later. //it should be possible to nest these. switchtype = e->type; switch(switchtype->type) { case ev_float: op = OP_SWITCH_F; break; case ev_entity: //whu??? op = OP_SWITCH_E; break; case ev_vector: op = OP_SWITCH_V; break; case ev_string: op = OP_SWITCH_S; break; case ev_function: op = OP_SWITCH_FNC; break; default: //err hmm. op = 0; break; } if (op) hcstyle = QCC_OPCodeValid(&pr_opcodes[op]); else hcstyle = false; if (hcstyle) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[op], e, 0, &patch1)); else QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_GOTO], e, 0, &patch1)); QCC_PR_Expect (")"); //close bracket is after we save the statement to mem (so debugger does not show the if statement as being on the line after oldst = numstatements; QCC_PR_ParseStatement (); //this is so that a missing goto at the end of your switch doesn't end up in the jumptable again if (oldst == numstatements || !QCC_StatementIsAJump(numstatements-1, numstatements-1)) { QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch2)); //the P1 statement/the theyforgotthebreak statement. // QCC_PR_ParseWarning(0, "emitted goto"); } else { patch2 = NULL; // QCC_PR_ParseWarning(0, "No goto"); } if (hcstyle) patch1->b = &statements[numstatements] - patch1; //the goto start part else patch1->a = &statements[numstatements] - patch1; //the goto start part if (e == &def_ret) e->type = switchtype; //set it back to the type it was actually meant to be. for (i = cases; i < num_cases; i++) { if (!pr_casesdef[i]) { if (defaultcase >= 0) QCC_PR_ParseError(ERR_MULTIPLEDEFAULTS, "Duplicated default case"); defaultcase = i; } else { if (pr_casesdef[i]->type->type != e->type->type) { if (e->type->type == ev_integer && pr_casesdef[i]->type->type == ev_float) pr_casesdef[i] = QCC_MakeIntDef((int)qcc_pr_globals[pr_casesdef[i]->ofs]); else QCC_PR_ParseWarning(WARN_SWITCHTYPEMISMATCH, "switch case type mismatch"); } if (pr_casesdef2[i]) { if (pr_casesdef2[i]->type->type != e->type->type) { if (e->type->type == ev_integer && pr_casesdef[i]->type->type == ev_float) pr_casesdef2[i] = QCC_MakeIntDef((int)qcc_pr_globals[pr_casesdef2[i]->ofs]); else QCC_PR_ParseWarning(WARN_SWITCHTYPEMISMATCH, "switch caserange type mismatch"); } if (hcstyle) { QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_CASERANGE], pr_casesdef[i], pr_casesdef2[i], &patch3)); patch3->c = &statements[pr_cases[i]] - patch3; } else { QCC_def_t *e3; if (e->type->type == ev_float) { e2 = QCC_PR_Statement (&pr_opcodes[OP_GE], e, pr_casesdef[i], NULL); e3 = QCC_PR_Statement (&pr_opcodes[OP_LE], e, pr_casesdef2[i], NULL); e2 = QCC_PR_Statement (&pr_opcodes[OP_AND], e2, e3, NULL); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IF], e2, 0, &patch3)); patch3->b = &statements[pr_cases[i]] - patch3; } else if (e->type->type == ev_integer) { e2 = QCC_PR_Statement (&pr_opcodes[OP_GE_I], e, pr_casesdef[i], NULL); e3 = QCC_PR_Statement (&pr_opcodes[OP_LE_I], e, pr_casesdef2[i], NULL); e2 = QCC_PR_Statement (&pr_opcodes[OP_AND], e2, e3, NULL); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IF], e2, 0, &patch3)); patch3->b = &statements[pr_cases[i]] - patch3; } else QCC_PR_ParseWarning(WARN_SWITCHTYPEMISMATCH, "switch caserange MUST be a float or integer"); } } else { if (hcstyle) { QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_CASE], pr_casesdef[i], 0, &patch3)); patch3->b = &statements[pr_cases[i]] - patch3; } else { if (!pr_casesdef[i]->constant || G_INT(pr_casesdef[i]->ofs)) { switch(e->type->type) { case ev_float: e2 = QCC_PR_Statement (&pr_opcodes[OP_EQ_F], e, pr_casesdef[i], NULL); break; case ev_entity: //whu??? e2 = QCC_PR_Statement (&pr_opcodes[OP_EQ_E], e, pr_casesdef[i], &patch1); break; case ev_vector: e2 = QCC_PR_Statement (&pr_opcodes[OP_EQ_V], e, pr_casesdef[i], &patch1); break; case ev_string: e2 = QCC_PR_Statement (&pr_opcodes[OP_EQ_S], e, pr_casesdef[i], &patch1); break; case ev_function: e2 = QCC_PR_Statement (&pr_opcodes[OP_EQ_FNC], e, pr_casesdef[i], &patch1); break; case ev_field: e2 = QCC_PR_Statement (&pr_opcodes[OP_EQ_FNC], e, pr_casesdef[i], &patch1); break; case ev_integer: e2 = QCC_PR_Statement (&pr_opcodes[OP_EQ_I], e, pr_casesdef[i], &patch1); break; default: QCC_PR_ParseError(ERR_BADSWITCHTYPE, "Bad switch type"); e2 = NULL; break; } QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IF], e2, 0, &patch3)); } else { if (e->type->type == ev_string) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IFNOTS], e, 0, &patch3)); else QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_IFNOT], e, 0, &patch3)); } patch3->b = &statements[pr_cases[i]] - patch3; } } } } if (defaultcase>=0) { QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch3)); patch3->a = &statements[pr_cases[defaultcase]] - patch3; } num_cases = cases; patch3 = &statements[numstatements]; if (patch2) patch2->a = patch3 - patch2; //set P1 jump if (breaks != num_breaks) { for(i = breaks; i < num_breaks; i++) { patch2 = &statements[pr_breaks[i]]; patch2->a = patch3 - patch2; } num_breaks = breaks; } if (et) { e->temp = et; QCC_FreeTemp(e); } return; } if (QCC_PR_CheckKeyword(keyword_asm, "asm")) { if (QCC_PR_CheckToken("{")) { while (!QCC_PR_CheckToken("}")) QCC_PR_ParseAsm (); } else QCC_PR_ParseAsm (); return; } if (QCC_PR_CheckToken(":")) { if (pr_token_type != tt_name) { QCC_PR_ParseError(ERR_BADLABELNAME, "invalid label name \"%s\"", pr_token); return; } for (i = 0; i < num_labels; i++) if (!STRNCMP(pr_labels[i].name, pr_token, sizeof(pr_labels[num_labels].name) -1)) { QCC_PR_ParseWarning(WARN_DUPLICATELABEL, "Duplicate label %s", pr_token); QCC_PR_Lex(); return; } if (num_labels >= max_labels) { max_labels += 8; pr_labels = realloc(pr_labels, sizeof(*pr_labels)*max_labels); } strncpy(pr_labels[num_labels].name, pr_token, sizeof(pr_labels[num_labels].name) -1); pr_labels[num_labels].lineno = pr_source_line; pr_labels[num_labels].statementno = numstatements; num_labels++; // QCC_PR_ParseWarning("Gotos are evil"); QCC_PR_Lex(); return; } if (QCC_PR_CheckKeyword(keyword_goto, "goto")) { if (pr_token_type != tt_name) { QCC_PR_ParseError(ERR_NOLABEL, "invalid label name \"%s\"", pr_token); return; } QCC_PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch2); QCC_PR_GotoStatement (patch2, pr_token); // QCC_PR_ParseWarning("Gotos are evil"); QCC_PR_Lex(); QCC_PR_Expect(";"); return; } if (QCC_PR_CheckKeyword(keyword_break, "break")) { if (!STRCMP ("(", pr_token)) { //make sure it wasn't a call to the break function. QCC_PR_IncludeChunk("break(", true, NULL); QCC_PR_Lex(); //so it sees the break. } else { if (num_breaks >= max_breaks) { max_breaks += 8; pr_breaks = realloc(pr_breaks, sizeof(*pr_breaks)*max_breaks); } pr_breaks[num_breaks] = numstatements; QCC_PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, NULL); num_breaks++; QCC_PR_Expect(";"); return; } } if (QCC_PR_CheckKeyword(keyword_continue, "continue")) { if (num_continues >= max_continues) { max_continues += 8; pr_continues = realloc(pr_continues, sizeof(*pr_continues)*max_continues); } pr_continues[num_continues] = numstatements; QCC_PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, NULL); num_continues++; QCC_PR_Expect(";"); return; } if (QCC_PR_CheckKeyword(keyword_case, "case")) { if (num_cases >= max_cases) { max_cases += 8; pr_cases = realloc(pr_cases, sizeof(*pr_cases)*max_cases); pr_casesdef = realloc(pr_casesdef, sizeof(*pr_casesdef)*max_cases); pr_casesdef2 = realloc(pr_casesdef2, sizeof(*pr_casesdef2)*max_cases); } pr_cases[num_cases] = numstatements; pr_casesdef[num_cases] = QCC_PR_Expression (TOP_PRIORITY, false); if (QCC_PR_CheckToken("..")) { pr_casesdef2[num_cases] = QCC_PR_Expression (TOP_PRIORITY, false); if (pr_casesdef[num_cases]->constant && pr_casesdef2[num_cases]->constant && !pr_casesdef[num_cases]->temp && !pr_casesdef2[num_cases]->temp) if (G_FLOAT(pr_casesdef[num_cases]->ofs) >= G_FLOAT(pr_casesdef2[num_cases]->ofs)) QCC_PR_ParseError(ERR_CASENOTIMMEDIATE, "Caserange statement uses backwards range\n"); } else pr_casesdef2[num_cases] = NULL; if (numstatements != pr_cases[num_cases]) QCC_PR_ParseError(ERR_CASENOTIMMEDIATE, "Case statements may not use formulas\n"); num_cases++; QCC_PR_Expect(":"); return; } if (QCC_PR_CheckKeyword(keyword_default, "default")) { if (num_cases >= max_cases) { max_cases += 8; pr_cases = realloc(pr_cases, sizeof(*pr_cases)*max_cases); pr_casesdef = realloc(pr_casesdef, sizeof(*pr_casesdef)*max_cases); pr_casesdef2 = realloc(pr_casesdef2, sizeof(*pr_casesdef2)*max_cases); } pr_cases[num_cases] = numstatements; pr_casesdef[num_cases] = NULL; pr_casesdef2[num_cases] = NULL; num_cases++; QCC_PR_Expect(":"); return; } if (QCC_PR_CheckKeyword(keyword_thinktime, "thinktime")) { QCC_def_t *nextthink; QCC_def_t *time; e = QCC_PR_Expression (TOP_PRIORITY, true); QCC_PR_Expect(":"); e2 = QCC_PR_Expression (TOP_PRIORITY, true); if (e->type->type != ev_entity || e2->type->type != ev_float) QCC_PR_ParseError(ERR_THINKTIMETYPEMISMATCH, "thinktime type mismatch"); if (QCC_OPCodeValid(&pr_opcodes[OP_THINKTIME])) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_THINKTIME], e, e2, NULL)); else { nextthink = QCC_PR_GetDef(NULL, "nextthink", NULL, false, 0, false); if (!nextthink) QCC_PR_ParseError (ERR_UNKNOWNVALUE, "Unknown value \"%s\"", "nextthink"); time = QCC_PR_GetDef(type_float, "time", NULL, false, 0, false); if (!time) QCC_PR_ParseError (ERR_UNKNOWNVALUE, "Unknown value \"%s\"", "time"); nextthink = QCC_PR_Statement(&pr_opcodes[OP_ADDRESS], e, nextthink, NULL); time = QCC_PR_Statement(&pr_opcodes[OP_ADD_F], time, e2, NULL); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STOREP_F], time, nextthink, NULL)); } QCC_PR_Expect(";"); return; } if (QCC_PR_CheckToken(";")) { int osl = pr_source_line; pr_source_line = statementstart; QCC_PR_ParseWarning(WARN_POINTLESSSTATEMENT, "Hanging ';'"); pr_source_line = osl; return; } // qcc_functioncalled=0; qcc_usefulstatement = false; e = QCC_PR_Expression (TOP_PRIORITY, true); QCC_PR_Expect (";"); if (e->type->type != ev_void && !qcc_usefulstatement) { int osl = pr_source_line; pr_source_line = statementstart; QCC_PR_ParseWarning(WARN_POINTLESSSTATEMENT, "Effectless statement"); pr_source_line = osl; } QCC_FreeTemp(e); // qcc_functioncalled=false; } /* ============== PR_ParseState States are special functions made for convenience. They automatically set frame, nextthink (implicitly), and think (allowing forward definitions). // void() name = [framenum, nextthink] {code} // expands to: // function void name () // { // self.frame=framenum; // self.nextthink = time + 0.1; // self.think = nextthink // // }; ============== */ void QCC_PR_ParseState (void) { char *name; QCC_def_t *s1, *def, *sc = pr_scope; char f; f = *pr_token; if (QCC_PR_CheckToken("++") || QCC_PR_CheckToken("--")) { s1 = QCC_PR_ParseImmediate (); QCC_PR_Expect(".."); def = QCC_PR_ParseImmediate (); QCC_PR_Expect ("]"); if (s1->type->type != ev_float || def->type->type != ev_float) QCC_PR_ParseError(ERR_STATETYPEMISMATCH, "state type mismatch"); if (QCC_OPCodeValid(&pr_opcodes[OP_CSTATE])) QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_CSTATE], s1, def, NULL)); else { QCC_def_t *t1, *t2; QCC_def_t *framef, *frame; QCC_def_t *self; QCC_def_t *cycle_wrapped; temp_t *ftemp; self = QCC_PR_GetDef(type_entity, "self", NULL, false, 0, false); framef = QCC_PR_GetDef(NULL, "frame", NULL, false, 0, false); cycle_wrapped = QCC_PR_GetDef(type_float, "cycle_wrapped", NULL, false, 0, false); frame = QCC_PR_Statement(&pr_opcodes[OP_LOAD_F], self, framef, NULL); if (cycle_wrapped) QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], QCC_MakeFloatDef(0), cycle_wrapped, NULL)); QCC_UnFreeTemp(frame); //make sure the frame is within the bounds given. ftemp = frame->temp; frame->temp = NULL; t1 = QCC_PR_Statement(&pr_opcodes[OP_LT], frame, s1, NULL); t2 = QCC_PR_Statement(&pr_opcodes[OP_GT], frame, def, NULL); t1 = QCC_PR_Statement(&pr_opcodes[OP_OR], t1, t2, NULL); QCC_PR_SimpleStatement(OP_IFNOT, t1->ofs, 2, 0, false); QCC_FreeTemp(t1); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], s1, frame, NULL)); QCC_PR_SimpleStatement(OP_GOTO, t1->ofs, 13, 0, false); t1 = QCC_PR_Statement(&pr_opcodes[OP_GE], def, s1, NULL); QCC_PR_SimpleStatement(OP_IFNOT, t1->ofs, 7, 0, false); QCC_FreeTemp(t1); //this block is the 'it's in a forwards direction' QCC_PR_SimpleStatement(OP_ADD_F, frame->ofs, QCC_MakeFloatDef(1)->ofs, frame->ofs, false); t1 = QCC_PR_Statement(&pr_opcodes[OP_GT], frame, def, NULL); QCC_PR_SimpleStatement(OP_IFNOT, t1->ofs,2, 0, false); QCC_FreeTemp(t1); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], s1, frame, NULL)); QCC_UnFreeTemp(frame); if (cycle_wrapped) QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], QCC_MakeFloatDef(1), cycle_wrapped, NULL)); QCC_PR_SimpleStatement(OP_GOTO, 6, 0, 0, false); //reverse animation. QCC_PR_SimpleStatement(OP_SUB_F, frame->ofs, QCC_MakeFloatDef(1)->ofs, frame->ofs, false); t1 = QCC_PR_Statement(&pr_opcodes[OP_LT], frame, s1, NULL); QCC_PR_SimpleStatement(OP_IFNOT, t1->ofs,2, 0, false); QCC_FreeTemp(t1); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], def, frame, NULL)); QCC_UnFreeTemp(frame); if (cycle_wrapped) QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_F], QCC_MakeFloatDef(1), cycle_wrapped, NULL)); //self.frame = frame happens with the normal state opcode. QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STATE], frame, pr_scope, NULL)); frame->temp = ftemp; QCC_FreeTemp(frame); } return; } if (pr_token_type != tt_immediate || pr_immediate_type != type_float) QCC_PR_ParseError (ERR_STATETYPEMISMATCH, "state frame must be a number"); s1 = QCC_PR_ParseImmediate (); QCC_PR_CheckToken (","); name = QCC_PR_ParseName (); pr_scope = NULL; def = QCC_PR_GetDef (type_function, name, NULL, true, 1, false); pr_scope = sc; QCC_PR_Expect ("]"); QCC_FreeTemp(QCC_PR_Statement (&pr_opcodes[OP_STATE], s1, def, NULL)); } void QCC_PR_ParseAsm(void) { QCC_dstatement_t *patch1; int op, p; QCC_def_t *a, *b, *c; if (QCC_PR_CheckKeyword(keyword_local, "local")) { QCC_PR_ParseDefs (NULL); locals_end = numpr_globals; return; } for (op = 0; op < OP_NUMOPS; op++) { if (!STRCMP(pr_token, pr_opcodes[op].opname)) { QCC_PR_Lex(); if (pr_opcodes[op].priority==-1 && pr_opcodes[op].associative!=ASSOC_LEFT) { if (pr_opcodes[op].type_a==NULL) { patch1 = &statements[numstatements]; QCC_PR_Statement3(&pr_opcodes[op], NULL, NULL, NULL, true); if (pr_token_type == tt_name) { QCC_PR_GotoStatement(patch1, QCC_PR_ParseName()); } else { p = (int)pr_immediate._float; patch1->a = (int)p; } QCC_PR_Lex(); } else if (pr_opcodes[op].type_b==NULL) { patch1 = &statements[numstatements]; a = QCC_PR_ParseValue(pr_classtype); QCC_PR_Statement3(&pr_opcodes[op], a, NULL, NULL, true); if (pr_token_type == tt_name) { QCC_PR_GotoStatement(patch1, QCC_PR_ParseName()); } else { p = (int)pr_immediate._float; patch1->b = (int)p; } QCC_PR_Lex(); } else { patch1 = &statements[numstatements]; a = QCC_PR_ParseValue(pr_classtype); b = QCC_PR_ParseValue(pr_classtype); QCC_PR_Statement3(&pr_opcodes[op], a, b, NULL, true); if (pr_token_type == tt_name) { QCC_PR_GotoStatement(patch1, QCC_PR_ParseName()); } else { p = (int)pr_immediate._float; patch1->c = (int)p; } QCC_PR_Lex(); } } else { if (pr_opcodes[op].type_a != &type_void) a = QCC_PR_ParseValue(pr_classtype); else a=NULL; if (pr_opcodes[op].type_b != &type_void) b = QCC_PR_ParseValue(pr_classtype); else b=NULL; if (pr_opcodes[op].associative==ASSOC_LEFT && pr_opcodes[op].type_c != &type_void) c = QCC_PR_ParseValue(pr_classtype); else c=NULL; QCC_PR_Statement3(&pr_opcodes[op], a, b, c, true); } QCC_PR_Expect(";"); return; } } QCC_PR_ParseError(ERR_BADOPCODE, "Bad op code name %s", pr_token); } pbool QCC_FuncJumpsTo(int first, int last, int statement) { int st; for (st = first; st < last; st++) { if (pr_opcodes[statements[st].op].type_a == NULL) { if (st + (signed)statements[st].a == statement) { if (st != first) { if (statements[st-1].op == OP_RETURN) continue; if (statements[st-1].op == OP_DONE) continue; return true; } } } if (pr_opcodes[statements[st].op].type_b == NULL) { if (st + (signed)statements[st].b == statement) { if (st != first) { if (statements[st-1].op == OP_RETURN) continue; if (statements[st-1].op == OP_DONE) continue; return true; } } } if (pr_opcodes[statements[st].op].type_c == NULL) { if (st + (signed)statements[st].c == statement) { if (st != first) { if (statements[st-1].op == OP_RETURN) continue; if (statements[st-1].op == OP_DONE) continue; return true; } } } } return false; } pbool QCC_FuncJumpsToRange(int first, int last, int firstr, int lastr) { int st; for (st = first; st < last; st++) { if (pr_opcodes[statements[st].op].type_a == NULL) { if (st + (signed)statements[st].a >= firstr && st + (signed)statements[st].a <= lastr) { if (st != first) { if (statements[st-1].op == OP_RETURN) continue; if (statements[st-1].op == OP_DONE) continue; return true; } } } if (pr_opcodes[statements[st].op].type_b == NULL) { if (st + (signed)statements[st].b >= firstr && st + (signed)statements[st].b <= lastr) { if (st != first) { if (statements[st-1].op == OP_RETURN) continue; if (statements[st-1].op == OP_DONE) continue; return true; } } } if (pr_opcodes[statements[st].op].type_c == NULL) { if (st + (signed)statements[st].c >= firstr && st + (signed)statements[st].c <= lastr) { if (st != first) { if (statements[st-1].op == OP_RETURN) continue; if (statements[st-1].op == OP_DONE) continue; return true; } } } } return false; } #if 0 void QCC_CompoundJumps(int first, int last) { //jumps to jumps are reordered so they become jumps to the final target. int statement; int st; for (st = first; st < last; st++) { if (pr_opcodes[statements[st].op].type_a == NULL) { statement = st + (signed)statements[st].a; if (statements[statement].op == OP_RETURN || statements[statement].op == OP_DONE) { //goto leads to return. Copy the command out to remove the goto. statements[st].op = statements[statement].op; statements[st].a = statements[statement].a; statements[st].b = statements[statement].b; statements[st].c = statements[statement].c; optres_compound_jumps++; } while (statements[statement].op == OP_GOTO) { statements[st].a = statement+statements[statement].a - st; statement = st + (signed)statements[st].a; optres_compound_jumps++; } } if (pr_opcodes[statements[st].op].type_b == NULL) { statement = st + (signed)statements[st].b; while (statements[statement].op == OP_GOTO) { statements[st].b = statement+statements[statement].a - st; statement = st + (signed)statements[st].b; optres_compound_jumps++; } } if (pr_opcodes[statements[st].op].type_c == NULL) { statement = st + (signed)statements[st].c; while (statements[statement].op == OP_GOTO) { statements[st].c = statement+statements[statement].a - st; statement = st + (signed)statements[st].c; optres_compound_jumps++; } } } } #else void QCC_CompoundJumps(int first, int last) { //jumps to jumps are reordered so they become jumps to the final target. int statement; int st; int infloop; for (st = first; st < last; st++) { if (pr_opcodes[statements[st].op].type_a == NULL) { statement = st + (signed)statements[st].a; if (statements[statement].op == OP_RETURN || statements[statement].op == OP_DONE) { //goto leads to return. Copy the command out to remove the goto. statements[st].op = statements[statement].op; statements[st].a = statements[statement].a; statements[st].b = statements[statement].b; statements[st].c = statements[statement].c; optres_compound_jumps++; } infloop = 1000; while (statements[statement].op == OP_GOTO) { if (!infloop--) { QCC_PR_ParseWarning(0, "Infinate loop detected"); break; } statements[st].a = (statement+statements[statement].a - st); statement = st + (signed)statements[st].a; optres_compound_jumps++; } } if (pr_opcodes[statements[st].op].type_b == NULL) { statement = st + (signed)statements[st].b; infloop = 1000; while (statements[statement].op == OP_GOTO) { if (!infloop--) { QCC_PR_ParseWarning(0, "Infinate loop detected"); break; } statements[st].b = (statement+statements[statement].a - st); statement = st + (signed)statements[st].b; optres_compound_jumps++; } } if (pr_opcodes[statements[st].op].type_c == NULL) { statement = st + (signed)statements[st].c; infloop = 1000; while (statements[statement].op == OP_GOTO) { if (!infloop--) { QCC_PR_ParseWarning(0, "Infinate loop detected"); break; } statements[st].c = (statement+statements[statement].a - st); statement = st + (signed)statements[st].c; optres_compound_jumps++; } } } } #endif void QCC_CheckForDeadAndMissingReturns(int first, int last, int rettype) { int st, st2; if (statements[last-1].op == OP_DONE) last--; //don't want the done if (rettype != ev_void) if (statements[last-1].op != OP_RETURN) { if (statements[last-1].op != OP_GOTO || (signed)statements[last-1].a > 0) { QCC_PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name ); return; } } for (st = first; st < last; st++) { if (statements[st].op == OP_RETURN || statements[st].op == OP_GOTO) { st++; if (st == last) continue; //erm... end of function doesn't count as unreachable. if (!opt_compound_jumps) { //we can ignore single statements like these without compound jumps (compound jumps correctly removes all). if (statements[st].op == OP_GOTO) //inefficient compiler, we can ignore this. continue; if (statements[st].op == OP_DONE) //inefficient compiler, we can ignore this. continue; if (statements[st].op == OP_RETURN) //inefficient compiler, we can ignore this. continue; } //make sure something goes to just after this return. for (st2 = first; st2 < last; st2++) { if (pr_opcodes[statements[st2].op].type_a == NULL) { if (st2 + (signed)statements[st2].a == st) break; } if (pr_opcodes[statements[st2].op].type_b == NULL) { if (st2 + (signed)statements[st2].b == st) break; } if (pr_opcodes[statements[st2].op].type_c == NULL) { if (st2 + (signed)statements[st2].c == st) break; } } if (st2 == last) { QCC_PR_ParseWarning(WARN_UNREACHABLECODE, "%s: contains unreachable code", pr_scope->name ); } continue; } if (rettype != ev_void) { if (pr_opcodes[statements[st].op].type_a == NULL) { if (st + (signed)statements[st].a == last) { QCC_PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name ); return; } } if (pr_opcodes[statements[st].op].type_b == NULL) { if (st + (signed)statements[st].b == last) { QCC_PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name ); return; } } if (pr_opcodes[statements[st].op].type_c == NULL) { if (st + (signed)statements[st].c == last) { QCC_PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name ); return; } } } } } pbool QCC_StatementIsAJump(int stnum, int notifdest) //only the unconditionals. { if (statements[stnum].op == OP_RETURN) return true; if (statements[stnum].op == OP_DONE) return true; if (statements[stnum].op == OP_GOTO) if ((int)statements[stnum].a != notifdest) return true; return false; } int QCC_AStatementJumpsTo(int targ, int first, int last) { int st; for (st = first; st < last; st++) { if (pr_opcodes[statements[st].op].type_a == NULL) { if (st + (signed)statements[st].a == targ && statements[st].a) { return true; } } if (pr_opcodes[statements[st].op].type_b == NULL) { if (st + (signed)statements[st].b == targ) { return true; } } if (pr_opcodes[statements[st].op].type_c == NULL) { if (st + (signed)statements[st].c == targ) { return true; } } } for (st = 0; st < num_labels; st++) //assume it's used. { if (pr_labels[st].statementno == targ) return true; } return false; } /* //goes through statements, if it sees a matching statement earlier, it'll strim out the current. void QCC_CommonSubExpressionRemoval(int first, int last) { int cur; //the current int prev; //the earlier statement for (cur = last-1; cur >= first; cur--) { if (pr_opcodes[statements[cur].op].priority == -1) continue; for (prev = cur-1; prev >= first; prev--) { if (statements[prev].op >= OP_CALL0 && statements[prev].op <= OP_CALL8) { optres_test1++; break; } if (statements[prev].op >= OP_CALL1H && statements[prev].op <= OP_CALL8H) { optres_test1++; break; } if (pr_opcodes[statements[prev].op].right_associative) { //make sure no changes to var_a occur. if (statements[prev].b == statements[cur].a) { optres_test2++; break; } if (statements[prev].b == statements[cur].b && !pr_opcodes[statements[cur].op].right_associative) { optres_test2++; break; } } else { if (statements[prev].c == statements[cur].a) { optres_test2++; break; } if (statements[prev].c == statements[cur].b && !pr_opcodes[statements[cur].op].right_associative) { optres_test2++; break; } } if (statements[prev].op == statements[cur].op) if (statements[prev].a == statements[cur].a) if (statements[prev].b == statements[cur].b) if (statements[prev].c == statements[cur].c) { if (!QCC_FuncJumpsToRange(first, last, prev, cur)) { statements[cur].op = OP_STORE_F; statements[cur].a = 28; statements[cur].b = 28; optres_comexprremoval++; } else optres_test1++; break; } } } } */ void QCC_RemapOffsets(unsigned int firststatement, unsigned int laststatement, unsigned int min, unsigned int max, unsigned int newmin) { QCC_dstatement_t *st; unsigned int i; for (i = firststatement, st = &statements[i]; i < laststatement; i++, st++) { if (pr_opcodes[st->op].type_a && st->a >= min && st->a < max) st->a = st->a - min + newmin; if (pr_opcodes[st->op].type_b && st->b >= min && st->b < max) st->b = st->b - min + newmin; if (pr_opcodes[st->op].type_c && st->c >= min && st->c < max) st->c = st->c - min + newmin; } } void QCC_Marshal_Locals(int first, int laststatement) { QCC_def_t *local; unsigned int newofs; // if (!opt_overlaptemps) //clear these after each function. we arn't overlapping them so why do we need to keep track of them? // { // temp_t *t; // for (t = functemps; t; t = t->next) // QCC_FreeOffset(t->ofs, t->size); // functemps = NULL; // } if (!pr.localvars) //nothing to marshal { locals_start = numpr_globals; locals_end = numpr_globals; return; } if (!opt_locals_marshalling) { pr.localvars = NULL; return; } //initial backwards bounds. locals_start = MAX_REGS; locals_end = 0; newofs = MAX_REGS; //this is a handy place to put it. :) //the params need to be in the order that they were allocated //so we allocate in a backwards order. for (local = pr.localvars; local; local = local->nextlocal) { if (local->constant) continue; newofs += local->type->size*local->arraysize; if (local->arraysize>1) newofs++; } locals_start = MAX_REGS; locals_end = newofs; optres_locals_marshalling+=newofs-MAX_REGS; for (local = pr.localvars; local; local = local->nextlocal) { if (local->constant) continue; if (((int*)qcc_pr_globals)[local->ofs]) QCC_PR_ParseError(ERR_INTERNAL, "Marshall of a set value"); newofs -= local->type->size*local->arraysize; if (local->arraysize>1) newofs--; QCC_RemapOffsets(first, laststatement, local->ofs, local->ofs+local->type->size*local->arraysize, newofs); QCC_FreeOffset(local->ofs, local->type->size*local->arraysize); local->ofs = newofs; } pr.localvars = NULL; } #ifdef WRITEASM void QCC_WriteAsmFunction(QCC_def_t *sc, unsigned int firststatement, gofs_t firstparm) { unsigned int i; unsigned int p; gofs_t o; QCC_type_t *type; QCC_def_t *param; if (!asmfile) return; type = sc->type; fprintf(asmfile, "%s(", TypeName(type->aux_type)); p = type->num_parms; for (o = firstparm, i = 0, type = type->param; i < p; i++, type = type->next) { if (i) fprintf(asmfile, ", "); for (param = pr.localvars; param; param = param->nextlocal) { if (param->ofs == o) break; } if (param) fprintf(asmfile, "%s %s", TypeName(type), param->name); else fprintf(asmfile, "%s", TypeName(type)); o += type->size; } fprintf(asmfile, ") %s = asm\n{\n", sc->name); QCC_fprintfLocals(asmfile, firstparm, o); for (i = firststatement; i < (unsigned int)numstatements; i++) { fprintf(asmfile, "\t%s", pr_opcodes[statements[i].op].opname); if (pr_opcodes[statements[i].op].type_a != &type_void) { if (strlen(pr_opcodes[statements[i].op].opname)<6) fprintf(asmfile, "\t"); if (pr_opcodes[statements[i].op].type_a) fprintf(asmfile, "\t%s", QCC_VarAtOffset(statements[i].a, (*pr_opcodes[statements[i].op].type_a)->size)); else fprintf(asmfile, "\t%i", statements[i].a); if (pr_opcodes[statements[i].op].type_b != &type_void) { if (pr_opcodes[statements[i].op].type_b) fprintf(asmfile, ",\t%s", QCC_VarAtOffset(statements[i].b, (*pr_opcodes[statements[i].op].type_b)->size)); else fprintf(asmfile, ",\t%i", statements[i].b); if (pr_opcodes[statements[i].op].type_c != &type_void && pr_opcodes[statements[i].op].associative==ASSOC_LEFT) { if (pr_opcodes[statements[i].op].type_c) fprintf(asmfile, ",\t%s", QCC_VarAtOffset(statements[i].c, (*pr_opcodes[statements[i].op].type_c)->size)); else fprintf(asmfile, ",\t%i", statements[i].c); } } else { if (pr_opcodes[statements[i].op].type_c != &type_void) { if (pr_opcodes[statements[i].op].type_c) fprintf(asmfile, ",\t%s", QCC_VarAtOffset(statements[i].c, (*pr_opcodes[statements[i].op].type_c)->size)); else fprintf(asmfile, ",\t%i", statements[i].c); } } } fprintf(asmfile, ";\n"); } fprintf(asmfile, "}\n\n"); } #endif /* ============ PR_ParseImmediateStatements Parse a function body ============ */ QCC_function_t *QCC_PR_ParseImmediateStatements (QCC_type_t *type) { int i; QCC_function_t *f; QCC_def_t *defs[MAX_PARMS+MAX_EXTRA_PARMS], *e2; QCC_type_t *parm; pbool needsdone=false; freeoffset_t *oldfofs; conditional = 0; f = (void *)qccHunkAlloc (sizeof(QCC_function_t)); // // check for builtin function definition #1, #2, etc // // hexenC has void name() : 2; if (QCC_PR_CheckToken ("#") || QCC_PR_CheckToken (":")) { if (pr_token_type != tt_immediate || pr_immediate_type != type_float || pr_immediate._float != (int)pr_immediate._float) QCC_PR_ParseError (ERR_BADBUILTINIMMEDIATE, "Bad builtin immediate"); f->builtin = (int)pr_immediate._float; QCC_PR_Lex (); locals_start = locals_end = OFS_PARM0; //hmm... return f; } if (QCC_PR_CheckKeyword(keyword_external, "external")) { //reacc style builtin if (pr_token_type != tt_immediate || pr_immediate_type != type_float || pr_immediate._float != (int)pr_immediate._float) QCC_PR_ParseError (ERR_BADBUILTINIMMEDIATE, "Bad builtin immediate"); f->builtin = (int)-pr_immediate._float; QCC_PR_Lex (); QCC_PR_Expect(";"); locals_start = locals_end = OFS_PARM0; //hmm... return f; } if (type->num_parms < 0) QCC_PR_ParseError (ERR_FUNCTIONWITHVARGS, "QC function with variable arguments and function body"); f->builtin = 0; // // define the parms // locals_start = locals_end = numpr_globals; oldfofs = freeofs; freeofs = NULL; parm = type->param; for (i=0 ; inum_parms ; i++) { if (!*pr_parm_names[i]) QCC_PR_ParseError(ERR_PARAMWITHNONAME, "Parameter is not named"); defs[i] = QCC_PR_GetDef (parm, pr_parm_names[i], pr_scope, true, 1, false); defs[i]->references++; if (i < MAX_PARMS) { f->parm_ofs[i] = defs[i]->ofs; if (i > 0 && f->parm_ofs[i] < f->parm_ofs[i-1]) QCC_Error (ERR_BADPARAMORDER, "bad parm order"); if (i > 0 && f->parm_ofs[i] != f->parm_ofs[i-1]+defs[i-1]->type->size) QCC_Error (ERR_BADPARAMORDER, "parms not packed"); } parm = parm->next; } if (type->num_parms) locals_start = locals_end = defs[0]->ofs; freeofs = oldfofs; f->code = numstatements; if (type->num_parms > MAX_PARMS) { for (i = MAX_PARMS; i < type->num_parms; i++) { if (!extra_parms[i - MAX_PARMS]) { e2 = (QCC_def_t *) qccHunkAlloc (sizeof(QCC_def_t)); e2->name = "extra parm"; e2->ofs = QCC_GetFreeOffsetSpace(3); extra_parms[i - MAX_PARMS] = e2; } extra_parms[i - MAX_PARMS]->type = defs[i]->type; if (defs[i]->type->type != ev_vector) QCC_PR_Statement (&pr_opcodes[OP_STORE_F], extra_parms[i - MAX_PARMS], defs[i], NULL); else QCC_PR_Statement (&pr_opcodes[OP_STORE_V], extra_parms[i - MAX_PARMS], defs[i], NULL); } } QCC_RemapLockedTemps(-1, -1); /*if (pr_classtype) { QCC_def_t *e, *e2; e = QCC_PR_GetDef(pr_classtype, "__oself", pr_scope, true, 1); e2 = QCC_PR_GetDef(type_entity, "self", NULL, true, 1); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_ENT], QCC_PR_DummyDef(pr_classtype, "self", pr_scope, 1, e2->ofs, false), e, NULL)); }*/ // // check for a state opcode // if (QCC_PR_CheckToken ("[")) QCC_PR_ParseState (); if (QCC_PR_CheckKeyword (keyword_asm, "asm")) { QCC_PR_Expect ("{"); while (!QCC_PR_CheckToken("}")) QCC_PR_ParseAsm (); } else { if (QCC_PR_CheckKeyword (keyword_var, "var")) //reacc support { //parse lots of locals char *name; do { name = QCC_PR_ParseName(); QCC_PR_Expect(":"); e2 = QCC_PR_GetDef(QCC_PR_ParseType(false), name, pr_scope, true, 1, false); QCC_PR_Expect(";"); } while(!QCC_PR_CheckToken("{")); } else QCC_PR_Expect ("{"); // // parse regular statements // while (!QCC_PR_CheckToken("}")) { QCC_PR_ParseStatement (); QCC_FreeTemps(); } } QCC_FreeTemps(); // this is cheap // if (type->aux_type->type) // if (statements[numstatements - 1].op != OP_RETURN) // QCC_PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name ); if (f->code == numstatements) needsdone = true; else if (statements[numstatements - 1].op != OP_RETURN && statements[numstatements - 1].op != OP_DONE) needsdone = true; if (num_gotos) { int j; for (i = 0; i < num_gotos; i++) { for (j = 0; j < num_labels; j++) { if (!strcmp(pr_gotos[i].name, pr_labels[j].name)) { if (!pr_opcodes[statements[pr_gotos[i].statementno].op].type_a) statements[pr_gotos[i].statementno].a += pr_labels[j].statementno - pr_gotos[i].statementno; else if (!pr_opcodes[statements[pr_gotos[i].statementno].op].type_b) statements[pr_gotos[i].statementno].b += pr_labels[j].statementno - pr_gotos[i].statementno; else statements[pr_gotos[i].statementno].c += pr_labels[j].statementno - pr_gotos[i].statementno; break; } } if (j == num_labels) { num_gotos = 0; QCC_PR_ParseError(ERR_NOLABEL, "Goto statement with no matching label \"%s\"", pr_gotos[i].name); } } num_gotos = 0; } if (opt_return_only && !needsdone) needsdone = QCC_FuncJumpsTo(f->code, numstatements, numstatements); // emit an end of statements opcode if (!opt_return_only || needsdone) { /*if (pr_classtype) { QCC_def_t *e, *e2; e = QCC_PR_GetDef(NULL, "__oself", pr_scope, false, 0); e2 = QCC_PR_GetDef(NULL, "self", NULL, false, 0); QCC_FreeTemp(QCC_PR_Statement(&pr_opcodes[OP_STORE_ENT], e, QCC_PR_DummyDef(pr_classtype, "self", pr_scope, 1, e2->ofs, false), NULL)); }*/ QCC_PR_Statement (pr_opcodes, 0,0, NULL); } else optres_return_only++; QCC_CheckForDeadAndMissingReturns(f->code, numstatements, type->aux_type->type); if (opt_compound_jumps) QCC_CompoundJumps(f->code, numstatements); // if (opt_comexprremoval) // QCC_CommonSubExpressionRemoval(f->code, numstatements); QCC_RemapLockedTemps(f->code, numstatements); locals_end = numpr_globals; QCC_WriteAsmFunction(pr_scope, f->code, locals_start); QCC_Marshal_Locals(f->code, numstatements); if (num_labels) num_labels = 0; if (num_continues) { num_continues=0; QCC_PR_ParseError(ERR_ILLEGALCONTINUES, "%s: function contains illegal continues\n", pr_scope->name); } if (num_breaks) { num_breaks=0; QCC_PR_ParseError(ERR_ILLEGALBREAKS, "%s: function contains illegal breaks\n", pr_scope->name); } if (num_cases) { num_cases = 0; QCC_PR_ParseError(ERR_ILLEGALCASES, "%s: function contains illegal cases\n", pr_scope->name); } return f; } void QCC_PR_ArrayRecurseDivideRegular(QCC_def_t *array, QCC_def_t *index, int min, int max) { QCC_dstatement_t *st; QCC_def_t *eq; if (min == max || min+1 == max) { eq = QCC_PR_Statement(pr_opcodes+OP_LT, index, QCC_MakeFloatDef(min+0.5f), NULL); QCC_UnFreeTemp(index); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); st->b = 2; QCC_PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st); st->a = array->ofs + min*array->type->size; } else { int mid = min + (max-min)/2; if (max-min>4) { eq = QCC_PR_Statement(pr_opcodes+OP_LT, index, QCC_MakeFloatDef(mid+0.5f), NULL); QCC_UnFreeTemp(index); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); } else st = NULL; QCC_PR_ArrayRecurseDivideRegular(array, index, min, mid); if (st) st->b = numstatements - (st-statements); QCC_PR_ArrayRecurseDivideRegular(array, index, mid, max); } } //the idea here is that we return a vector, the caller then figures out the extra 3rd. //This is useful when we have a load of indexes. void QCC_PR_ArrayRecurseDivideUsingVectors(QCC_def_t *array, QCC_def_t *index, int min, int max) { QCC_dstatement_t *st; QCC_def_t *eq; if (min == max || min+1 == max) { eq = QCC_PR_Statement(pr_opcodes+OP_LT, index, QCC_MakeFloatDef(min+0.5f), NULL); QCC_UnFreeTemp(index); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); st->b = 2; QCC_PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st); st->a = array->ofs + min*3; } else { int mid = min + (max-min)/2; if (max-min>4) { eq = QCC_PR_Statement(pr_opcodes+OP_LT, index, QCC_MakeFloatDef(mid+0.5f), NULL); QCC_UnFreeTemp(index); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); } else st = NULL; QCC_PR_ArrayRecurseDivideUsingVectors(array, index, min, mid); if (st) st->b = numstatements - (st-statements); QCC_PR_ArrayRecurseDivideUsingVectors(array, index, mid, max); } } //returns a vector overlapping the result needed. QCC_def_t *QCC_PR_EmitArrayGetVector(QCC_def_t *array) { QCC_dfunction_t *df; QCC_def_t *temp, *index, *func; func = QCC_PR_GetDef(type_function, qcva("ArrayGetVec*%s", array->name), NULL, true, 1, false); pr_scope = func; df = &functions[numfunctions]; numfunctions++; df->s_file = 0; df->s_name = QCC_CopyString(func->name); df->first_statement = numstatements; df->parm_size[0] = 1; df->numparms = 1; df->parm_start = numpr_globals; index = QCC_PR_GetDef(type_float, "index___", func, true, 1, false); index->references++; temp = QCC_PR_GetDef(type_float, "div3___", func, true, 1, false); locals_end = numpr_globals; df->locals = locals_end - df->parm_start; QCC_PR_Statement3(pr_opcodes+OP_DIV_F, index, QCC_MakeFloatDef(3), temp, false); QCC_PR_Statement3(pr_opcodes+OP_BITAND, temp, temp, temp, false);//round down to int QCC_PR_ArrayRecurseDivideUsingVectors(array, temp, 0, (array->arraysize+2)/3); //round up QCC_PR_Statement(pr_opcodes+OP_RETURN, QCC_MakeFloatDef(0), 0, NULL); //err... we didn't find it, give up. QCC_PR_Statement(pr_opcodes+OP_DONE, 0, 0, NULL); //err... we didn't find it, give up. G_FUNCTION(func->ofs) = df - functions; func->initialized = 1; return func; } void QCC_PR_EmitArrayGetFunction(QCC_def_t *scope, char *arrayname) { QCC_def_t *vectortrick; QCC_dfunction_t *df; QCC_def_t *def, *index; QCC_dstatement_t *st; QCC_def_t *eq; QCC_def_t *fasttrackpossible; if (flag_fasttrackarrays) fasttrackpossible = QCC_PR_GetDef(type_float, "__ext__fasttrackarrays", NULL, true, 1, false); else fasttrackpossible = NULL; def = QCC_PR_GetDef(NULL, arrayname, NULL, false, 0, false); if (def->arraysize >= 15 && def->type->size == 1) { vectortrick = QCC_PR_EmitArrayGetVector(def); } else vectortrick = NULL; pr_scope = scope; df = &functions[numfunctions]; numfunctions++; df->s_file = 0; df->s_name = QCC_CopyString(scope->name); df->first_statement = numstatements; df->parm_size[0] = 1; df->numparms = 1; df->parm_start = numpr_globals; index = QCC_PR_GetDef(type_float, "indexg___", def, true, 1, false); G_FUNCTION(scope->ofs) = df - functions; if (fasttrackpossible) { QCC_PR_Statement(pr_opcodes+OP_IFNOT, fasttrackpossible, NULL, &st); //fetch_gbl takes: (float size, variant array[]), float index, variant pos //note that the array size is coded into the globals, one index before the array. if (def->type->size >= 3) QCC_PR_Statement3(&pr_opcodes[OP_FETCH_GBL_V], def, index, &def_ret, true); else QCC_PR_Statement3(&pr_opcodes[OP_FETCH_GBL_F], def, index, &def_ret, true); QCC_PR_Statement(&pr_opcodes[OP_RETURN], &def_ret, NULL, NULL); //finish the jump st->b = &statements[numstatements] - st; } if (vectortrick) { QCC_def_t *div3, *intdiv3, *ret; //okay, we've got a function to retrieve the var as part of a vector. //we need to work out which part, x/y/z that it's stored in. //0,1,2 = i - ((int)i/3 *) 3; div3 = QCC_PR_GetDef(type_float, "div3___", def, true, 1, false); intdiv3 = QCC_PR_GetDef(type_float, "intdiv3___", def, true, 1, false); eq = QCC_PR_Statement(pr_opcodes+OP_GE, index, QCC_MakeFloatDef((float)def->arraysize), NULL); //escape clause - should call some sort of error function instead.. that'd rule! QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); st->b = 2; QCC_PR_Statement(pr_opcodes+OP_RETURN, QCC_MakeFloatDef(0), 0, &st); div3->references++; QCC_PR_Statement3(pr_opcodes+OP_BITAND, index, index, index, false); QCC_PR_Statement3(pr_opcodes+OP_DIV_F, index, QCC_MakeFloatDef(3), div3, false); QCC_PR_Statement3(pr_opcodes+OP_BITAND, div3, div3, intdiv3, false); QCC_PR_Statement3(pr_opcodes+OP_STORE_F, index, &def_parms[0], NULL, false); QCC_PR_Statement3(pr_opcodes+OP_CALL1, vectortrick, NULL, NULL, false); vectortrick->references++; ret = QCC_PR_GetDef(type_vector, "vec__", pr_scope, true, 1, false); ret->references+=4; QCC_PR_Statement3(pr_opcodes+OP_STORE_V, &def_ret, ret, NULL, false); div3 = QCC_PR_Statement(pr_opcodes+OP_MUL_F, intdiv3, QCC_MakeFloatDef(3), NULL); QCC_PR_Statement3(pr_opcodes+OP_SUB_F, index, div3, index, false); QCC_FreeTemp(div3); eq = QCC_PR_Statement(pr_opcodes+OP_LT, index, QCC_MakeFloatDef(0+0.5f), NULL); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); st->b = 2; QCC_PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st); st->a = ret->ofs + 0; eq = QCC_PR_Statement(pr_opcodes+OP_LT, index, QCC_MakeFloatDef(1+0.5f), NULL); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); st->b = 2; QCC_PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st); st->a = ret->ofs + 1; eq = QCC_PR_Statement(pr_opcodes+OP_LT, index, QCC_MakeFloatDef(2+0.5), NULL); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); st->b = 2; QCC_PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st); st->a = ret->ofs + 2; QCC_FreeTemp(ret); QCC_FreeTemp(index); } else { QCC_PR_Statement3(pr_opcodes+OP_BITAND, index, index, index, false); QCC_PR_ArrayRecurseDivideRegular(def, index, 0, def->arraysize); } QCC_PR_Statement(pr_opcodes+OP_RETURN, QCC_MakeFloatDef(0), 0, NULL); QCC_PR_Statement(pr_opcodes+OP_DONE, 0, 0, NULL); locals_end = numpr_globals; df->locals = locals_end - df->parm_start; QCC_WriteAsmFunction(pr_scope, df->first_statement, df->parm_start); QCC_FreeTemps(); } void QCC_PR_ArraySetRecurseDivide(QCC_def_t *array, QCC_def_t *index, QCC_def_t *value, int min, int max) { QCC_dstatement_t *st; QCC_def_t *eq; if (min == max || min+1 == max) { eq = QCC_PR_Statement(pr_opcodes+OP_EQ_F, index, QCC_MakeFloatDef((float)min), NULL); QCC_UnFreeTemp(index); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); st->b = 3; if (array->type->size == 3) QCC_PR_Statement(pr_opcodes+OP_STORE_V, value, array, &st); else QCC_PR_Statement(pr_opcodes+OP_STORE_F, value, array, &st); st->b = array->ofs + min*array->type->size; QCC_PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st); } else { int mid = min + (max-min)/2; if (max-min>4) { eq = QCC_PR_Statement(pr_opcodes+OP_LT, index, QCC_MakeFloatDef((float)mid), NULL); QCC_UnFreeTemp(index); QCC_FreeTemp(QCC_PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st)); } else st = NULL; QCC_PR_ArraySetRecurseDivide(array, index, value, min, mid); if (st) st->b = numstatements - (st-statements); QCC_PR_ArraySetRecurseDivide(array, index, value, mid, max); } } void QCC_PR_EmitArraySetFunction(QCC_def_t *scope, char *arrayname) { QCC_dfunction_t *df; QCC_def_t *def, *index, *value; QCC_def_t *fasttrackpossible; if (flag_fasttrackarrays) fasttrackpossible = QCC_PR_GetDef(NULL, "__ext__fasttrackarrays", NULL, true, 1, false); else fasttrackpossible = NULL; def = QCC_PR_GetDef(NULL, arrayname, NULL, false, 0, false); pr_scope = scope; df = &functions[numfunctions]; numfunctions++; df->s_file = 0; df->s_name = QCC_CopyString(scope->name); df->first_statement = numstatements; df->parm_size[0] = 1; df->parm_size[1] = def->type->size; df->numparms = 2; df->parm_start = numpr_globals; index = QCC_PR_GetDef(type_float, "indexs___", def, true, 1, false); value = QCC_PR_GetDef(def->type, "value___", def, true, 1, false); locals_end = numpr_globals; df->locals = locals_end - df->parm_start; G_FUNCTION(scope->ofs) = df - functions; if (fasttrackpossible) { QCC_dstatement_t *st; QCC_PR_Statement(pr_opcodes+OP_IFNOT, fasttrackpossible, NULL, &st); //note that the array size is coded into the globals, one index before the array. QCC_PR_Statement3(&pr_opcodes[OP_CONV_FTOI], index, NULL, index, true); //address stuff is integer based, but standard qc (which this accelerates in supported engines) only supports floats QCC_PR_SimpleStatement (OP_BOUNDCHECK, index->ofs, ((int*)qcc_pr_globals)[def->ofs-1], 0, true);//annoy the programmer. :p if (def->type->size != 1)//shift it upwards for larger types QCC_PR_Statement3(&pr_opcodes[OP_MUL_I], index, QCC_MakeIntDef(def->type->size), index, true); QCC_PR_Statement3(&pr_opcodes[OP_GLOBALADDRESS], def, index, index, true); //comes with built in add if (def->type->size >= 3) QCC_PR_Statement3(&pr_opcodes[OP_STOREP_V], value, index, NULL, true); //*b = a else QCC_PR_Statement3(&pr_opcodes[OP_STOREP_F], value, index, NULL, true); QCC_PR_Statement(&pr_opcodes[OP_RETURN], value, NULL, NULL); //finish the jump st->b = &statements[numstatements] - st; } QCC_PR_Statement3(pr_opcodes+OP_BITAND, index, index, index, false); QCC_PR_ArraySetRecurseDivide(def, index, value, 0, def->arraysize); QCC_PR_Statement(pr_opcodes+OP_DONE, 0, 0, NULL); QCC_WriteAsmFunction(pr_scope, df->first_statement, df->parm_start); QCC_FreeTemps(); } //register a def, and all of it's sub parts. //only the main def is of use to the compiler. //the subparts are emitted to the compiler and allow correct saving/loading //be careful with fields, this doesn't allocated space, so will it allocate fields. It only creates defs at specified offsets. QCC_def_t *QCC_PR_DummyDef(QCC_type_t *type, char *name, QCC_def_t *scope, int arraysize, unsigned int ofs, int referable, pbool saved) { char array[64]; char newname[256]; int a; QCC_def_t *def, *first=NULL; #define KEYWORD(x) if (!STRCMP(name, #x) && keyword_##x) {if (keyword_##x)QCC_PR_ParseWarning(WARN_KEYWORDDISABLED, "\""#x"\" keyword used as variable name%s", keywords_coexist?" - coexisting":" - disabling");keyword_##x=keywords_coexist;} if (name) { KEYWORD(var); KEYWORD(thinktime); KEYWORD(for); KEYWORD(switch); KEYWORD(case); KEYWORD(default); KEYWORD(goto); if (type->type != ev_function) KEYWORD(break); KEYWORD(continue); KEYWORD(state); KEYWORD(string); if (qcc_targetformat != QCF_HEXEN2) KEYWORD(float); //hmm... hexen2 requires this... KEYWORD(entity); KEYWORD(vector); KEYWORD(const); KEYWORD(asm); } for (a = 0; a < arraysize; a++) { if (a == 0) *array = '\0'; else sprintf(array, "[%i]", a); if (name) sprintf(newname, "%s%s", name, array); else *newname = *""; // allocate a new def def = (void *)qccHunkAlloc (sizeof(QCC_def_t)); memset (def, 0, sizeof(*def)); def->next = NULL; def->arraysize = arraysize; if (name) { pr.def_tail->next = def; pr.def_tail = def; } if (a > 0) def->references++; def->s_line = pr_source_line; def->s_file = s_file; def->name = (void *)qccHunkAlloc (strlen(newname)+1); strcpy (def->name, newname); def->type = type; def->scope = scope; def->saved = saved; // if (arraysize>1) def->constant = true; if (ofs + type->size*a >= MAX_REGS) QCC_Error(ERR_TOOMANYGLOBALS, "MAX_REGS is too small"); def->ofs = ofs + type->size*a; if (!first) first = def; // printf("Emited %s\n", newname); if (type->type == ev_struct) { int partnum; QCC_type_t *parttype; parttype = type->param; for (partnum = 0; partnum < type->num_parms; partnum++) { switch (parttype->type) { case ev_vector: sprintf(newname, "%s%s.%s", name, array, parttype->name); QCC_PR_DummyDef(parttype, newname, scope, 1, ofs + type->size*a + parttype->ofs, false, saved); sprintf(newname, "%s%s.%s_x", name, array, parttype->name); QCC_PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a + parttype->ofs, false, false); sprintf(newname, "%s%s.%s_y", name, array, parttype->name); QCC_PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a + parttype->ofs+1, false, false); sprintf(newname, "%s%s.%s_z", name, array, parttype->name); QCC_PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a + parttype->ofs+2, false, false); break; case ev_float: case ev_string: case ev_entity: case ev_field: case ev_pointer: case ev_integer: case ev_struct: case ev_union: case ev_variant: //for lack of any better alternative sprintf(newname, "%s%s.%s", name, array, parttype->name); QCC_PR_DummyDef(parttype, newname, scope, 1, ofs + type->size*a + parttype->ofs, false, saved); break; case ev_function: sprintf(newname, "%s%s.%s", name, array, parttype->name); QCC_PR_DummyDef(parttype, newname, scope, 1, ofs + type->size*a +parttype->ofs, false, saved)->initialized = true; break; case ev_void: break; } parttype=parttype->next; } } else if (type->type == ev_vector) { //do the vector thing. sprintf(newname, "%s%s_x", name, array); QCC_PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a+0, referable, false); sprintf(newname, "%s%s_y", name, array); QCC_PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a+1, referable, false); sprintf(newname, "%s%s_z", name, array); QCC_PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a+2, referable, false); } else if (type->type == ev_field) { if (type->aux_type->type == ev_vector) { //do the vector thing. sprintf(newname, "%s%s_x", name, array); QCC_PR_DummyDef(type_floatfield, newname, scope, 1, ofs + type->size*a+0, referable, false); sprintf(newname, "%s%s_y", name, array); QCC_PR_DummyDef(type_floatfield, newname, scope, 1, ofs + type->size*a+1, referable, false); sprintf(newname, "%s%s_z", name, array); QCC_PR_DummyDef(type_floatfield, newname, scope, 1, ofs + type->size*a+2, referable, false); } } } if (referable) { if (!pHash_Get(&globalstable, "end_sys_fields")) first->references++; //anything above needs to be left in, and so warning about not using it is just going to pee people off. if (arraysize <= 1) first->constant = false; if (scope) pHash_Add(&localstable, first->name, first, qccHunkAlloc(sizeof(bucket_t))); else pHash_Add(&globalstable, first->name, first, qccHunkAlloc(sizeof(bucket_t))); if (!scope && asmfile) fprintf(asmfile, "%s %s;\n", TypeName(first->type), first->name); } return first; } /* ============ PR_GetDef If type is NULL, it will match any type If allocate is true, a new def will be allocated if it can't be found ============ */ QCC_def_t *QCC_PR_GetDef (QCC_type_t *type, char *name, QCC_def_t *scope, pbool allocate, int arraysize, pbool saved) { int ofs; QCC_def_t *def; // char element[MAX_NAME]; unsigned int i; if (scope) { def = Hash_Get(&localstable, name); while(def) { if ( def->scope && def->scope != scope) { def = Hash_GetNext(&localstable, name, def); continue; // in a different function } if (type && typecmp(def->type, type)) QCC_PR_ParseError (ERR_TYPEMISMATCHREDEC, "Type mismatch on redeclaration of %s. %s, should be %s",name, TypeName(type), TypeName(def->type)); if (def->arraysize != arraysize && arraysize) QCC_PR_ParseError (ERR_TYPEMISMATCHARRAYSIZE, "Array sizes for redecleration of %s do not match",name); if (allocate && scope) { QCC_PR_ParseWarning (WARN_DUPLICATEDEFINITION, "%s duplicate definition ignored", name); QCC_PR_ParsePrintDef(WARN_DUPLICATEDEFINITION, def); // if (!scope) // QCC_PR_ParsePrintDef(def); } return def; } } def = Hash_Get(&globalstable, name); while(def) { if ( def->scope && def->scope != scope) { def = Hash_GetNext(&globalstable, name, def); continue; // in a different function } if (type && typecmp(def->type, type)) { if (!pr_scope) QCC_PR_ParseError (ERR_TYPEMISMATCHREDEC, "Type mismatch on redeclaration of %s. %s, should be %s",name, TypeName(type), TypeName(def->type)); } if (def->arraysize != arraysize && arraysize) QCC_PR_ParseError (ERR_TYPEMISMATCHARRAYSIZE, "Array sizes for redecleration of %s do not match",name); if (allocate && scope) { if (pr_scope) { //warn? or would that be pointless? def = Hash_GetNext(&globalstable, name, def); continue; // in a different function } QCC_PR_ParseWarning (WARN_DUPLICATEDEFINITION, "%s duplicate definition ignored", name); QCC_PR_ParsePrintDef(WARN_DUPLICATEDEFINITION, def); // if (!scope) // QCC_PR_ParsePrintDef(def); } return def; } if (pHash_Get != &Hash_Get && !allocate) //do we want to try case insensative too? { if (scope) { def = pHash_Get(&localstable, name); while(def) { if ( def->scope && def->scope != scope) { def = pHash_GetNext(&localstable, name, def); continue; // in a different function } if (type && typecmp(def->type, type)) QCC_PR_ParseError (ERR_TYPEMISMATCHREDEC, "Type mismatch on redeclaration of %s. %s, should be %s",name, TypeName(type), TypeName(def->type)); if (def->arraysize != arraysize && arraysize) QCC_PR_ParseError (ERR_TYPEMISMATCHARRAYSIZE, "Array sizes for redecleration of %s do not match",name); if (allocate && scope) { QCC_PR_ParseWarning (WARN_DUPLICATEDEFINITION, "%s duplicate definition ignored", name); QCC_PR_ParsePrintDef(WARN_DUPLICATEDEFINITION, def); // if (!scope) // QCC_PR_ParsePrintDef(def); } return def; } } def = pHash_Get(&globalstable, name); while(def) { if ( def->scope && def->scope != scope) { def = pHash_GetNext(&globalstable, name, def); continue; // in a different function } if (type && typecmp(def->type, type)) { if (!pr_scope) QCC_PR_ParseError (ERR_TYPEMISMATCHREDEC, "Type mismatch on redeclaration of %s. %s, should be %s",name, TypeName(type), TypeName(def->type)); } if (def->arraysize != arraysize && arraysize) QCC_PR_ParseError (ERR_TYPEMISMATCHARRAYSIZE, "Array sizes for redecleration of %s do not match",name); if (allocate && scope) { if (pr_scope) { //warn? or would that be pointless? def = pHash_GetNext(&globalstable, name, def); continue; // in a different function } QCC_PR_ParseWarning (WARN_DUPLICATEDEFINITION, "%s duplicate definition ignored", name); QCC_PR_ParsePrintDef(WARN_DUPLICATEDEFINITION, def); // if (!scope) // QCC_PR_ParsePrintDef(def); } return def; } } if (!allocate) return NULL; if (arraysize < 1) { QCC_PR_ParseError (ERR_ARRAYNEEDSSIZE, "First declaration of array %s with no size",name); } if (scope) { if (QCC_PR_GetDef(type, name, NULL, false, arraysize, false)) QCC_PR_ParseWarning(WARN_SAMENAMEASGLOBAL, "Local \"%s\" defined with name of a global", name); } ofs = numpr_globals; if (arraysize > 1) { //write the array size ofs = QCC_GetFreeOffsetSpace(1 + (type->size * arraysize)); ((int *)qcc_pr_globals)[ofs] = arraysize-1; //An array needs the size written first. This is a hexen2 opcode thing. ofs++; } else ofs = QCC_GetFreeOffsetSpace(type->size * arraysize); def = QCC_PR_DummyDef(type, name, scope, arraysize, ofs, true, saved); //fix up fields. if (type->type == ev_field && allocate != 2) { for (i = 0; i < type->size*arraysize; i++) //make arrays of fields work. *(int *)&qcc_pr_globals[def->ofs+i] = pr.size_fields+i; pr.size_fields += i; } if (scope) { def->nextlocal = pr.localvars; pr.localvars = def; } return def; } QCC_def_t *QCC_PR_DummyFieldDef(QCC_type_t *type, char *name, QCC_def_t *scope, int arraysize, unsigned int *fieldofs, pbool saved) { char array[64]; char newname[256]; int a, parms; QCC_def_t *def, *first=NULL; unsigned int maxfield, startfield; QCC_type_t *ftype; pbool isunion; startfield = *fieldofs; maxfield = startfield; for (a = 0; a < arraysize; a++) { if (a == 0) *array = '\0'; else sprintf(array, "[%i]", a); if (*name) { sprintf(newname, "%s%s", name, array); // allocate a new def def = (void *)qccHunkAlloc (sizeof(QCC_def_t)); memset (def, 0, sizeof(*def)); def->next = NULL; def->arraysize = arraysize; pr.def_tail->next = def; pr.def_tail = def; def->s_line = pr_source_line; def->s_file = s_file; def->name = (void *)qccHunkAlloc (strlen(newname)+1); strcpy (def->name, newname); def->type = type; def->scope = scope; def->ofs = QCC_GetFreeOffsetSpace(1); ((int *)qcc_pr_globals)[def->ofs] = *fieldofs; *fieldofs++; if (!first) first = def; } else { def=NULL; } // printf("Emited %s\n", newname); if ((type)->type == ev_struct||(type)->type == ev_union) { int partnum; QCC_type_t *parttype; if (def) def->references++; parttype = (type)->param; isunion = ((type)->type == ev_union); for (partnum = 0, parms = (type)->num_parms; partnum < parms; partnum++) { switch (parttype->type) { case ev_union: case ev_struct: if (*name) sprintf(newname, "%s%s.%s", name, array, parttype->name); else sprintf(newname, "%s%s", parttype->name, array); def = QCC_PR_DummyFieldDef(parttype, newname, scope, 1, fieldofs, saved); break; case ev_float: case ev_string: case ev_vector: case ev_entity: case ev_field: case ev_pointer: case ev_integer: case ev_variant: if (*name) sprintf(newname, "%s%s.%s", name, array, parttype->name); else sprintf(newname, "%s%s", parttype->name, array); ftype = QCC_PR_NewType("FIELD TYPE", ev_field); ftype->aux_type = parttype; if (parttype->type == ev_vector) ftype->size = parttype->size; //vector fields create a _y and _z too, so we need this still. def = QCC_PR_GetDef(NULL, newname, scope, false, 1, saved); if (!def) { def = QCC_PR_GetDef(ftype, newname, scope, true, 1, saved); } else { QCC_PR_ParseWarning(WARN_CONFLICTINGUNIONMEMBER, "conflicting offsets for union/struct expansion of %s. Ignoring new def.", newname); QCC_PR_ParsePrintDef(WARN_CONFLICTINGUNIONMEMBER, def); } break; case ev_function: if (*name) sprintf(newname, "%s%s.%s", name, array, parttype->name); else sprintf(newname, "%s%s", parttype->name, array); ftype = QCC_PR_NewType("FIELD TYPE", ev_field); ftype->aux_type = parttype; def = QCC_PR_GetDef(ftype, newname, scope, true, 1, saved); def->initialized = true; ((int *)qcc_pr_globals)[def->ofs] = *fieldofs; *fieldofs += parttype->size; break; case ev_void: break; } if (*fieldofs > maxfield) maxfield = *fieldofs; if (isunion) *fieldofs = startfield; type = parttype; parttype=parttype->next; } } } *fieldofs = maxfield; //final size of the union. return first; } void QCC_PR_ExpandUnionToFields(QCC_type_t *type, int *fields) { QCC_type_t *pass = type->aux_type; QCC_PR_DummyFieldDef(pass, "", pr_scope, 1, fields, true); } int accglobalsblock; //0 = error, 1 = var, 2 = function, 3 = objdata /* ================ PR_ParseDefs Called at the outer layer and when a local statement is hit ================ */ void QCC_PR_ParseDefs (char *classname) { char *name; QCC_type_t *type, *parm; QCC_def_t *def, *d; QCC_function_t *f; QCC_dfunction_t *df; int i; pbool shared=false; pbool externfnc=false; pbool isconstant = false; pbool isvar = false; pbool noref = false; pbool nosave = false; pbool allocatenew = true; pbool inlinefunction = false; int ispointer; gofs_t oldglobals; int arraysize; if (QCC_PR_CheckKeyword(keyword_enum, "enum")) { float v = 0; QCC_PR_Expect("{"); i = 0; d = NULL; while(1) { name = QCC_PR_ParseName(); if (QCC_PR_CheckToken("=")) { if (pr_token_type != tt_immediate && pr_immediate_type->type != ev_float) { def = QCC_PR_GetDef(NULL, QCC_PR_ParseName(), NULL, false, 0, false); if (def) { if (!def->constant) QCC_PR_ParseError(ERR_NOTANUMBER, "enum - %s is not a constant", def->name); else v = G_FLOAT(def->ofs); } else QCC_PR_ParseError(ERR_NOTANUMBER, "enum - not a number"); } else { v = pr_immediate._float; QCC_PR_Lex(); } } def = QCC_MakeFloatDef(v); pHash_Add(&globalstable, name, def, qccHunkAlloc(sizeof(bucket_t))); v++; if (QCC_PR_CheckToken("}")) break; QCC_PR_Expect(","); } QCC_PR_Expect(";"); return; } if (QCC_PR_CheckKeyword(keyword_enumflags, "enumflags")) { float v = 1; int bits; QCC_PR_Expect("{"); i = 0; d = NULL; while(1) { name = QCC_PR_ParseName(); if (QCC_PR_CheckToken("=")) { if (pr_token_type != tt_immediate && pr_immediate_type->type != ev_float) { def = QCC_PR_GetDef(NULL, QCC_PR_ParseName(), NULL, false, 0, false); if (def) { if (!def->constant) QCC_PR_ParseError(ERR_NOTANUMBER, "enumflags - %s is not a constant", def->name); else v = G_FLOAT(def->ofs); } else QCC_PR_ParseError(ERR_NOTANUMBER, "enumflags - not a number"); } else { v = pr_immediate._float; QCC_PR_Lex(); } } bits = 0; i = (int)v; if (i != v) QCC_PR_ParseWarning(WARN_ENUMFLAGS_NOTINTEGER, "enumflags - %f not an integer", v); else { while(i) { if (((i>>1)<<1) != i) bits++; i>>=1; } if (bits != 1) QCC_PR_ParseWarning(WARN_ENUMFLAGS_NOTBINARY, "enumflags - value %i not a single bit", (int)v); } def = QCC_MakeFloatDef(v); pHash_Add(&globalstable, name, def, qccHunkAlloc(sizeof(bucket_t))); v*=2; if (QCC_PR_CheckToken("}")) break; QCC_PR_Expect(","); } QCC_PR_Expect(";"); return; } if (QCC_PR_CheckKeyword (keyword_typedef, "typedef")) { type = QCC_PR_ParseType(true); if (!type) { QCC_PR_ParseError(ERR_NOTANAME, "typedef found unexpected tokens"); } type->name = QCC_CopyString(pr_token)+strings; QCC_PR_Lex(); QCC_PR_Expect(";"); return; } if (flag_acc) { char *oldp; if (QCC_PR_CheckKeyword (keyword_codesys, "CodeSys")) //reacc support. { extern int ForcedCRC; if (ForcedCRC) QCC_PR_ParseError(ERR_BADEXTENSION, "progs crc was already specified - only one is allowed"); ForcedCRC = (int)pr_immediate._float; QCC_PR_Lex(); QCC_PR_Expect(";"); return; } oldp = pr_file_p; if (QCC_PR_CheckKeyword (keyword_var, "var")) //reacc support. { if (accglobalsblock == 3) { if (!QCC_PR_GetDef(type_void, "end_sys_fields", NULL, false, 0, false)) QCC_PR_GetDef(type_void, "end_sys_fields", NULL, true, 1, false); } QCC_PR_ParseName(); if (QCC_PR_CheckToken(":")) accglobalsblock = 1; pr_file_p = oldp; QCC_PR_Lex(); } if (QCC_PR_CheckKeyword (keyword_function, "function")) //reacc support. { accglobalsblock = 2; } if (QCC_PR_CheckKeyword (keyword_objdata, "objdata")) //reacc support. { if (accglobalsblock == 3) { if (!QCC_PR_GetDef(type_void, "end_sys_fields", NULL, false, 0, false)) QCC_PR_GetDef(type_void, "end_sys_fields", NULL, true, 1, false); } else if (!QCC_PR_GetDef(type_void, "end_sys_globals", NULL, false, 0, false)) QCC_PR_GetDef(type_void, "end_sys_globals", NULL, true, 1, false); accglobalsblock = 3; } } if (!pr_scope) switch(accglobalsblock)//reacc support. { case 1: { char *oldp = pr_file_p; name = QCC_PR_ParseName(); if (!QCC_PR_CheckToken(":")) //nope, it wasn't! { QCC_PR_IncludeChunk(name, true, NULL); QCC_PR_Lex(); QCC_PR_UnInclude(); pr_file_p = oldp; break; } if (QCC_PR_CheckKeyword(keyword_object, "object")) QCC_PR_GetDef(type_entity, name, NULL, true, 1, true); else if (QCC_PR_CheckKeyword(keyword_string, "string")) QCC_PR_GetDef(type_string, name, NULL, true, 1, true); else if (QCC_PR_CheckKeyword(keyword_real, "real")) { def = QCC_PR_GetDef(type_float, name, NULL, true, 1, true); if (QCC_PR_CheckToken("=")) { G_FLOAT(def->ofs) = pr_immediate._float; QCC_PR_Lex(); } } else if (QCC_PR_CheckKeyword(keyword_vector, "vector")) { def = QCC_PR_GetDef(type_vector, name, NULL, true, 1, true); if (QCC_PR_CheckToken("=")) { QCC_PR_Expect("["); G_FLOAT(def->ofs+0) = pr_immediate._float; QCC_PR_Lex(); G_FLOAT(def->ofs+1) = pr_immediate._float; QCC_PR_Lex(); G_FLOAT(def->ofs+2) = pr_immediate._float; QCC_PR_Lex(); QCC_PR_Expect("]"); } } else if (QCC_PR_CheckKeyword(keyword_pfunc, "pfunc")) QCC_PR_GetDef(type_function, name, NULL, true, 1, true); else QCC_PR_ParseError(ERR_BADNOTTYPE, "Bad type\n"); QCC_PR_Expect (";"); if (QCC_PR_CheckKeyword (keyword_system, "system")) QCC_PR_Expect (";"); return; } case 2: name = QCC_PR_ParseName(); QCC_PR_GetDef(type_function, name, NULL, true, 1, true); QCC_PR_CheckToken (";"); return; case 3: { char *oldp = pr_file_p; name = QCC_PR_ParseName(); if (!QCC_PR_CheckToken(":")) //nope, it wasn't! { QCC_PR_IncludeChunk(name, true, NULL); QCC_PR_Lex(); QCC_PR_UnInclude(); pr_file_p = oldp; break; } if (QCC_PR_CheckKeyword(keyword_object, "object")) QCC_PR_GetDef(QCC_PR_FieldType(type_entity), name, NULL, true, 1, true); else if (QCC_PR_CheckKeyword(keyword_string, "string")) QCC_PR_GetDef(QCC_PR_FieldType(type_string), name, NULL, true, 1, true); else if (QCC_PR_CheckKeyword(keyword_real, "real")) QCC_PR_GetDef(QCC_PR_FieldType(type_float), name, NULL, true, 1, true); else if (QCC_PR_CheckKeyword(keyword_vector, "vector")) QCC_PR_GetDef(QCC_PR_FieldType(type_vector), name, NULL, true, 1, true); else if (QCC_PR_CheckKeyword(keyword_pfunc, "pfunc")) QCC_PR_GetDef(QCC_PR_FieldType(type_function), name, NULL, true, 1, true); else QCC_PR_ParseError(ERR_BADNOTTYPE, "Bad type\n"); QCC_PR_Expect (";"); return; } } while(1) { if (QCC_PR_CheckKeyword(keyword_extern, "extern")) externfnc=true; else if (QCC_PR_CheckKeyword(keyword_shared, "shared")) { shared=true; if (pr_scope) QCC_PR_ParseError (ERR_NOSHAREDLOCALS, "Cannot have shared locals"); } else if (QCC_PR_CheckKeyword(keyword_const, "const")) isconstant = true; else if (QCC_PR_CheckKeyword(keyword_var, "var")) isvar = true; else if (QCC_PR_CheckKeyword(keyword_noref, "noref")) noref=true; else if (QCC_PR_CheckKeyword(keyword_nosave, "nosave")) nosave = true; else break; } type = QCC_PR_ParseType (false); if (type == NULL) //ignore return; inlinefunction = type_inlinefunction; if (externfnc && type->type != ev_function) { printf ("Only functions may be defined as external (yet)\n"); externfnc=false; } if (!pr_scope && QCC_PR_CheckKeyword(keyword_function, "function")) //reacc support. { name = QCC_PR_ParseName (); QCC_PR_Expect("("); type = QCC_PR_ParseFunctionTypeReacc(false, type); QCC_PR_Expect(";"); if (!stricmp(name, "null")) printf("null!\n"); def = QCC_PR_GetDef (type, name, NULL, true, 1, false); if (autoprototype) { //ignore the code and stuff if (QCC_PR_CheckKeyword(keyword_external, "external")) { //builtin QCC_PR_Lex(); QCC_PR_Expect(";"); } else { int blev = 1; while (!QCC_PR_CheckToken("{")) //skip over the locals. { if (pr_token_type == tt_eof) { QCC_PR_ParseError(0, "Unexpected EOF"); break; } QCC_PR_Lex(); } //balance out the { and } while(blev) { if (pr_token_type == tt_eof) break; if (QCC_PR_CheckToken("{")) blev++; else if (QCC_PR_CheckToken("}")) blev--; else QCC_PR_Lex(); //ignore it. } } return; } def->references++; pr_scope = def; f = QCC_PR_ParseImmediateStatements (type); pr_scope = NULL; def->initialized = 1; G_FUNCTION(def->ofs) = numfunctions; f->def = def; // if (pr_dumpasm) // PR_PrintFunction (def); // fill in the dfunction df = &functions[numfunctions]; numfunctions++; if (f->builtin) df->first_statement = -f->builtin; else df->first_statement = f->code; if (f->builtin && opt_function_names) optres_function_names += strlen(f->def->name); else df->s_name = QCC_CopyString (f->def->name); df->s_file = s_file2; df->numparms = f->def->type->num_parms; df->locals = locals_end - locals_start; df->parm_start = locals_start; for (i=0,parm = type->param ; inumparms ; i++, parm = parm->next) { df->parm_size[i] = parm->size; } return; } // if (pr_scope && (type->type == ev_field) ) // QCC_PR_ParseError ("Fields must be global"); do { if (QCC_PR_CheckToken ("*")) { ispointer = 1; while(QCC_PR_CheckToken ("*")) ispointer++; name = QCC_PR_ParseName (); } else if (QCC_PR_CheckToken (";")) { if (type->type == ev_field && (type->aux_type->type == ev_union || type->aux_type->type == ev_struct)) { QCC_PR_ExpandUnionToFields(type, &pr.size_fields); return; } // if (type->type == ev_union) // { // return; // } QCC_PR_ParseError (ERR_TYPEWITHNONAME, "type with no name"); name = NULL; ispointer = false; } else { name = QCC_PR_ParseName (); ispointer = false; } if (QCC_PR_CheckToken("::") && !classname) { classname = name; name = QCC_PR_ParseName(); } //check for an array if ( QCC_PR_CheckToken ("[") ) { char *oldprfile = pr_file_p; arraysize = 0; if (QCC_PR_CheckToken("]")) { QCC_PR_Expect("="); QCC_PR_Expect("{"); QCC_PR_Lex(); arraysize++; while(1) { if(pr_token_type == tt_eof) break; if (QCC_PR_CheckToken(",")) arraysize++; if (QCC_PR_CheckToken("}")) break; QCC_PR_Lex(); } pr_file_p = oldprfile; QCC_PR_Lex(); } else { def = QCC_PR_Expression(TOP_PRIORITY, true); if (!def->constant) QCC_PR_ParseError(ERR_BADARRAYSIZE, "Array size is not a constant value"); else if (def->type->type == ev_integer) arraysize = G_INT(def->ofs); else if (def->type->type == ev_float) { arraysize = (int)G_FLOAT(def->ofs); if ((float)arraysize != G_FLOAT(def->ofs)) QCC_PR_ParseError(ERR_BADARRAYSIZE, "Array size is not a constant value"); } else QCC_PR_ParseError(ERR_BADARRAYSIZE, "Array size must be of int value"); /* if(pr_token_type == tt_name) { def = QCC_PR_GetDef(NULL, QCC_PR_ParseName(), pr_scope, false, 0); if (def && def->arraysize==1) { if (def->type->type == ev_integer) arraysize = G_INT(def->ofs); else if (def->type->type == ev_float && (float)(int)G_FLOAT(def->ofs) == G_FLOAT(def->ofs)) arraysize = (int)G_FLOAT(def->ofs); } } else if (pr_token_type == tt_immediate) { arraysize = atoi (pr_token); QCC_PR_Lex(); } */ QCC_PR_Expect("]"); } if (arraysize < 1) { QCC_PR_ParseError (ERR_BADARRAYSIZE, "Definition of array (%s) size is not of a numerical value", name); arraysize=0; //grrr... } } else arraysize = 1; if (QCC_PR_CheckToken("(")) { if (inlinefunction) QCC_PR_ParseWarning(WARN_UNSAFEFUNCTIONRETURNTYPE, "Function returning function. Is this what you meant? (suggestion: use typedefs)"); inlinefunction = false; type = QCC_PR_ParseFunctionType(false, type); } if (classname) { char *membername = name; name = qccHunkAlloc(strlen(classname) + strlen(name) + 3); sprintf(name, "%s::"MEMBERFIELDNAME, classname, membername); if (!QCC_PR_GetDef(NULL, name, NULL, false, 0, false)) QCC_PR_ParseError(ERR_NOTANAME, "%s %s is not a member of class %s\n", TypeName(type), membername, classname); sprintf(name, "%s::%s", classname, membername); pr_classtype = QCC_TypeForName(classname); if (!pr_classtype || !pr_classtype->parentclass) QCC_PR_ParseError(ERR_NOTANAME, "%s is not a class\n", classname); } else pr_classtype = NULL; oldglobals = numpr_globals; if (ispointer) { parm = type; while(ispointer) { ispointer--; parm = QCC_PointerTypeTo(parm); } def = QCC_PR_GetDef (parm, name, pr_scope, allocatenew, arraysize, !nosave); } else def = QCC_PR_GetDef (type, name, pr_scope, allocatenew, arraysize, !nosave); if (!def) QCC_PR_ParseError(ERR_NOTANAME, "%s is not part of class %s", name, classname); if (noref) def->references++; if (!def->initialized && shared) //shared count as initiialised { def->shared = shared; def->initialized = true; } if (externfnc) def->initialized = 2; // check for an initialization if (type->type == ev_function && (pr_scope)) { if ( QCC_PR_CheckToken ("=") ) { QCC_PR_ParseError (ERR_INITIALISEDLOCALFUNCTION, "local functions may not be initialised"); } arraysize = def->arraysize; d = def; //apply to ALL elements while(arraysize--) { d->initialized = 1; //fake function G_FUNCTION(d->ofs) = 0; d = d->next; } continue; } if (type->type == ev_field && QCC_PR_CheckToken ("alias")) { QCC_PR_ParseError(ERR_INTERNAL, "FTEQCC does not support this variant of decompiled hexenc\nPlease obtain the original version released by Raven Software instead."); name = QCC_PR_ParseName(); } else if ( QCC_PR_CheckToken ("=") || ((type->type == ev_function) && (pr_token[0] == '{' || pr_token[0] == '[' || pr_token[0] == ':'))) //this is an initialisation (or a function) { if (def->shared) QCC_PR_ParseError (ERR_SHAREDINITIALISED, "shared values may not be assigned an initial value", name); if (def->initialized == 1) { if (def->type->type == ev_function) { i = G_FUNCTION(def->ofs); df = &functions[i]; QCC_PR_ParseErrorPrintDef (ERR_REDECLARATION, def, "%s redeclared, prev instance is in %s", name, strings+df->s_file); } else QCC_PR_ParseErrorPrintDef(ERR_REDECLARATION, def, "%s redeclared", name); } if (autoprototype) { //ignore the code and stuff if (QCC_PR_CheckToken("[")) { while (!QCC_PR_CheckToken("]")) { if (pr_token_type == tt_eof) break; QCC_PR_Lex(); } } if (QCC_PR_CheckToken("{")) { int blev = 1; //balance out the { and } while(blev) { if (pr_token_type == tt_eof) break; if (QCC_PR_CheckToken("{")) blev++; else if (QCC_PR_CheckToken("}")) blev--; else QCC_PR_Lex(); //ignore it. } } else { QCC_PR_CheckToken("#"); QCC_PR_Lex(); } continue; } if (pr_token_type == tt_name) { unsigned int i; if (def->arraysize>1) QCC_PR_ParseError(ERR_ARRAYNEEDSBRACES, "Array initialisation requires curly braces"); d = QCC_PR_GetDef(NULL, pr_token, pr_scope, false, 0, false); if (!d) QCC_PR_ParseError(ERR_NOTDEFINED, "%s was not defined\n", name); if (typecmp(def->type, d->type)) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name); for (i = 0; i < d->type->size; i++) G_INT(def->ofs) = G_INT(d->ofs); QCC_PR_Lex(); if (type->type == ev_function) { def->initialized = 1; def->constant = !isvar; } continue; } else if (type->type == ev_function) { if (isvar) def->constant = false; else def->constant = true; if (QCC_PR_CheckToken("0")) { def->constant = 0; def->initialized = 1; //fake function G_FUNCTION(def->ofs) = 0; continue; } if (!def->constant && arraysize==1) { def->constant = 0; def->initialized = 1; //fake function name = QCC_PR_ParseName (); d = QCC_PR_GetDef (NULL, name, pr_scope, false, 0, false); if (!d) QCC_PR_ParseError(ERR_NOTDEFINED, "%s was not previously defined", name); G_FUNCTION(def->ofs+i) = G_FUNCTION(d->ofs); continue; } if (arraysize>1) { int i; def->initialized = 1; //fake function QCC_PR_Expect ("{"); i = 0; do { if (QCC_PR_CheckToken("0")) G_FUNCTION(def->ofs+i) = 0; else { name = QCC_PR_ParseName (); d = QCC_PR_GetDef (NULL, name, pr_scope, false, 0, false); if (!d) QCC_PR_ParseError(ERR_NOTDEFINED, "%s was not defined", name); else { if (!d->initialized) QCC_PR_ParseWarning(WARN_NOTDEFINED, "initialisation of function arrays must be placed after the body of all functions used (%s)", name); G_FUNCTION(def->ofs+i) = G_FUNCTION(d->ofs); } } i++; } while(QCC_PR_CheckToken(",")); arraysize = def->arraysize; d = def; //apply to ALL elements while(arraysize--) { d->initialized = 1; //fake function d = d->next; } QCC_PR_Expect("}"); if (i > def->arraysize) QCC_PR_ParseError(ERR_TOOMANYINITIALISERS, "Too many initializers"); continue; } if (!def->constant) QCC_PR_ParseError(0, "Initialised functions must be constant"); def->references++; pr_scope = def; f = QCC_PR_ParseImmediateStatements (type); pr_scope = NULL; def->initialized = 1; G_FUNCTION(def->ofs) = numfunctions; f->def = def; // if (pr_dumpasm) // PR_PrintFunction (def); // fill in the dfunction df = &functions[numfunctions]; numfunctions++; if (f->builtin) df->first_statement = -f->builtin; else df->first_statement = f->code; if (f->builtin && opt_function_names) optres_function_names += strlen(f->def->name); else df->s_name = QCC_CopyString (f->def->name); df->s_file = s_file2; df->numparms = f->def->type->num_parms; df->locals = locals_end - locals_start; df->parm_start = locals_start; for (i=0,parm = type->param ; inumparms ; i++, parm = parm->next) { df->parm_size[i] = parm->size; } continue; } else if (type->type == ev_struct) { int arraypart, partnum; QCC_type_t *parttype; def->initialized = 1; if (isvar) def->constant = true; else def->constant = false; // if (constant) // QCC_PR_ParseError("const used on a struct isn't useful"); //FIXME: should do this recursivly QCC_PR_Expect("{"); for (arraypart = 0; arraypart < arraysize; arraypart++) { parttype = type->param; QCC_PR_Expect("{"); for (partnum = 0; partnum < type->num_parms; partnum++) { switch (parttype->type) { case ev_float: case ev_integer: case ev_vector: if (pr_token_type == tt_punct) { if (QCC_PR_CheckToken("{")) { QCC_PR_Expect("}"); } else QCC_PR_ParseError(ERR_UNEXPECTEDPUNCTUATION, "Unexpected punctuation"); } else if (pr_token_type == tt_immediate) { if (pr_immediate_type->type == ev_float && parttype->type == ev_integer) G_INT(def->ofs + arraypart*type->size + parttype->ofs) = (int)pr_immediate._float; else if (pr_immediate_type->type != parttype->type) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate subtype for %s.%s", def->name, parttype->name); else memcpy (qcc_pr_globals + def->ofs + arraypart*type->size + parttype->ofs, &pr_immediate, 4*type_size[pr_immediate_type->type]); } else if (pr_token_type == tt_name) { d = QCC_PR_GetDef(NULL, pr_token, pr_scope, false, 0, false); if (!d) QCC_PR_ParseError(ERR_NOTDEFINED, "%s was not defined\n", pr_token); else if (d->type->type != parttype->type) QCC_PR_ParseError (ERR_WRONGSUBTYPE, "wrong subtype for %s.%s", def->name, parttype->name); else if (!d->constant) QCC_PR_ParseError(ERR_NOTACONSTANT, "%s isn't a constant\n", pr_token); memcpy (qcc_pr_globals + def->ofs + arraypart*type->size + parttype->ofs, qcc_pr_globals + d->ofs, 4*d->type->size); } else QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate subtype for %s.%s", def->name, parttype->name); QCC_PR_Lex (); break; case ev_string: if (pr_token_type == tt_punct) { if (QCC_PR_CheckToken("{")) { unsigned int i; for (i = 0; i < parttype->size; i++) { /* //the executor defines strings as true c strings, but reads in index from string table. //structures can hide these strings. d = (void *)qccHunkAlloc (sizeof(QCC_def_t)); d->next = NULL; pr.def_tail->next = d; pr.def_tail = d; d->type = parttype; d->name = "STRUCTIMMEDIATE"; d->constant = constant; d->initialized = 1; d->scope = NULL; d->ofs = def->ofs+arraypart*type->size+parttype->ofs+i; */ G_INT(def->ofs+arraypart*type->size+parttype->ofs+i) = QCC_CopyString(pr_immediate_string); QCC_PR_Lex (); if (!QCC_PR_CheckToken(",")) { i++; break; } } for (; i < parttype->size; i++) { /* //the executor defines strings as true c strings, but reads in index from string table. //structures can hide these strings. d = (void *)qccHunkAlloc (sizeof(QCC_def_t)); d->next = NULL; pr.def_tail->next = d; pr.def_tail = d; d->type = parttype; d->name = "STRUCTIMMEDIATE"; d->constant = constant; d->initialized = 1; d->scope = NULL; d->ofs = def->ofs+arraypart*type->size+parttype->ofs+i; */ G_INT(def->ofs+arraypart*type->size+parttype->ofs+i) = 0; } QCC_PR_Expect("}"); } else QCC_PR_ParseError(ERR_UNEXPECTEDPUNCTUATION, "Unexpected punctuation"); } else { /* //the executor defines strings as true c strings, but reads in index from string table. //structures can hide these strings. d = (void *)qccHunkAlloc (sizeof(QCC_def_t)); d->next = NULL; pr.def_tail->next = d; pr.def_tail = d; d->type = parttype; d->name = "STRUCTIMMEDIATE"; d->constant = constant; d->initialized = 1; d->scope = NULL; d->ofs = def->ofs+arraypart*type->size+parttype->ofs; */ G_INT(def->ofs+arraypart*type->size+parttype->ofs) = QCC_CopyString(pr_immediate_string); QCC_PR_Lex (); } break; case ev_function: if (pr_token_type == tt_immediate) { if (pr_immediate._int != 0) QCC_PR_ParseError(ERR_NOTFUNCTIONTYPE, "Expected function name or NULL"); G_FUNCTION(def->ofs+arraypart*type->size+parttype->ofs) = 0; QCC_PR_Lex(); } else { name = QCC_PR_ParseName (); d = QCC_PR_GetDef (NULL, name, pr_scope, false, 0, false); if (!d) QCC_PR_ParseError(ERR_NOTDEFINED, "%s was not defined\n", name); else G_FUNCTION(def->ofs+arraypart*type->size+parttype->ofs) = G_FUNCTION(d->ofs); } break; default: QCC_PR_ParseError(ERR_TYPEINVALIDINSTRUCT, "type %i not valid in a struct", parttype->type); QCC_PR_Lex(); break; } if (!QCC_PR_CheckToken(",")) break; parttype=parttype->next; } QCC_PR_Expect("}"); if (!QCC_PR_CheckToken(",")) break; } QCC_PR_Expect("}"); continue; } else if (type->type == ev_integer) //handle these differently, because they may need conversions { if (isvar) def->constant = false; else def->constant = true; def->initialized = 1; memcpy (qcc_pr_globals + def->ofs, &pr_immediate, 4*type_size[pr_immediate_type->type]); QCC_PR_Lex (); if (pr_immediate_type->type == ev_float) G_INT(def->ofs) = (int)pr_immediate._float; else if (pr_immediate_type->type != ev_integer) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name); continue; } else if (type->type == ev_string) { if (arraysize>=1 && QCC_PR_CheckToken("{")) { int i; for (i = 0; i < arraysize; i++) { //the executor defines strings as true c strings, but reads in index from string table. //structures can hide these strings. if (i != 0) //not for the first entry - already a string def for that { d = (void *)qccHunkAlloc (sizeof(QCC_def_t)); d->next = NULL; pr.def_tail->next = d; pr.def_tail = d; d->type = type_string; d->name = "IMMEDIATE"; if (isvar) d->constant = false; else d->constant = true; d->initialized = 1; d->scope = NULL; d->ofs = def->ofs+i; if (d->ofs >= MAX_REGS) QCC_Error(ERR_TOOMANYGLOBALS, "MAX_REGS is too small"); } (((int *)qcc_pr_globals)[def->ofs+i]) = QCC_CopyString(pr_immediate_string); QCC_PR_Lex (); if (!QCC_PR_CheckToken(",")) break; } QCC_PR_Expect("}"); continue; } else if (arraysize<=1) { if (isvar) def->constant = false; else def->constant = true; def->initialized = 1; (((int *)qcc_pr_globals)[def->ofs]) = QCC_CopyString(pr_immediate_string); QCC_PR_Lex (); if (pr_immediate_type->type == ev_float) G_INT(def->ofs) = (int)pr_immediate._float; else if (pr_immediate_type->type != ev_string) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name); continue; } else QCC_PR_ParseError(ERR_ARRAYNEEDSBRACES, "Array initialisation requires curly brasces"); } else if (type->type == ev_float) { if (arraysize>=1 && QCC_PR_CheckToken("{")) { int i; for (i = 0; i < arraysize; i++) { if (pr_immediate_type->type != ev_float) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name); (((float *)qcc_pr_globals)[def->ofs+i]) = pr_immediate._float; QCC_PR_Lex (); if (!QCC_PR_CheckToken(",")) break; } QCC_PR_Expect("}"); continue; } else if (arraysize<=1) { if (isvar) def->constant = false; else def->constant = true; def->initialized = 1; if (pr_immediate_type->type != ev_float) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name); if (def->constant && opt_dupconstdefs) { if (def->ofs == oldglobals) { if (Hash_GetKey(&floatconstdefstable, *(int*)&pr_immediate._float)) optres_dupconstdefs++; QCC_FreeOffset(def->ofs, def->type->size); d = QCC_MakeFloatDef(pr_immediate._float); d->references++; def->ofs = d->ofs; QCC_PR_Lex(); continue; } } (((float *)qcc_pr_globals)[def->ofs]) = pr_immediate._float; QCC_PR_Lex (); continue; } else QCC_PR_ParseError(ERR_ARRAYNEEDSBRACES, "Array initialisation requires curly brasces"); } else if (type->type == ev_vector) { if (arraysize>=1 && QCC_PR_CheckToken("{")) { int i; for (i = 0; i < arraysize; i++) { if (pr_immediate_type->type != ev_vector) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name); (((float *)qcc_pr_globals)[def->ofs+i*3+0]) = pr_immediate.vector[0]; (((float *)qcc_pr_globals)[def->ofs+i*3+1]) = pr_immediate.vector[1]; (((float *)qcc_pr_globals)[def->ofs+i*3+2]) = pr_immediate.vector[2]; QCC_PR_Lex (); if (!QCC_PR_CheckToken(",")) break; } QCC_PR_Expect("}"); continue; } else if (arraysize<=1) { if (isvar) def->constant = false; else def->constant = true; def->initialized = 1; (((float *)qcc_pr_globals)[def->ofs+0]) = pr_immediate.vector[0]; (((float *)qcc_pr_globals)[def->ofs+1]) = pr_immediate.vector[1]; (((float *)qcc_pr_globals)[def->ofs+2]) = pr_immediate.vector[2]; QCC_PR_Lex (); if (pr_immediate_type->type != ev_vector) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name); continue; } else QCC_PR_ParseError(ERR_ARRAYNEEDSBRACES, "Array initialisation requires curly brasces"); } else if (pr_token_type == tt_name) { // if (pr_scope)//create a new instance, emit a copy op // { // QCC_PR_ParseError ("name defined for local : %s", name); // } // else { d = QCC_PR_GetDef (NULL, pr_token, pr_scope, false, 0, false); if (!d) QCC_PR_ParseError (ERR_NOTDEFINED, "initialisation name not defined : %s", pr_token); if (!d->constant) { QCC_PR_ParseWarning (WARN_NOTCONSTANT, "initialisation name not a constant : %s", pr_token); QCC_PR_ParsePrintDef(WARN_NOTCONSTANT, d); } memcpy (def, d, sizeof(*d)); def->name = name; def->initialized = true; } } else if (pr_token_type != tt_immediate) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "not an immediate for %s - %s", name, pr_token); else if (pr_immediate_type->type != type->type) QCC_PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s - %s", name, pr_token); else memcpy (qcc_pr_globals + def->ofs, &pr_immediate, 4*type_size[pr_immediate_type->type]); if (isvar) def->constant = false; else def->constant = true; def->initialized = true; QCC_PR_Lex (); } else { if (type->type == ev_function && isvar) { isconstant = !isvar; def->initialized = 1; } if (isconstant && type->type == ev_field) def->constant = 2; //special flag on fields, 2, makes the pointer obtained from them also constant. else def->constant = isconstant; } } while (QCC_PR_CheckToken (",")); if (type->type == ev_function) QCC_PR_CheckToken (";"); else { if (!QCC_PR_CheckToken (";")) QCC_PR_ParseWarning(WARN_UNDESIRABLECONVENTION, "Missing semicolon at end of definition"); } } /* ============ PR_CompileFile compiles the 0 terminated text, adding defintions to the pr structure ============ */ pbool QCC_PR_CompileFile (char *string, char *filename) { jmp_buf oldjb; if (!pr.memory) QCC_Error (ERR_INTERNAL, "PR_CompileFile: Didn't clear"); QCC_PR_ClearGrabMacros (); // clear the frame macros compilingfile = filename; if (opt_filenames) { optres_filenames += strlen(filename); pr_file_p = qccHunkAlloc(strlen(filename)+1); strcpy(pr_file_p, filename); s_file = pr_file_p - strings; s_file2 = 0; } else { s_file = s_file2 = QCC_CopyString (filename); } pr_file_p = string; pr_source_line = 0; if( setjmp( pr_parse_abort ) ) { // dont count it as error } else { QCC_PR_NewLine (false); QCC_PR_Lex (); // read first token } memcpy(&oldjb, &pr_parse_abort, sizeof(oldjb)); while (pr_token_type != tt_eof) { if (setjmp(pr_parse_abort)) { if (++pr_error_count > MAX_ERRORS) { memcpy(&pr_parse_abort, &oldjb, sizeof(oldjb)); return false; } QCC_PR_SkipToSemicolon (); if (pr_token_type == tt_eof) { memcpy(&pr_parse_abort, &oldjb, sizeof(oldjb)); return false; } } pr_scope = NULL; // outside all functions QCC_PR_ParseDefs (NULL); } memcpy(&pr_parse_abort, &oldjb, sizeof(oldjb)); return (pr_error_count == 0); } pbool QCC_Include(char *filename) { char *newfile; char fname[512]; char *opr_file_p; QCC_string_t os_file, os_file2; int opr_source_line; char *ocompilingfile; struct qcc_includechunk_s *oldcurrentchunk; extern struct qcc_includechunk_s *currentchunk; ocompilingfile = compilingfile; os_file = s_file; os_file2 = s_file2; opr_source_line = pr_source_line; opr_file_p = pr_file_p; oldcurrentchunk = currentchunk; strcpy(fname, filename); QCC_LoadFile(fname, (void*)&newfile); currentchunk = NULL; pr_file_p = newfile; QCC_PR_CompileFile(newfile, fname); currentchunk = oldcurrentchunk; compilingfile = ocompilingfile; s_file = os_file; s_file2 = os_file2; pr_source_line = opr_source_line; pr_file_p = opr_file_p; // QCC_PR_IncludeChunk(newfile, false, fname); return true; } #endif