/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #include "winquake.h" cvar_t cl_nopred = SCVAR("cl_nopred","0"); extern cvar_t cl_lerp_players; cvar_t cl_pushlatency = SCVAR("pushlatency","-999"); extern float pm_airaccelerate; extern usercmd_t independantphysics[MAX_SPLITS]; #ifdef Q2CLIENT #define MAX_PARSE_ENTITIES 1024 extern entity_state_t cl_parse_entities[MAX_PARSE_ENTITIES]; char *Get_Q2ConfigString(int i); #ifdef Q2BSPS void VARGS Q2_Pmove (q2pmove_t *pmove); #define Q2PMF_DUCKED 1 #define Q2PMF_JUMP_HELD 2 #define Q2PMF_ON_GROUND 4 #define Q2PMF_TIME_WATERJUMP 8 // pm_time is waterjump #define Q2PMF_TIME_LAND 16 // pm_time is time before rejump #define Q2PMF_TIME_TELEPORT 32 // pm_time is non-moving time #define Q2PMF_NO_PREDICTION 64 // temporarily disables prediction (used for grappling hook) #endif vec3_t cl_predicted_origins[UPDATE_BACKUP]; /* =================== CL_CheckPredictionError =================== */ #ifdef Q2BSPS void CLQ2_CheckPredictionError (void) { int frame; int delta[3]; int i; int len; if (cl_nopred.value || (cl.q2frame.playerstate.pmove.pm_flags & Q2PMF_NO_PREDICTION)) return; // calculate the last usercmd_t we sent that the server has processed frame = cls.netchan.incoming_acknowledged; frame &= (UPDATE_MASK); // compare what the server returned with what we had predicted it to be VectorSubtract (cl.q2frame.playerstate.pmove.origin, cl_predicted_origins[frame], delta); // save the prediction error for interpolation len = abs(delta[0]) + abs(delta[1]) + abs(delta[2]); if (len > 640) // 80 world units { // a teleport or something VectorClear (cl.prediction_error); } else { // if (/*cl_showmiss->value && */(delta[0] || delta[1] || delta[2]) ) // Con_Printf ("prediction miss on %i: %i\n", cl.q2frame.serverframe, // delta[0] + delta[1] + delta[2]); VectorCopy (cl.q2frame.playerstate.pmove.origin, cl_predicted_origins[frame]); // save for error itnerpolation for (i=0 ; i<3 ; i++) cl.prediction_error[i] = delta[i]*0.125; } } /* ==================== CL_ClipMoveToEntities ==================== */ void CLQ2_ClipMoveToEntities ( vec3_t start, vec3_t mins, vec3_t maxs, vec3_t end, trace_t *tr ) { int i, x, zd, zu; trace_t trace; float *angles; entity_state_t *ent; int num; model_t *cmodel; vec3_t bmins, bmaxs; for (i=0 ; isolid) continue; if (ent->number == cl.playernum[0]+1) continue; if (ent->solid == ES_SOLID_BSP) { // special value for bmodel cmodel = cl.model_precache[ent->modelindex]; if (!cmodel) continue; angles = ent->angles; } else { // encoded bbox x = 8*(ent->solid & 31); zd = 8*((ent->solid>>5) & 31); zu = 8*((ent->solid>>10) & 63) - 32; bmins[0] = bmins[1] = -x; bmaxs[0] = bmaxs[1] = x; bmins[2] = -zd; bmaxs[2] = zu; cmodel = CM_TempBoxModel (bmins, bmaxs); angles = vec3_origin; // boxes don't rotate } if (tr->allsolid) return; trace = CM_TransformedBoxTrace (cmodel, start, end, mins, maxs, MASK_PLAYERSOLID, ent->origin, angles); if (trace.allsolid || trace.startsolid || trace.fraction < tr->fraction) { trace.ent = (struct edict_s *)ent; *tr = trace; } } } /* ================ CL_PMTrace ================ */ q2trace_t VARGS CLQ2_PMTrace (vec3_t start, vec3_t mins, vec3_t maxs, vec3_t end) { q2trace_t q2t; trace_t t; // check against world t = CM_BoxTrace (cl.worldmodel, start, end, mins, maxs, MASK_PLAYERSOLID); if (t.fraction < 1.0) t.ent = (struct edict_s *)1; // check all other solid models CLQ2_ClipMoveToEntities (start, mins, maxs, end, &t); q2t.allsolid = t.allsolid; q2t.contents = t.contents; VectorCopy(t.endpos, q2t.endpos); q2t.ent = t.ent; q2t.fraction = t.fraction; q2t.plane = t.plane; q2t.startsolid = t.startsolid; q2t.surface = t.surface; return q2t; } int VARGS CLQ2_PMpointcontents (vec3_t point) { int i; entity_state_t *ent; int num; model_t *cmodel; int contents; contents = CM_PointContents (cl.worldmodel, point); for (i=0 ; isolid != 31) // special value for bmodel continue; cmodel = cl.model_precache[ent->modelindex]; if (!cmodel) continue; contents |= CM_TransformedPointContents (cl.worldmodel, point, cmodel->hulls[0].firstclipnode, ent->origin, ent->angles); } return contents; } #endif /* ================= CL_PredictMovement Sets cl.predicted_origin and cl.predicted_angles ================= */ void CLQ2_PredictMovement (void) //q2 doesn't support split clients. { #ifdef Q2BSPS int ack, current; int frame; int oldframe; q2usercmd_t *cmd; q2pmove_t pm; int step; int oldz; #endif int i; if (cls.state != ca_active) return; // if (cl_paused->value) // return; #ifdef Q2BSPS if (cl_nopred.value || (cl.q2frame.playerstate.pmove.pm_flags & Q2PMF_NO_PREDICTION)) #endif { // just set angles for (i=0 ; i<3 ; i++) { cl.predicted_angles[i] = cl.viewangles[0][i] + SHORT2ANGLE(cl.q2frame.playerstate.pmove.delta_angles[i]); } return; } #ifdef Q2BSPS ack = cls.netchan.incoming_acknowledged; current = cls.netchan.outgoing_sequence; // if we are too far out of date, just freeze if (current - ack >= UPDATE_MASK) { // if (cl_showmiss->value) // Con_Printf ("exceeded CMD_BACKUP\n"); return; } // copy current state to pmove memset (&pm, 0, sizeof(pm)); pm.trace = CLQ2_PMTrace; pm.pointcontents = CLQ2_PMpointcontents; pm_airaccelerate = atof(Get_Q2ConfigString(Q2CS_AIRACCEL)); pm.s = cl.q2frame.playerstate.pmove; // SCR_DebugGraph (current - ack - 1, 0); frame = 0; // run frames while (++ack < current) { frame = ack & (UPDATE_MASK); cmd = (q2usercmd_t*)&cl.frames[frame].cmd[0]; pm.cmd = *cmd; Q2_Pmove (&pm); // save for debug checking VectorCopy (pm.s.origin, cl_predicted_origins[frame]); } if (independantphysics[0].msec) { cmd = (q2usercmd_t*)&independantphysics[0]; pm.cmd = *cmd; Q2_Pmove (&pm); } oldframe = (ack-2) & (UPDATE_MASK); oldz = cl_predicted_origins[oldframe][2]; step = pm.s.origin[2] - oldz; if (step > 63 && step < 160 && (pm.s.pm_flags & Q2PMF_ON_GROUND) ) { cl.predicted_step = step * 0.125; cl.predicted_step_time = realtime - host_frametime * 0.5; } cl.onground[0] = !!(pm.s.pm_flags & Q2PMF_ON_GROUND); // copy results out for rendering cl.predicted_origin[0] = pm.s.origin[0]*0.125; cl.predicted_origin[1] = pm.s.origin[1]*0.125; cl.predicted_origin[2] = pm.s.origin[2]*0.125; VectorCopy (pm.viewangles, cl.predicted_angles); #endif } /* ================= CL_NudgePosition If pmove.origin is in a solid position, try nudging slightly on all axis to allow for the cut precision of the net coordinates ================= */ void CL_NudgePosition (void) { vec3_t base; int x, y; if (cl.worldmodel->funcs.PointContents (cl.worldmodel, NULL, pmove.origin) == FTECONTENTS_EMPTY) return; VectorCopy (pmove.origin, base); for (x=-1 ; x<=1 ; x++) { for (y=-1 ; y<=1 ; y++) { pmove.origin[0] = base[0] + x * 1.0/8; pmove.origin[1] = base[1] + y * 1.0/8; if (cl.worldmodel->funcs.PointContents (cl.worldmodel, NULL, pmove.origin) == FTECONTENTS_EMPTY) return; } } Con_DPrintf ("CL_NudgePosition: stuck\n"); } #endif /* ============== CL_PredictUsercmd ============== */ void CL_PredictUsercmd (int pnum, player_state_t *from, player_state_t *to, usercmd_t *u) { extern vec3_t player_mins; extern vec3_t player_maxs; // split up very long moves if (u->msec > 50) { player_state_t temp; usercmd_t split; split = *u; split.msec /= 2; CL_PredictUsercmd (pnum, from, &temp, &split); CL_PredictUsercmd (pnum, &temp, to, &split); return; } VectorCopy (from->origin, pmove.origin); VectorCopy (u->angles, pmove.angles); VectorCopy (from->velocity, pmove.velocity); if (!(pmove.velocity[0] == 0) && !(pmove.velocity[0] != 0)) { Con_Printf("nan velocity!\n"); pmove.velocity[0] = 0; pmove.velocity[1] = 0; pmove.velocity[2] = 0; } pmove.jump_msec = (cls.z_ext & Z_EXT_PM_TYPE) ? 0 : from->jump_msec; pmove.jump_held = from->jump_held; pmove.waterjumptime = from->waterjumptime; pmove.pm_type = from->pm_type; pmove.cmd = *u; pmove.skipent = cl.playernum[pnum]+1; movevars.entgravity = cl.entgravity[pnum]; movevars.maxspeed = cl.maxspeed[pnum]; movevars.bunnyspeedcap = cl.bunnyspeedcap; pmove.onladder = false; VectorCopy(from->szmins, player_mins); VectorCopy(from->szmaxs, player_maxs); PM_PlayerMove (cl.gamespeed); to->waterjumptime = pmove.waterjumptime; to->jump_held = pmove.jump_held; to->jump_msec = pmove.jump_msec; pmove.jump_msec = 0; VectorCopy (pmove.origin, to->origin); VectorCopy (pmove.angles, to->viewangles); VectorCopy (pmove.velocity, to->velocity); to->onground = pmove.onground; to->weaponframe = from->weaponframe; to->pm_type = from->pm_type; VectorCopy(player_mins, to->szmins); VectorCopy(player_maxs, to->szmaxs); } //Used when cl_nopred is 1 to determine whether we are on ground, otherwise stepup smoothing code produces ugly jump physics void CL_CatagorizePosition (int pnum) { if (cl.spectator) { cl.onground[pnum] = false; // in air return; } VectorClear (pmove.velocity); VectorCopy (cl.simorg[pnum], pmove.origin); pmove.numtouch = 0; PM_CategorizePosition (); cl.onground[pnum] = pmove.onground; } //Smooth out stair step ups. //Called before CL_EmitEntities so that the player's lightning model origin is updated properly void CL_CalcCrouch (int pnum, float stepchange) { qboolean teleported; static vec3_t oldorigin[MAX_SPLITS]; static float oldz[MAX_SPLITS] = {0}, extracrouch[MAX_SPLITS] = {0}, crouchspeed[MAX_SPLITS] = {100,100}; vec3_t delta; VectorSubtract(cl.simorg[pnum], oldorigin[pnum], delta); teleported = Length(delta)>48; VectorCopy (cl.simorg[pnum], oldorigin[pnum]); if (teleported) { // possibly teleported or respawned oldz[pnum] = cl.simorg[pnum][2]; extracrouch[pnum] = 0; crouchspeed[pnum] = 100; cl.crouch[pnum] = 0; VectorCopy (cl.simorg[pnum], oldorigin[pnum]); return; } if (cl.onground[pnum] && cl.simorg[pnum][2] - oldz[pnum] > 0) { if (cl.simorg[pnum][2] - oldz[pnum] > movevars.stepheight+2) { // if on steep stairs, increase speed if (crouchspeed[pnum] < 160) { extracrouch[pnum] = cl.simorg[pnum][2] - oldz[pnum] - host_frametime * 200 - 15; extracrouch[pnum] = min(extracrouch[pnum], 5); } crouchspeed[pnum] = 160; } oldz[pnum] += host_frametime * crouchspeed[pnum]; if (oldz[pnum] > cl.simorg[pnum][2]) oldz[pnum] = cl.simorg[pnum][2]; if (cl.simorg[pnum][2] - oldz[pnum] > 15 + extracrouch[pnum]) oldz[pnum] = cl.simorg[pnum][2] - 15 - extracrouch[pnum]; extracrouch[pnum] -= host_frametime * 200; extracrouch[pnum] = max(extracrouch[pnum], 0); cl.crouch[pnum] = oldz[pnum] - cl.simorg[pnum][2]; } else { // in air or moving down oldz[pnum] = cl.simorg[pnum][2]; cl.crouch[pnum] += host_frametime * 150; if (cl.crouch[pnum] > 0) cl.crouch[pnum] = 0; crouchspeed[pnum] = 100; extracrouch[pnum] = 0; } } float LerpAngles360(float to, float from, float frac) { int delta; delta = (from-to); if (delta > 180) delta -= 360; if (delta < -180) delta += 360; return to + frac*delta; } //shamelessly ripped from zquake extern cvar_t cl_nolerp; static void CL_LerpMove (int pnum, float msgtime) { static int lastsequence = 0; static vec3_t lerp_angles[3]; static vec3_t lerp_origin[3]; static float lerp_times[3]; static qboolean nolerp[2]; static float demo_latency = 0.01; float frac; float simtime; int i; int from, to; if (!CL_MayLerp() || cls.demoplayback == DPB_MVD || cls.demoplayback == DPB_EZTV) return; #ifdef NQPROT if (cls.demoplayback == DPB_NETQUAKE) return; #endif if (cls.netchan.outgoing_sequence < lastsequence) { // reset lastsequence = -1; lerp_times[0] = -1; demo_latency = 0.01; } if (cls.netchan.outgoing_sequence > lastsequence) { lastsequence = cls.netchan.outgoing_sequence; // move along lerp_times[2] = lerp_times[1]; lerp_times[1] = lerp_times[0]; lerp_times[0] = msgtime; VectorCopy (lerp_origin[1], lerp_origin[2]); VectorCopy (lerp_origin[0], lerp_origin[1]); VectorCopy (cl.simorg[pnum], lerp_origin[0]); VectorCopy (lerp_angles[1], lerp_angles[2]); VectorCopy (lerp_angles[0], lerp_angles[1]); VectorCopy (cl.simangles[pnum], lerp_angles[0]); nolerp[1] = nolerp[0]; nolerp[0] = false; for (i = 0; i < 3; i++) if (fabs(lerp_origin[0][i] - lerp_origin[1][i]) > 40) break; if (i < 3) nolerp[0] = true; // a teleport or something } simtime = realtime - demo_latency; // adjust latency if (simtime > lerp_times[0]) { // Com_DPrintf ("HIGH clamp\n"); demo_latency = realtime - lerp_times[0]; } else if (simtime < lerp_times[2]) { // Com_DPrintf (" low clamp\n"); demo_latency = realtime - lerp_times[2]; } else { // drift towards ideal latency float ideal_latency = (lerp_times[0] - lerp_times[2]) * 0.6; if (demo_latency > ideal_latency) demo_latency = max(demo_latency - host_frametime * 0.1, ideal_latency); } // decide where to lerp from if (simtime > lerp_times[1]) { from = 1; to = 0; } else { from = 2; to = 1; } if (nolerp[to]) return; frac = (simtime - lerp_times[from]) / (lerp_times[to] - lerp_times[from]); frac = bound (0, frac, 1); for (i=0 ; i<3 ; i++) { cl.simorg[pnum][i] = lerp_origin[from][i] + frac * (lerp_origin[to][i] - lerp_origin[from][i]); cl.simangles[pnum][i] = LerpAngles360(lerp_angles[from][i], lerp_angles[to][i], frac); } // LerpVector (lerp_origin[from], lerp_origin[to], frac, cl.simorg); // LerpAngles (lerp_angles[from], lerp_angles[to], frac, cl.simangles); } short LerpAngles16(short to, short from, float frac) { int delta; delta = (from-to); if (delta > 32767) delta -= 65535; if (delta < -32767) delta += 65535; return to + frac*delta; } void CL_CalcClientTime(void) { { float oldst = realtime; if (cls.protocol == CP_QUAKEWORLD && cls.demoplayback == DPB_MVD) { extern float nextdemotime, olddemotime, demtime; float f; f = (demtime - olddemotime) / (nextdemotime - olddemotime); f = bound(0, f, 1); cl.time = cl.servertime = cl.gametime*f + cl.oldgametime*(1-f); } else { float min, max; oldst = cl.servertime; max = cl.gametime;// - 5; min = cl.oldgametime;// - 5; cl.servertime += host_frametime; if (cl.servertime > max) { if (cl.servertime > cl.gametime) { cl.servertime = cl.gametime; // Con_Printf("clamped to new time\n"); } else { cl.servertime -= 0.02*(cl.gametime - cl.servertime); } } if (cl.servertime < min) { if (cl.servertime < min-0.5) { cl.servertime = min-0.5; // Con_Printf("clamped to old time\n"); } else if (cl.servertime < min-0.3) { cl.servertime += 0.02*(min - cl.servertime); // Con_Printf("running really slow\n"); } else { cl.servertime += 0.01*(min - cl.servertime); // Con_Printf("running slow\n"); } } } cl.time = cl.servertime; if (oldst == 0) { int i; for (i = 0; i < MAX_CLIENTS; i++) { cl.players[i].entertime += cl.servertime; } } return; } if (cls.protocol == CP_NETQUAKE || (cls.demoplayback && cls.demoplayback != DPB_MVD && cls.demoplayback != DPB_EZTV)) { float want; // float off; want = cl.oldgametime + realtime - cl.gametimemark; // off = (want - cl.time); if (want>cl.time) //don't decrease cl.time = want; // Con_Printf("Drifted to %f off by %f\n", cl.time, off); // Con_Printf("\n"); if (cl.time > cl.gametime) { cl.time = cl.gametime; // Con_Printf("max TimeClamp\n"); } if (cl.time < cl.oldgametime) { cl.time = cl.oldgametime; // Con_Printf("old TimeClamp\n"); } } else { cl.time = realtime - cls.latency - cl_pushlatency.value*0.001; if (cl.time > realtime) cl.time = realtime; } } static void CL_DecodeStateSize(unsigned short solid, int modelindex, vec3_t mins, vec3_t maxs) { if (solid == ES_SOLID_BSP) { if (modelindex < MAX_MODELS && cl.model_precache[modelindex] && !cl.model_precache[modelindex]->needload) { VectorCopy(cl.model_precache[modelindex]->mins, mins); VectorCopy(cl.model_precache[modelindex]->maxs, maxs); } else { VectorClear(mins); VectorClear(maxs); } } else if (solid) { mins[0] = -8*(solid&31); mins[1] = -8*(solid&31); mins[2] = -8*((solid>>5)&31); maxs[0] = 8*(solid&31); maxs[1] = 8*(solid&31); maxs[2] = 8*((solid>>10)&63) - 32; } else { VectorClear(mins); VectorClear(maxs); } } /*called on packet reception*/ #include "pr_common.h" void CL_PlayerFrameUpdated(player_state_t *plstate, entity_state_t *state, int sequence) { /*update the prediction info*/ int pmtype, i; switch(state->u.q1.pmovetype) { case MOVETYPE_NOCLIP: if (cls.z_ext & Z_EXT_PM_TYPE_NEW) pmtype = PM_SPECTATOR; else pmtype = PM_OLD_SPECTATOR; break; case MOVETYPE_FLY: pmtype = PM_FLY; break; case MOVETYPE_NONE: pmtype = PM_NONE; break; case MOVETYPE_BOUNCE: case MOVETYPE_TOSS: pmtype = PM_DEAD; break; case MOVETYPE_WALLWALK: pmtype = PM_WALLWALK; break; default: pmtype = PM_NORMAL; break; } plstate->pm_type = pmtype; VectorCopy(state->origin, plstate->origin); plstate->command.angles[0] = state->angles[0] * -3 *65536/360.0; plstate->command.angles[1] = state->angles[1] * 65536/360.0; plstate->command.angles[2] = state->angles[2] * 65536/360.0; VectorScale(state->u.q1.velocity, 1/8.0, plstate->velocity); plstate->messagenum = sequence; cl.players[state->number-1].stats[STAT_WEAPONFRAME] = state->u.q1.weaponframe; cl.players[state->number-1].statsf[STAT_WEAPONFRAME] = state->u.q1.weaponframe; for (i = 0; i < cl.splitclients; i++) { if (cl.playernum[i] == state->number-1) { cl.stats[i][STAT_WEAPONFRAME] = state->u.q1.weaponframe; cl.statsf[i][STAT_WEAPONFRAME] = state->u.q1.weaponframe; } } CL_DecodeStateSize(state->solid, state->modelindex, plstate->szmins, plstate->szmaxs); } /*called once every rendered frame*/ qboolean CL_PredictPlayer(lerpents_t *le, entity_state_t *state, int sequence) { int msec, oldphysent; usercmd_t cmd; player_state_t start, exact; int pnum; if (state->number-1 > cl.allocated_client_slots || cl.intermission) return false; /*local players just interpolate for now. the prediction code will move it to the right place afterwards*/ for (pnum = 0; pnum < cl.splitclients; pnum++) { if (state->number-1 == cl.playernum[pnum]) return false; } memset(&cmd, 0, sizeof(cmd)); memset(&start, 0, sizeof(start)); CL_PlayerFrameUpdated(&start, state, sequence); msec = 500*(realtime - cls.latency + 0.02 - cl.frames[sequence & UPDATE_MASK].receivedtime); cmd.msec = bound(0, msec, 255); cmd.forwardmove = state->u.q1.movement[0]; cmd.sidemove = state->u.q1.movement[1]; cmd.upmove = state->u.q1.movement[2]; oldphysent = pmove.numphysent; pmove.skipent = state->number-1; CL_PredictUsercmd (0, &start, &exact, &cmd); //uses player 0's maxspeed/grav... pmove.numphysent = oldphysent; /*need to update the entity's angles and origin so the linkentities function puts it in the correct predicted place*/ le->angles[0] = state->angles[0]; le->angles[1] = state->angles[1]; le->angles[2] = state->angles[2]; VectorCopy (exact.origin, le->origin); return true; } /* ============== CL_PredictMove ============== */ void CL_PredictMovePNum (int pnum) { frame_t ind; int i; float f; frame_t *from, *to = NULL; int oldphysent; vec3_t lrp, lrpv; //these are to make svc_viewentity work better float *vel; float *org; float stepheight = 0; cl.nolocalplayer[pnum] = !!(cls.fteprotocolextensions2 & PEXT2_REPLACEMENTDELTAS); #ifdef Q2CLIENT if (cls.protocol == CP_QUAKE2) { if (!cl.worldmodel || cl.worldmodel->needload) return; cl.crouch[pnum] = 0; CLQ2_PredictMovement(); return; } #endif if (cl_pushlatency.value > 0) Cvar_Set (&cl_pushlatency, "0"); if (cl.paused && !(cls.demoplayback!=DPB_MVD && cls.demoplayback!=DPB_EZTV) && (!cl.spectator || !autocam[pnum])) return; if (cl.intermission==1 && cls.protocol == CP_QUAKEWORLD) { cl.crouch[pnum] = 0; return; } #ifdef NQPROT if (cls.protocol == CP_NETQUAKE) { cl.ackedinputsequence = cls.netchan.outgoing_sequence; } #endif if (!cl.ackedinputsequence) { return; } if (cls.netchan.outgoing_sequence - cl.ackedinputsequence >= UPDATE_BACKUP-1) { //lagging like poo. if (!cl.intermission) //keep the angles working though. VectorCopy (cl.viewangles[pnum], cl.simangles[pnum]); return; } // this is the last frame received from the server from = &cl.frames[cl.ackedinputsequence & UPDATE_MASK]; if (!cl.intermission) { VectorCopy (cl.viewangles[pnum], cl.simangles[pnum]); } vel = from->playerstate[cl.playernum[pnum]].velocity; org = from->playerstate[cl.playernum[pnum]].origin; #ifdef PEXT_SETVIEW if (cl.viewentity[pnum]) { if (cl.viewentity[pnum] < cl.maxlerpents) { cl.nolocalplayer[pnum] = true; // Con_Printf("Using lerped pos\n"); org = cl.lerpents[cl.viewentity[pnum]].origin; vel = vec3_origin; goto fixedorg; } } #endif if (!from->playerstate[cl.playernum[pnum]].messagenum) { //no player states?? put the view on an ent if (cl.playernum[pnum] < cl.maxlerpents) { cl.nolocalplayer[pnum] = true; // Con_Printf("Using lerped pos\n"); org = cl.lerpents[cl.playernum[pnum]+1].origin; vel = vec3_origin; goto fixedorg; } } if (((cl_nopred.value && cls.demoplayback!=DPB_MVD && cls.demoplayback != DPB_EZTV)|| cl.fixangle[pnum] || cl.paused)) { if (cl_lerp_players.ival && !cls.demoplayback) { lerpents_t *le = &cl.lerpplayers[spec_track[pnum]]; org = le->origin; vel = vec3_origin; } fixedorg: VectorCopy (vel, cl.simvel[pnum]); VectorCopy (org, cl.simorg[pnum]); to = &cl.frames[cl.ackedinputsequence & UPDATE_MASK]; CL_CatagorizePosition(pnum); goto out; } // predict forward until cl.time <= to->senttime oldphysent = pmove.numphysent; CL_SetSolidPlayers(); pmove.skipent = cl.playernum[pnum]+1; to = &cl.frames[cl.ackedinputsequence & UPDATE_MASK]; if (Cam_TrackNum(pnum)>=0 && CL_MayLerp()) { float f; if (cl_lerp_players.ival && (cls.demoplayback==DPB_MVD || cls.demoplayback == DPB_EZTV)) { lerpents_t *le = &cl.lerpplayers[spec_track[pnum]]; org = le->origin; vel = vec3_origin; VectorCopy(le->angles, cl.simangles[pnum]); goto fixedorg; } to = &cl.frames[cl.validsequence & UPDATE_MASK]; from = &cl.frames[cl.oldvalidsequence & UPDATE_MASK]; //figure out the lerp factor if (cl.gametime == cl.servertime) f = 0; else f = (cl.gametime-cl.servertime)/(cl.gametime-cl.oldgametime);//f = (cl.time-cl.lerpents[state->number].lerptime)/cl.lerpents[state->number].lerprate; if (f<0) f=0; if (f>1) f=1; // f = 1-f; // calculate origin for (i=0 ; i<3 ; i++) { lrp[i] = to->playerstate[cl.playernum[pnum]].origin[i] + f * (from->playerstate[cl.playernum[pnum]].origin[i] - to->playerstate[cl.playernum[pnum]].origin[i]); lrpv[i] = to->playerstate[spec_track[pnum]].velocity[i] + f * (from->playerstate[spec_track[pnum]].velocity[i] - to->playerstate[spec_track[pnum]].velocity[i]); cl.simangles[pnum][i] = LerpAngles16(to->playerstate[spec_track[pnum]].command.angles[i], from->playerstate[spec_track[pnum]].command.angles[i], f)*360.0f/65535; } org = lrp; vel = lrpv; cl.pmovetype[pnum] = PM_NONE; goto fixedorg; } else { if (cls.demoplayback==DPB_MVD || cls.demoplayback==DPB_EZTV) { to = &cl.frames[(cls.netchan.outgoing_sequence-1) & UPDATE_MASK]; to->playerstate->pm_type = PM_SPECTATOR; VectorCopy (cl.simvel[pnum], from->playerstate[cl.playernum[pnum]].velocity); VectorCopy (cl.simorg[pnum], from->playerstate[cl.playernum[pnum]].origin); CL_PredictUsercmd (pnum, &from->playerstate[cl.playernum[pnum]], &to->playerstate[cl.playernum[pnum]], &to->cmd[pnum]); } else { for (i=1 ; iplayerstate[cl.playernum[pnum]] , &to->playerstate[cl.playernum[pnum]], &to->cmd[pnum]); if (to->senttime >= realtime) break; from = to; } } if (independantphysics[pnum].msec) { from = to; to = &ind; to->cmd[pnum] = independantphysics[pnum]; to->senttime = realtime; CL_PredictUsercmd (pnum, &from->playerstate[cl.playernum[pnum]] , &to->playerstate[cl.playernum[pnum]], &to->cmd[pnum]); } cl.onground[pnum] = pmove.onground; cl.pmovetype[pnum] = to->playerstate[cl.playernum[pnum]].pm_type; stepheight = to->playerstate[cl.playernum[pnum]].origin[2] - from->playerstate[cl.playernum[pnum]].origin[2]; if (cl.nolocalplayer[pnum]) { //keep the entity tracking the prediction position, so mirrors don't go all weird VectorCopy(to->playerstate[cl.playernum[pnum]].origin, cl.lerpents[cl.playernum[pnum]+1].origin); VectorScale(to->cmd[pnum].angles, 360.0f / 0xffff, cl.lerpents[cl.playernum[pnum]+1].angles); cl.lerpents[cl.playernum[pnum]+1].angles[0] *= -0.333; } } pmove.numphysent = oldphysent; if (1)//!independantphysics.msec) { VectorCopy (to->playerstate[cl.playernum[pnum]].velocity, cl.simvel[pnum]); VectorCopy (to->playerstate[cl.playernum[pnum]].origin, cl.simorg[pnum]); } else { // now interpolate some fraction of the final frame if (to->senttime == from->senttime) f = 0; else { f = (realtime - from->senttime) / (to->senttime - from->senttime); if (f < 0) f = 0; if (f > 1) f = 1; } for (i=0 ; i<3 ; i++) if ( fabs(org[i] - to->playerstate[cl.playernum[pnum]].origin[i]) > 128) { // teleported, so don't lerp VectorCopy (to->playerstate[cl.playernum[pnum]].velocity, cl.simvel[pnum]); VectorCopy (to->playerstate[cl.playernum[pnum]].origin, cl.simorg[pnum]); goto out; } for (i=0 ; i<3 ; i++) { cl.simorg[pnum][i] = org[i] + f*(to->playerstate[cl.playernum[pnum]].origin[i] - org[i]); cl.simvel[pnum][i] = vel[i] + f*(to->playerstate[cl.playernum[pnum]].velocity[i] - vel[i]); } CL_CatagorizePosition(pnum); } if (cls.demoplayback) CL_LerpMove (pnum, to->senttime); out: CL_CalcCrouch (pnum, stepheight); cl.waterlevel[pnum] = pmove.waterlevel; } void CL_PredictMove (void) { int i; //work out which packet entities are solid CL_SetSolidEntities (); // Set up prediction for other players CL_SetUpPlayerPrediction(false); // do client side motion prediction for (i = 0; i < cl.splitclients; i++) CL_PredictMovePNum(i); // Set up prediction for other players CL_SetUpPlayerPrediction(true); } /* ============== CL_InitPrediction ============== */ void CL_InitPrediction (void) { extern char cl_predictiongroup[]; Cvar_Register (&cl_pushlatency, cl_predictiongroup); Cvar_Register (&cl_nopred, cl_predictiongroup); }