!!ver 100 150 !!permu TESS !!permu FULLBRIGHT !!permu UPPERLOWER !!permu FRAMEBLEND !!permu SKELETAL !!permu FOG !!permu BUMP !!permu REFLECTCUBEMASK !!cvarf r_glsl_offsetmapping_scale !!cvarf gl_specular !!cvardf gl_affinemodels=0 !!cvardf r_tessellation_level=5 !!samps !EIGHTBIT diffuse normalmap specular fullbright upper lower reflectmask reflectcube !!samps =EIGHTBIT paletted 1 !!samps =OCCLUDE occlusion //!!permu VC // adds rgba vertex colour multipliers //!!permu SPECULAR // auto-added when gl_specular>0 //!!permu OFFSETMAPPING // auto-added when r_glsl_offsetmapping is set //!!permu NONORMALS // states that there's no normals available, which affects lighting. //!!permu ORM // specularmap is r:Occlusion, g:Roughness, b:Metalness //!!permu SG // specularmap is rgb:F0, a:Roughness (instead of exponent) //!!permu PBR // an attempt at pbr logic (enabled from ORM or SG) //!!permu NOOCCLUDE // ignores the use of ORM's occlusion... yeah, stupid. //!!permu OCCLUDE // use an explicit occlusion texturemap (separate from roughness+metalness). //!!permu EIGHTBIT // uses software-style paletted colourmap lookups //!!permu ALPHATEST // if defined, this is the required alpha level (more versatile than doing it at the q3shader level) #include "sys/defs.h" //standard shader used for models. //must support skeletal and 2-way vertex blending or Bad Things Will Happen. //the vertex shader is responsible for calculating lighting values. #if gl_affinemodels==1 && __VERSION__ >= 130 && !defined(GL_ES) #define affine noperspective #else #define affine #endif #if defined(ORM) || defined(SG) #define PBR #endif #ifdef NONORMALS //lots of things need normals to work properly. make sure nothing breaks simply because they added an extra texture. #undef BUMP #undef SPECULAR #undef OFFSETMAPPING #undef REFLECTCUBEMASK #endif #ifdef VERTEX_SHADER #include "sys/skeletal.h" affine varying vec2 tc; varying vec4 light; #if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR) varying vec3 eyevector; #endif #if defined(PBR)||defined(REFLECTCUBEMASK) varying mat3 invsurface; #endif #ifdef TESS varying vec3 vertex; varying vec3 normal; #endif void main () { light.rgba = vec4(e_light_ambient, 1.0); #ifdef NONORMALS vec3 n, w; gl_Position = skeletaltransform_w(w); n = vec3(0.0); #else vec3 n, s, t, w; gl_Position = skeletaltransform_wnst(w,n,s,t); n = normalize(n); s = normalize(s); t = normalize(t); #ifndef PBR float d = dot(n,e_light_dir); if (d < 0.0) //vertex shader. this might get ugly, but I don't really want to make it per vertex. d = 0.0; //this avoids the dark side going below the ambient level. light.rgb += (d*e_light_mul); #else light.rgb = vec3(1.0); #endif #endif #if defined(SPECULAR)||defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR) vec3 eyeminusvertex = e_eyepos - w.xyz; eyevector.x = dot(eyeminusvertex, s.xyz); eyevector.y = dot(eyeminusvertex, t.xyz); eyevector.z = dot(eyeminusvertex, n.xyz); #endif #if defined(PBR) || defined(REFLECTCUBEMASK) invsurface = mat3(s, t, n); #endif tc = v_texcoord; #ifdef VC light *= v_colour; #endif //FIXME: Software rendering imitation should possibly push out normals by half a pixel or something to approximate software's over-estimation of distant model sizes (small models are drawn using JUST their verticies using the nearest pixel, which results in larger meshes) #ifdef TESS normal = n; vertex = w; #endif } #endif #if defined(TESS_CONTROL_SHADER) layout(vertices = 3) out; in vec3 vertex[]; out vec3 t_vertex[]; in vec3 normal[]; out vec3 t_normal[]; affine in vec2 tc[]; affine out vec2 t_tc[]; in vec4 light[]; out vec4 t_light[]; #if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR) in vec3 eyevector[]; out vec3 t_eyevector[]; #endif #ifdef REFLECTCUBEMASK in mat3 invsurface[]; out mat3 t_invsurface[]; #endif void main() { //the control shader needs to pass stuff through #define id gl_InvocationID t_vertex[id] = vertex[id]; t_normal[id] = normal[id]; t_tc[id] = tc[id]; t_light[id] = light[id]; #if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR) t_eyevector[id] = eyevector[id]; #endif #ifdef REFLECTCUBEMASK t_invsurface[id][0] = invsurface[id][0]; t_invsurface[id][1] = invsurface[id][1]; t_invsurface[id][2] = invsurface[id][2]; #endif gl_TessLevelOuter[0] = float(r_tessellation_level); gl_TessLevelOuter[1] = float(r_tessellation_level); gl_TessLevelOuter[2] = float(r_tessellation_level); gl_TessLevelInner[0] = float(r_tessellation_level); } #endif #if defined(TESS_EVALUATION_SHADER) layout(triangles) in; in vec3 t_vertex[]; in vec3 t_normal[]; affine in vec2 t_tc[]; affine out vec2 tc; in vec4 t_light[]; out vec4 light; #if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR) in vec3 t_eyevector[]; out vec3 eyevector; #endif #ifdef REFLECTCUBEMASK in mat3 t_invsurface[]; out mat3 invsurface; #endif #define LERP(a) (gl_TessCoord.x*a[0] + gl_TessCoord.y*a[1] + gl_TessCoord.z*a[2]) void main() { #define factor 1.0 tc = LERP(t_tc); vec3 w = LERP(t_vertex); vec3 t0 = w - dot(w-t_vertex[0],t_normal[0])*t_normal[0]; vec3 t1 = w - dot(w-t_vertex[1],t_normal[1])*t_normal[1]; vec3 t2 = w - dot(w-t_vertex[2],t_normal[2])*t_normal[2]; w = w*(1.0-factor) + factor*(gl_TessCoord.x*t0+gl_TessCoord.y*t1+gl_TessCoord.z*t2); //FIXME: we should be recalcing these here, instead of just lerping them light = LERP(t_light); #if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR) eyevector = LERP(t_eyevector); #endif #ifdef REFLECTCUBEMASK invsurface[0] = LERP(t_invsurface[0]); invsurface[1] = LERP(t_invsurface[1]); invsurface[2] = LERP(t_invsurface[2]); #endif gl_Position = m_modelviewprojection * vec4(w,1.0); } #endif #ifdef FRAGMENT_SHADER #include "sys/fog.h" #if defined(SPECULAR) uniform float cvar_gl_specular; #endif #ifdef OFFSETMAPPING #include "sys/offsetmapping.h" #endif #ifdef EIGHTBIT #define s_colourmap s_t0 #endif affine varying vec2 tc; varying vec4 light; #if defined(SPECULAR) || defined(OFFSETMAPPING) || defined(REFLECTCUBEMASK) || defined(PBR) varying vec3 eyevector; #endif #if defined(PBR) || defined(REFLECTCUBEMASK) varying mat3 invsurface; #endif #ifdef PBR #include "sys/pbr.h" #if 0 vec3 getIBLContribution(PBRInfo pbrInputs, vec3 n, vec3 reflection) { float mipCount = 9.0; // resolution of 512x512 float lod = (pbrInputs.perceptualRoughness * mipCount); // retrieve a scale and bias to F0. See [1], Figure 3 vec3 brdf = texture2D(u_brdfLUT, vec2(pbrInputs.NdotV, 1.0 - pbrInputs.perceptualRoughness)).rgb; vec3 diffuseLight = textureCube(u_DiffuseEnvSampler, n).rgb; #ifdef USE_TEX_LOD vec3 specularLight = textureCubeLodEXT(u_SpecularEnvSampler, reflection, lod).rgb; #else vec3 specularLight = textureCube(u_SpecularEnvSampler, reflection).rgb; #endif vec3 diffuse = diffuseLight * pbrInputs.diffuseColor; vec3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y); // For presentation, this allows us to disable IBL terms diffuse *= u_ScaleIBLAmbient.x; specular *= u_ScaleIBLAmbient.y; return diffuse + specular; } #endif #endif void main () { vec4 col, sp; #ifdef OFFSETMAPPING vec2 tcoffsetmap = offsetmap(s_normalmap, tc, eyevector); #define tc tcoffsetmap #endif #ifdef EIGHTBIT vec3 lightlev = light.rgb; //FIXME: with this extra flag, half the permutations are redundant. lightlev *= 0.5; //counter the fact that the colourmap contains overbright values and logically ranges from 0 to 2 intead of to 1. float pal = texture2D(s_paletted, tc).r; //the palette index. hopefully not interpolated. // lightlev -= 1.0 / 128.0; //software rendering appears to round down, so make sure we favour the lower values instead of rounding to the nearest col.r = texture2D(s_colourmap, vec2(pal, 1.0-lightlev.r)).r; //do 3 lookups. this is to cope with lit files, would be a waste to not support those. col.g = texture2D(s_colourmap, vec2(pal, 1.0-lightlev.g)).g; //its not very softwarey, but re-palettizing is ugly. col.b = texture2D(s_colourmap, vec2(pal, 1.0-lightlev.b)).b; //without lits, it should be identical. col.a = (pal<1.0)?light.a:0.0; #else col = texture2D(s_diffuse, tc); #ifdef UPPER vec4 uc = texture2D(s_upper, tc); col.rgb += uc.rgb*e_uppercolour*uc.a; #endif #ifdef LOWER vec4 lc = texture2D(s_lower, tc); col.rgb += lc.rgb*e_lowercolour*lc.a; #endif col *= factor_base; #define dielectricSpecular 0.04 #ifdef SPECULAR vec4 specs = texture2D(s_specular, tc)*factor_spec; #ifdef ORM #define occlusion specs.r #define roughness clamp(specs.g, 0.04, 1.0) #define metalness specs.b #define gloss 1.0 //sqrt(1.0-roughness) #define ambientrgb (specrgb+col.rgb) vec3 specrgb = mix(vec3(dielectricSpecular), col.rgb, metalness); col.rgb = col.rgb * (1.0 - dielectricSpecular) * (1.0-metalness); #elif defined(SG) //pbr-style specular+glossiness, without occlusion //occlusion needs to be baked in. :( #define roughness (1.0-specs.a) #define gloss (specs.a) #define specrgb specs.rgb #define ambientrgb (specrgb+col.rgb) #else //blinn-phong #define roughness (1.0-specs.a) #define gloss specs.a #define specrgb specs.rgb #define ambientrgb col.rgb #endif #else #define roughness 0.3 #define specrgb vec3(1.0) //vec3(dielectricSpecular) #define ambientrgb col.rgb #endif #ifdef BUMP #ifdef PBR //to modelspace vec3 bumps = normalize(invsurface * (texture2D(s_normalmap, tc).rgb*2.0 - 1.0)); #else //stay in tangentspace vec3 bumps = normalize(vec3(texture2D(s_normalmap, tc)) - 0.5); #endif #else #ifdef PBR //to modelspace #define bumps normalize(invsurface[2]) #else //tangent space #define bumps vec3(0.0, 0.0, 1.0) #endif #endif #ifdef PBR //move everything to model space col.rgb = DoPBR(bumps, normalize(eyevector), -e_light_dir, roughness, col.rgb, specrgb, vec3(0.0,1.0,1.0))*e_light_mul + e_light_ambient*.25*ambientrgb; #elif defined(gloss) vec3 halfdir = normalize(normalize(eyevector) - e_light_dir); float specmag = pow(max(dot(halfdir, bumps), 0.0), FTE_SPECULAR_EXPONENT * gloss); col.rgb += FTE_SPECULAR_MULTIPLIER * specmag * specrgb; #endif #ifdef REFLECTCUBEMASK vec3 rtc = reflect(-eyevector, bumps); #ifndef PBR rtc = rtc.x*invsurface[0] + rtc.y*invsurface[1] + rtc.z*invsurface[2]; #endif rtc = (m_model * vec4(rtc.xyz,0.0)).xyz; col.rgb += texture2D(s_reflectmask, tc).rgb * textureCube(s_reflectcube, rtc).rgb; #endif #ifdef OCCLUDE col.rgb *= texture2D(s_occlusion, tc).r; #elif defined(occlusion) && !defined(NOOCCLUDE) col.rgb *= occlusion; #endif col *= light * e_colourident; #ifdef FULLBRIGHT vec4 fb = texture2D(s_fullbright, tc); // col.rgb = mix(col.rgb, fb.rgb, fb.a); col.rgb += fb.rgb * fb.a * e_glowmod.rgb * factor_emit.rgb; #elif defined(PBR) col.rgb += e_glowmod.rgb * factor_emit.rgb; #endif #endif #ifdef ALPHATEST if (!(col.a ALPHATEST)) discard; #elif defined(MASK) #if defined(MASKLT) if (col.a < MASK) discard; #else if (col.a >= MASK) discard; #endif col.a = 1.0; //alpha blending AND alpha testing usually looks stupid, plus it screws up our fog. #endif gl_FragColor = fog4(col); } #endif