1
0
Fork 0
forked from fte/fteqw
fteqw/engine/gl/gl_rmain.c

1216 lines
29 KiB
C
Raw Normal View History

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_main.c
#include "quakedef.h"
#ifdef GLQUAKE
#include "glquake.h"
#include "renderque.h"
#include "shader.h"
#include "gl_draw.h"
void R_RenderBrushPoly (msurface_t *fa);
#define PROJECTION_DISTANCE 200
#define MAX_STENCIL_ENTS 128
extern int gl_stencilbits;
FTEPFNGLCOMPRESSEDTEXIMAGE2DARBPROC qglCompressedTexImage2DARB;
FTEPFNGLGETCOMPRESSEDTEXIMAGEARBPROC qglGetCompressedTexImageARB;
entity_t r_worldentity;
vec3_t modelorg, r_entorigin;
int r_visframecount; // bumped when going to a new PVS
extern int r_framecount; // used for dlight push checking
float r_wateralphaval; //allowed or not...
//mplane_t frustum[4];
int c_brush_polys, c_alias_polys;
//
// view origin
//
vec3_t vup;
vec3_t vpn;
vec3_t vright;
vec3_t r_origin;
texture_t *r_notexture_mip;
cvar_t r_norefresh = SCVAR("r_norefresh","0");
extern cvar_t gl_part_flame;
extern cvar_t r_bloom;
cvar_t gl_affinemodels = SCVAR("gl_affinemodels","0");
cvar_t gl_reporttjunctions = SCVAR("gl_reporttjunctions","0");
cvar_t gl_finish = SCVAR("gl_finish","0");
cvar_t gl_dither = SCVAR("gl_dither", "1");
extern cvar_t r_postprocshader;
extern cvar_t gl_screenangle;
extern cvar_t gl_mindist;
extern cvar_t ffov;
extern cvar_t gl_motionblur;
extern cvar_t gl_motionblurscale;
extern cvar_t gl_ati_truform;
extern cvar_t gl_ati_truform_type;
extern cvar_t gl_ati_truform_tesselation;
extern cvar_t gl_blendsprites;
#ifdef R_XFLIP
cvar_t r_xflip = SCVAR("leftisright", "0");
#endif
extern cvar_t scr_fov;
shader_t *scenepp_waterwarp;
// post processing stuff
texid_t sceneblur_texture;
texid_t scenepp_texture_warp;
texid_t scenepp_texture_edge;
texid_t scenepp_postproc_cube;
// KrimZon - init post processing - called in GL_CheckExtensions, when they're called
// I put it here so that only this file need be changed when messing with the post
// processing shaders
void GL_InitSceneProcessingShaders_WaterWarp (void)
{
if (gl_config.arb_shader_objects)
{
scenepp_waterwarp = R_RegisterShader("waterwarp",
"{\n"
"program underwaterwarp\n"
"{\n"
"map $currentrender\n"
"}\n"
"{\n"
"map $upperoverlay\n"
"}\n"
"{\n"
"map $loweroverlay\n"
"}\n"
"}\n"
);
scenepp_waterwarp->defaulttextures.upperoverlay = scenepp_texture_warp;
scenepp_waterwarp->defaulttextures.loweroverlay = scenepp_texture_edge;
}
}
void GL_InitSceneProcessingShaders (void)
{
if (gl_config.arb_shader_objects)
{
GL_InitSceneProcessingShaders_WaterWarp();
}
gl_dither.modified = true; //fixme: bad place for this, but hey
}
#define PP_WARP_TEX_SIZE 64
#define PP_AMP_TEX_SIZE 64
#define PP_AMP_TEX_BORDER 4
void GL_SetupSceneProcessingTextures (void)
{
int i, x, y;
unsigned char pp_warp_tex[PP_WARP_TEX_SIZE*PP_WARP_TEX_SIZE*3];
unsigned char pp_edge_tex[PP_AMP_TEX_SIZE*PP_AMP_TEX_SIZE*3];
scenepp_postproc_cube = r_nulltex;
TEXASSIGN(sceneblur_texture, GL_AllocNewTexture("***postprocess_blur***", 0, 0));
if (!gl_config.arb_shader_objects)
return;
TEXASSIGN(scenepp_texture_warp, GL_AllocNewTexture("***postprocess_warp***", 0, 0));
TEXASSIGN(scenepp_texture_edge, GL_AllocNewTexture("***postprocess_edge***", 0, 0));
// init warp texture - this specifies offset in
for (y=0; y<PP_WARP_TEX_SIZE; y++)
{
for (x=0; x<PP_WARP_TEX_SIZE; x++)
{
float fx, fy;
i = (x + y*PP_WARP_TEX_SIZE) * 3;
fx = sin(((double)y / PP_WARP_TEX_SIZE) * M_PI * 2);
fy = cos(((double)x / PP_WARP_TEX_SIZE) * M_PI * 2);
pp_warp_tex[i ] = (fx+1.0f)*127.0f;
pp_warp_tex[i+1] = (fy+1.0f)*127.0f;
pp_warp_tex[i+2] = 0;
}
}
GL_MTBind(0, GL_TEXTURE_2D, scenepp_texture_warp);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, PP_WARP_TEX_SIZE, PP_WARP_TEX_SIZE, 0, GL_RGB, GL_UNSIGNED_BYTE, pp_warp_tex);
// TODO: init edge texture - this is ampscale * 2, with ampscale calculated
// init warp texture - this specifies offset in
for (y=0; y<PP_AMP_TEX_SIZE; y++)
{
for (x=0; x<PP_AMP_TEX_SIZE; x++)
{
float fx = 1, fy = 1;
i = (x + y*PP_AMP_TEX_SIZE) * 3;
if (x < PP_AMP_TEX_BORDER)
{
fx = (float)x / PP_AMP_TEX_BORDER;
}
if (x > PP_AMP_TEX_SIZE - PP_AMP_TEX_BORDER)
{
fx = (PP_AMP_TEX_SIZE - (float)x) / PP_AMP_TEX_BORDER;
}
if (y < PP_AMP_TEX_BORDER)
{
fy = (float)y / PP_AMP_TEX_BORDER;
}
if (y > PP_AMP_TEX_SIZE - PP_AMP_TEX_BORDER)
{
fy = (PP_AMP_TEX_SIZE - (float)y) / PP_AMP_TEX_BORDER;
}
if (fx < fy)
{
fy = fx;
}
pp_edge_tex[i ] = fy * 255;
pp_edge_tex[i+1] = 0;
pp_edge_tex[i+2] = 0;
}
}
GL_MTBind(0, GL_TEXTURE_2D, scenepp_texture_edge);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, PP_WARP_TEX_SIZE, PP_WARP_TEX_SIZE, 0, GL_RGB, GL_UNSIGNED_BYTE, pp_edge_tex);
}
void R_RotateForEntity (float *m, float *modelview, const entity_t *e, const model_t *mod)
{
if (e->flags & Q2RF_WEAPONMODEL && r_refdef.currentplayernum>=0)
{
entity_t *view = &cl.viewent[r_refdef.currentplayernum];
float em[16];
float vm[16];
vm[0] = view->axis[0][0];
vm[1] = view->axis[0][1];
vm[2] = view->axis[0][2];
vm[3] = 0;
vm[4] = view->axis[1][0];
vm[5] = view->axis[1][1];
vm[6] = view->axis[1][2];
vm[7] = 0;
vm[8] = view->axis[2][0];
vm[9] = view->axis[2][1];
vm[10] = view->axis[2][2];
vm[11] = 0;
vm[12] = view->origin[0];
vm[13] = view->origin[1];
vm[14] = view->origin[2];
vm[15] = 1;
em[0] = e->axis[0][0];
em[1] = e->axis[0][1];
em[2] = e->axis[0][2];
em[3] = 0;
em[4] = e->axis[1][0];
em[5] = e->axis[1][1];
em[6] = e->axis[1][2];
em[7] = 0;
em[8] = e->axis[2][0];
em[9] = e->axis[2][1];
em[10] = e->axis[2][2];
em[11] = 0;
em[12] = e->origin[0];
em[13] = e->origin[1];
em[14] = e->origin[2];
em[15] = 1;
Matrix4_Multiply(vm, em, m);
}
else
{
m[0] = e->axis[0][0];
m[1] = e->axis[0][1];
m[2] = e->axis[0][2];
m[3] = 0;
m[4] = e->axis[1][0];
m[5] = e->axis[1][1];
m[6] = e->axis[1][2];
m[7] = 0;
m[8] = e->axis[2][0];
m[9] = e->axis[2][1];
m[10] = e->axis[2][2];
m[11] = 0;
m[12] = e->origin[0];
m[13] = e->origin[1];
m[14] = e->origin[2];
m[15] = 1;
}
if (e->scale != 1 && e->scale != 0) //hexen 2 stuff
{
float z;
float escale;
escale = e->scale;
switch(e->drawflags&SCALE_TYPE_MASKIN)
{
default:
case SCALE_TYPE_UNIFORM:
VectorScale((m+0), escale, (m+0));
VectorScale((m+4), escale, (m+4));
VectorScale((m+8), escale, (m+8));
break;
case SCALE_TYPE_XYONLY:
VectorScale((m+0), escale, (m+0));
VectorScale((m+4), escale, (m+4));
break;
case SCALE_TYPE_ZONLY:
VectorScale((m+8), escale, (m+8));
break;
}
if (mod && (e->drawflags&SCALE_TYPE_MASKIN) != SCALE_TYPE_XYONLY)
{
switch(e->drawflags&SCALE_ORIGIN_MASKIN)
{
case SCALE_ORIGIN_CENTER:
z = ((mod->maxs[2] + mod->mins[2]) * (1-escale))/2;
VectorMA((m+12), z, e->axis[2], (m+12));
break;
case SCALE_ORIGIN_BOTTOM:
VectorMA((m+12), mod->mins[2]*(1-escale), e->axis[2], (m+12));
break;
case SCALE_ORIGIN_TOP:
VectorMA((m+12), -mod->maxs[2], e->axis[2], (m+12));
break;
}
}
}
else if (mod && !strcmp(mod->name, "progs/eyes.mdl"))
{
/*resize eyes, to make them easier to see*/
m[14] -= (22 + 8);
VectorScale((m+0), 2, (m+0));
VectorScale((m+4), 2, (m+4));
VectorScale((m+8), 2, (m+8));
}
if (mod && !ruleset_allow_larger_models.ival && mod->clampscale != 1 && mod->type == mod_alias)
{ //possibly this should be on a per-frame basis, but that's a real pain to do
Con_DPrintf("Rescaling %s by %f\n", mod->name, mod->clampscale);
VectorScale((m+0), mod->clampscale, (m+0));
VectorScale((m+4), mod->clampscale, (m+4));
VectorScale((m+8), mod->clampscale, (m+8));
}
Matrix4_Multiply(r_refdef.m_view, m, modelview);
}
//==================================================================================
/*
=============
R_SetupGL
=============
*/
void R_SetupGL (void)
{
float screenaspect;
int x, x2, y2, y, w, h;
vec3_t newa;
float fov_x, fov_y;
if (!r_refdef.recurse)
{
AngleVectors (r_refdef.viewangles, vpn, vright, vup);
VectorCopy (r_refdef.vieworg, r_origin);
//
// set up viewpoint
//
x = r_refdef.vrect.x * vid.pixelwidth/(int)vid.width;
x2 = (r_refdef.vrect.x + r_refdef.vrect.width) * vid.pixelwidth/(int)vid.width;
y = (vid.height-r_refdef.vrect.y) * vid.pixelheight/(int)vid.height;
y2 = ((int)vid.height - (r_refdef.vrect.y + r_refdef.vrect.height)) * (int)vid.pixelheight/(int)vid.height;
// fudge around because of frac screen scale
if (x > 0)
x--;
if (x2 < vid.pixelwidth)
x2++;
if (y2 < 0)
y2--;
if (y < vid.pixelheight)
y++;
w = x2 - x;
h = y - y2;
r_refdef.pxrect.x = x;
r_refdef.pxrect.y = y;
r_refdef.pxrect.width = w;
r_refdef.pxrect.height = h;
qglViewport (x, y2, w, h);
fov_x = r_refdef.fov_x;//+sin(cl.time)*5;
fov_y = r_refdef.fov_y;//-sin(cl.time+1)*5;
if (r_waterwarp.value<0 && r_viewleaf && (r_viewcontents & FTECONTENTS_FLUID))
{
fov_x *= 1 + (((sin(cl.time * 4.7) + 1) * 0.015) * r_waterwarp.value);
fov_y *= 1 + (((sin(cl.time * 3.0) + 1) * 0.015) * r_waterwarp.value);
}
screenaspect = (float)r_refdef.vrect.width/r_refdef.vrect.height;
if (r_refdef.useperspective)
{
int stencilshadows = 0;
#ifdef RTLIGHTS
stencilshadows |= r_shadow_realtime_dlight.ival && r_shadow_realtime_dlight_shadows.ival;
stencilshadows |= r_shadow_realtime_world.ival && r_shadow_realtime_world_shadows.ival;
#endif
if ((!stencilshadows || !gl_stencilbits) && gl_maxdist.value>=100)//gl_nv_range_clamp)
{
// yfov = 2*atan((float)r_refdef.vrect.height/r_refdef.vrect.width)*180/M_PI;
// yfov = (2.0 * tan (scr_fov.value/360*M_PI)) / screenaspect;
// yfov = 2*atan((float)r_refdef.vrect.height/r_refdef.vrect.width)*(scr_fov.value*2)/M_PI;
// MYgluPerspective (yfov, screenaspect, 4, 4096);
Matrix4x4_CM_Projection_Far(r_refdef.m_projection, fov_x, fov_y, gl_mindist.value, gl_maxdist.value);
}
else
{
Matrix4x4_CM_Projection_Inf(r_refdef.m_projection, fov_x, fov_y, gl_mindist.value);
}
}
else
{
if (gl_maxdist.value>=1)
Matrix4x4_CM_Orthographic(r_refdef.m_projection, -fov_x/2, fov_x/2, fov_y/2, -fov_y/2, -gl_maxdist.value, gl_maxdist.value);
else
Matrix4x4_CM_Orthographic(r_refdef.m_projection, 0, r_refdef.vrect.width, 0, r_refdef.vrect.height, -9999, 9999);
}
VectorCopy(r_refdef.viewangles, newa);
newa[0] = r_refdef.viewangles[0];
newa[1] = r_refdef.viewangles[1];
newa[2] = r_refdef.viewangles[2] + gl_screenangle.value;
Matrix4x4_CM_ModelViewMatrix(r_refdef.m_view, newa, r_refdef.vieworg);
}
if (qglLoadMatrixf)
{
qglMatrixMode(GL_PROJECTION);
qglLoadMatrixf(r_refdef.m_projection);
qglMatrixMode(GL_MODELVIEW);
qglLoadMatrixf(r_refdef.m_view);
}
if (!gl_config.gles && gl_dither.modified)
{
gl_dither.modified = false;
if (gl_dither.ival)
{
qglEnable(GL_DITHER);
}
else
{
qglDisable(GL_DITHER);
}
}
}
/*
================
R_RenderScene
r_refdef must be set before the first call
================
*/
void R_RenderScene (void)
{
int tmpvisents = cl_numvisedicts; /*world rendering is allowed to add additional ents, but we don't want to keep them for recursive views*/
if (!cl.worldmodel || (!cl.worldmodel->nodes && cl.worldmodel->type != mod_heightmap))
r_refdef.flags |= Q2RDF_NOWORLDMODEL;
TRACE(("dbg: calling R_SetupGL\n"));
R_SetupGL ();
TRACE(("dbg: calling R_SetFrustrum\n"));
R_SetFrustum (r_refdef.m_projection, r_refdef.m_view);
RQ_BeginFrame();
if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL))
{
TRACE(("dbg: calling R_DrawWorld\n"));
Surf_DrawWorld (); // adds static entities to the list
}
else
BE_DrawWorld(NULL);
S_ExtraUpdate (); // don't let sound get messed up if going slow
// R_DrawDecals();
TRACE(("dbg: calling R_RenderDlights\n"));
R_RenderDlights ();
RQ_RenderBatchClear();
cl_numvisedicts = tmpvisents;
}
/*generates a new modelview matrix, as well as vpn vectors*/
static void R_MirrorMatrix(plane_t *plane)
{
float mirror[16];
float view[16];
float result[16];
vec3_t pnorm;
VectorNegate(plane->normal, pnorm);
mirror[0] = 1-2*pnorm[0]*pnorm[0];
mirror[1] = -2*pnorm[0]*pnorm[1];
mirror[2] = -2*pnorm[0]*pnorm[2];
mirror[3] = 0;
mirror[4] = -2*pnorm[1]*pnorm[0];
mirror[5] = 1-2*pnorm[1]*pnorm[1];
mirror[6] = -2*pnorm[1]*pnorm[2] ;
mirror[7] = 0;
mirror[8] = -2*pnorm[2]*pnorm[0];
mirror[9] = -2*pnorm[2]*pnorm[1];
mirror[10] = 1-2*pnorm[2]*pnorm[2];
mirror[11] = 0;
mirror[12] = -2*pnorm[0]*plane->dist;
mirror[13] = -2*pnorm[1]*plane->dist;
mirror[14] = -2*pnorm[2]*plane->dist;
mirror[15] = 1;
view[0] = vpn[0];
view[1] = vpn[1];
view[2] = vpn[2];
view[3] = 0;
view[4] = -vright[0];
view[5] = -vright[1];
view[6] = -vright[2];
view[7] = 0;
view[8] = vup[0];
view[9] = vup[1];
view[10] = vup[2];
view[11] = 0;
view[12] = r_refdef.vieworg[0];
view[13] = r_refdef.vieworg[1];
view[14] = r_refdef.vieworg[2];
view[15] = 1;
VectorMA(r_refdef.vieworg, 0.25, plane->normal, r_refdef.pvsorigin);
Matrix4_Multiply(mirror, view, result);
vpn[0] = result[0];
vpn[1] = result[1];
vpn[2] = result[2];
vright[0] = -result[4];
vright[1] = -result[5];
vright[2] = -result[6];
vup[0] = result[8];
vup[1] = result[9];
vup[2] = result[10];
r_refdef.vieworg[0] = result[12];
r_refdef.vieworg[1] = result[13];
r_refdef.vieworg[2] = result[14];
}
static entity_t *R_NearestPortal(plane_t *plane)
{
int i;
entity_t *best = NULL;
float dist, bestd = 0;
for (i = 0; i < cl_numvisedicts; i++)
{
if (cl_visedicts[i].rtype == RT_PORTALSURFACE)
{
dist = DotProduct(cl_visedicts[i].origin, plane->normal)-plane->dist;
dist = fabs(dist);
if (dist < 64 && (!best || dist < bestd))
best = &cl_visedicts[i];
}
}
return best;
}
static void TransformCoord(vec3_t in, vec3_t planea[3], vec3_t planeo, vec3_t viewa[3], vec3_t viewo, vec3_t result)
{
int i;
vec3_t local;
vec3_t transformed;
float d;
local[0] = in[0] - planeo[0];
local[1] = in[1] - planeo[1];
local[2] = in[2] - planeo[2];
VectorClear(transformed);
for ( i = 0 ; i < 3 ; i++ )
{
d = DotProduct(local, planea[i]);
VectorMA(transformed, d, viewa[i], transformed);
}
result[0] = transformed[0] + viewo[0];
result[1] = transformed[1] + viewo[1];
result[2] = transformed[2] + viewo[2];
}
static void TransformDir(vec3_t in, vec3_t planea[3], vec3_t viewa[3], vec3_t result)
{
int i;
float d;
vec3_t tmp;
VectorCopy(in, tmp);
VectorClear(result);
for ( i = 0 ; i < 3 ; i++ )
{
d = DotProduct(tmp, planea[i]);
VectorMA(result, d, viewa[i], result);
}
}
void GLR_DrawPortal(batch_t *batch, batch_t **blist)
{
entity_t *view;
GLdouble glplane[4];
plane_t plane;
refdef_t oldrefdef;
mesh_t *mesh = batch->mesh[batch->firstmesh];
int sort;
if (r_refdef.recurse)
return;
VectorCopy(mesh->normals_array[0], plane.normal);
plane.dist = DotProduct(mesh->xyz_array[0], plane.normal);
//if we're too far away from the surface, don't draw anything
if (batch->shader->flags & SHADER_AGEN_PORTAL)
{
/*there's a portal alpha blend on that surface, that fades out after this distance*/
if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist > batch->shader->portaldist)
return;
}
//if we're behind it, then also don't draw anything.
if (DotProduct(r_refdef.vieworg, plane.normal)-plane.dist < 0)
return;
view = R_NearestPortal(&plane);
//if (!view)
// return;
oldrefdef = r_refdef;
r_refdef.recurse = true;
r_refdef.externalview = true;
if (!view || VectorCompare(view->origin, view->oldorigin))
{
r_refdef.flipcull ^= true;
R_MirrorMatrix(&plane);
}
else
{
float d;
vec3_t paxis[3], porigin, vaxis[3], vorg;
void PerpendicularVector( vec3_t dst, const vec3_t src );
/*calculate where the surface is meant to be*/
VectorCopy(mesh->normals_array[0], paxis[0]);
PerpendicularVector(paxis[1], paxis[0]);
CrossProduct(paxis[0], paxis[1], paxis[2]);
d = DotProduct(view->origin, plane.normal) - plane.dist;
VectorMA(view->origin, -d, paxis[0], porigin);
/*grab the camera origin*/
VectorNegate(view->axis[0], vaxis[0]);
VectorNegate(view->axis[1], vaxis[1]);
VectorCopy(view->axis[2], vaxis[2]);
VectorCopy(view->oldorigin, vorg);
VectorCopy(vorg, r_refdef.pvsorigin);
/*rotate it a bit*/
RotatePointAroundVector(vaxis[1], vaxis[0], view->axis[1], sin(realtime)*4);
CrossProduct(vaxis[0], vaxis[1], vaxis[2]);
TransformCoord(oldrefdef.vieworg, paxis, porigin, vaxis, vorg, r_refdef.vieworg);
TransformDir(vpn, paxis, vaxis, vpn);
TransformDir(vright, paxis, vaxis, vright);
TransformDir(vup, paxis, vaxis, vup);
}
Matrix4x4_CM_ModelViewMatrixFromAxis(r_refdef.m_view, vpn, vright, vup, r_refdef.vieworg);
VectorAngles(vpn, vup, r_refdef.viewangles);
VectorCopy(r_refdef.vieworg, r_origin);
/*FIXME: the batch stuff should be done in renderscene*/
/*fixup the first mesh index*/
for (sort = 0; sort < SHADER_SORT_COUNT; sort++)
for (batch = blist[sort]; batch; batch = batch->next)
{
batch->firstmesh = batch->meshes;
}
GL_CullFace(0);
/*FIXME: can we get away with stenciling the screen?*/
/*Add to frustum culling instead of clip planes?*/
if (qglClipPlane)
{
glplane[0] = -plane.normal[0];
glplane[1] = -plane.normal[1];
glplane[2] = -plane.normal[2];
glplane[3] = plane.dist;
qglClipPlane(GL_CLIP_PLANE0, glplane);
qglEnable(GL_CLIP_PLANE0);
}
frustum[4].normal[0] = plane.normal[0];
frustum[4].normal[1] = plane.normal[1];
frustum[4].normal[2] = plane.normal[2];
frustum[4].dist = plane.dist + 0.01;
R_RenderScene();
if (qglClipPlane)
qglDisable(GL_CLIP_PLANE0);
for (sort = 0; sort < SHADER_SORT_COUNT; sort++)
for (batch = blist[sort]; batch; batch = batch->next)
{
batch->firstmesh = 0;
}
r_refdef = oldrefdef;
/*broken stuff*/
AngleVectors (r_refdef.viewangles, vpn, vright, vup);
VectorCopy (r_refdef.vieworg, r_origin);
R_SetFrustum (r_refdef.m_projection, r_refdef.m_view);
if (qglLoadMatrixf)
{
/*put GL back the way it was*/
qglMatrixMode(GL_PROJECTION);
qglLoadMatrixf(r_refdef.m_projection);
qglMatrixMode(GL_MODELVIEW);
qglLoadMatrixf(r_refdef.m_view);
}
GL_CullFace(0);
#ifdef warningmsg
#pragma warningmsg("warning: there's a bug with rtlights in portals, culling is broken or something. May also be loading the wrong matrix")
#endif
}
/*
=============
R_Clear
=============
*/
int gldepthfunc = GL_LEQUAL;
void R_Clear (void)
{
/*tbh, this entire function should be in the backend*/
GL_ForceDepthWritable();
{
if (r_clear.ival && !r_secondaryview && !(r_refdef.flags & Q2RDF_NOWORLDMODEL))
qglClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
else
qglClear (GL_DEPTH_BUFFER_BIT);
gldepthmin = 0;
gldepthmax = 1;
gldepthfunc=GL_LEQUAL;
}
if (qglDepthRange)
qglDepthRange (gldepthmin, gldepthmax);
else if (qglDepthRangef)
qglDepthRangef (gldepthmin, gldepthmax);
}
#if 0
void GLR_SetupFog (void)
{
if (r_viewleaf)// && r_viewcontents != FTECONTENTS_EMPTY)
{
// static fogcolour;
float fogcol[4]={0};
float fogperc;
float fogdist;
fogperc=0;
fogdist=512;
switch(r_viewcontents)
{
case FTECONTENTS_WATER:
fogcol[0] = 64/255.0;
fogcol[1] = 128/255.0;
fogcol[2] = 192/255.0;
fogperc=0.2;
fogdist=512;
break;
case FTECONTENTS_SLIME:
fogcol[0] = 32/255.0;
fogcol[1] = 192/255.0;
fogcol[2] = 92/255.0;
fogperc=1;
fogdist=256;
break;
case FTECONTENTS_LAVA:
fogcol[0] = 192/255.0;
fogcol[1] = 32/255.0;
fogcol[2] = 64/255.0;
fogperc=1;
fogdist=128;
break;
default:
fogcol[0] = 192/255.0;
fogcol[1] = 192/255.0;
fogcol[2] = 192/255.0;
fogperc=1;
fogdist=1024;
break;
}
if (fogperc)
{
qglFogi(GL_FOG_MODE, GL_LINEAR);
qglFogfv(GL_FOG_COLOR, fogcol);
qglFogf(GL_FOG_DENSITY, fogperc);
qglFogf(GL_FOG_START, 1);
qglFogf(GL_FOG_END, fogdist);
qglEnable(GL_FOG);
}
}
}
#endif
static void R_RenderMotionBlur(void)
{
int vwidth = 1, vheight = 1;
float vs, vt, cs, ct;
#ifdef warningmsg
#pragma warningmsg("backend fixme")
#endif
#if !defined(ANDROID) && !defined(NACL)
if (gl_config.arb_texture_non_power_of_two)
{ //we can use any size, supposedly
vwidth = vid.pixelwidth;
vheight = vid.pixelheight;
}
else
{ //limit the texture size to square and use padding.
while (vwidth < vid.pixelwidth)
vwidth *= 2;
while (vheight < vid.pixelheight)
vheight *= 2;
}
qglViewport (0, 0, vid.pixelwidth, vid.pixelheight);
PPL_RevertToKnownState();
GL_LazyBind(0, GL_TEXTURE_2D, sceneblur_texture);
// go 2d
qglMatrixMode(GL_PROJECTION);
qglPushMatrix();
qglLoadIdentity ();
qglOrtho (0, vid.pixelwidth, 0, vid.pixelheight, -99999, 99999);
qglMatrixMode(GL_MODELVIEW);
qglPushMatrix();
qglLoadIdentity ();
//blend the last frame onto the scene
//the maths is because our texture is over-sized (must be power of two)
cs = vs = (float)vid.pixelwidth / vwidth * 0.5;
ct = vt = (float)vid.pixelheight / vheight * 0.5;
vs *= gl_motionblurscale.value;
vt *= gl_motionblurscale.value;
qglDisable (GL_DEPTH_TEST);
GL_CullFace(0);
qglDisable (GL_ALPHA_TEST);
qglEnable(GL_BLEND);
qglColor4f(1, 1, 1, gl_motionblur.value);
qglBegin(GL_QUADS);
qglTexCoord2f(cs-vs, ct-vt);
qglVertex2f(0, 0);
qglTexCoord2f(cs+vs, ct-vt);
qglVertex2f(vid.pixelwidth, 0);
qglTexCoord2f(cs+vs, ct+vt);
qglVertex2f(vid.pixelwidth, vid.pixelheight);
qglTexCoord2f(cs-vs, ct+vt);
qglVertex2f(0, vid.pixelheight);
qglEnd();
qglMatrixMode(GL_PROJECTION);
qglPopMatrix();
qglMatrixMode(GL_MODELVIEW);
qglPopMatrix();
//copy the image into the texture so that we can play with it next frame too!
qglCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 0, 0, vwidth, vheight, 0);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
#endif
PPL_RevertToKnownState();
}
/*FIXME: we could use geometry shaders to draw to all 6 faces at once*/
qboolean R_RenderScene_Cubemap(void)
{
int cmapsize = 512;
int i;
static vec3_t ang[6] =
{ {0, -90, 0}, {0, 90, 0},
{90, 0, 0}, {-90, 0, 0},
{0, 0, 0}, {0, -180, 0} };
vec3_t saveang;
vrect_t vrect;
vrect_t prect;
shader_t *shader;
int facemask;
/*needs glsl*/
if (!gl_config.arb_shader_objects)
return false;
if (!ffov.value)
return false;
if (!cls.allow_postproc)
return false;
facemask = 0;
if (ffov.value < 0)
{
shader = R_RegisterShader("postproc_panorama",
"{\n"
"program postproc_panorama\n"
"{\n"
"map $sourcecube\n"
"}\n"
"}\n"
);
//panoramic view needs at most the four sides
facemask |= 1<<4; /*front view*/
if (ffov.value < -90)
{
facemask |= (1<<0) | (1<<1); /*side views*/
if (ffov.value < -270)
facemask |= 1<<5; /*back view*/
}
}
else
{
shader = R_RegisterShader("postproc_fisheye",
"{\n"
"program postproc_fisheye\n"
"{\n"
"map $sourcecube\n"
"}\n"
"}\n"
);
//fisheye view sees up to a full sphere
facemask |= 1<<4; /*front view*/
if (ffov.value > 77)
facemask |= (1<<0) | (1<<1) | (1<<2) | (1<<3); /*side/top/bottom views*/
if (ffov.value > 270)
facemask |= 1<<5; /*back view*/
}
//fixme: should already have the vrect somewhere.
SCR_VRectForPlayer(&vrect, r_refdef.currentplayernum);
prect.x = (vrect.x * vid.pixelwidth)/vid.width;
prect.width = (vrect.width * vid.pixelwidth)/vid.width;
prect.y = (vrect.y * vid.pixelheight)/vid.height;
prect.height = (vrect.height * vid.pixelheight)/vid.height;
if (gl_config.arb_texture_non_power_of_two)
{
if (prect.width < prect.height)
cmapsize = prect.width;
else
cmapsize = prect.height;
}
else
{
while (cmapsize > prect.width || cmapsize > prect.height)
{
cmapsize /= 2;
}
}
VectorCopy(r_refdef.viewangles, saveang);
saveang[2] = 0;
if (!TEXVALID(scenepp_postproc_cube))
{
scenepp_postproc_cube = GL_AllocNewTexture("***fish***", cmapsize, cmapsize);
GL_MTBind(0, GL_TEXTURE_CUBE_MAP_ARB, scenepp_postproc_cube);
for (i = 0; i < 6; i++)
qglCopyTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB + i, 0, GL_RGB, 0, 0, cmapsize, cmapsize, 0);
qglTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
qglTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
qglTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
r_refdef.vrect.width = cmapsize;
r_refdef.vrect.height = cmapsize;
r_refdef.vrect.x = 0;
r_refdef.vrect.y = prect.y;
ang[0][0] = -saveang[0];
ang[0][1] = -90;
ang[0][2] = -saveang[0];
ang[1][0] = -saveang[0];
ang[1][1] = 90;
ang[1][2] = saveang[0];
ang[5][0] = -saveang[0]*2;
for (i = 0; i < 6; i++)
{
if (!(facemask & (1<<i)))
continue;
r_refdef.fov_x = 90;
r_refdef.fov_y = 90;
r_refdef.viewangles[0] = saveang[0]+ang[i][0];
r_refdef.viewangles[1] = saveang[1]+ang[i][1];
r_refdef.viewangles[2] = saveang[2]+ang[i][2];
R_Clear ();
GL_SetShaderState2D(false);
// render normal view
R_RenderScene ();
GL_MTBind(0, GL_TEXTURE_CUBE_MAP_ARB, scenepp_postproc_cube);
//FIXME: use a render target instead.
qglCopyTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB + i, 0, 0, 0, 0, vid.pixelheight - (prect.y + cmapsize), cmapsize, cmapsize);
}
qglViewport (prect.x, vid.pixelheight - (prect.y+prect.height), prect.width, prect.height);
// go 2d
qglMatrixMode(GL_PROJECTION);
qglPushMatrix();
qglLoadIdentity ();
qglOrtho (0, vid.width, vid.height, 0, -99999, 99999);
qglMatrixMode(GL_MODELVIEW);
qglPushMatrix();
qglLoadIdentity ();
// draw it through the shader
R2D_Image(0, 0, vid.width, vid.height, -0.5, 0.5, 0.5, -0.5, shader);
//revert the matricies
qglMatrixMode(GL_PROJECTION);
qglPopMatrix();
qglMatrixMode(GL_MODELVIEW);
qglPopMatrix();
return true;
}
/*
================
R_RenderView
r_refdef must be set before the first call
================
*/
void GLR_RenderView (void)
{
double time1 = 0, time2;
checkglerror();
if (r_norefresh.value || !vid.pixelwidth || !vid.pixelheight)
{
GL_DoSwap();
return;
}
if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL))
if (!r_worldentity.model || !cl.worldmodel)
{
GL_DoSwap();
return;
}
// Sys_Error ("R_RenderView: NULL worldmodel");
if (qglPNTrianglesiATI)
{
if (gl_ati_truform_type.ival)
{ //linear
qglPNTrianglesiATI(GL_PN_TRIANGLES_NORMAL_MODE_ATI, GL_PN_TRIANGLES_NORMAL_MODE_LINEAR_ATI);
qglPNTrianglesiATI(GL_PN_TRIANGLES_POINT_MODE_ATI, GL_PN_TRIANGLES_POINT_MODE_CUBIC_ATI);
}
else
{ //quadric
qglPNTrianglesiATI(GL_PN_TRIANGLES_NORMAL_MODE_ATI, GL_PN_TRIANGLES_NORMAL_MODE_QUADRATIC_ATI);
qglPNTrianglesiATI(GL_PN_TRIANGLES_POINT_MODE_ATI, GL_PN_TRIANGLES_POINT_MODE_CUBIC_ATI);
}
qglPNTrianglesfATI(GL_PN_TRIANGLES_TESSELATION_LEVEL_ATI, gl_ati_truform_tesselation.value);
}
if (gl_finish.ival)
{
RSpeedMark();
qglFinish ();
RSpeedEnd(RSPEED_FINISH);
}
if (r_speeds.ival)
{
time1 = Sys_DoubleTime ();
c_brush_polys = 0;
c_alias_polys = 0;
}
if (!(r_refdef.flags & Q2RDF_NOWORLDMODEL) && R_RenderScene_Cubemap())
{
}
else
{
GL_SetShaderState2D(false);
R_Clear ();
// GLR_SetupFog ();
// render normal view
R_RenderScene ();
}
// qglDisable(GL_FOG);
if (r_speeds.ival)
{
// glFinish ();
time2 = Sys_DoubleTime ();
RQuantAdd(RQUANT_MSECS, (int)((time2-time1)*1000000));
RQuantAdd(RQUANT_WPOLYS, c_brush_polys);
RQuantAdd(RQUANT_EPOLYS, c_alias_polys);
// Con_Printf ("%3i ms %4i wpoly %4i epoly\n", (int)((time2-time1)*1000), c_brush_polys, c_alias_polys);
}
checkglerror();
if (r_refdef.flags & Q2RDF_NOWORLDMODEL)
return;
if (r_bloom.value)
R_BloomBlend();
// SCENE POST PROCESSING
// we check if we need to use any shaders - currently it's just waterwarp
if ((r_waterwarp.value>0 && r_viewleaf && (r_viewcontents & FTECONTENTS_WATER)))
{
if (scenepp_waterwarp)
{
GL_Set2D(false);
R2D_ScalePic(0, 0, vid.width, vid.height, scenepp_waterwarp);
}
}
if (gl_motionblur.value>0 && gl_motionblur.value < 1 && qglCopyTexImage2D)
R_RenderMotionBlur();
if (*r_postprocshader.string)
{
shader_t *postproc = R_RegisterCustom(r_postprocshader.string, NULL, NULL);
if (postproc)
{
GL_Set2D(false);
R2D_ScalePic(0, 0, vid.width, vid.height, postproc);
}
}
checkglerror();
}
#endif