#include "config.h" #include "alu.h" #include "uhjfilter.h" /* This is the maximum number of samples processed for each inner loop * iteration. */ #define MAX_UPDATE_SAMPLES 128 static const ALfloat Filter1Coeff[4] = { 0.6923878f, 0.9360654322959f, 0.9882295226860f, 0.9987488452737f }; static const ALfloat Filter2Coeff[4] = { 0.4021921162426f, 0.8561710882420f, 0.9722909545651f, 0.9952884791278f }; static void allpass_process(AllPassState *state, ALfloat *restrict dst, const ALfloat *restrict src, const ALfloat aa, ALsizei todo) { ALsizei i; if(todo > 1) { dst[0] = aa*(src[0] + state->y[1]) - state->x[1]; dst[1] = aa*(src[1] + state->y[0]) - state->x[0]; for(i = 2;i < todo;i++) dst[i] = aa*(src[i] + dst[i-2]) - src[i-2]; state->x[1] = src[i-2]; state->x[0] = src[i-1]; state->y[1] = dst[i-2]; state->y[0] = dst[i-1]; } else if(todo == 1) { dst[0] = aa*(src[0] + state->y[1]) - state->x[1]; state->x[1] = state->x[0]; state->x[0] = src[0]; state->y[1] = state->y[0]; state->y[0] = dst[0]; } } /* NOTE: There seems to be a bit of an inconsistency in how this encoding is * supposed to work. Some references, such as * * http://members.tripod.com/martin_leese/Ambisonic/UHJ_file_format.html * * specify a pre-scaling of sqrt(2) on the W channel input, while other * references, such as * * https://en.wikipedia.org/wiki/Ambisonic_UHJ_format#Encoding.5B1.5D * and * https://wiki.xiph.org/Ambisonics#UHJ_format * * do not. The sqrt(2) scaling is in line with B-Format decoder coefficients * which include such a scaling for the W channel input, however the original * source for this equation is a 1985 paper by Michael Gerzon, which does not * apparently include the scaling. Applying the extra scaling creates a louder * result with a narrower stereo image compared to not scaling, and I don't * know which is the intended result. */ void EncodeUhj2(Uhj2Encoder *enc, ALfloat *restrict LeftOut, ALfloat *restrict RightOut, ALfloat (*restrict InSamples)[BUFFERSIZE], ALsizei SamplesToDo) { ALfloat D[MAX_UPDATE_SAMPLES], S[MAX_UPDATE_SAMPLES]; ALfloat temp[2][MAX_UPDATE_SAMPLES]; ALsizei base, i; for(base = 0;base < SamplesToDo;) { ALsizei todo = mini(SamplesToDo - base, MAX_UPDATE_SAMPLES); /* D = 0.6554516*Y */ for(i = 0;i < todo;i++) temp[0][i] = 0.6554516f*InSamples[2][base+i]; allpass_process(&enc->Filter1_Y[0], temp[1], temp[0], Filter1Coeff[0]*Filter1Coeff[0], todo); allpass_process(&enc->Filter1_Y[1], temp[0], temp[1], Filter1Coeff[1]*Filter1Coeff[1], todo); allpass_process(&enc->Filter1_Y[2], temp[1], temp[0], Filter1Coeff[2]*Filter1Coeff[2], todo); /* NOTE: Filter1 requires a 1 sample delay for the final output, so * take the last processed sample from the previous run as the first * output sample. */ D[0] = enc->Filter1_Y[3].y[0]; allpass_process(&enc->Filter1_Y[3], temp[0], temp[1], Filter1Coeff[3]*Filter1Coeff[3], todo); for(i = 1;i < todo;i++) D[i] = temp[0][i-1]; /* D += j(-0.3420201*W + 0.5098604*X) */ for(i = 0;i < todo;i++) temp[0][i] = -0.3420201f*InSamples[0][base+i] + 0.5098604f*InSamples[1][base+i]; allpass_process(&enc->Filter2_WX[0], temp[1], temp[0], Filter2Coeff[0]*Filter2Coeff[0], todo); allpass_process(&enc->Filter2_WX[1], temp[0], temp[1], Filter2Coeff[1]*Filter2Coeff[1], todo); allpass_process(&enc->Filter2_WX[2], temp[1], temp[0], Filter2Coeff[2]*Filter2Coeff[2], todo); allpass_process(&enc->Filter2_WX[3], temp[0], temp[1], Filter2Coeff[3]*Filter2Coeff[3], todo); for(i = 0;i < todo;i++) D[i] += temp[0][i]; /* S = 0.9396926*W + 0.1855740*X */ for(i = 0;i < todo;i++) temp[0][i] = 0.9396926f*InSamples[0][base+i] + 0.1855740f*InSamples[1][base+i]; allpass_process(&enc->Filter1_WX[0], temp[1], temp[0], Filter1Coeff[0]*Filter1Coeff[0], todo); allpass_process(&enc->Filter1_WX[1], temp[0], temp[1], Filter1Coeff[1]*Filter1Coeff[1], todo); allpass_process(&enc->Filter1_WX[2], temp[1], temp[0], Filter1Coeff[2]*Filter1Coeff[2], todo); S[0] = enc->Filter1_WX[3].y[0]; allpass_process(&enc->Filter1_WX[3], temp[0], temp[1], Filter1Coeff[3]*Filter1Coeff[3], todo); for(i = 1;i < todo;i++) S[i] = temp[0][i-1]; /* Left = (S + D)/2.0 */ for(i = 0;i < todo;i++) *(LeftOut++) += (S[i] + D[i]) * 0.5f; /* Right = (S - D)/2.0 */ for(i = 0;i < todo;i++) *(RightOut++) += (S[i] - D[i]) * 0.5f; base += todo; } }