mirror of
https://github.com/ENSL/NS.git
synced 2024-11-29 15:51:51 +00:00
7d659fb8c2
Bots will no longer see cloaked players, and have a chance based on cloak level, movement and size of the players. Bots will also sneak when approaching enemies while cloaked.
3821 lines
106 KiB
C++
3821 lines
106 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include <float.h>
|
|
#include <string.h>
|
|
#include "DetourNavMeshQuery.h"
|
|
#include "DetourNavMesh.h"
|
|
#include "DetourNode.h"
|
|
#include "DetourCommon.h"
|
|
#include "DetourMath.h"
|
|
#include "DetourAlloc.h"
|
|
#include "DetourAssert.h"
|
|
#include <new>
|
|
|
|
/// @class dtQueryFilter
|
|
///
|
|
/// <b>The Default Implementation</b>
|
|
///
|
|
/// At construction: All area costs default to 1.0. All flags are included
|
|
/// and none are excluded.
|
|
///
|
|
/// If a polygon has both an include and an exclude flag, it will be excluded.
|
|
///
|
|
/// The way filtering works, a navigation mesh polygon must have at least one flag
|
|
/// set to ever be considered by a query. So a polygon with no flags will never
|
|
/// be considered.
|
|
///
|
|
/// Setting the include flags to 0 will result in all polygons being excluded.
|
|
///
|
|
/// <b>Custom Implementations</b>
|
|
///
|
|
/// DT_VIRTUAL_QUERYFILTER must be defined in order to extend this class.
|
|
///
|
|
/// Implement a custom query filter by overriding the virtual passFilter()
|
|
/// and getCost() functions. If this is done, both functions should be as
|
|
/// fast as possible. Use cached local copies of data rather than accessing
|
|
/// your own objects where possible.
|
|
///
|
|
/// Custom implementations do not need to adhere to the flags or cost logic
|
|
/// used by the default implementation.
|
|
///
|
|
/// In order for A* searches to work properly, the cost should be proportional to
|
|
/// the travel distance. Implementing a cost modifier less than 1.0 is likely
|
|
/// to lead to problems during pathfinding.
|
|
///
|
|
/// @see dtNavMeshQuery
|
|
|
|
dtQueryFilter::dtQueryFilter() :
|
|
m_includeFlags(-1),
|
|
m_excludeFlags(0)
|
|
{
|
|
for (int i = 0; i < DT_MAX_AREAS; ++i)
|
|
m_areaCost[i] = 1.0f;
|
|
}
|
|
|
|
#ifdef DT_VIRTUAL_QUERYFILTER
|
|
bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/,
|
|
const dtMeshTile* /*tile*/,
|
|
const dtPoly* poly) const
|
|
{
|
|
return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0;
|
|
}
|
|
|
|
float dtQueryFilter::getCost(const float* pa, const float* pb,
|
|
const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/,
|
|
const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly,
|
|
const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const
|
|
{
|
|
return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()];
|
|
}
|
|
#else
|
|
inline bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/,
|
|
const dtMeshTile* /*tile*/,
|
|
const dtPoly* poly) const
|
|
{
|
|
return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0;
|
|
}
|
|
|
|
inline float dtQueryFilter::getCost(const float* pa, const float* pb,
|
|
const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/,
|
|
const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly,
|
|
const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const
|
|
{
|
|
return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()];
|
|
}
|
|
#endif
|
|
|
|
static const float H_SCALE = 0.999f; // Search heuristic scale.
|
|
|
|
|
|
dtNavMeshQuery* dtAllocNavMeshQuery()
|
|
{
|
|
void* mem = dtAlloc(sizeof(dtNavMeshQuery), DT_ALLOC_PERM);
|
|
if (!mem) return 0;
|
|
return new(mem) dtNavMeshQuery;
|
|
}
|
|
|
|
void dtFreeNavMeshQuery(dtNavMeshQuery* navmesh)
|
|
{
|
|
if (!navmesh) return;
|
|
navmesh->~dtNavMeshQuery();
|
|
dtFree(navmesh);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// @class dtNavMeshQuery
|
|
///
|
|
/// For methods that support undersized buffers, if the buffer is too small
|
|
/// to hold the entire result set the return status of the method will include
|
|
/// the #DT_BUFFER_TOO_SMALL flag.
|
|
///
|
|
/// Constant member functions can be used by multiple clients without side
|
|
/// effects. (E.g. No change to the closed list. No impact on an in-progress
|
|
/// sliced path query. Etc.)
|
|
///
|
|
/// Walls and portals: A @e wall is a polygon segment that is
|
|
/// considered impassable. A @e portal is a passable segment between polygons.
|
|
/// A portal may be treated as a wall based on the dtQueryFilter used for a query.
|
|
///
|
|
/// @see dtNavMesh, dtQueryFilter, #dtAllocNavMeshQuery(), #dtAllocNavMeshQuery()
|
|
|
|
dtNavMeshQuery::dtNavMeshQuery() :
|
|
m_nav(0),
|
|
m_tinyNodePool(0),
|
|
m_nodePool(0),
|
|
m_openList(0)
|
|
{
|
|
memset(&m_query, 0, sizeof(dtQueryData));
|
|
}
|
|
|
|
dtNavMeshQuery::~dtNavMeshQuery()
|
|
{
|
|
if (m_tinyNodePool)
|
|
m_tinyNodePool->~dtNodePool();
|
|
if (m_nodePool)
|
|
m_nodePool->~dtNodePool();
|
|
if (m_openList)
|
|
m_openList->~dtNodeQueue();
|
|
dtFree(m_tinyNodePool);
|
|
dtFree(m_nodePool);
|
|
dtFree(m_openList);
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// Must be the first function called after construction, before other
|
|
/// functions are used.
|
|
///
|
|
/// This function can be used multiple times.
|
|
dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes)
|
|
{
|
|
if (maxNodes > DT_NULL_IDX || maxNodes > (1 << DT_NODE_PARENT_BITS) - 1)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
m_nav = nav;
|
|
|
|
if (!m_nodePool || m_nodePool->getMaxNodes() < maxNodes)
|
|
{
|
|
if (m_nodePool)
|
|
{
|
|
m_nodePool->~dtNodePool();
|
|
dtFree(m_nodePool);
|
|
m_nodePool = 0;
|
|
}
|
|
m_nodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(maxNodes, dtNextPow2(maxNodes/4));
|
|
if (!m_nodePool)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
m_nodePool->clear();
|
|
}
|
|
|
|
if (!m_tinyNodePool)
|
|
{
|
|
m_tinyNodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(64, 32);
|
|
if (!m_tinyNodePool)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
m_tinyNodePool->clear();
|
|
}
|
|
|
|
if (!m_openList || m_openList->getCapacity() < maxNodes)
|
|
{
|
|
if (m_openList)
|
|
{
|
|
m_openList->~dtNodeQueue();
|
|
dtFree(m_openList);
|
|
m_openList = 0;
|
|
}
|
|
m_openList = new (dtAlloc(sizeof(dtNodeQueue), DT_ALLOC_PERM)) dtNodeQueue(maxNodes);
|
|
if (!m_openList)
|
|
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
m_openList->clear();
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::findRandomPoint(const dtQueryFilter* filter, float (*frand)(),
|
|
dtPolyRef* randomRef, float* randomPt) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
if (!filter || !frand || !randomRef || !randomPt)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
// Randomly pick one tile. Assume that all tiles cover roughly the same area.
|
|
const dtMeshTile* tile = 0;
|
|
float tsum = 0.0f;
|
|
for (int i = 0; i < m_nav->getMaxTiles(); i++)
|
|
{
|
|
const dtMeshTile* t = m_nav->getTile(i);
|
|
if (!t || !t->header) continue;
|
|
|
|
// Choose random tile using reservoi sampling.
|
|
const float area = 1.0f; // Could be tile area too.
|
|
tsum += area;
|
|
const float u = frand();
|
|
if (u*tsum <= area)
|
|
tile = t;
|
|
}
|
|
if (!tile)
|
|
return DT_FAILURE;
|
|
|
|
// Randomly pick one polygon weighted by polygon area.
|
|
const dtPoly* poly = 0;
|
|
dtPolyRef polyRef = 0;
|
|
const dtPolyRef base = m_nav->getPolyRefBase(tile);
|
|
|
|
float areaSum = 0.0f;
|
|
for (int i = 0; i < tile->header->polyCount; ++i)
|
|
{
|
|
const dtPoly* p = &tile->polys[i];
|
|
// Do not return off-mesh connection polygons.
|
|
if (p->getType() != DT_POLYTYPE_GROUND)
|
|
continue;
|
|
// Must pass filter
|
|
const dtPolyRef ref = base | (dtPolyRef)i;
|
|
if (!filter->passFilter(ref, tile, p))
|
|
continue;
|
|
|
|
// Calc area of the polygon.
|
|
float polyArea = 0.0f;
|
|
for (int j = 2; j < p->vertCount; ++j)
|
|
{
|
|
const float* va = &tile->verts[p->verts[0]*3];
|
|
const float* vb = &tile->verts[p->verts[j-1]*3];
|
|
const float* vc = &tile->verts[p->verts[j]*3];
|
|
polyArea += dtTriArea2D(va,vb,vc);
|
|
}
|
|
|
|
// Choose random polygon weighted by area, using reservoi sampling.
|
|
areaSum += polyArea;
|
|
const float u = frand();
|
|
if (u*areaSum <= polyArea)
|
|
{
|
|
poly = p;
|
|
polyRef = ref;
|
|
}
|
|
}
|
|
|
|
if (!poly)
|
|
return DT_FAILURE;
|
|
|
|
// Randomly pick point on polygon.
|
|
const float* v = &tile->verts[poly->verts[0]*3];
|
|
float verts[3*DT_VERTS_PER_POLYGON];
|
|
float areas[DT_VERTS_PER_POLYGON];
|
|
dtVcopy(&verts[0*3],v);
|
|
for (int j = 1; j < poly->vertCount; ++j)
|
|
{
|
|
v = &tile->verts[poly->verts[j]*3];
|
|
dtVcopy(&verts[j*3],v);
|
|
}
|
|
|
|
const float s = frand();
|
|
const float t = frand();
|
|
|
|
float pt[3];
|
|
dtRandomPointInConvexPoly(verts, poly->vertCount, areas, s, t, pt);
|
|
|
|
float h = 0.0f;
|
|
dtStatus status = getPolyHeight(polyRef, pt, &h);
|
|
if (dtStatusFailed(status))
|
|
return status;
|
|
pt[1] = h;
|
|
|
|
dtVcopy(randomPt, pt);
|
|
*randomRef = polyRef;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::findRandomPointAroundCircleIgnoreReachability(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
|
const dtQueryFilter* filter, float (*frand)(),
|
|
dtPolyRef* randomRef, float* randomPt) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
const dtMeshTile* startTile = 0;
|
|
const dtPoly* startPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(startRef, &startTile, &startPoly);
|
|
|
|
int layer = startTile->header->layer;
|
|
|
|
float tileWidth = startTile->header->bmax[0] - startTile->header->bmin[0];
|
|
float tileHeight = startTile->header->bmax[2] - startTile->header->bmin[2];
|
|
|
|
//int TileIndices[1024];
|
|
//int NumEligibleTiles = 0;
|
|
|
|
int SearchXRadius = (int)dtMathCeilf(maxRadius / tileWidth);
|
|
int SearchYRadius = (int)dtMathCeilf(maxRadius / tileHeight);
|
|
|
|
int StartTileX = startTile->header->x - SearchXRadius;
|
|
int StartTileY = startTile->header->y - SearchYRadius;
|
|
|
|
const dtMeshTile* tile = 0;
|
|
float tsum = 0.0f;
|
|
|
|
for (int tileX = 0; tileX < SearchXRadius * 2; tileX++)
|
|
{
|
|
for (int tileY = 0; tileY < SearchYRadius * 2; tileY++)
|
|
{
|
|
int thisTileXIndex = StartTileX + tileX;
|
|
int thisTileYIndex = StartTileY + tileY;
|
|
|
|
const dtMeshTile* t = m_nav->getTileAtConst(thisTileXIndex, thisTileYIndex, layer);
|
|
|
|
if (!t || !t->header) continue;
|
|
|
|
// Choose random tile using reservoi sampling.
|
|
const float area = 1.0f; // Could be tile area too.
|
|
tsum += area;
|
|
const float u = frand();
|
|
if (u * tsum <= area)
|
|
tile = t;
|
|
}
|
|
}
|
|
|
|
if (!tile)
|
|
return DT_FAILURE;
|
|
|
|
// Randomly pick one polygon weighted by polygon area.
|
|
const dtPoly* poly = 0;
|
|
dtPolyRef polyRef = 0;
|
|
const dtPolyRef base = m_nav->getPolyRefBase(tile);
|
|
|
|
float areaSum = 0.0f;
|
|
for (int i = 0; i < tile->header->polyCount; ++i)
|
|
{
|
|
const dtPoly* p = &tile->polys[i];
|
|
// Do not return off-mesh connection polygons.
|
|
if (p->getType() != DT_POLYTYPE_GROUND)
|
|
continue;
|
|
// Must pass filter
|
|
const dtPolyRef ref = base | (dtPolyRef)i;
|
|
if (!filter->passFilter(ref, tile, p))
|
|
continue;
|
|
|
|
// Calc area of the polygon.
|
|
float polyArea = 0.0f;
|
|
for (int j = 2; j < p->vertCount; ++j)
|
|
{
|
|
const float* va = &tile->verts[p->verts[0] * 3];
|
|
const float* vb = &tile->verts[p->verts[j - 1] * 3];
|
|
const float* vc = &tile->verts[p->verts[j] * 3];
|
|
polyArea += dtTriArea2D(va, vb, vc);
|
|
}
|
|
|
|
// Choose random polygon weighted by area, using reservoi sampling.
|
|
areaSum += polyArea;
|
|
const float u = frand();
|
|
if (u * areaSum <= polyArea)
|
|
{
|
|
poly = p;
|
|
polyRef = ref;
|
|
}
|
|
}
|
|
|
|
if (!poly)
|
|
return DT_FAILURE;
|
|
|
|
// Randomly pick point on polygon.
|
|
const float* v = &tile->verts[poly->verts[0] * 3];
|
|
float verts[3 * DT_VERTS_PER_POLYGON];
|
|
float areas[DT_VERTS_PER_POLYGON];
|
|
dtVcopy(&verts[0 * 3], v);
|
|
for (int j = 1; j < poly->vertCount; ++j)
|
|
{
|
|
v = &tile->verts[poly->verts[j] * 3];
|
|
dtVcopy(&verts[j * 3], v);
|
|
}
|
|
|
|
const float s = frand();
|
|
const float t = frand();
|
|
|
|
float pt[3];
|
|
dtRandomPointInConvexPoly(verts, poly->vertCount, areas, s, t, pt);
|
|
|
|
float h = 0.0f;
|
|
dtStatus status = getPolyHeight(polyRef, pt, &h);
|
|
if (dtStatusFailed(status))
|
|
return status;
|
|
pt[1] = h;
|
|
|
|
dtVcopy(randomPt, pt);
|
|
*randomRef = polyRef;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
|
const dtQueryFilter* filter, float (*frand)(),
|
|
dtPolyRef* randomRef, float* randomPt) const
|
|
{
|
|
dtAssert(m_nav);
|
|
dtAssert(m_nodePool);
|
|
dtAssert(m_openList);
|
|
|
|
// Validate input
|
|
if (!m_nav->isValidPolyRef(startRef) ||
|
|
!centerPos || !dtVisfinite(centerPos) ||
|
|
maxRadius < 0 || !dtMathIsfinite(maxRadius) ||
|
|
!filter || !frand || !randomRef || !randomPt)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
const dtMeshTile* startTile = 0;
|
|
const dtPoly* startPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(startRef, &startTile, &startPoly);
|
|
if (!filter->passFilter(startRef, startTile, startPoly))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(startRef);
|
|
dtVcopy(startNode->pos, centerPos);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
dtStatus status = DT_SUCCESS;
|
|
|
|
const float radiusSqr = dtSqr(maxRadius);
|
|
float areaSum = 0.0f;
|
|
|
|
const dtMeshTile* randomTile = 0;
|
|
const dtPoly* randomPoly = 0;
|
|
dtPolyRef randomPolyRef = 0;
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
bestNode->flags &= ~DT_NODE_OPEN;
|
|
bestNode->flags |= DT_NODE_CLOSED;
|
|
|
|
// Get poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
const dtMeshTile* bestTile = 0;
|
|
const dtPoly* bestPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
|
|
|
|
// Place random locations on on ground.
|
|
if (bestPoly->getType() == DT_POLYTYPE_GROUND)
|
|
{
|
|
// Calc area of the polygon.
|
|
float polyArea = 0.0f;
|
|
for (int j = 2; j < bestPoly->vertCount; ++j)
|
|
{
|
|
const float* va = &bestTile->verts[bestPoly->verts[0]*3];
|
|
const float* vb = &bestTile->verts[bestPoly->verts[j-1]*3];
|
|
const float* vc = &bestTile->verts[bestPoly->verts[j]*3];
|
|
polyArea += dtTriArea2D(va,vb,vc);
|
|
}
|
|
// Choose random polygon weighted by area, using reservoi sampling.
|
|
areaSum += polyArea;
|
|
const float u = frand();
|
|
if (u*areaSum <= polyArea)
|
|
{
|
|
randomTile = bestTile;
|
|
randomPoly = bestPoly;
|
|
randomPolyRef = bestRef;
|
|
}
|
|
}
|
|
|
|
|
|
// Get parent poly and tile.
|
|
dtPolyRef parentRef = 0;
|
|
const dtMeshTile* parentTile = 0;
|
|
const dtPoly* parentPoly = 0;
|
|
if (bestNode->pidx)
|
|
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
|
|
if (parentRef)
|
|
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
const dtLink* link = &bestTile->links[i];
|
|
dtPolyRef neighbourRef = link->ref;
|
|
// Skip invalid neighbours and do not follow back to parent.
|
|
if (!neighbourRef || neighbourRef == parentRef)
|
|
continue;
|
|
|
|
// Expand to neighbour
|
|
const dtMeshTile* neighbourTile = 0;
|
|
const dtPoly* neighbourPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
|
|
|
|
// Do not advance if the polygon is excluded by the filter.
|
|
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
|
|
continue;
|
|
|
|
// Find edge and calc distance to the edge.
|
|
float va[3], vb[3];
|
|
if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
|
|
continue;
|
|
|
|
// If the circle is not touching the next polygon, skip it.
|
|
float tseg;
|
|
float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
|
|
if (!neighbourNode)
|
|
{
|
|
status |= DT_OUT_OF_NODES;
|
|
continue;
|
|
}
|
|
|
|
if (neighbourNode->flags & DT_NODE_CLOSED)
|
|
continue;
|
|
|
|
// Cost
|
|
if (neighbourNode->flags == 0)
|
|
dtVlerp(neighbourNode->pos, va, vb, 0.5f);
|
|
|
|
const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos);
|
|
|
|
// The node is already in open list and the new result is worse, skip.
|
|
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
|
|
continue;
|
|
|
|
neighbourNode->id = neighbourRef;
|
|
neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
|
|
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
|
|
neighbourNode->total = total;
|
|
|
|
if (neighbourNode->flags & DT_NODE_OPEN)
|
|
{
|
|
m_openList->modify(neighbourNode);
|
|
}
|
|
else
|
|
{
|
|
neighbourNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(neighbourNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!randomPoly)
|
|
return DT_FAILURE;
|
|
|
|
// Randomly pick point on polygon.
|
|
const float* v = &randomTile->verts[randomPoly->verts[0]*3];
|
|
float verts[3*DT_VERTS_PER_POLYGON];
|
|
float areas[DT_VERTS_PER_POLYGON];
|
|
dtVcopy(&verts[0*3],v);
|
|
for (int j = 1; j < randomPoly->vertCount; ++j)
|
|
{
|
|
v = &randomTile->verts[randomPoly->verts[j]*3];
|
|
dtVcopy(&verts[j*3],v);
|
|
}
|
|
|
|
const float s = frand();
|
|
const float t = frand();
|
|
|
|
float pt[3];
|
|
dtRandomPointInConvexPoly(verts, randomPoly->vertCount, areas, s, t, pt);
|
|
|
|
float h = 0.0f;
|
|
dtStatus stat = getPolyHeight(randomPolyRef, pt, &h);
|
|
if (dtStatusFailed(status))
|
|
return stat;
|
|
pt[1] = h;
|
|
|
|
dtVcopy(randomPt, pt);
|
|
*randomRef = randomPolyRef;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// @par
|
|
///
|
|
/// Uses the detail polygons to find the surface height. (Most accurate.)
|
|
///
|
|
/// @p pos does not have to be within the bounds of the polygon or navigation mesh.
|
|
///
|
|
/// See closestPointOnPolyBoundary() for a limited but faster option.
|
|
///
|
|
dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
|
|
{
|
|
dtAssert(m_nav);
|
|
if (!m_nav->isValidPolyRef(ref) ||
|
|
!pos || !dtVisfinite(pos) ||
|
|
!closest)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
m_nav->closestPointOnPoly(ref, pos, closest, posOverPoly);
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// Much faster than closestPointOnPoly().
|
|
///
|
|
/// If the provided position lies within the polygon's xz-bounds (above or below),
|
|
/// then @p pos and @p closest will be equal.
|
|
///
|
|
/// The height of @p closest will be the polygon boundary. The height detail is not used.
|
|
///
|
|
/// @p pos does not have to be within the bounds of the polybon or the navigation mesh.
|
|
///
|
|
dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
const dtMeshTile* tile = 0;
|
|
const dtPoly* poly = 0;
|
|
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
if (!pos || !dtVisfinite(pos) || !closest)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
// Collect vertices.
|
|
float verts[DT_VERTS_PER_POLYGON*3];
|
|
float edged[DT_VERTS_PER_POLYGON];
|
|
float edget[DT_VERTS_PER_POLYGON];
|
|
int nv = 0;
|
|
for (int i = 0; i < (int)poly->vertCount; ++i)
|
|
{
|
|
dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
|
|
nv++;
|
|
}
|
|
|
|
bool inside = dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget);
|
|
if (inside)
|
|
{
|
|
// Point is inside the polygon, return the point.
|
|
dtVcopy(closest, pos);
|
|
}
|
|
else
|
|
{
|
|
// Point is outside the polygon, dtClamp to nearest edge.
|
|
float dmin = edged[0];
|
|
int imin = 0;
|
|
for (int i = 1; i < nv; ++i)
|
|
{
|
|
if (edged[i] < dmin)
|
|
{
|
|
dmin = edged[i];
|
|
imin = i;
|
|
}
|
|
}
|
|
const float* va = &verts[imin*3];
|
|
const float* vb = &verts[((imin+1)%nv)*3];
|
|
dtVlerp(closest, va, vb, edget[imin]);
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// Will return #DT_FAILURE | DT_INVALID_PARAM if the provided position is outside the xz-bounds
|
|
/// of the polygon.
|
|
///
|
|
dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
const dtMeshTile* tile = 0;
|
|
const dtPoly* poly = 0;
|
|
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
if (!pos || !dtVisfinite2D(pos))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
// We used to return success for offmesh connections, but the
|
|
// getPolyHeight in DetourNavMesh does not do this, so special
|
|
// case it here.
|
|
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
{
|
|
const float* v0 = &tile->verts[poly->verts[0]*3];
|
|
const float* v1 = &tile->verts[poly->verts[1]*3];
|
|
float t;
|
|
dtDistancePtSegSqr2D(pos, v0, v1, t);
|
|
if (height)
|
|
*height = v0[1] + (v1[1] - v0[1])*t;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
return m_nav->getPolyHeight(tile, poly, pos, height)
|
|
? DT_SUCCESS
|
|
: DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
class dtFindNearestPolyQuery : public dtPolyQuery
|
|
{
|
|
const dtNavMeshQuery* m_query;
|
|
const float* m_center;
|
|
float m_nearestDistanceSqr;
|
|
dtPolyRef m_nearestRef;
|
|
float m_nearestPoint[3];
|
|
bool m_overPoly;
|
|
|
|
public:
|
|
dtFindNearestPolyQuery(const dtNavMeshQuery* query, const float* center)
|
|
: m_query(query), m_center(center), m_nearestDistanceSqr(FLT_MAX), m_nearestRef(0), m_nearestPoint(), m_overPoly(false)
|
|
{
|
|
}
|
|
|
|
dtPolyRef nearestRef() const { return m_nearestRef; }
|
|
const float* nearestPoint() const { return m_nearestPoint; }
|
|
bool isOverPoly() const { return m_overPoly; }
|
|
|
|
void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count)
|
|
{
|
|
dtIgnoreUnused(polys);
|
|
|
|
for (int i = 0; i < count; ++i)
|
|
{
|
|
dtPolyRef ref = refs[i];
|
|
float closestPtPoly[3];
|
|
float diff[3];
|
|
bool posOverPoly = false;
|
|
float d;
|
|
m_query->closestPointOnPoly(ref, m_center, closestPtPoly, &posOverPoly);
|
|
|
|
// If a point is directly over a polygon and closer than
|
|
// climb height, favor that instead of straight line nearest point.
|
|
dtVsub(diff, m_center, closestPtPoly);
|
|
if (posOverPoly)
|
|
{
|
|
d = dtAbs(diff[1]) - tile->header->walkableClimb;
|
|
d = d > 0 ? d*d : 0;
|
|
}
|
|
else
|
|
{
|
|
d = dtVlenSqr(diff);
|
|
}
|
|
|
|
if (d < m_nearestDistanceSqr)
|
|
{
|
|
dtVcopy(m_nearestPoint, closestPtPoly);
|
|
|
|
m_nearestDistanceSqr = d;
|
|
m_nearestRef = ref;
|
|
m_overPoly = posOverPoly;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/// @par
|
|
///
|
|
/// @note If the search box does not intersect any polygons the search will
|
|
/// return #DT_SUCCESS, but @p nearestRef will be zero. So if in doubt, check
|
|
/// @p nearestRef before using @p nearestPt.
|
|
///
|
|
dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents,
|
|
const dtQueryFilter* filter,
|
|
dtPolyRef* nearestRef, float* nearestPt) const
|
|
{
|
|
return findNearestPoly(center, halfExtents, filter, nearestRef, nearestPt, NULL);
|
|
}
|
|
|
|
// If center and nearestPt point to an equal position, isOverPoly will be true;
|
|
// however there's also a special case of climb height inside the polygon (see dtFindNearestPolyQuery)
|
|
dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents,
|
|
const dtQueryFilter* filter,
|
|
dtPolyRef* nearestRef, float* nearestPt, bool* isOverPoly) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
if (!nearestRef)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
// queryPolygons below will check rest of params
|
|
|
|
dtFindNearestPolyQuery query(this, center);
|
|
|
|
dtStatus status = queryPolygons(center, halfExtents, filter, &query);
|
|
if (dtStatusFailed(status))
|
|
return status;
|
|
|
|
*nearestRef = query.nearestRef();
|
|
// Only override nearestPt if we actually found a poly so the nearest point
|
|
// is valid.
|
|
if (nearestPt && *nearestRef)
|
|
{
|
|
dtVcopy(nearestPt, query.nearestPoint());
|
|
if (isOverPoly)
|
|
*isOverPoly = query.isOverPoly();
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
void dtNavMeshQuery::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
|
|
const dtQueryFilter* filter, dtPolyQuery* query) const
|
|
{
|
|
dtAssert(m_nav);
|
|
static const int batchSize = 32;
|
|
dtPolyRef polyRefs[batchSize];
|
|
dtPoly* polys[batchSize];
|
|
int n = 0;
|
|
|
|
if (tile->bvTree)
|
|
{
|
|
const dtBVNode* node = &tile->bvTree[0];
|
|
const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
|
|
const float* tbmin = tile->header->bmin;
|
|
const float* tbmax = tile->header->bmax;
|
|
const float qfac = tile->header->bvQuantFactor;
|
|
|
|
// Calculate quantized box
|
|
unsigned short bmin[3], bmax[3];
|
|
// dtClamp query box to world box.
|
|
float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
|
|
float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
|
|
float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
|
|
float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
|
|
float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
|
|
float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
|
|
// Quantize
|
|
bmin[0] = (unsigned short)(qfac * minx) & 0xfffe;
|
|
bmin[1] = (unsigned short)(qfac * miny) & 0xfffe;
|
|
bmin[2] = (unsigned short)(qfac * minz) & 0xfffe;
|
|
bmax[0] = (unsigned short)(qfac * maxx + 1) | 1;
|
|
bmax[1] = (unsigned short)(qfac * maxy + 1) | 1;
|
|
bmax[2] = (unsigned short)(qfac * maxz + 1) | 1;
|
|
|
|
// Traverse tree
|
|
const dtPolyRef base = m_nav->getPolyRefBase(tile);
|
|
while (node < end)
|
|
{
|
|
const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax);
|
|
const bool isLeafNode = node->i >= 0;
|
|
|
|
if (isLeafNode && overlap)
|
|
{
|
|
dtPolyRef ref = base | (dtPolyRef)node->i;
|
|
if (filter->passFilter(ref, tile, &tile->polys[node->i]))
|
|
{
|
|
polyRefs[n] = ref;
|
|
polys[n] = &tile->polys[node->i];
|
|
|
|
if (n == batchSize - 1)
|
|
{
|
|
query->process(tile, polys, polyRefs, batchSize);
|
|
n = 0;
|
|
}
|
|
else
|
|
{
|
|
n++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (overlap || isLeafNode)
|
|
node++;
|
|
else
|
|
{
|
|
const int escapeIndex = -node->i;
|
|
node += escapeIndex;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float bmin[3], bmax[3];
|
|
const dtPolyRef base = m_nav->getPolyRefBase(tile);
|
|
for (int i = 0; i < tile->header->polyCount; ++i)
|
|
{
|
|
dtPoly* p = &tile->polys[i];
|
|
// Do not return off-mesh connection polygons.
|
|
if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
continue;
|
|
// Must pass filter
|
|
const dtPolyRef ref = base | (dtPolyRef)i;
|
|
if (!filter->passFilter(ref, tile, p))
|
|
continue;
|
|
// Calc polygon bounds.
|
|
const float* v = &tile->verts[p->verts[0]*3];
|
|
dtVcopy(bmin, v);
|
|
dtVcopy(bmax, v);
|
|
for (int j = 1; j < p->vertCount; ++j)
|
|
{
|
|
v = &tile->verts[p->verts[j]*3];
|
|
dtVmin(bmin, v);
|
|
dtVmax(bmax, v);
|
|
}
|
|
if (dtOverlapBounds(qmin, qmax, bmin, bmax))
|
|
{
|
|
polyRefs[n] = ref;
|
|
polys[n] = p;
|
|
|
|
if (n == batchSize - 1)
|
|
{
|
|
query->process(tile, polys, polyRefs, batchSize);
|
|
n = 0;
|
|
}
|
|
else
|
|
{
|
|
n++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process the last polygons that didn't make a full batch.
|
|
if (n > 0)
|
|
query->process(tile, polys, polyRefs, n);
|
|
}
|
|
|
|
class dtCollectPolysQuery : public dtPolyQuery
|
|
{
|
|
dtPolyRef* m_polys;
|
|
const int m_maxPolys;
|
|
int m_numCollected;
|
|
bool m_overflow;
|
|
|
|
public:
|
|
dtCollectPolysQuery(dtPolyRef* polys, const int maxPolys)
|
|
: m_polys(polys), m_maxPolys(maxPolys), m_numCollected(0), m_overflow(false)
|
|
{
|
|
}
|
|
|
|
int numCollected() const { return m_numCollected; }
|
|
bool overflowed() const { return m_overflow; }
|
|
|
|
void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count)
|
|
{
|
|
dtIgnoreUnused(tile);
|
|
dtIgnoreUnused(polys);
|
|
|
|
int numLeft = m_maxPolys - m_numCollected;
|
|
int toCopy = count;
|
|
if (toCopy > numLeft)
|
|
{
|
|
m_overflow = true;
|
|
toCopy = numLeft;
|
|
}
|
|
|
|
memcpy(m_polys + m_numCollected, refs, (size_t)toCopy * sizeof(dtPolyRef));
|
|
m_numCollected += toCopy;
|
|
}
|
|
};
|
|
|
|
/// @par
|
|
///
|
|
/// If no polygons are found, the function will return #DT_SUCCESS with a
|
|
/// @p polyCount of zero.
|
|
///
|
|
/// If @p polys is too small to hold the entire result set, then the array will
|
|
/// be filled to capacity. The method of choosing which polygons from the
|
|
/// full set are included in the partial result set is undefined.
|
|
///
|
|
dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExtents,
|
|
const dtQueryFilter* filter,
|
|
dtPolyRef* polys, int* polyCount, const int maxPolys) const
|
|
{
|
|
if (!polys || !polyCount || maxPolys < 0)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
dtCollectPolysQuery collector(polys, maxPolys);
|
|
|
|
dtStatus status = queryPolygons(center, halfExtents, filter, &collector);
|
|
if (dtStatusFailed(status))
|
|
return status;
|
|
|
|
*polyCount = collector.numCollected();
|
|
return collector.overflowed() ? DT_SUCCESS | DT_BUFFER_TOO_SMALL : DT_SUCCESS;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// The query will be invoked with batches of polygons. Polygons passed
|
|
/// to the query have bounding boxes that overlap with the center and halfExtents
|
|
/// passed to this function. The dtPolyQuery::process function is invoked multiple
|
|
/// times until all overlapping polygons have been processed.
|
|
///
|
|
dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExtents,
|
|
const dtQueryFilter* filter, dtPolyQuery* query) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
if (!center || !dtVisfinite(center) ||
|
|
!halfExtents || !dtVisfinite(halfExtents) ||
|
|
!filter || !query)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
float bmin[3], bmax[3];
|
|
dtVsub(bmin, center, halfExtents);
|
|
dtVadd(bmax, center, halfExtents);
|
|
|
|
// Find tiles the query touches.
|
|
int minx, miny, maxx, maxy;
|
|
m_nav->calcTileLoc(bmin, &minx, &miny);
|
|
m_nav->calcTileLoc(bmax, &maxx, &maxy);
|
|
|
|
static const int MAX_NEIS = 32;
|
|
const dtMeshTile* neis[MAX_NEIS];
|
|
|
|
for (int y = miny; y <= maxy; ++y)
|
|
{
|
|
for (int x = minx; x <= maxx; ++x)
|
|
{
|
|
const int nneis = m_nav->getTilesAt(x,y,neis,MAX_NEIS);
|
|
for (int j = 0; j < nneis; ++j)
|
|
{
|
|
queryPolygonsInTile(neis[j], bmin, bmax, filter, query);
|
|
}
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// If the end polygon cannot be reached through the navigation graph,
|
|
/// the last polygon in the path will be the nearest the end polygon.
|
|
///
|
|
/// If the path array is to small to hold the full result, it will be filled as
|
|
/// far as possible from the start polygon toward the end polygon.
|
|
///
|
|
/// The start and end positions are used to calculate traversal costs.
|
|
/// (The y-values impact the result.)
|
|
///
|
|
dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef,
|
|
const float* startPos, const float* endPos,
|
|
const dtQueryFilter* filter,
|
|
dtPolyRef* path, int* pathCount, const int maxPath) const
|
|
{
|
|
dtAssert(m_nav);
|
|
dtAssert(m_nodePool);
|
|
dtAssert(m_openList);
|
|
|
|
if (!pathCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*pathCount = 0;
|
|
|
|
// Validate input
|
|
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
|
|
!startPos || !dtVisfinite(startPos) ||
|
|
!endPos || !dtVisfinite(endPos) ||
|
|
!filter || !path || maxPath <= 0)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
if (startRef == endRef)
|
|
{
|
|
path[0] = startRef;
|
|
*pathCount = 1;
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(startRef);
|
|
dtVcopy(startNode->pos, startPos);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = dtVdist(startPos, endPos) * H_SCALE;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
dtNode* lastBestNode = startNode;
|
|
float lastBestNodeCost = startNode->total;
|
|
|
|
bool outOfNodes = false;
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
// Remove node from open list and put it in closed list.
|
|
dtNode* bestNode = m_openList->pop();
|
|
|
|
if (!bestNode) { continue; }
|
|
|
|
bestNode->flags &= ~DT_NODE_OPEN;
|
|
bestNode->flags |= DT_NODE_CLOSED;
|
|
|
|
// Reached the goal, stop searching.
|
|
if (bestNode->id == endRef)
|
|
{
|
|
lastBestNode = bestNode;
|
|
break;
|
|
}
|
|
|
|
// Get current poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
const dtMeshTile* bestTile = nullptr;
|
|
const dtPoly* bestPoly = nullptr;
|
|
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
|
|
|
|
if (!bestTile || !bestPoly || !bestTile->links) { continue; }
|
|
|
|
// Get parent poly and tile.
|
|
dtPolyRef parentRef = 0;
|
|
const dtMeshTile* parentTile = nullptr;
|
|
const dtPoly* parentPoly = nullptr;
|
|
if (bestNode->pidx)
|
|
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
|
|
if (parentRef)
|
|
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
dtPolyRef neighbourRef = bestTile->links[i].ref;
|
|
|
|
// Skip invalid ids and do not expand back to where we came from.
|
|
if (!neighbourRef || neighbourRef == parentRef)
|
|
continue;
|
|
|
|
// Get neighbour poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtMeshTile* neighbourTile = 0;
|
|
const dtPoly* neighbourPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
|
|
|
|
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
|
|
continue;
|
|
|
|
// deal explicitly with crossing tile boundaries
|
|
unsigned char crossSide = 0;
|
|
if (bestTile->links[i].side != 0xff)
|
|
crossSide = bestTile->links[i].side >> 1;
|
|
|
|
// get the node
|
|
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, crossSide);
|
|
if (!neighbourNode)
|
|
{
|
|
outOfNodes = true;
|
|
continue;
|
|
}
|
|
|
|
// If the node is visited the first time, calculate node position.
|
|
if (neighbourNode->flags == 0)
|
|
{
|
|
getEdgeMidPoint(bestRef, bestPoly, bestTile,
|
|
neighbourRef, neighbourPoly, neighbourTile,
|
|
neighbourNode->pos);
|
|
}
|
|
|
|
// Calculate cost and heuristic.
|
|
float cost = 0;
|
|
float heuristic = 0;
|
|
|
|
// Special case for last node.
|
|
if (neighbourRef == endRef)
|
|
{
|
|
// Cost
|
|
const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos,
|
|
parentRef, parentTile, parentPoly,
|
|
bestRef, bestTile, bestPoly,
|
|
neighbourRef, neighbourTile, neighbourPoly);
|
|
const float endCost = filter->getCost(neighbourNode->pos, endPos,
|
|
bestRef, bestTile, bestPoly,
|
|
neighbourRef, neighbourTile, neighbourPoly,
|
|
0, 0, 0);
|
|
|
|
cost = bestNode->cost + curCost + endCost;
|
|
heuristic = 0;
|
|
}
|
|
else
|
|
{
|
|
// Cost
|
|
const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos,
|
|
parentRef, parentTile, parentPoly,
|
|
bestRef, bestTile, bestPoly,
|
|
neighbourRef, neighbourTile, neighbourPoly);
|
|
cost = bestNode->cost + curCost;
|
|
heuristic = dtVdist(neighbourNode->pos, endPos)*H_SCALE;
|
|
}
|
|
|
|
const float total = cost + heuristic;
|
|
|
|
// The node is already in open list and the new result is worse, skip.
|
|
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
|
|
continue;
|
|
// The node is already visited and process, and the new result is worse, skip.
|
|
if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total)
|
|
continue;
|
|
|
|
// Add or update the node.
|
|
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
|
|
neighbourNode->id = neighbourRef;
|
|
neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
|
|
neighbourNode->cost = cost;
|
|
neighbourNode->total = total;
|
|
|
|
if (neighbourNode->flags & DT_NODE_OPEN)
|
|
{
|
|
// Already in open, update node location.
|
|
m_openList->modify(neighbourNode);
|
|
}
|
|
else
|
|
{
|
|
// Put the node in open list.
|
|
neighbourNode->flags |= DT_NODE_OPEN;
|
|
m_openList->push(neighbourNode);
|
|
}
|
|
|
|
// Update nearest node to target so far.
|
|
if (heuristic < lastBestNodeCost)
|
|
{
|
|
lastBestNodeCost = heuristic;
|
|
lastBestNode = neighbourNode;
|
|
}
|
|
}
|
|
}
|
|
|
|
dtStatus status = getPathToNode(lastBestNode, path, pathCount, maxPath);
|
|
|
|
if (lastBestNode->id != endRef)
|
|
status |= DT_PARTIAL_RESULT;
|
|
|
|
if (outOfNodes)
|
|
status |= DT_OUT_OF_NODES;
|
|
|
|
return status;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::getPathToNode(dtNode* endNode, dtPolyRef* path, int* pathCount, int maxPath) const
|
|
{
|
|
// Find the length of the entire path.
|
|
dtNode* curNode = endNode;
|
|
int length = 0;
|
|
int maxLength = maxPath * 2;
|
|
|
|
do
|
|
{
|
|
length++;
|
|
|
|
// Check to prevent infinite recursion
|
|
dtNode* NewNode = m_nodePool->getNodeAtIdx(curNode->pidx);
|
|
if (NewNode == curNode) { return DT_FAILURE; }
|
|
|
|
curNode = NewNode;
|
|
} while (curNode && length < maxLength);
|
|
|
|
// If the path cannot be fully stored then advance to the last node we will be able to store.
|
|
curNode = endNode;
|
|
int writeCount;
|
|
for (writeCount = length; writeCount > maxPath; writeCount--)
|
|
{
|
|
dtAssert(curNode);
|
|
|
|
curNode = m_nodePool->getNodeAtIdx(curNode->pidx);
|
|
}
|
|
|
|
// Write path
|
|
for (int i = writeCount - 1; i >= 0; i--)
|
|
{
|
|
dtAssert(curNode);
|
|
|
|
path[i] = curNode->id;
|
|
curNode = m_nodePool->getNodeAtIdx(curNode->pidx);
|
|
}
|
|
|
|
dtAssert(!curNode);
|
|
|
|
*pathCount = dtMin(length, maxPath);
|
|
|
|
if (length > maxPath)
|
|
return DT_SUCCESS | DT_BUFFER_TOO_SMALL;
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
/// @par
|
|
///
|
|
/// @warning Calling any non-slice methods before calling finalizeSlicedFindPath()
|
|
/// or finalizeSlicedFindPathPartial() may result in corrupted data!
|
|
///
|
|
/// The @p filter pointer is stored and used for the duration of the sliced
|
|
/// path query.
|
|
///
|
|
dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef,
|
|
const float* startPos, const float* endPos,
|
|
const dtQueryFilter* filter, const unsigned int options)
|
|
{
|
|
dtAssert(m_nav);
|
|
dtAssert(m_nodePool);
|
|
dtAssert(m_openList);
|
|
|
|
// Init path state.
|
|
memset(&m_query, 0, sizeof(dtQueryData));
|
|
m_query.status = DT_FAILURE;
|
|
m_query.startRef = startRef;
|
|
m_query.endRef = endRef;
|
|
if (startPos)
|
|
dtVcopy(m_query.startPos, startPos);
|
|
if (endPos)
|
|
dtVcopy(m_query.endPos, endPos);
|
|
m_query.filter = filter;
|
|
m_query.options = options;
|
|
m_query.raycastLimitSqr = FLT_MAX;
|
|
|
|
// Validate input
|
|
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
|
|
!startPos || !dtVisfinite(startPos) ||
|
|
!endPos || !dtVisfinite(endPos) || !filter)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
// trade quality with performance?
|
|
if (options & DT_FINDPATH_ANY_ANGLE)
|
|
{
|
|
// limiting to several times the character radius yields nice results. It is not sensitive
|
|
// so it is enough to compute it from the first tile.
|
|
const dtMeshTile* tile = m_nav->getTileByRef(startRef);
|
|
float agentRadius = tile->header->walkableRadius;
|
|
m_query.raycastLimitSqr = dtSqr(agentRadius * DT_RAY_CAST_LIMIT_PROPORTIONS);
|
|
}
|
|
|
|
if (startRef == endRef)
|
|
{
|
|
m_query.status = DT_SUCCESS;
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(startRef);
|
|
dtVcopy(startNode->pos, startPos);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = dtVdist(startPos, endPos) * H_SCALE;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
m_query.status = DT_IN_PROGRESS;
|
|
m_query.lastBestNode = startNode;
|
|
m_query.lastBestNodeCost = startNode->total;
|
|
|
|
return m_query.status;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter, int* doneIters)
|
|
{
|
|
if (!dtStatusInProgress(m_query.status))
|
|
return m_query.status;
|
|
|
|
// Make sure the request is still valid.
|
|
if (!m_nav->isValidPolyRef(m_query.startRef) || !m_nav->isValidPolyRef(m_query.endRef))
|
|
{
|
|
m_query.status = DT_FAILURE;
|
|
return DT_FAILURE;
|
|
}
|
|
|
|
dtRaycastHit rayHit;
|
|
rayHit.maxPath = 0;
|
|
|
|
int iter = 0;
|
|
while (iter < maxIter && !m_openList->empty())
|
|
{
|
|
iter++;
|
|
|
|
// Remove node from open list and put it in closed list.
|
|
dtNode* bestNode = m_openList->pop();
|
|
bestNode->flags &= ~DT_NODE_OPEN;
|
|
bestNode->flags |= DT_NODE_CLOSED;
|
|
|
|
// Reached the goal, stop searching.
|
|
if (bestNode->id == m_query.endRef)
|
|
{
|
|
m_query.lastBestNode = bestNode;
|
|
const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
|
|
m_query.status = DT_SUCCESS | details;
|
|
if (doneIters)
|
|
*doneIters = iter;
|
|
return m_query.status;
|
|
}
|
|
|
|
// Get current poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
const dtMeshTile* bestTile = 0;
|
|
const dtPoly* bestPoly = 0;
|
|
if (dtStatusFailed(m_nav->getTileAndPolyByRef(bestRef, &bestTile, &bestPoly)))
|
|
{
|
|
// The polygon has disappeared during the sliced query, fail.
|
|
m_query.status = DT_FAILURE;
|
|
if (doneIters)
|
|
*doneIters = iter;
|
|
return m_query.status;
|
|
}
|
|
|
|
// Get parent and grand parent poly and tile.
|
|
dtPolyRef parentRef = 0, grandpaRef = 0;
|
|
const dtMeshTile* parentTile = 0;
|
|
const dtPoly* parentPoly = 0;
|
|
dtNode* parentNode = 0;
|
|
if (bestNode->pidx)
|
|
{
|
|
parentNode = m_nodePool->getNodeAtIdx(bestNode->pidx);
|
|
parentRef = parentNode->id;
|
|
if (parentNode->pidx)
|
|
grandpaRef = m_nodePool->getNodeAtIdx(parentNode->pidx)->id;
|
|
}
|
|
if (parentRef)
|
|
{
|
|
bool invalidParent = dtStatusFailed(m_nav->getTileAndPolyByRef(parentRef, &parentTile, &parentPoly));
|
|
if (invalidParent || (grandpaRef && !m_nav->isValidPolyRef(grandpaRef)) )
|
|
{
|
|
// The polygon has disappeared during the sliced query, fail.
|
|
m_query.status = DT_FAILURE;
|
|
if (doneIters)
|
|
*doneIters = iter;
|
|
return m_query.status;
|
|
}
|
|
}
|
|
|
|
// decide whether to test raycast to previous nodes
|
|
bool tryLOS = false;
|
|
if (m_query.options & DT_FINDPATH_ANY_ANGLE)
|
|
{
|
|
if ((parentRef != 0) && (dtVdistSqr(parentNode->pos, bestNode->pos) < m_query.raycastLimitSqr))
|
|
tryLOS = true;
|
|
}
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
dtPolyRef neighbourRef = bestTile->links[i].ref;
|
|
|
|
// Skip invalid ids and do not expand back to where we came from.
|
|
if (!neighbourRef || neighbourRef == parentRef)
|
|
continue;
|
|
|
|
// Get neighbour poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtMeshTile* neighbourTile = 0;
|
|
const dtPoly* neighbourPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
|
|
|
|
if (!m_query.filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
|
|
continue;
|
|
|
|
// get the neighbor node
|
|
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, 0);
|
|
if (!neighbourNode)
|
|
{
|
|
m_query.status |= DT_OUT_OF_NODES;
|
|
continue;
|
|
}
|
|
|
|
// do not expand to nodes that were already visited from the same parent
|
|
if (neighbourNode->pidx != 0 && neighbourNode->pidx == bestNode->pidx)
|
|
continue;
|
|
|
|
// If the node is visited the first time, calculate node position.
|
|
if (neighbourNode->flags == 0)
|
|
{
|
|
getEdgeMidPoint(bestRef, bestPoly, bestTile,
|
|
neighbourRef, neighbourPoly, neighbourTile,
|
|
neighbourNode->pos);
|
|
}
|
|
|
|
// Calculate cost and heuristic.
|
|
float cost = 0;
|
|
float heuristic = 0;
|
|
|
|
// raycast parent
|
|
bool foundShortCut = false;
|
|
rayHit.pathCost = rayHit.t = 0;
|
|
if (tryLOS)
|
|
{
|
|
raycast(parentRef, parentNode->pos, neighbourNode->pos, m_query.filter, DT_RAYCAST_USE_COSTS, &rayHit, grandpaRef);
|
|
foundShortCut = rayHit.t >= 1.0f;
|
|
}
|
|
|
|
// update move cost
|
|
if (foundShortCut)
|
|
{
|
|
// shortcut found using raycast. Using shorter cost instead
|
|
cost = parentNode->cost + rayHit.pathCost;
|
|
}
|
|
else
|
|
{
|
|
// No shortcut found.
|
|
const float curCost = m_query.filter->getCost(bestNode->pos, neighbourNode->pos,
|
|
parentRef, parentTile, parentPoly,
|
|
bestRef, bestTile, bestPoly,
|
|
neighbourRef, neighbourTile, neighbourPoly);
|
|
cost = bestNode->cost + curCost;
|
|
}
|
|
|
|
// Special case for last node.
|
|
if (neighbourRef == m_query.endRef)
|
|
{
|
|
const float endCost = m_query.filter->getCost(neighbourNode->pos, m_query.endPos,
|
|
bestRef, bestTile, bestPoly,
|
|
neighbourRef, neighbourTile, neighbourPoly,
|
|
0, 0, 0);
|
|
|
|
cost = cost + endCost;
|
|
heuristic = 0;
|
|
}
|
|
else
|
|
{
|
|
heuristic = dtVdist(neighbourNode->pos, m_query.endPos)*H_SCALE;
|
|
}
|
|
|
|
const float total = cost + heuristic;
|
|
|
|
// The node is already in open list and the new result is worse, skip.
|
|
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
|
|
continue;
|
|
// The node is already visited and process, and the new result is worse, skip.
|
|
if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total)
|
|
continue;
|
|
|
|
// Add or update the node.
|
|
neighbourNode->pidx = foundShortCut ? bestNode->pidx : m_nodePool->getNodeIdx(bestNode);
|
|
neighbourNode->id = neighbourRef;
|
|
neighbourNode->flags = (neighbourNode->flags & ~(DT_NODE_CLOSED | DT_NODE_PARENT_DETACHED));
|
|
neighbourNode->cost = cost;
|
|
neighbourNode->total = total;
|
|
if (foundShortCut)
|
|
neighbourNode->flags = (neighbourNode->flags | DT_NODE_PARENT_DETACHED);
|
|
|
|
if (neighbourNode->flags & DT_NODE_OPEN)
|
|
{
|
|
// Already in open, update node location.
|
|
m_openList->modify(neighbourNode);
|
|
}
|
|
else
|
|
{
|
|
// Put the node in open list.
|
|
neighbourNode->flags |= DT_NODE_OPEN;
|
|
m_openList->push(neighbourNode);
|
|
}
|
|
|
|
// Update nearest node to target so far.
|
|
if (heuristic < m_query.lastBestNodeCost)
|
|
{
|
|
m_query.lastBestNodeCost = heuristic;
|
|
m_query.lastBestNode = neighbourNode;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Exhausted all nodes, but could not find path.
|
|
if (m_openList->empty())
|
|
{
|
|
const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
|
|
m_query.status = DT_SUCCESS | details;
|
|
}
|
|
|
|
if (doneIters)
|
|
*doneIters = iter;
|
|
|
|
return m_query.status;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath)
|
|
{
|
|
if (!pathCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*pathCount = 0;
|
|
|
|
if (!path || maxPath <= 0)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
if (dtStatusFailed(m_query.status))
|
|
{
|
|
// Reset query.
|
|
memset(&m_query, 0, sizeof(dtQueryData));
|
|
return DT_FAILURE;
|
|
}
|
|
|
|
int n = 0;
|
|
|
|
if (m_query.startRef == m_query.endRef)
|
|
{
|
|
// Special case: the search starts and ends at same poly.
|
|
path[n++] = m_query.startRef;
|
|
}
|
|
else
|
|
{
|
|
// Reverse the path.
|
|
dtAssert(m_query.lastBestNode);
|
|
|
|
if (m_query.lastBestNode->id != m_query.endRef)
|
|
m_query.status |= DT_PARTIAL_RESULT;
|
|
|
|
dtNode* prev = 0;
|
|
dtNode* node = m_query.lastBestNode;
|
|
int prevRay = 0;
|
|
do
|
|
{
|
|
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
|
|
node->pidx = m_nodePool->getNodeIdx(prev);
|
|
prev = node;
|
|
int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut)
|
|
node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node
|
|
prevRay = nextRay;
|
|
node = next;
|
|
}
|
|
while (node);
|
|
|
|
// Store path
|
|
node = prev;
|
|
do
|
|
{
|
|
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
|
|
dtStatus status = 0;
|
|
if (node->flags & DT_NODE_PARENT_DETACHED)
|
|
{
|
|
float t, normal[3];
|
|
int m;
|
|
status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n);
|
|
n += m;
|
|
// raycast ends on poly boundary and the path might include the next poly boundary.
|
|
if (path[n-1] == next->id)
|
|
n--; // remove to avoid duplicates
|
|
}
|
|
else
|
|
{
|
|
path[n++] = node->id;
|
|
if (n >= maxPath)
|
|
status = DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
if (status & DT_STATUS_DETAIL_MASK)
|
|
{
|
|
m_query.status |= status & DT_STATUS_DETAIL_MASK;
|
|
break;
|
|
}
|
|
node = next;
|
|
}
|
|
while (node);
|
|
}
|
|
|
|
const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
|
|
|
|
// Reset query.
|
|
memset(&m_query, 0, sizeof(dtQueryData));
|
|
|
|
*pathCount = n;
|
|
|
|
return DT_SUCCESS | details;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize,
|
|
dtPolyRef* path, int* pathCount, const int maxPath)
|
|
{
|
|
if (!pathCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*pathCount = 0;
|
|
|
|
if (!existing || existingSize <= 0 || !path || !pathCount || maxPath <= 0)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
if (dtStatusFailed(m_query.status))
|
|
{
|
|
// Reset query.
|
|
memset(&m_query, 0, sizeof(dtQueryData));
|
|
return DT_FAILURE;
|
|
}
|
|
|
|
int n = 0;
|
|
|
|
if (m_query.startRef == m_query.endRef)
|
|
{
|
|
// Special case: the search starts and ends at same poly.
|
|
path[n++] = m_query.startRef;
|
|
}
|
|
else
|
|
{
|
|
// Find furthest existing node that was visited.
|
|
dtNode* prev = 0;
|
|
dtNode* node = 0;
|
|
for (int i = existingSize-1; i >= 0; --i)
|
|
{
|
|
m_nodePool->findNodes(existing[i], &node, 1);
|
|
if (node)
|
|
break;
|
|
}
|
|
|
|
if (!node)
|
|
{
|
|
m_query.status |= DT_PARTIAL_RESULT;
|
|
dtAssert(m_query.lastBestNode);
|
|
node = m_query.lastBestNode;
|
|
}
|
|
|
|
// Reverse the path.
|
|
int prevRay = 0;
|
|
do
|
|
{
|
|
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
|
|
node->pidx = m_nodePool->getNodeIdx(prev);
|
|
prev = node;
|
|
int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut)
|
|
node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node
|
|
prevRay = nextRay;
|
|
node = next;
|
|
}
|
|
while (node);
|
|
|
|
// Store path
|
|
node = prev;
|
|
do
|
|
{
|
|
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
|
|
dtStatus status = 0;
|
|
if (node->flags & DT_NODE_PARENT_DETACHED)
|
|
{
|
|
float t, normal[3];
|
|
int m;
|
|
status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n);
|
|
n += m;
|
|
// raycast ends on poly boundary and the path might include the next poly boundary.
|
|
if (path[n-1] == next->id)
|
|
n--; // remove to avoid duplicates
|
|
}
|
|
else
|
|
{
|
|
path[n++] = node->id;
|
|
if (n >= maxPath)
|
|
status = DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
if (status & DT_STATUS_DETAIL_MASK)
|
|
{
|
|
m_query.status |= status & DT_STATUS_DETAIL_MASK;
|
|
break;
|
|
}
|
|
node = next;
|
|
}
|
|
while (node);
|
|
}
|
|
|
|
const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
|
|
|
|
// Reset query.
|
|
memset(&m_query, 0, sizeof(dtQueryData));
|
|
|
|
*pathCount = n;
|
|
|
|
return DT_SUCCESS | details;
|
|
}
|
|
|
|
|
|
dtStatus dtNavMeshQuery::appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref,
|
|
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
|
int* straightPathCount, const int maxStraightPath) const
|
|
{
|
|
if ((*straightPathCount) > 0 && dtVequal(&straightPath[((*straightPathCount)-1)*3], pos))
|
|
{
|
|
// The vertices are equal, update flags and poly.
|
|
if (straightPathFlags)
|
|
straightPathFlags[(*straightPathCount)-1] = flags;
|
|
if (straightPathRefs)
|
|
straightPathRefs[(*straightPathCount)-1] = ref;
|
|
}
|
|
else
|
|
{
|
|
// Append new vertex.
|
|
dtVcopy(&straightPath[(*straightPathCount)*3], pos);
|
|
if (straightPathFlags)
|
|
straightPathFlags[(*straightPathCount)] = flags;
|
|
if (straightPathRefs)
|
|
straightPathRefs[(*straightPathCount)] = ref;
|
|
(*straightPathCount)++;
|
|
|
|
// If there is no space to append more vertices, return.
|
|
if ((*straightPathCount) >= maxStraightPath)
|
|
{
|
|
return DT_SUCCESS | DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
// If reached end of path, return.
|
|
if (flags == DT_STRAIGHTPATH_END)
|
|
{
|
|
return DT_SUCCESS;
|
|
}
|
|
}
|
|
return DT_IN_PROGRESS;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path,
|
|
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
|
int* straightPathCount, const int maxStraightPath, const int options) const
|
|
{
|
|
const float* startPos = &straightPath[(*straightPathCount-1)*3];
|
|
// Append or update last vertex
|
|
dtStatus stat = 0;
|
|
for (int i = startIdx; i < endIdx; i++)
|
|
{
|
|
// Calculate portal
|
|
const dtPolyRef from = path[i];
|
|
const dtMeshTile* fromTile = 0;
|
|
const dtPoly* fromPoly = 0;
|
|
if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
const dtPolyRef to = path[i+1];
|
|
const dtMeshTile* toTile = 0;
|
|
const dtPoly* toPoly = 0;
|
|
if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
float left[3], right[3];
|
|
if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right)))
|
|
break;
|
|
|
|
if (options & DT_STRAIGHTPATH_AREA_CROSSINGS)
|
|
{
|
|
// Skip intersection if only area crossings are requested.
|
|
if (fromPoly->getArea() == toPoly->getArea())
|
|
continue;
|
|
}
|
|
|
|
// Append intersection
|
|
float s,t;
|
|
if (dtIntersectSegSeg2D(startPos, endPos, left, right, s, t))
|
|
{
|
|
float pt[3];
|
|
dtVlerp(pt, left,right, t);
|
|
|
|
stat = appendVertex(pt, 0, path[i+1],
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath);
|
|
if (stat != DT_IN_PROGRESS)
|
|
return stat;
|
|
}
|
|
}
|
|
return DT_IN_PROGRESS;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// This method peforms what is often called 'string pulling'.
|
|
///
|
|
/// The start position is clamped to the first polygon in the path, and the
|
|
/// end position is clamped to the last. So the start and end positions should
|
|
/// normally be within or very near the first and last polygons respectively.
|
|
///
|
|
/// The returned polygon references represent the reference id of the polygon
|
|
/// that is entered at the associated path position. The reference id associated
|
|
/// with the end point will always be zero. This allows, for example, matching
|
|
/// off-mesh link points to their representative polygons.
|
|
///
|
|
/// If the provided result buffers are too small for the entire result set,
|
|
/// they will be filled as far as possible from the start toward the end
|
|
/// position.
|
|
///
|
|
dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* endPos,
|
|
const dtPolyRef* path, const int pathSize,
|
|
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
|
int* straightPathCount, const int maxStraightPath, const int options) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
if (!straightPathCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*straightPathCount = 0;
|
|
|
|
if (!startPos || !dtVisfinite(startPos) ||
|
|
!endPos || !dtVisfinite(endPos) ||
|
|
!path || pathSize <= 0 || !path[0] ||
|
|
maxStraightPath <= 0)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
dtStatus stat = 0;
|
|
|
|
// TODO: Should this be callers responsibility?
|
|
float closestStartPos[3];
|
|
if (dtStatusFailed(closestPointOnPolyBoundary(path[0], startPos, closestStartPos)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
float closestEndPos[3];
|
|
if (dtStatusFailed(closestPointOnPolyBoundary(path[pathSize - 1], endPos, closestEndPos)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
// Add start point.
|
|
stat = appendVertex(closestStartPos, DT_STRAIGHTPATH_START, path[0],
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath);
|
|
if (stat != DT_IN_PROGRESS)
|
|
return stat;
|
|
|
|
if (pathSize > 1)
|
|
{
|
|
float portalApex[3], portalLeft[3], portalRight[3];
|
|
dtVcopy(portalApex, closestStartPos);
|
|
dtVcopy(portalLeft, portalApex);
|
|
dtVcopy(portalRight, portalApex);
|
|
int apexIndex = 0;
|
|
int leftIndex = 0;
|
|
int rightIndex = 0;
|
|
|
|
unsigned char leftPolyType = 0;
|
|
unsigned char rightPolyType = 0;
|
|
|
|
dtPolyRef leftPolyRef = path[0];
|
|
dtPolyRef rightPolyRef = path[0];
|
|
|
|
for (int i = 0; i < pathSize; ++i)
|
|
{
|
|
float left[3], right[3];
|
|
unsigned char toType;
|
|
|
|
if (i + 1 < pathSize)
|
|
{
|
|
unsigned char fromType; // fromType is ignored.
|
|
|
|
// Next portal.
|
|
if (dtStatusFailed(getPortalPoints(path[i], path[i + 1], left, right, fromType, toType)))
|
|
{
|
|
// Failed to get portal points, in practice this means that path[i+1] is invalid polygon.
|
|
// Clamp the end point to path[i], and return the path so far.
|
|
|
|
if (dtStatusFailed(closestPointOnPolyBoundary(path[i], endPos, closestEndPos)))
|
|
{
|
|
// This should only happen when the first polygon is invalid.
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
// Apeend portals along the current straight path segment.
|
|
if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
|
|
{
|
|
// Ignore status return value as we're just about to return anyway.
|
|
appendPortals(apexIndex, i, closestEndPos, path,
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath, options);
|
|
}
|
|
|
|
// Ignore status return value as we're just about to return anyway.
|
|
appendVertex(closestEndPos, 0, path[i],
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath);
|
|
|
|
return DT_SUCCESS | DT_PARTIAL_RESULT | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0);
|
|
}
|
|
|
|
// If starting really close the portal, advance.
|
|
if (i == 0)
|
|
{
|
|
float t;
|
|
if (dtDistancePtSegSqr2D(portalApex, left, right, t) < dtSqr(0.001f))
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// End of the path.
|
|
dtVcopy(left, closestEndPos);
|
|
dtVcopy(right, closestEndPos);
|
|
|
|
toType = DT_POLYTYPE_GROUND;
|
|
}
|
|
|
|
// Right vertex.
|
|
if (dtTriArea2D(portalApex, portalRight, right) <= 0.0f)
|
|
{
|
|
if (dtVequal(portalApex, portalRight) || dtTriArea2D(portalApex, portalLeft, right) > 0.0f)
|
|
{
|
|
dtVcopy(portalRight, right);
|
|
rightPolyRef = (i + 1 < pathSize) ? path[i + 1] : 0;
|
|
rightPolyType = toType;
|
|
rightIndex = i;
|
|
}
|
|
else
|
|
{
|
|
// Append portals along the current straight path segment.
|
|
if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
|
|
{
|
|
stat = appendPortals(apexIndex, leftIndex, portalLeft, path,
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath, options);
|
|
if (stat != DT_IN_PROGRESS)
|
|
return stat;
|
|
}
|
|
|
|
dtVcopy(portalApex, portalLeft);
|
|
apexIndex = leftIndex;
|
|
|
|
unsigned char flags = 0;
|
|
if (!leftPolyRef)
|
|
flags = DT_STRAIGHTPATH_END;
|
|
else if (leftPolyType == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION;
|
|
dtPolyRef ref = leftPolyRef;
|
|
|
|
// Append or update vertex
|
|
stat = appendVertex(portalApex, flags, ref,
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath);
|
|
if (stat != DT_IN_PROGRESS)
|
|
return stat;
|
|
|
|
dtVcopy(portalLeft, portalApex);
|
|
dtVcopy(portalRight, portalApex);
|
|
leftIndex = apexIndex;
|
|
rightIndex = apexIndex;
|
|
|
|
// Restart
|
|
i = apexIndex;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Left vertex.
|
|
if (dtTriArea2D(portalApex, portalLeft, left) >= 0.0f)
|
|
{
|
|
if (dtVequal(portalApex, portalLeft) || dtTriArea2D(portalApex, portalRight, left) < 0.0f)
|
|
{
|
|
dtVcopy(portalLeft, left);
|
|
leftPolyRef = (i + 1 < pathSize) ? path[i + 1] : 0;
|
|
leftPolyType = toType;
|
|
leftIndex = i;
|
|
}
|
|
else
|
|
{
|
|
// Append portals along the current straight path segment.
|
|
if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
|
|
{
|
|
stat = appendPortals(apexIndex, rightIndex, portalRight, path,
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath, options);
|
|
if (stat != DT_IN_PROGRESS)
|
|
return stat;
|
|
}
|
|
|
|
dtVcopy(portalApex, portalRight);
|
|
apexIndex = rightIndex;
|
|
|
|
unsigned char flags = 0;
|
|
if (!rightPolyRef)
|
|
flags = DT_STRAIGHTPATH_END;
|
|
else if (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION;
|
|
dtPolyRef ref = rightPolyRef;
|
|
|
|
// Append or update vertex
|
|
stat = appendVertex(portalApex, flags, ref,
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath);
|
|
if (stat != DT_IN_PROGRESS)
|
|
return stat;
|
|
|
|
dtVcopy(portalLeft, portalApex);
|
|
dtVcopy(portalRight, portalApex);
|
|
leftIndex = apexIndex;
|
|
rightIndex = apexIndex;
|
|
|
|
// Restart
|
|
i = apexIndex;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Append portals along the current straight path segment.
|
|
if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
|
|
{
|
|
stat = appendPortals(apexIndex, pathSize - 1, closestEndPos, path,
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath, options);
|
|
if (stat != DT_IN_PROGRESS)
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
// Ignore status return value as we're just about to return anyway.
|
|
appendVertex(closestEndPos, DT_STRAIGHTPATH_END, 0,
|
|
straightPath, straightPathFlags, straightPathRefs,
|
|
straightPathCount, maxStraightPath);
|
|
|
|
return DT_SUCCESS | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0);
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// This method is optimized for small delta movement and a small number of
|
|
/// polygons. If used for too great a distance, the result set will form an
|
|
/// incomplete path.
|
|
///
|
|
/// @p resultPos will equal the @p endPos if the end is reached.
|
|
/// Otherwise the closest reachable position will be returned.
|
|
///
|
|
/// @p resultPos is not projected onto the surface of the navigation
|
|
/// mesh. Use #getPolyHeight if this is needed.
|
|
///
|
|
/// This method treats the end position in the same manner as
|
|
/// the #raycast method. (As a 2D point.) See that method's documentation
|
|
/// for details.
|
|
///
|
|
/// If the @p visited array is too small to hold the entire result set, it will
|
|
/// be filled as far as possible from the start position toward the end
|
|
/// position.
|
|
///
|
|
dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos,
|
|
const dtQueryFilter* filter,
|
|
float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const
|
|
{
|
|
dtAssert(m_nav);
|
|
dtAssert(m_tinyNodePool);
|
|
|
|
if (!visitedCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*visitedCount = 0;
|
|
|
|
if (!m_nav->isValidPolyRef(startRef) ||
|
|
!startPos || !dtVisfinite(startPos) ||
|
|
!endPos || !dtVisfinite(endPos) ||
|
|
!filter || !resultPos || !visited ||
|
|
maxVisitedSize <= 0)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
dtStatus status = DT_SUCCESS;
|
|
|
|
static const int MAX_STACK = 48;
|
|
dtNode* stack[MAX_STACK];
|
|
int nstack = 0;
|
|
|
|
m_tinyNodePool->clear();
|
|
|
|
dtNode* startNode = m_tinyNodePool->getNode(startRef);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_CLOSED;
|
|
stack[nstack++] = startNode;
|
|
|
|
float bestPos[3];
|
|
float bestDist = FLT_MAX;
|
|
dtNode* bestNode = 0;
|
|
dtVcopy(bestPos, startPos);
|
|
|
|
// Search constraints
|
|
float searchPos[3], searchRadSqr;
|
|
dtVlerp(searchPos, startPos, endPos, 0.5f);
|
|
searchRadSqr = dtSqr(dtVdist(startPos, endPos)/2.0f + 0.001f);
|
|
|
|
float verts[DT_VERTS_PER_POLYGON*3];
|
|
|
|
while (nstack)
|
|
{
|
|
// Pop front.
|
|
dtNode* curNode = stack[0];
|
|
for (int i = 0; i < nstack-1; ++i)
|
|
stack[i] = stack[i+1];
|
|
nstack--;
|
|
|
|
// Get poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef curRef = curNode->id;
|
|
const dtMeshTile* curTile = 0;
|
|
const dtPoly* curPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly);
|
|
|
|
// Collect vertices.
|
|
const int nverts = curPoly->vertCount;
|
|
for (int i = 0; i < nverts; ++i)
|
|
dtVcopy(&verts[i*3], &curTile->verts[curPoly->verts[i]*3]);
|
|
|
|
// If target is inside the poly, stop search.
|
|
if (dtPointInPolygon(endPos, verts, nverts))
|
|
{
|
|
bestNode = curNode;
|
|
dtVcopy(bestPos, endPos);
|
|
break;
|
|
}
|
|
|
|
// Find wall edges and find nearest point inside the walls.
|
|
for (int i = 0, j = (int)curPoly->vertCount-1; i < (int)curPoly->vertCount; j = i++)
|
|
{
|
|
// Find links to neighbours.
|
|
static const int MAX_NEIS = 8;
|
|
int nneis = 0;
|
|
dtPolyRef neis[MAX_NEIS];
|
|
|
|
if (curPoly->neis[j] & DT_EXT_LINK)
|
|
{
|
|
// Tile border.
|
|
for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next)
|
|
{
|
|
const dtLink* link = &curTile->links[k];
|
|
if (link->edge == j)
|
|
{
|
|
if (link->ref != 0)
|
|
{
|
|
const dtMeshTile* neiTile = 0;
|
|
const dtPoly* neiPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
|
|
if (filter->passFilter(link->ref, neiTile, neiPoly))
|
|
{
|
|
if (nneis < MAX_NEIS)
|
|
neis[nneis++] = link->ref;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (curPoly->neis[j])
|
|
{
|
|
const unsigned int idx = (unsigned int)(curPoly->neis[j]-1);
|
|
const dtPolyRef ref = m_nav->getPolyRefBase(curTile) | idx;
|
|
if (filter->passFilter(ref, curTile, &curTile->polys[idx]))
|
|
{
|
|
// Internal edge, encode id.
|
|
neis[nneis++] = ref;
|
|
}
|
|
}
|
|
|
|
if (!nneis)
|
|
{
|
|
// Wall edge, calc distance.
|
|
const float* vj = &verts[j*3];
|
|
const float* vi = &verts[i*3];
|
|
float tseg;
|
|
const float distSqr = dtDistancePtSegSqr2D(endPos, vj, vi, tseg);
|
|
if (distSqr < bestDist)
|
|
{
|
|
// Update nearest distance.
|
|
dtVlerp(bestPos, vj,vi, tseg);
|
|
bestDist = distSqr;
|
|
bestNode = curNode;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int k = 0; k < nneis; ++k)
|
|
{
|
|
// Skip if no node can be allocated.
|
|
dtNode* neighbourNode = m_tinyNodePool->getNode(neis[k]);
|
|
if (!neighbourNode)
|
|
continue;
|
|
// Skip if already visited.
|
|
if (neighbourNode->flags & DT_NODE_CLOSED)
|
|
continue;
|
|
|
|
// Skip the link if it is too far from search constraint.
|
|
// TODO: Maybe should use getPortalPoints(), but this one is way faster.
|
|
const float* vj = &verts[j*3];
|
|
const float* vi = &verts[i*3];
|
|
float tseg;
|
|
float distSqr = dtDistancePtSegSqr2D(searchPos, vj, vi, tseg);
|
|
if (distSqr > searchRadSqr)
|
|
continue;
|
|
|
|
// Mark as the node as visited and push to queue.
|
|
if (nstack < MAX_STACK)
|
|
{
|
|
neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode);
|
|
neighbourNode->flags |= DT_NODE_CLOSED;
|
|
stack[nstack++] = neighbourNode;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int n = 0;
|
|
if (bestNode)
|
|
{
|
|
// Reverse the path.
|
|
dtNode* prev = 0;
|
|
dtNode* node = bestNode;
|
|
do
|
|
{
|
|
dtNode* next = m_tinyNodePool->getNodeAtIdx(node->pidx);
|
|
node->pidx = m_tinyNodePool->getNodeIdx(prev);
|
|
prev = node;
|
|
node = next;
|
|
}
|
|
while (node);
|
|
|
|
// Store result
|
|
node = prev;
|
|
do
|
|
{
|
|
visited[n++] = node->id;
|
|
if (n >= maxVisitedSize)
|
|
{
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
break;
|
|
}
|
|
node = m_tinyNodePool->getNodeAtIdx(node->pidx);
|
|
}
|
|
while (node);
|
|
}
|
|
|
|
dtVcopy(resultPos, bestPos);
|
|
|
|
*visitedCount = n;
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right,
|
|
unsigned char& fromType, unsigned char& toType) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
const dtMeshTile* fromTile = 0;
|
|
const dtPoly* fromPoly = 0;
|
|
if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
fromType = fromPoly->getType();
|
|
|
|
const dtMeshTile* toTile = 0;
|
|
const dtPoly* toPoly = 0;
|
|
if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
toType = toPoly->getType();
|
|
|
|
return getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right);
|
|
}
|
|
|
|
// Returns portal points between two polygons.
|
|
dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
|
|
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
|
|
float* left, float* right) const
|
|
{
|
|
// Find the link that points to the 'to' polygon.
|
|
const dtLink* link = 0;
|
|
for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next)
|
|
{
|
|
if (fromTile->links[i].ref == to)
|
|
{
|
|
link = &fromTile->links[i];
|
|
break;
|
|
}
|
|
}
|
|
if (!link || fromPoly->vertCount == 0)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
// Handle off-mesh connections.
|
|
if (fromPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
{
|
|
// Find link that points to first vertex.
|
|
for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next)
|
|
{
|
|
if (fromTile->links[i].ref == to)
|
|
{
|
|
const int v = fromTile->links[i].edge;
|
|
dtVcopy(left, &fromTile->verts[fromPoly->verts[v]*3]);
|
|
dtVcopy(right, &fromTile->verts[fromPoly->verts[v]*3]);
|
|
return DT_SUCCESS;
|
|
}
|
|
}
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
if (toPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
{
|
|
for (unsigned int i = toPoly->firstLink; i != DT_NULL_LINK; i = toTile->links[i].next)
|
|
{
|
|
if (toTile->links[i].ref == from)
|
|
{
|
|
const int v = toTile->links[i].edge;
|
|
dtVcopy(left, &toTile->verts[toPoly->verts[v]*3]);
|
|
dtVcopy(right, &toTile->verts[toPoly->verts[v]*3]);
|
|
return DT_SUCCESS;
|
|
}
|
|
}
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
// Find portal vertices.
|
|
const int v0 = fromPoly->verts[link->edge];
|
|
const int v1 = fromPoly->verts[(link->edge+1) % (int)fromPoly->vertCount];
|
|
dtVcopy(left, &fromTile->verts[v0*3]);
|
|
dtVcopy(right, &fromTile->verts[v1*3]);
|
|
|
|
// If the link is at tile boundary, dtClamp the vertices to
|
|
// the link width.
|
|
if (link->side != 0xff)
|
|
{
|
|
// Unpack portal limits.
|
|
if (link->bmin != 0 || link->bmax != 255)
|
|
{
|
|
const float s = 1.0f/255.0f;
|
|
const float tmin = link->bmin*s;
|
|
const float tmax = link->bmax*s;
|
|
dtVlerp(left, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmin);
|
|
dtVlerp(right, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmax);
|
|
}
|
|
}
|
|
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
// Returns edge mid point between two polygons.
|
|
dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const
|
|
{
|
|
float left[3], right[3];
|
|
unsigned char fromType, toType;
|
|
if (dtStatusFailed(getPortalPoints(from, to, left,right, fromType, toType)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
mid[0] = (left[0]+right[0])*0.5f;
|
|
mid[1] = (left[1]+right[1])*0.5f;
|
|
mid[2] = (left[2]+right[2])*0.5f;
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
|
|
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
|
|
float* mid) const
|
|
{
|
|
float left[3], right[3];
|
|
if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
mid[0] = (left[0]+right[0])*0.5f;
|
|
mid[1] = (left[1]+right[1])*0.5f;
|
|
mid[2] = (left[2]+right[2])*0.5f;
|
|
return DT_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
/// @par
|
|
///
|
|
/// This method is meant to be used for quick, short distance checks.
|
|
///
|
|
/// If the path array is too small to hold the result, it will be filled as
|
|
/// far as possible from the start postion toward the end position.
|
|
///
|
|
/// <b>Using the Hit Parameter (t)</b>
|
|
///
|
|
/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit
|
|
/// the end position. In this case the path represents a valid corridor to the
|
|
/// end position and the value of @p hitNormal is undefined.
|
|
///
|
|
/// If the hit parameter is zero, then the start position is on the wall that
|
|
/// was hit and the value of @p hitNormal is undefined.
|
|
///
|
|
/// If 0 < t < 1.0 then the following applies:
|
|
///
|
|
/// @code
|
|
/// distanceToHitBorder = distanceToEndPosition * t
|
|
/// hitPoint = startPos + (endPos - startPos) * t
|
|
/// @endcode
|
|
///
|
|
/// <b>Use Case Restriction</b>
|
|
///
|
|
/// The raycast ignores the y-value of the end position. (2D check.) This
|
|
/// places significant limits on how it can be used. For example:
|
|
///
|
|
/// Consider a scene where there is a main floor with a second floor balcony
|
|
/// that hangs over the main floor. So the first floor mesh extends below the
|
|
/// balcony mesh. The start position is somewhere on the first floor. The end
|
|
/// position is on the balcony.
|
|
///
|
|
/// The raycast will search toward the end position along the first floor mesh.
|
|
/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX
|
|
/// (no wall hit), meaning it reached the end position. This is one example of why
|
|
/// this method is meant for short distance checks.
|
|
///
|
|
dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
|
|
const dtQueryFilter* filter,
|
|
float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const
|
|
{
|
|
dtRaycastHit hit;
|
|
hit.path = path;
|
|
hit.maxPath = maxPath;
|
|
|
|
dtStatus status = raycast(startRef, startPos, endPos, filter, 0, &hit);
|
|
|
|
*t = hit.t;
|
|
if (hitNormal)
|
|
dtVcopy(hitNormal, hit.hitNormal);
|
|
if (pathCount)
|
|
*pathCount = hit.pathCount;
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/// @par
|
|
///
|
|
/// This method is meant to be used for quick, short distance checks.
|
|
///
|
|
/// If the path array is too small to hold the result, it will be filled as
|
|
/// far as possible from the start postion toward the end position.
|
|
///
|
|
/// <b>Using the Hit Parameter t of RaycastHit</b>
|
|
///
|
|
/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit
|
|
/// the end position. In this case the path represents a valid corridor to the
|
|
/// end position and the value of @p hitNormal is undefined.
|
|
///
|
|
/// If the hit parameter is zero, then the start position is on the wall that
|
|
/// was hit and the value of @p hitNormal is undefined.
|
|
///
|
|
/// If 0 < t < 1.0 then the following applies:
|
|
///
|
|
/// @code
|
|
/// distanceToHitBorder = distanceToEndPosition * t
|
|
/// hitPoint = startPos + (endPos - startPos) * t
|
|
/// @endcode
|
|
///
|
|
/// <b>Use Case Restriction</b>
|
|
///
|
|
/// The raycast ignores the y-value of the end position. (2D check.) This
|
|
/// places significant limits on how it can be used. For example:
|
|
///
|
|
/// Consider a scene where there is a main floor with a second floor balcony
|
|
/// that hangs over the main floor. So the first floor mesh extends below the
|
|
/// balcony mesh. The start position is somewhere on the first floor. The end
|
|
/// position is on the balcony.
|
|
///
|
|
/// The raycast will search toward the end position along the first floor mesh.
|
|
/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX
|
|
/// (no wall hit), meaning it reached the end position. This is one example of why
|
|
/// this method is meant for short distance checks.
|
|
///
|
|
dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
|
|
const dtQueryFilter* filter, const unsigned int options,
|
|
dtRaycastHit* hit, dtPolyRef prevRef) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
if (!hit)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
hit->t = 0;
|
|
hit->pathCount = 0;
|
|
hit->pathCost = 0;
|
|
|
|
// Validate input
|
|
if (!m_nav->isValidPolyRef(startRef) ||
|
|
!startPos || !dtVisfinite(startPos) ||
|
|
!endPos || !dtVisfinite(endPos) ||
|
|
!filter ||
|
|
(prevRef && !m_nav->isValidPolyRef(prevRef)))
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
float dir[3], curPos[3], lastPos[3];
|
|
float verts[DT_VERTS_PER_POLYGON*3+3];
|
|
int n = 0;
|
|
|
|
dtVcopy(curPos, startPos);
|
|
dtVsub(dir, endPos, startPos);
|
|
dtVset(hit->hitNormal, 0, 0, 0);
|
|
|
|
dtStatus status = DT_SUCCESS;
|
|
|
|
const dtMeshTile* prevTile, *tile, *nextTile;
|
|
const dtPoly* prevPoly, *poly, *nextPoly;
|
|
dtPolyRef curRef;
|
|
|
|
// The API input has been checked already, skip checking internal data.
|
|
curRef = startRef;
|
|
tile = 0;
|
|
poly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(curRef, &tile, &poly);
|
|
nextTile = prevTile = tile;
|
|
nextPoly = prevPoly = poly;
|
|
if (prevRef)
|
|
m_nav->getTileAndPolyByRefUnsafe(prevRef, &prevTile, &prevPoly);
|
|
|
|
while (curRef)
|
|
{
|
|
// Cast ray against current polygon.
|
|
|
|
// Collect vertices.
|
|
int nv = 0;
|
|
for (int i = 0; i < (int)poly->vertCount; ++i)
|
|
{
|
|
dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
|
|
nv++;
|
|
}
|
|
|
|
float tmin, tmax;
|
|
int segMin, segMax;
|
|
if (!dtIntersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
|
|
{
|
|
// Could not hit the polygon, keep the old t and report hit.
|
|
hit->pathCount = n;
|
|
return status;
|
|
}
|
|
|
|
hit->hitEdgeIndex = segMax;
|
|
|
|
// Keep track of furthest t so far.
|
|
if (tmax > hit->t)
|
|
hit->t = tmax;
|
|
|
|
// Store visited polygons.
|
|
if (n < hit->maxPath)
|
|
hit->path[n++] = curRef;
|
|
else
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
|
|
// Ray end is completely inside the polygon.
|
|
if (segMax == -1)
|
|
{
|
|
hit->t = FLT_MAX;
|
|
hit->pathCount = n;
|
|
|
|
// add the cost
|
|
if (options & DT_RAYCAST_USE_COSTS)
|
|
hit->pathCost += filter->getCost(curPos, endPos, prevRef, prevTile, prevPoly, curRef, tile, poly, curRef, tile, poly);
|
|
return status;
|
|
}
|
|
|
|
// Follow neighbours.
|
|
dtPolyRef nextRef = 0;
|
|
|
|
for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
|
|
{
|
|
const dtLink* link = &tile->links[i];
|
|
|
|
// Find link which contains this edge.
|
|
if ((int)link->edge != segMax || poly->vertCount == 0)
|
|
continue;
|
|
|
|
// Get pointer to the next polygon.
|
|
nextTile = 0;
|
|
nextPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(link->ref, &nextTile, &nextPoly);
|
|
|
|
// Skip off-mesh connections.
|
|
if (nextPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
continue;
|
|
|
|
// Skip links based on filter.
|
|
if (!filter->passFilter(link->ref, nextTile, nextPoly))
|
|
continue;
|
|
|
|
// If the link is internal, just return the ref.
|
|
if (link->side == 0xff)
|
|
{
|
|
nextRef = link->ref;
|
|
break;
|
|
}
|
|
|
|
// If the link is at tile boundary,
|
|
|
|
// Check if the link spans the whole edge, and accept.
|
|
if (link->bmin == 0 && link->bmax == 255)
|
|
{
|
|
nextRef = link->ref;
|
|
break;
|
|
}
|
|
|
|
// Check for partial edge links.
|
|
const int v0 = poly->verts[link->edge];
|
|
const int v1 = poly->verts[(link->edge+1) % poly->vertCount];
|
|
const float* left = &tile->verts[v0*3];
|
|
const float* right = &tile->verts[v1*3];
|
|
|
|
// Check that the intersection lies inside the link portal.
|
|
if (link->side == 0 || link->side == 4)
|
|
{
|
|
// Calculate link size.
|
|
const float s = 1.0f/255.0f;
|
|
float lmin = left[2] + (right[2] - left[2])*(link->bmin*s);
|
|
float lmax = left[2] + (right[2] - left[2])*(link->bmax*s);
|
|
if (lmin > lmax) dtSwap(lmin, lmax);
|
|
|
|
// Find Z intersection.
|
|
float z = startPos[2] + (endPos[2]-startPos[2])*tmax;
|
|
if (z >= lmin && z <= lmax)
|
|
{
|
|
nextRef = link->ref;
|
|
break;
|
|
}
|
|
}
|
|
else if (link->side == 2 || link->side == 6)
|
|
{
|
|
// Calculate link size.
|
|
const float s = 1.0f/255.0f;
|
|
float lmin = left[0] + (right[0] - left[0])*(link->bmin*s);
|
|
float lmax = left[0] + (right[0] - left[0])*(link->bmax*s);
|
|
if (lmin > lmax) dtSwap(lmin, lmax);
|
|
|
|
// Find X intersection.
|
|
float x = startPos[0] + (endPos[0]-startPos[0])*tmax;
|
|
if (x >= lmin && x <= lmax)
|
|
{
|
|
nextRef = link->ref;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// add the cost
|
|
if (options & DT_RAYCAST_USE_COSTS)
|
|
{
|
|
// compute the intersection point at the furthest end of the polygon
|
|
// and correct the height (since the raycast moves in 2d)
|
|
dtVcopy(lastPos, curPos);
|
|
dtVmad(curPos, startPos, dir, hit->t);
|
|
float* e1 = &verts[segMax*3];
|
|
float* e2 = &verts[((segMax+1)%nv)*3];
|
|
float eDir[3], diff[3];
|
|
dtVsub(eDir, e2, e1);
|
|
dtVsub(diff, curPos, e1);
|
|
float s = dtSqr(eDir[0]) > dtSqr(eDir[2]) ? diff[0] / eDir[0] : diff[2] / eDir[2];
|
|
curPos[1] = e1[1] + eDir[1] * s;
|
|
|
|
hit->pathCost += filter->getCost(lastPos, curPos, prevRef, prevTile, prevPoly, curRef, tile, poly, nextRef, nextTile, nextPoly);
|
|
}
|
|
|
|
if (!nextRef)
|
|
{
|
|
// No neighbour, we hit a wall.
|
|
|
|
// Calculate hit normal.
|
|
const int a = segMax;
|
|
const int b = segMax+1 < nv ? segMax+1 : 0;
|
|
const float* va = &verts[a*3];
|
|
const float* vb = &verts[b*3];
|
|
const float dx = vb[0] - va[0];
|
|
const float dz = vb[2] - va[2];
|
|
hit->hitNormal[0] = dz;
|
|
hit->hitNormal[1] = 0;
|
|
hit->hitNormal[2] = -dx;
|
|
dtVnormalize(hit->hitNormal);
|
|
|
|
hit->pathCount = n;
|
|
return status;
|
|
}
|
|
|
|
// No hit, advance to neighbour polygon.
|
|
prevRef = curRef;
|
|
curRef = nextRef;
|
|
prevTile = tile;
|
|
tile = nextTile;
|
|
prevPoly = poly;
|
|
poly = nextPoly;
|
|
}
|
|
|
|
hit->pathCount = n;
|
|
|
|
return status;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// At least one result array must be provided.
|
|
///
|
|
/// The order of the result set is from least to highest cost to reach the polygon.
|
|
///
|
|
/// A common use case for this method is to perform Dijkstra searches.
|
|
/// Candidate polygons are found by searching the graph beginning at the start polygon.
|
|
///
|
|
/// If a polygon is not found via the graph search, even if it intersects the
|
|
/// search circle, it will not be included in the result set. For example:
|
|
///
|
|
/// polyA is the start polygon.
|
|
/// polyB shares an edge with polyA. (Is adjacent.)
|
|
/// polyC shares an edge with polyB, but not with polyA
|
|
/// Even if the search circle overlaps polyC, it will not be included in the
|
|
/// result set unless polyB is also in the set.
|
|
///
|
|
/// The value of the center point is used as the start position for cost
|
|
/// calculations. It is not projected onto the surface of the mesh, so its
|
|
/// y-value will effect the costs.
|
|
///
|
|
/// Intersection tests occur in 2D. All polygons and the search circle are
|
|
/// projected onto the xz-plane. So the y-value of the center point does not
|
|
/// effect intersection tests.
|
|
///
|
|
/// If the result arrays are to small to hold the entire result set, they will be
|
|
/// filled to capacity.
|
|
///
|
|
dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius,
|
|
const dtQueryFilter* filter,
|
|
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
|
int* resultCount, const int maxResult) const
|
|
{
|
|
dtAssert(m_nav);
|
|
dtAssert(m_nodePool);
|
|
dtAssert(m_openList);
|
|
|
|
if (!resultCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*resultCount = 0;
|
|
|
|
if (!m_nav->isValidPolyRef(startRef) ||
|
|
!centerPos || !dtVisfinite(centerPos) ||
|
|
radius < 0 || !dtMathIsfinite(radius) ||
|
|
!filter || maxResult < 0)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(startRef);
|
|
dtVcopy(startNode->pos, centerPos);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
dtStatus status = DT_SUCCESS;
|
|
|
|
int n = 0;
|
|
|
|
const float radiusSqr = dtSqr(radius);
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
bestNode->flags &= ~DT_NODE_OPEN;
|
|
bestNode->flags |= DT_NODE_CLOSED;
|
|
|
|
// Get poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
const dtMeshTile* bestTile = 0;
|
|
const dtPoly* bestPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
|
|
|
|
// Get parent poly and tile.
|
|
dtPolyRef parentRef = 0;
|
|
const dtMeshTile* parentTile = 0;
|
|
const dtPoly* parentPoly = 0;
|
|
if (bestNode->pidx)
|
|
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
|
|
if (parentRef)
|
|
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
|
|
|
|
if (n < maxResult)
|
|
{
|
|
if (resultRef)
|
|
resultRef[n] = bestRef;
|
|
if (resultParent)
|
|
resultParent[n] = parentRef;
|
|
if (resultCost)
|
|
resultCost[n] = bestNode->total;
|
|
++n;
|
|
}
|
|
else
|
|
{
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
const dtLink* link = &bestTile->links[i];
|
|
dtPolyRef neighbourRef = link->ref;
|
|
// Skip invalid neighbours and do not follow back to parent.
|
|
if (!neighbourRef || neighbourRef == parentRef)
|
|
continue;
|
|
|
|
// Expand to neighbour
|
|
const dtMeshTile* neighbourTile = 0;
|
|
const dtPoly* neighbourPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
|
|
|
|
// Do not advance if the polygon is excluded by the filter.
|
|
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
|
|
continue;
|
|
|
|
// Find edge and calc distance to the edge.
|
|
float va[3], vb[3];
|
|
if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
|
|
continue;
|
|
|
|
// If the circle is not touching the next polygon, skip it.
|
|
float tseg;
|
|
float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
|
|
if (!neighbourNode)
|
|
{
|
|
status |= DT_OUT_OF_NODES;
|
|
continue;
|
|
}
|
|
|
|
if (neighbourNode->flags & DT_NODE_CLOSED)
|
|
continue;
|
|
|
|
// Cost
|
|
if (neighbourNode->flags == 0)
|
|
dtVlerp(neighbourNode->pos, va, vb, 0.5f);
|
|
|
|
float cost = filter->getCost(
|
|
bestNode->pos, neighbourNode->pos,
|
|
parentRef, parentTile, parentPoly,
|
|
bestRef, bestTile, bestPoly,
|
|
neighbourRef, neighbourTile, neighbourPoly);
|
|
|
|
const float total = bestNode->total + cost;
|
|
|
|
// The node is already in open list and the new result is worse, skip.
|
|
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
|
|
continue;
|
|
|
|
neighbourNode->id = neighbourRef;
|
|
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
|
|
neighbourNode->total = total;
|
|
|
|
if (neighbourNode->flags & DT_NODE_OPEN)
|
|
{
|
|
m_openList->modify(neighbourNode);
|
|
}
|
|
else
|
|
{
|
|
neighbourNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(neighbourNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
*resultCount = n;
|
|
|
|
return status;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// The order of the result set is from least to highest cost.
|
|
///
|
|
/// At least one result array must be provided.
|
|
///
|
|
/// A common use case for this method is to perform Dijkstra searches.
|
|
/// Candidate polygons are found by searching the graph beginning at the start
|
|
/// polygon.
|
|
///
|
|
/// The same intersection test restrictions that apply to findPolysAroundCircle()
|
|
/// method apply to this method.
|
|
///
|
|
/// The 3D centroid of the search polygon is used as the start position for cost
|
|
/// calculations.
|
|
///
|
|
/// Intersection tests occur in 2D. All polygons are projected onto the
|
|
/// xz-plane. So the y-values of the vertices do not effect intersection tests.
|
|
///
|
|
/// If the result arrays are is too small to hold the entire result set, they will
|
|
/// be filled to capacity.
|
|
///
|
|
dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts,
|
|
const dtQueryFilter* filter,
|
|
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
|
int* resultCount, const int maxResult) const
|
|
{
|
|
dtAssert(m_nav);
|
|
dtAssert(m_nodePool);
|
|
dtAssert(m_openList);
|
|
|
|
if (!resultCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*resultCount = 0;
|
|
|
|
if (!m_nav->isValidPolyRef(startRef) ||
|
|
!verts || nverts < 3 ||
|
|
!filter || maxResult < 0)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
// Validate input
|
|
if (!startRef || !m_nav->isValidPolyRef(startRef))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
float centerPos[3] = {0,0,0};
|
|
for (int i = 0; i < nverts; ++i)
|
|
dtVadd(centerPos,centerPos,&verts[i*3]);
|
|
dtVscale(centerPos,centerPos,1.0f/nverts);
|
|
|
|
dtNode* startNode = m_nodePool->getNode(startRef);
|
|
dtVcopy(startNode->pos, centerPos);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
dtStatus status = DT_SUCCESS;
|
|
|
|
int n = 0;
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
bestNode->flags &= ~DT_NODE_OPEN;
|
|
bestNode->flags |= DT_NODE_CLOSED;
|
|
|
|
// Get poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
const dtMeshTile* bestTile = 0;
|
|
const dtPoly* bestPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
|
|
|
|
// Get parent poly and tile.
|
|
dtPolyRef parentRef = 0;
|
|
const dtMeshTile* parentTile = 0;
|
|
const dtPoly* parentPoly = 0;
|
|
if (bestNode->pidx)
|
|
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
|
|
if (parentRef)
|
|
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
|
|
|
|
if (n < maxResult)
|
|
{
|
|
if (resultRef)
|
|
resultRef[n] = bestRef;
|
|
if (resultParent)
|
|
resultParent[n] = parentRef;
|
|
if (resultCost)
|
|
resultCost[n] = bestNode->total;
|
|
|
|
++n;
|
|
}
|
|
else
|
|
{
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
const dtLink* link = &bestTile->links[i];
|
|
dtPolyRef neighbourRef = link->ref;
|
|
// Skip invalid neighbours and do not follow back to parent.
|
|
if (!neighbourRef || neighbourRef == parentRef)
|
|
continue;
|
|
|
|
// Expand to neighbour
|
|
const dtMeshTile* neighbourTile = 0;
|
|
const dtPoly* neighbourPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
|
|
|
|
// Do not advance if the polygon is excluded by the filter.
|
|
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
|
|
continue;
|
|
|
|
// Find edge and calc distance to the edge.
|
|
float va[3], vb[3];
|
|
if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
|
|
continue;
|
|
|
|
// If the poly is not touching the edge to the next polygon, skip the connection it.
|
|
float tmin, tmax;
|
|
int segMin, segMax;
|
|
if (!dtIntersectSegmentPoly2D(va, vb, verts, nverts, tmin, tmax, segMin, segMax))
|
|
continue;
|
|
if (tmin > 1.0f || tmax < 0.0f)
|
|
continue;
|
|
|
|
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
|
|
if (!neighbourNode)
|
|
{
|
|
status |= DT_OUT_OF_NODES;
|
|
continue;
|
|
}
|
|
|
|
if (neighbourNode->flags & DT_NODE_CLOSED)
|
|
continue;
|
|
|
|
// Cost
|
|
if (neighbourNode->flags == 0)
|
|
dtVlerp(neighbourNode->pos, va, vb, 0.5f);
|
|
|
|
float cost = filter->getCost(
|
|
bestNode->pos, neighbourNode->pos,
|
|
parentRef, parentTile, parentPoly,
|
|
bestRef, bestTile, bestPoly,
|
|
neighbourRef, neighbourTile, neighbourPoly);
|
|
|
|
const float total = bestNode->total + cost;
|
|
|
|
// The node is already in open list and the new result is worse, skip.
|
|
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
|
|
continue;
|
|
|
|
neighbourNode->id = neighbourRef;
|
|
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
|
|
neighbourNode->total = total;
|
|
|
|
if (neighbourNode->flags & DT_NODE_OPEN)
|
|
{
|
|
m_openList->modify(neighbourNode);
|
|
}
|
|
else
|
|
{
|
|
neighbourNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(neighbourNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
*resultCount = n;
|
|
|
|
return status;
|
|
}
|
|
|
|
dtStatus dtNavMeshQuery::getPathFromDijkstraSearch(dtPolyRef endRef, dtPolyRef* path, int* pathCount, int maxPath) const
|
|
{
|
|
if (!m_nav->isValidPolyRef(endRef) || !path || !pathCount || maxPath < 0)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*pathCount = 0;
|
|
|
|
dtNode* endNode;
|
|
if (m_nodePool->findNodes(endRef, &endNode, 1) != 1 ||
|
|
(endNode->flags & DT_NODE_CLOSED) == 0)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
return getPathToNode(endNode, path, pathCount, maxPath);
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// This method is optimized for a small search radius and small number of result
|
|
/// polygons.
|
|
///
|
|
/// Candidate polygons are found by searching the navigation graph beginning at
|
|
/// the start polygon.
|
|
///
|
|
/// The same intersection test restrictions that apply to the findPolysAroundCircle
|
|
/// mehtod applies to this method.
|
|
///
|
|
/// The value of the center point is used as the start point for cost calculations.
|
|
/// It is not projected onto the surface of the mesh, so its y-value will effect
|
|
/// the costs.
|
|
///
|
|
/// Intersection tests occur in 2D. All polygons and the search circle are
|
|
/// projected onto the xz-plane. So the y-value of the center point does not
|
|
/// effect intersection tests.
|
|
///
|
|
/// If the result arrays are is too small to hold the entire result set, they will
|
|
/// be filled to capacity.
|
|
///
|
|
dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius,
|
|
const dtQueryFilter* filter,
|
|
dtPolyRef* resultRef, dtPolyRef* resultParent,
|
|
int* resultCount, const int maxResult) const
|
|
{
|
|
dtAssert(m_nav);
|
|
dtAssert(m_tinyNodePool);
|
|
|
|
if (!resultCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*resultCount = 0;
|
|
|
|
if (!m_nav->isValidPolyRef(startRef) ||
|
|
!centerPos || !dtVisfinite(centerPos) ||
|
|
radius < 0 || !dtMathIsfinite(radius) ||
|
|
!filter || maxResult < 0)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
static const int MAX_STACK = 48;
|
|
dtNode* stack[MAX_STACK];
|
|
int nstack = 0;
|
|
|
|
m_tinyNodePool->clear();
|
|
|
|
dtNode* startNode = m_tinyNodePool->getNode(startRef);
|
|
startNode->pidx = 0;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_CLOSED;
|
|
stack[nstack++] = startNode;
|
|
|
|
const float radiusSqr = dtSqr(radius);
|
|
|
|
float pa[DT_VERTS_PER_POLYGON*3];
|
|
float pb[DT_VERTS_PER_POLYGON*3];
|
|
|
|
dtStatus status = DT_SUCCESS;
|
|
|
|
int n = 0;
|
|
if (n < maxResult)
|
|
{
|
|
resultRef[n] = startNode->id;
|
|
if (resultParent)
|
|
resultParent[n] = 0;
|
|
++n;
|
|
}
|
|
else
|
|
{
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
while (nstack)
|
|
{
|
|
// Pop front.
|
|
dtNode* curNode = stack[0];
|
|
for (int i = 0; i < nstack-1; ++i)
|
|
stack[i] = stack[i+1];
|
|
nstack--;
|
|
|
|
// Get poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef curRef = curNode->id;
|
|
const dtMeshTile* curTile = 0;
|
|
const dtPoly* curPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly);
|
|
|
|
for (unsigned int i = curPoly->firstLink; i != DT_NULL_LINK; i = curTile->links[i].next)
|
|
{
|
|
const dtLink* link = &curTile->links[i];
|
|
dtPolyRef neighbourRef = link->ref;
|
|
// Skip invalid neighbours.
|
|
if (!neighbourRef)
|
|
continue;
|
|
|
|
// Skip if cannot alloca more nodes.
|
|
dtNode* neighbourNode = m_tinyNodePool->getNode(neighbourRef);
|
|
if (!neighbourNode)
|
|
continue;
|
|
// Skip visited.
|
|
if (neighbourNode->flags & DT_NODE_CLOSED)
|
|
continue;
|
|
|
|
// Expand to neighbour
|
|
const dtMeshTile* neighbourTile = 0;
|
|
const dtPoly* neighbourPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
|
|
|
|
// Skip off-mesh connections.
|
|
if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
continue;
|
|
|
|
// Do not advance if the polygon is excluded by the filter.
|
|
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
|
|
continue;
|
|
|
|
// Find edge and calc distance to the edge.
|
|
float va[3], vb[3];
|
|
if (!getPortalPoints(curRef, curPoly, curTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
|
|
continue;
|
|
|
|
// If the circle is not touching the next polygon, skip it.
|
|
float tseg;
|
|
float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
// Mark node visited, this is done before the overlap test so that
|
|
// we will not visit the poly again if the test fails.
|
|
neighbourNode->flags |= DT_NODE_CLOSED;
|
|
neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode);
|
|
|
|
// Check that the polygon does not collide with existing polygons.
|
|
|
|
// Collect vertices of the neighbour poly.
|
|
const int npa = neighbourPoly->vertCount;
|
|
for (int k = 0; k < npa; ++k)
|
|
dtVcopy(&pa[k*3], &neighbourTile->verts[neighbourPoly->verts[k]*3]);
|
|
|
|
bool overlap = false;
|
|
for (int j = 0; j < n; ++j)
|
|
{
|
|
dtPolyRef pastRef = resultRef[j];
|
|
|
|
// Connected polys do not overlap.
|
|
bool connected = false;
|
|
for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next)
|
|
{
|
|
if (curTile->links[k].ref == pastRef)
|
|
{
|
|
connected = true;
|
|
break;
|
|
}
|
|
}
|
|
if (connected)
|
|
continue;
|
|
|
|
// Potentially overlapping.
|
|
const dtMeshTile* pastTile = 0;
|
|
const dtPoly* pastPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(pastRef, &pastTile, &pastPoly);
|
|
|
|
// Get vertices and test overlap
|
|
const int npb = pastPoly->vertCount;
|
|
for (int k = 0; k < npb; ++k)
|
|
dtVcopy(&pb[k*3], &pastTile->verts[pastPoly->verts[k]*3]);
|
|
|
|
if (dtOverlapPolyPoly2D(pa,npa, pb,npb))
|
|
{
|
|
overlap = true;
|
|
break;
|
|
}
|
|
}
|
|
if (overlap)
|
|
continue;
|
|
|
|
// This poly is fine, store and advance to the poly.
|
|
if (n < maxResult)
|
|
{
|
|
resultRef[n] = neighbourRef;
|
|
if (resultParent)
|
|
resultParent[n] = curRef;
|
|
++n;
|
|
}
|
|
else
|
|
{
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
if (nstack < MAX_STACK)
|
|
{
|
|
stack[nstack++] = neighbourNode;
|
|
}
|
|
}
|
|
}
|
|
|
|
*resultCount = n;
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
struct dtSegInterval
|
|
{
|
|
dtPolyRef ref;
|
|
short tmin, tmax;
|
|
};
|
|
|
|
static void insertInterval(dtSegInterval* ints, int& nints, const int maxInts,
|
|
const short tmin, const short tmax, const dtPolyRef ref)
|
|
{
|
|
if (nints+1 > maxInts) return;
|
|
// Find insertion point.
|
|
int idx = 0;
|
|
while (idx < nints)
|
|
{
|
|
if (tmax <= ints[idx].tmin)
|
|
break;
|
|
idx++;
|
|
}
|
|
// Move current results.
|
|
if (nints-idx)
|
|
memmove(ints+idx+1, ints+idx, sizeof(dtSegInterval)*(nints-idx));
|
|
// Store
|
|
ints[idx].ref = ref;
|
|
ints[idx].tmin = tmin;
|
|
ints[idx].tmax = tmax;
|
|
nints++;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// If the @p segmentRefs parameter is provided, then all polygon segments will be returned.
|
|
/// Otherwise only the wall segments are returned.
|
|
///
|
|
/// A segment that is normally a portal will be included in the result set as a
|
|
/// wall if the @p filter results in the neighbor polygon becoomming impassable.
|
|
///
|
|
/// The @p segmentVerts and @p segmentRefs buffers should normally be sized for the
|
|
/// maximum segments per polygon of the source navigation mesh.
|
|
///
|
|
dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter,
|
|
float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount,
|
|
const int maxSegments) const
|
|
{
|
|
dtAssert(m_nav);
|
|
|
|
if (!segmentCount)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
*segmentCount = 0;
|
|
|
|
const dtMeshTile* tile = 0;
|
|
const dtPoly* poly = 0;
|
|
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
if (!filter || !segmentVerts || maxSegments < 0)
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
int n = 0;
|
|
static const int MAX_INTERVAL = 16;
|
|
dtSegInterval ints[MAX_INTERVAL];
|
|
int nints;
|
|
|
|
const bool storePortals = segmentRefs != 0;
|
|
|
|
dtStatus status = DT_SUCCESS;
|
|
|
|
for (int i = 0, j = (int)poly->vertCount-1; i < (int)poly->vertCount; j = i++)
|
|
{
|
|
// Skip non-solid edges.
|
|
nints = 0;
|
|
if (poly->neis[j] & DT_EXT_LINK)
|
|
{
|
|
// Tile border.
|
|
for (unsigned int k = poly->firstLink; k != DT_NULL_LINK; k = tile->links[k].next)
|
|
{
|
|
const dtLink* link = &tile->links[k];
|
|
if (link->edge == j)
|
|
{
|
|
if (link->ref != 0)
|
|
{
|
|
const dtMeshTile* neiTile = 0;
|
|
const dtPoly* neiPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
|
|
if (filter->passFilter(link->ref, neiTile, neiPoly))
|
|
{
|
|
insertInterval(ints, nints, MAX_INTERVAL, link->bmin, link->bmax, link->ref);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Internal edge
|
|
dtPolyRef neiRef = 0;
|
|
if (poly->neis[j])
|
|
{
|
|
const unsigned int idx = (unsigned int)(poly->neis[j]-1);
|
|
neiRef = m_nav->getPolyRefBase(tile) | idx;
|
|
if (!filter->passFilter(neiRef, tile, &tile->polys[idx]))
|
|
neiRef = 0;
|
|
}
|
|
|
|
// If the edge leads to another polygon and portals are not stored, skip.
|
|
if (neiRef != 0 && !storePortals)
|
|
continue;
|
|
|
|
if (n < maxSegments)
|
|
{
|
|
const float* vj = &tile->verts[poly->verts[j]*3];
|
|
const float* vi = &tile->verts[poly->verts[i]*3];
|
|
float* seg = &segmentVerts[n*6];
|
|
dtVcopy(seg+0, vj);
|
|
dtVcopy(seg+3, vi);
|
|
if (segmentRefs)
|
|
segmentRefs[n] = neiRef;
|
|
n++;
|
|
}
|
|
else
|
|
{
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Add sentinels
|
|
insertInterval(ints, nints, MAX_INTERVAL, -1, 0, 0);
|
|
insertInterval(ints, nints, MAX_INTERVAL, 255, 256, 0);
|
|
|
|
// Store segments.
|
|
const float* vj = &tile->verts[poly->verts[j]*3];
|
|
const float* vi = &tile->verts[poly->verts[i]*3];
|
|
for (int k = 1; k < nints; ++k)
|
|
{
|
|
// Portal segment.
|
|
if (storePortals && ints[k].ref)
|
|
{
|
|
const float tmin = ints[k].tmin/255.0f;
|
|
const float tmax = ints[k].tmax/255.0f;
|
|
if (n < maxSegments)
|
|
{
|
|
float* seg = &segmentVerts[n*6];
|
|
dtVlerp(seg+0, vj,vi, tmin);
|
|
dtVlerp(seg+3, vj,vi, tmax);
|
|
if (segmentRefs)
|
|
segmentRefs[n] = ints[k].ref;
|
|
n++;
|
|
}
|
|
else
|
|
{
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
}
|
|
}
|
|
|
|
// Wall segment.
|
|
const int imin = ints[k-1].tmax;
|
|
const int imax = ints[k].tmin;
|
|
if (imin != imax)
|
|
{
|
|
const float tmin = imin/255.0f;
|
|
const float tmax = imax/255.0f;
|
|
if (n < maxSegments)
|
|
{
|
|
float* seg = &segmentVerts[n*6];
|
|
dtVlerp(seg+0, vj,vi, tmin);
|
|
dtVlerp(seg+3, vj,vi, tmax);
|
|
if (segmentRefs)
|
|
segmentRefs[n] = 0;
|
|
n++;
|
|
}
|
|
else
|
|
{
|
|
status |= DT_BUFFER_TOO_SMALL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*segmentCount = n;
|
|
|
|
return status;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// @p hitPos is not adjusted using the height detail data.
|
|
///
|
|
/// @p hitDist will equal the search radius if there is no wall within the
|
|
/// radius. In this case the values of @p hitPos and @p hitNormal are
|
|
/// undefined.
|
|
///
|
|
/// The normal will become unpredicable if @p hitDist is a very small number.
|
|
///
|
|
dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
|
const dtQueryFilter* filter,
|
|
float* hitDist, float* hitPos, float* hitNormal) const
|
|
{
|
|
dtAssert(m_nav);
|
|
dtAssert(m_nodePool);
|
|
dtAssert(m_openList);
|
|
|
|
// Validate input
|
|
if (!m_nav->isValidPolyRef(startRef) ||
|
|
!centerPos || !dtVisfinite(centerPos) ||
|
|
maxRadius < 0 || !dtMathIsfinite(maxRadius) ||
|
|
!filter || !hitDist || !hitPos || !hitNormal)
|
|
{
|
|
return DT_FAILURE | DT_INVALID_PARAM;
|
|
}
|
|
|
|
m_nodePool->clear();
|
|
m_openList->clear();
|
|
|
|
dtNode* startNode = m_nodePool->getNode(startRef);
|
|
dtVcopy(startNode->pos, centerPos);
|
|
startNode->pidx = 0;
|
|
startNode->cost = 0;
|
|
startNode->total = 0;
|
|
startNode->id = startRef;
|
|
startNode->flags = DT_NODE_OPEN;
|
|
m_openList->push(startNode);
|
|
|
|
float radiusSqr = dtSqr(maxRadius);
|
|
|
|
dtStatus status = DT_SUCCESS;
|
|
|
|
const float UpVector[3] = { 0.0f, 1.0f, 0.0f };
|
|
|
|
while (!m_openList->empty())
|
|
{
|
|
dtNode* bestNode = m_openList->pop();
|
|
bestNode->flags &= ~DT_NODE_OPEN;
|
|
bestNode->flags |= DT_NODE_CLOSED;
|
|
|
|
// Get poly and tile.
|
|
// The API input has been cheked already, skip checking internal data.
|
|
const dtPolyRef bestRef = bestNode->id;
|
|
const dtMeshTile* bestTile = 0;
|
|
const dtPoly* bestPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
|
|
|
|
// Get parent poly and tile.
|
|
dtPolyRef parentRef = 0;
|
|
const dtMeshTile* parentTile = 0;
|
|
const dtPoly* parentPoly = 0;
|
|
if (bestNode->pidx)
|
|
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
|
|
if (parentRef)
|
|
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
|
|
|
|
// Hit test walls.
|
|
for (int i = 0, j = (int)bestPoly->vertCount-1; i < (int)bestPoly->vertCount; j = i++)
|
|
{
|
|
// Skip non-solid edges.
|
|
if (bestPoly->neis[j] & DT_EXT_LINK)
|
|
{
|
|
// Tile border.
|
|
bool solid = true;
|
|
for (unsigned int k = bestPoly->firstLink; k != DT_NULL_LINK; k = bestTile->links[k].next)
|
|
{
|
|
const dtLink* link = &bestTile->links[k];
|
|
if (link->edge == j)
|
|
{
|
|
if (link->ref != 0)
|
|
{
|
|
const dtMeshTile* neiTile = 0;
|
|
const dtPoly* neiPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
|
|
if (filter->passFilter(link->ref, neiTile, neiPoly))
|
|
solid = false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (!solid) continue;
|
|
}
|
|
else if (bestPoly->neis[j])
|
|
{
|
|
// Internal edge
|
|
const unsigned int idx = (unsigned int)(bestPoly->neis[j]-1);
|
|
const dtPolyRef ref = m_nav->getPolyRefBase(bestTile) | idx;
|
|
if (filter->passFilter(ref, bestTile, &bestTile->polys[idx]))
|
|
continue;
|
|
}
|
|
|
|
// Calc distance to the edge.
|
|
const float* vj = &bestTile->verts[bestPoly->verts[j]*3];
|
|
const float* vi = &bestTile->verts[bestPoly->verts[i]*3];
|
|
float tseg;
|
|
float distSqr = dtDistancePtSegSqr2D(centerPos, vj, vi, tseg);
|
|
|
|
// Edge is too far, skip.
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
// Hit wall, update radius.
|
|
radiusSqr = distSqr;
|
|
// Calculate hit pos.
|
|
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
|
|
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
|
|
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
|
|
|
|
// Modification by Richard Greenlees. hitNormal now takes the normal of the hit edge, not the direction of the centre point and hit position
|
|
|
|
float edgeDir[3] = { 0.0f, 0.0f ,0.0f };
|
|
|
|
dtVsub(edgeDir, vj, vi);
|
|
|
|
dtVcross(hitNormal, edgeDir, UpVector); // Get the right vector of the edge direction to point inwards towards the poly
|
|
}
|
|
|
|
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
|
|
{
|
|
const dtLink* link = &bestTile->links[i];
|
|
dtPolyRef neighbourRef = link->ref;
|
|
// Skip invalid neighbours and do not follow back to parent.
|
|
if (!neighbourRef || neighbourRef == parentRef || bestPoly->vertCount == 0)
|
|
continue;
|
|
|
|
// Expand to neighbour.
|
|
const dtMeshTile* neighbourTile = 0;
|
|
const dtPoly* neighbourPoly = 0;
|
|
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
|
|
|
|
// Skip off-mesh connections.
|
|
if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
|
continue;
|
|
|
|
// Calc distance to the edge.
|
|
const float* va = &bestTile->verts[bestPoly->verts[link->edge]*3];
|
|
const float* vb = &bestTile->verts[bestPoly->verts[(link->edge+1) % bestPoly->vertCount]*3];
|
|
float tseg;
|
|
float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
|
|
|
|
// If the circle is not touching the next polygon, skip it.
|
|
if (distSqr > radiusSqr)
|
|
continue;
|
|
|
|
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
|
|
continue;
|
|
|
|
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
|
|
if (!neighbourNode)
|
|
{
|
|
status |= DT_OUT_OF_NODES;
|
|
continue;
|
|
}
|
|
|
|
if (neighbourNode->flags & DT_NODE_CLOSED)
|
|
continue;
|
|
|
|
// Cost
|
|
if (neighbourNode->flags == 0)
|
|
{
|
|
getEdgeMidPoint(bestRef, bestPoly, bestTile,
|
|
neighbourRef, neighbourPoly, neighbourTile, neighbourNode->pos);
|
|
}
|
|
|
|
const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos);
|
|
|
|
// The node is already in open list and the new result is worse, skip.
|
|
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
|
|
continue;
|
|
|
|
neighbourNode->id = neighbourRef;
|
|
neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
|
|
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
|
|
neighbourNode->total = total;
|
|
|
|
if (neighbourNode->flags & DT_NODE_OPEN)
|
|
{
|
|
m_openList->modify(neighbourNode);
|
|
}
|
|
else
|
|
{
|
|
neighbourNode->flags |= DT_NODE_OPEN;
|
|
m_openList->push(neighbourNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Modifiction by Richard Greenlees. Normalise the edge normal here
|
|
// (original code calculated hit normal here using centre pos - hit pos)
|
|
dtVnormalize(hitNormal);
|
|
|
|
*hitDist = dtMathSqrtf(radiusSqr);
|
|
|
|
return status;
|
|
}
|
|
|
|
bool dtNavMeshQuery::isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const
|
|
{
|
|
const dtMeshTile* tile = 0;
|
|
const dtPoly* poly = 0;
|
|
dtStatus status = m_nav->getTileAndPolyByRef(ref, &tile, &poly);
|
|
// If cannot get polygon, assume it does not exists and boundary is invalid.
|
|
if (dtStatusFailed(status))
|
|
return false;
|
|
// If cannot pass filter, assume flags has changed and boundary is invalid.
|
|
if (!filter->passFilter(ref, tile, poly))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// The closed list is the list of polygons that were fully evaluated during
|
|
/// the last navigation graph search. (A* or Dijkstra)
|
|
///
|
|
bool dtNavMeshQuery::isInClosedList(dtPolyRef ref) const
|
|
{
|
|
if (!m_nodePool) return false;
|
|
|
|
dtNode* nodes[DT_MAX_STATES_PER_NODE];
|
|
int n= m_nodePool->findNodes(ref, nodes, DT_MAX_STATES_PER_NODE);
|
|
|
|
for (int i=0; i<n; i++)
|
|
{
|
|
if (nodes[i]->flags & DT_NODE_CLOSED)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|