/***
*
*	Copyright (c) 1999, Valve LLC. All rights reserved.
*	
*	This product contains software technology licensed from Id 
*	Software, Inc. ("Id Technology").  Id Technology (c) 1996 Id Software, Inc. 
*	All Rights Reserved.
*
*   This source code contains proprietary and confidential information of
*   Valve LLC and its suppliers.  Access to this code is restricted to
*   persons who have executed a written SDK license with Valve.  Any access,
*   use or distribution of this code by or to any unlicensed person is illegal.
*
****/
//=========================================================
// nodes.cpp - AI node tree stuff.
//=========================================================

#include	"extdll.h"
#include	"util.h"
#include	"cbase.h"
#include	"monsters.h"
#include	"nodes.h"
#include	"animation.h"
#include	"doors.h"
#include	"mod/AvHConstants.h"

#define	HULL_STEP_SIZE 16// how far the test hull moves on each step
#define	NODE_HEIGHT	8	// how high to lift nodes off the ground after we drop them all (make stair/ramp mapping easier)

// to help eliminate node clutter by level designers, this is used to cap how many other nodes
// any given node is allowed to 'see' in the first stage of graph creation "LinkVisibleNodes()".
#define	MAX_NODE_INITIAL_LINKS	128
#define	MAX_NODES               1024

extern DLL_GLOBAL edict_t		*g_pBodyQueueHead;

Vector VecBModelOrigin( entvars_t* pevBModel );
 
CGraph	WorldGraph;

LINK_ENTITY_TO_CLASS( info_node, CNodeEnt );
LINK_ENTITY_TO_CLASS( info_node_air, CNodeEnt );
#ifdef __linux__
#include <sys/stat.h>
#include <unistd.h>
#define CreateDirectory(p, n) mkdir(p, 0777)
#endif
//=========================================================
// CGraph - InitGraph - prepares the graph for use. Frees any
// memory currently in use by the world graph, NULLs 
// all pointers, and zeros the node count.
//=========================================================
void CGraph :: InitGraph( void)
{

	// Make the graph unavailable
	//
	m_fGraphPresent = FALSE;
	m_fGraphPointersSet = FALSE;
	m_fRoutingComplete = FALSE;

	// Free the link pool
	//
	if ( m_pLinkPool )
	{
		free ( m_pLinkPool );
		m_pLinkPool = NULL;
	}
		
	// Free the node info
	//
	if ( m_pNodes )
	{
		free ( m_pNodes );
		m_pNodes = NULL;
	}

	if ( m_di )
	{
		free ( m_di );
		m_di = NULL;
	}

	// Free the routing info.
	//
	if ( m_pRouteInfo )
	{
		free ( m_pRouteInfo );
		m_pRouteInfo = NULL;
	}

	if (m_pHashLinks)
	{
		free(m_pHashLinks);
		m_pHashLinks = NULL;
	}

	// Zero node and link counts
	//
	m_cNodes = 0;
	m_cLinks = 0;
	m_nRouteInfo = 0;

	m_iLastActiveIdleSearch = 0;
	m_iLastCoverSearch = 0;
}
	
//=========================================================
// CGraph - AllocNodes - temporary function that mallocs a
// reasonable number of nodes so we can build the path which
// will be saved to disk.
//=========================================================
int CGraph :: AllocNodes ( void )
{
//  malloc all of the nodes
	WorldGraph.m_pNodes = (CNode *)calloc ( sizeof ( CNode ), MAX_NODES );

// could not malloc space for all the nodes!
	if ( !WorldGraph.m_pNodes )
	{
		ALERT ( at_aiconsole, "**ERROR**\nCouldn't malloc %d nodes!\n", WorldGraph.m_cNodes );
		return FALSE;
	}

	return TRUE;
}

//=========================================================
// CGraph - LinkEntForLink - sometimes the ent that blocks
// a path is a usable door, in which case the monster just
// needs to face the door and fire it. In other cases, the
// monster needs to operate a button or lever to get the 
// door to open. This function will return a pointer to the
// button if the monster needs to hit a button to open the 
// door, or returns a pointer to the door if the monster 
// need only use the door.
//
// pNode is the node the monster will be standing on when it
// will need to stop and trigger the ent.
//=========================================================
entvars_t* CGraph :: LinkEntForLink ( CLink *pLink, CNode *pNode )
{
	edict_t	*pentSearch;
	edict_t	*pentTrigger;
	entvars_t		*pevTrigger;
	entvars_t		*pevLinkEnt;
	TraceResult	tr;
	
	pevLinkEnt = pLink->m_pLinkEnt;
	if ( !pevLinkEnt )
		return NULL;

	pentSearch = NULL;// start search at the top of the ent list.
			
	if ( FClassnameIs ( pevLinkEnt, kesFuncDoor ) || FClassnameIs ( pevLinkEnt, "func_door_rotating" ) )
	{

		///!!!UNDONE - check for TOGGLE or STAY open doors here. If a door is in the way, and is 
		// TOGGLE or STAY OPEN, even monsters that can't open doors can go that way.

		if ( ( pevLinkEnt->spawnflags & SF_DOOR_USE_ONLY ) )
		{// door is use only, so the door is all the monster has to worry about
			return pevLinkEnt;
		}

		while ( 1 )
		{
			pentTrigger = FIND_ENTITY_BY_TARGET ( pentSearch, STRING( pevLinkEnt->targetname ) );// find the button or trigger

			if ( FNullEnt( pentTrigger ) )
			{// no trigger found

				// right now this is a problem among auto-open doors, or any door that opens through the use 
				// of a trigger brush. Trigger brushes have no models, and don't show up in searches. Just allow
				// monsters to open these sorts of doors for now. 
				return pevLinkEnt;
			}
			
			pentSearch = pentTrigger;
			pevTrigger = VARS( pentTrigger );
			
			if ( FClassnameIs(pevTrigger, "func_button") || FClassnameIs(pevTrigger, "func_rot_button" ) )
			{// only buttons are handled right now. 

				// trace from the node to the trigger, make sure it's one we can see from the node.
				// !!!HACKHACK Use bodyqueue here cause there are no ents we really wish to ignore!
				UTIL_TraceLine ( pNode->m_vecOrigin, VecBModelOrigin( pevTrigger ), ignore_monsters, g_pBodyQueueHead, &tr );


				if ( VARS(tr.pHit) == pevTrigger )
				{// good to go!
					return VARS( tr.pHit );
				}
			}
		}
	}
	else
	{
		ALERT ( at_aiconsole, "Unsupported PathEnt:\n'%s'\n", STRING ( pevLinkEnt->classname ) );
		return NULL;
	}
}

//=========================================================
// CGraph - HandleLinkEnt - a brush ent is between two
// nodes that would otherwise be able to see each other. 
// Given the monster's capability, determine whether
// or not the monster can go this way. 
//=========================================================
int	CGraph :: HandleLinkEnt ( int iNode, entvars_t *pevLinkEnt, int afCapMask, NODEQUERY queryType )
{
	edict_t  *pentWorld;
	CBaseEntity	*pDoor;
	TraceResult	tr;

	if ( !m_fGraphPresent || !m_fGraphPointersSet )
	{// protect us in the case that the node graph isn't available
		ALERT ( at_aiconsole, "Graph not ready!\n" );
		return FALSE;
	}

	if ( FNullEnt ( pevLinkEnt ) )
	{
		ALERT ( at_aiconsole, "dead path ent!\n" );
		return TRUE;
	}
	pentWorld = NULL;

// func_door
	if ( FClassnameIs( pevLinkEnt, kesFuncDoor ) || FClassnameIs( pevLinkEnt, "func_door_rotating" ) )
	{// ent is a door.

		pDoor = ( CBaseEntity::Instance( pevLinkEnt ) );

		if ( ( pevLinkEnt->spawnflags & SF_DOOR_USE_ONLY ) ) 
		{// door is use only.

			if  ( ( afCapMask & bits_CAP_OPEN_DOORS ) )
			{// let monster right through if he can open doors
				return TRUE;
			}
			else 
			{
				// monster should try for it if the door is open and looks as if it will stay that way
				if ( pDoor->GetToggleState()== TS_AT_TOP && ( pevLinkEnt->spawnflags & SF_DOOR_NO_AUTO_RETURN ) )
				{
					return TRUE;
				}

				return FALSE;
			}
		}
		else 
		{// door must be opened with a button or trigger field.
			
			// monster should try for it if the door is open and looks as if it will stay that way
			if ( pDoor->GetToggleState() == TS_AT_TOP && ( pevLinkEnt->spawnflags & SF_DOOR_NO_AUTO_RETURN ) )
			{
				return TRUE;
			}
			if  ( ( afCapMask & bits_CAP_OPEN_DOORS ) )
			{
				if ( !( pevLinkEnt->spawnflags & SF_DOOR_NOMONSTERS ) || queryType == NODEGRAPH_STATIC )
					return TRUE;
			}

			return FALSE;
		}
	}
// func_breakable	
	else if ( FClassnameIs( pevLinkEnt, "func_breakable" ) && queryType == NODEGRAPH_STATIC )
	{
		return TRUE;
	}
	else
	{
		ALERT ( at_aiconsole, "Unhandled Ent in Path %s\n", STRING( pevLinkEnt->classname ) );
		return FALSE;
	}

	return FALSE;
}

#if 0
//=========================================================
// FindNearestLink - finds the connection (line) nearest
// the given point. Returns FALSE if fails, or TRUE if it
// has stuffed the index into the nearest link pool connection
// into the passed int pointer, and a BOOL telling whether or 
// not the point is along the line into the passed BOOL pointer.
//=========================================================
int	CGraph :: FindNearestLink ( const Vector &vecTestPoint, int *piNearestLink, BOOL *pfAlongLine )
{
	int			i, j;// loops
	
	int			iNearestLink;// index into the link pool, this is the nearest node at any time. 
	float		flMinDist;// the distance of of the nearest case so far
	float		flDistToLine;// the distance of the current test case

	BOOL		fCurrentAlongLine;
	BOOL		fSuccess;

	//float		flConstant;// line constant
	Vector		vecSpot1, vecSpot2;
	Vector2D	vec2Spot1, vec2Spot2, vec2TestPoint;
	Vector2D	vec2Normal;// line normal
	Vector2D	vec2Line;

	TraceResult	tr;

	iNearestLink = -1;// prepare for failure
	fSuccess = FALSE;

	flMinDist = 9999;// anything will be closer than this

// go through all of the nodes, and each node's connections	
	int	cSkip = 0;// how many links proper pairing allowed us to skip
	int cChecked = 0;// how many links were checked

	for ( i = 0 ; i < m_cNodes ; i++ )
	{
		vecSpot1 = m_pNodes[ i ].m_vecOrigin;

		if ( m_pNodes[ i ].m_cNumLinks <= 0 )
		{// this shouldn't happen!
			ALERT ( at_aiconsole, "**Node %d has no links\n", i );
			continue;
		}

		for ( j = 0 ; j < m_pNodes[ i ].m_cNumLinks ; j++ )
		{
			/*
			!!!This optimization only works when the node graph consists of properly linked pairs. 
			if ( INodeLink ( i, j ) <= i )
			{
				// since we're going through the nodes in order, don't check
				// any connections whose second node is lower in the list
				// than the node we're currently working with. This eliminates
				// redundant checks.
				cSkip++;
				continue;
			}
			*/

			vecSpot2 = PNodeLink ( i, j )->m_vecOrigin;

			// these values need a little attention now and then, or sometimes ramps cause trouble.
			if ( fabs ( vecSpot1.z - vecTestPoint.z ) > 48 && fabs ( vecSpot2.z - vecTestPoint.z ) > 48 )
			{
				// if both endpoints of the line are 32 units or more above or below the monster, 
				// the monster won't be able to get to them, so we do a bit of trivial rejection here.
				// this may change if monsters are allowed to jump down. 
				// 
				// !!!LATER: some kind of clever X/Y hashing should be used here, too
				continue;
			}

// now we have two endpoints for a line segment that we've not already checked. 
// since all lines that make it this far are within -/+ 32 units of the test point's
// Z Plane, we can get away with doing the point->line check in 2d.
			
			cChecked++;

			vec2Spot1 = vecSpot1.Make2D();
			vec2Spot2 = vecSpot2.Make2D();
			vec2TestPoint = vecTestPoint.Make2D();
		
			// get the line normal.
			vec2Line = ( vec2Spot1 - vec2Spot2 ).Normalize();
			vec2Normal.x = -vec2Line.y;
			vec2Normal.y = vec2Line.x;

			if ( DotProduct ( vec2Line, ( vec2TestPoint - vec2Spot1 ) ) > 0 )
			{// point outside of line
				flDistToLine = ( vec2TestPoint - vec2Spot1 ).Length();
				fCurrentAlongLine = FALSE;
			}
			else if ( DotProduct ( vec2Line, ( vec2TestPoint - vec2Spot2 ) ) < 0 )
			{// point outside of line
				flDistToLine = ( vec2TestPoint - vec2Spot2 ).Length();
				fCurrentAlongLine = FALSE;
			}
			else
			{// point inside line
				flDistToLine = fabs( DotProduct ( vec2TestPoint - vec2Spot2, vec2Normal ) );
				fCurrentAlongLine = TRUE;
			}

			if ( flDistToLine < flMinDist )
			{// just found a line nearer than any other so far
				
				UTIL_TraceLine ( vecTestPoint, SourceNode( i, j ).m_vecOrigin, ignore_monsters, g_pBodyQueueHead, &tr );

				if ( tr.flFraction != 1.0 )
				{// crap. can't see the first node of this link, try to see the other
					
					UTIL_TraceLine ( vecTestPoint, DestNode( i, j ).m_vecOrigin, ignore_monsters, g_pBodyQueueHead, &tr );
					if ( tr.flFraction != 1.0 )
					{// can't use this link, cause can't see either node!
						continue;
					}

				}
				
				fSuccess = TRUE;// we know there will be something to return.
				flMinDist = flDistToLine;
				iNearestLink = m_pNodes [ i ].m_iFirstLink + j;
				*piNearestLink = m_pNodes[ i ].m_iFirstLink + j;
				*pfAlongLine = fCurrentAlongLine;
			}
		}
	}

/*
	if ( fSuccess )
	{
		WRITE_BYTE(MSG_BROADCAST, SVC_TEMPENTITY);
		WRITE_BYTE(MSG_BROADCAST, TE_SHOWLINE);
		
		WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iSrcNode ].m_vecOrigin.x );
		WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iSrcNode ].m_vecOrigin.y );
		WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iSrcNode ].m_vecOrigin.z + NODE_HEIGHT);

		WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iDestNode ].m_vecOrigin.x );
		WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iDestNode ].m_vecOrigin.y );
		WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iDestNode ].m_vecOrigin.z + NODE_HEIGHT);
	}
*/

	ALERT ( at_aiconsole, "%d Checked\n", cChecked );
	return fSuccess;
}

#endif

int	CGraph::HullIndex( const CBaseEntity *pEntity )
{
	if ( pEntity->pev->movetype == MOVETYPE_FLY)
		return NODE_FLY_HULL;

	if ( pEntity->pev->mins == Vector( -12, -12, 0 ) )
		return NODE_SMALL_HULL;
	else if ( pEntity->pev->mins == VEC_HUMAN_HULL_MIN )
		return NODE_HUMAN_HULL;
	else if ( pEntity->pev->mins == Vector ( -32, -32, 0 ) )
		return NODE_LARGE_HULL;

//	ALERT ( at_aiconsole, "Unknown Hull Mins!\n" );
	return NODE_HUMAN_HULL;
}


int	CGraph::NodeType( const CBaseEntity *pEntity )
{
	if ( pEntity->pev->movetype == MOVETYPE_FLY)
	{
		if (pEntity->pev->waterlevel != 0)
		{
			return bits_NODE_WATER;
		}
		else
		{
			return bits_NODE_AIR;
		}
	}
	return bits_NODE_LAND;
}


// Sum up graph weights on the path from iStart to iDest to determine path length
float CGraph::PathLength( int iStart, int iDest, int iHull, int afCapMask )
{
	float	distance = 0;
	int		iNext;

	int		iMaxLoop = m_cNodes;

	int iCurrentNode = iStart;
	int iCap = CapIndex( afCapMask );

	while (iCurrentNode != iDest)
	{
		if (iMaxLoop-- <= 0)
		{
			ALERT( at_console, "Route Failure\n" );
			return 0;
		}

		iNext = NextNodeInRoute( iCurrentNode, iDest, iHull, iCap );
		if (iCurrentNode == iNext)
		{
			//ALERT(at_aiconsole, "SVD: Can't get there from here..\n");
			return 0;
		}

		int iLink;
		HashSearch(iCurrentNode, iNext, iLink);
		if (iLink < 0)
		{
			ALERT(at_console, "HashLinks is broken from %d to %d.\n", iCurrentNode, iDest);
			return 0;
		}
		CLink &link = Link(iLink);
		distance += link.m_flWeight;

		iCurrentNode = iNext;
	}

	return distance;
}


// Parse the routing table at iCurrentNode for the next node on the shortest path to iDest
int CGraph::NextNodeInRoute( int iCurrentNode, int iDest, int iHull, int iCap )
{
	int iNext = iCurrentNode;
	int nCount = iDest+1;
	char *pRoute = m_pRouteInfo + m_pNodes[ iCurrentNode ].m_pNextBestNode[iHull][iCap];

	// Until we decode the next best node
	//
	while (nCount > 0)
	{
		char ch = *pRoute++;
		//ALERT(at_aiconsole, "C(%d)", ch);
		if (ch < 0)
		{
			// Sequence phrase
			//
			ch = -ch;
			if (nCount <= ch)
			{
				iNext = iDest;
				nCount = 0;
				//ALERT(at_aiconsole, "SEQ: iNext/iDest=%d\n", iNext);
			}
			else
			{
				//ALERT(at_aiconsole, "SEQ: nCount + ch (%d + %d)\n", nCount, ch);
				nCount = nCount - ch;
			}
		}
		else
		{
			//ALERT(at_aiconsole, "C(%d)", *pRoute);

			// Repeat phrase
			//
			if (nCount <= ch+1)
			{
				iNext = iCurrentNode + *pRoute;
				if (iNext >= m_cNodes) iNext -= m_cNodes;
				else if (iNext < 0) iNext += m_cNodes;
				nCount = 0;
				//ALERT(at_aiconsole, "REP: iNext=%d\n", iNext);
			}
			else
			{
				//ALERT(at_aiconsole, "REP: nCount - ch+1 (%d - %d+1)\n", nCount, ch);
				nCount = nCount - ch - 1;
			}
			pRoute++;
		}
	}

	return iNext;
}


//=========================================================
// CGraph - FindShortestPath 
//
// accepts a capability mask (afCapMask), and will only 
// find a path usable by a monster with those capabilities
// returns the number of nodes copied into supplied array
//=========================================================
int CGraph :: FindShortestPath ( int *piPath, int iStart, int iDest, int iHull, int afCapMask)
{
	int		iVisitNode;
	int		iCurrentNode;
	int		iNumPathNodes;
	int		iHullMask;

	if ( !m_fGraphPresent || !m_fGraphPointersSet )
	{// protect us in the case that the node graph isn't available or built
		ALERT ( at_aiconsole, "Graph not ready!\n" );
		return FALSE;
	}
	
	if ( iStart < 0 || iStart > m_cNodes )
	{// The start node is bad?
		ALERT ( at_aiconsole, "Can't build a path, iStart is %d!\n", iStart );
		return FALSE;
	}

	if (iStart == iDest)
	{
		piPath[0] = iStart;
		piPath[1] = iDest;
		return 2;
	}

	// Is routing information present.
	//
	if (m_fRoutingComplete)
	{
		int iCap = CapIndex( afCapMask );

		iNumPathNodes = 0;
		piPath[iNumPathNodes++] = iStart;
		iCurrentNode = iStart;
		int iNext;

		//ALERT(at_aiconsole, "GOAL: %d to %d\n", iStart, iDest);

		// Until we arrive at the destination
		//
		while (iCurrentNode != iDest)
		{
			iNext = NextNodeInRoute( iCurrentNode, iDest, iHull, iCap );
			if (iCurrentNode == iNext)
			{
				//ALERT(at_aiconsole, "SVD: Can't get there from here..\n");
				return 0;
				break;
			}
			if (iNumPathNodes >= MAX_PATH_SIZE) 
			{
				//ALERT(at_aiconsole, "SVD: Don't return the entire path.\n");
				break;
			}
			piPath[iNumPathNodes++] = iNext;
			iCurrentNode = iNext;
		}
		//ALERT( at_aiconsole, "SVD: Path with %d nodes.\n", iNumPathNodes);
	}
	else
	{
		CQueuePriority	queue;

		switch( iHull )
		{
		case NODE_SMALL_HULL:
			iHullMask = bits_LINK_SMALL_HULL;
			break;
		case NODE_HUMAN_HULL:
			iHullMask = bits_LINK_HUMAN_HULL;
			break;
		case NODE_LARGE_HULL:
			iHullMask = bits_LINK_LARGE_HULL;
			break;
		case NODE_FLY_HULL:
			iHullMask = bits_LINK_FLY_HULL;
			break;
		}

		// Mark all the nodes as unvisited.
		//
		for ( int i = 0; i < m_cNodes; i++)
		{
			m_pNodes[ i ].m_flClosestSoFar = -1.0;
		}

		m_pNodes[ iStart ].m_flClosestSoFar = 0.0;
		m_pNodes[ iStart ].m_iPreviousNode = iStart;// tag this as the origin node
		queue.Insert( iStart, 0.0 );// insert start node 
		
		while ( !queue.Empty() )
		{
			// now pull a node out of the queue
			float flCurrentDistance;
			iCurrentNode = queue.Remove(flCurrentDistance);

			// For straight-line weights, the following Shortcut works. For arbitrary weights,
			// it doesn't.
			//
			if (iCurrentNode == iDest) break;

			CNode *pCurrentNode = &m_pNodes[ iCurrentNode ];
			
			for ( i = 0 ; i < pCurrentNode->m_cNumLinks ; i++ )
			{// run through all of this node's neighbors
				
				iVisitNode = INodeLink ( iCurrentNode, i );
				if ( ( m_pLinkPool[  m_pNodes[ iCurrentNode ].m_iFirstLink + i ].m_afLinkInfo & iHullMask ) != iHullMask )
				{// monster is too large to walk this connection
					//ALERT ( at_aiconsole, "fat ass %d/%d\n",m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i ].m_afLinkInfo, iMonsterHull );
					continue;
				}
				// check the connection from the current node to the node we're about to mark visited and push into the queue				
				if ( m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i ].m_pLinkEnt != NULL )
				{// there's a brush ent in the way! Don't mark this node or put it into the queue unless the monster can negotiate it
					
					if ( !HandleLinkEnt ( iCurrentNode, m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i ].m_pLinkEnt, afCapMask, NODEGRAPH_STATIC ) )
					{// monster should not try to go this way.
						continue;
					}
				}
				float flOurDistance = flCurrentDistance + m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i].m_flWeight;
				if (  m_pNodes[ iVisitNode ].m_flClosestSoFar < -0.5
				   || flOurDistance < m_pNodes[ iVisitNode ].m_flClosestSoFar - 0.001 )
				{
					m_pNodes[iVisitNode].m_flClosestSoFar = flOurDistance;
					m_pNodes[iVisitNode].m_iPreviousNode = iCurrentNode;

					queue.Insert ( iVisitNode, flOurDistance );
				}
			}
		}
		if ( m_pNodes[iDest].m_flClosestSoFar < -0.5 )
		{// Destination is unreachable, no path found.
			return 0;
		}

	// the queue is not empty
		
		// now we must walk backwards through the m_iPreviousNode field, and count how many connections there are in the path
		iCurrentNode = iDest;
		iNumPathNodes = 1;// count the dest
		
		while ( iCurrentNode != iStart )
		{
			iNumPathNodes++;
			iCurrentNode = m_pNodes[ iCurrentNode ].m_iPreviousNode;
		}

		iCurrentNode = iDest;
		for ( i = iNumPathNodes - 1 ; i >= 0 ; i-- )
		{
			piPath[ i ] = iCurrentNode;
			iCurrentNode = m_pNodes [ iCurrentNode ].m_iPreviousNode;
		}
	}

#if 0

	if (m_fRoutingComplete)
	{
		// This will draw the entire path that was generated for the monster.

		for ( int i = 0 ; i < iNumPathNodes - 1 ; i++ )
		{
			MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
				WRITE_BYTE( TE_SHOWLINE);
				
				WRITE_COORD( m_pNodes[ piPath[ i ] ].m_vecOrigin.x );
				WRITE_COORD( m_pNodes[ piPath[ i ] ].m_vecOrigin.y );
				WRITE_COORD( m_pNodes[ piPath[ i ] ].m_vecOrigin.z + NODE_HEIGHT );

				WRITE_COORD( m_pNodes[ piPath[ i + 1 ] ].m_vecOrigin.x );
				WRITE_COORD( m_pNodes[ piPath[ i + 1 ] ].m_vecOrigin.y );
				WRITE_COORD( m_pNodes[ piPath[ i + 1 ] ].m_vecOrigin.z + NODE_HEIGHT );
			MESSAGE_END();
		}
	}

#endif
#if 0 // MAZE map
	MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
		WRITE_BYTE( TE_SHOWLINE);
		
		WRITE_COORD( m_pNodes[ 4 ].m_vecOrigin.x );
		WRITE_COORD( m_pNodes[ 4 ].m_vecOrigin.y );
		WRITE_COORD( m_pNodes[ 4 ].m_vecOrigin.z + NODE_HEIGHT );

		WRITE_COORD( m_pNodes[ 9 ].m_vecOrigin.x );
		WRITE_COORD( m_pNodes[ 9 ].m_vecOrigin.y );
		WRITE_COORD( m_pNodes[ 9 ].m_vecOrigin.z + NODE_HEIGHT );
	MESSAGE_END();
#endif

	return iNumPathNodes;
}

inline ULONG Hash(void *p, int len)
{
	CRC32_t ulCrc;
	CRC32_INIT(&ulCrc);
	CRC32_PROCESS_BUFFER(&ulCrc, p, len);
	return CRC32_FINAL(ulCrc);
}

void inline CalcBounds(int &Lower, int &Upper, int Goal, int Best)
{
    int Temp = 2*Goal - Best;
    if (Best > Goal)
    {
        Lower = max(0, Temp);
        Upper = Best;
    }
    else
    {
        Upper = min(255, Temp);
        Lower = Best;
    }
}

// Convert from [-8192,8192] to [0, 255]
//
inline int CALC_RANGE(int x, int lower, int upper)
{
	return NUM_RANGES*(x-lower)/((upper-lower+1));
}


void inline UpdateRange(int &minValue, int &maxValue, int Goal, int Best)
{
    int Lower, Upper;
    CalcBounds(Lower, Upper, Goal, Best);
    if (Upper < maxValue) maxValue = Upper;
    if (minValue < Lower) minValue = Lower;
}

void CGraph :: CheckNode(Vector vecOrigin, int iNode)
{
    // Have we already seen this point before?.
    //
    if (m_di[iNode].m_CheckedEvent == m_CheckedCounter) return;
    m_di[iNode].m_CheckedEvent = m_CheckedCounter;

	float flDist = ( vecOrigin - m_pNodes[ iNode ].m_vecOriginPeek ).Length();

	if ( flDist < m_flShortest )
	{
		TraceResult tr;

		// make sure that vecOrigin can trace to this node!
		UTIL_TraceLine ( vecOrigin, m_pNodes[ iNode ].m_vecOriginPeek, ignore_monsters, 0, &tr );

		if ( tr.flFraction == 1.0 )
		{
			m_iNearest = iNode;
			m_flShortest = flDist;

			UpdateRange(m_minX, m_maxX, CALC_RANGE(vecOrigin.x, m_RegionMin[0], m_RegionMax[0]), m_pNodes[iNode].m_Region[0]);
			UpdateRange(m_minY, m_maxY, CALC_RANGE(vecOrigin.y, m_RegionMin[1], m_RegionMax[1]), m_pNodes[iNode].m_Region[1]);
			UpdateRange(m_minZ, m_maxZ, CALC_RANGE(vecOrigin.z, m_RegionMin[2], m_RegionMax[2]), m_pNodes[iNode].m_Region[2]);

			// From maxCircle, calculate maximum bounds box. All points must be
			// simultaneously inside all bounds of the box.
			//
			m_minBoxX = CALC_RANGE(vecOrigin.x - flDist, m_RegionMin[0], m_RegionMax[0]);
			m_maxBoxX = CALC_RANGE(vecOrigin.x + flDist, m_RegionMin[0], m_RegionMax[0]);
			m_minBoxY = CALC_RANGE(vecOrigin.y - flDist, m_RegionMin[1], m_RegionMax[1]);
			m_maxBoxY = CALC_RANGE(vecOrigin.y + flDist, m_RegionMin[1], m_RegionMax[1]);
			m_minBoxZ = CALC_RANGE(vecOrigin.z - flDist, m_RegionMin[2], m_RegionMax[2]);
			m_maxBoxZ = CALC_RANGE(vecOrigin.z + flDist, m_RegionMin[2], m_RegionMax[2]);
		}
	}
}

//=========================================================
// CGraph - FindNearestNode - returns the index of the node nearest
// the given vector -1 is failure (couldn't find a valid
// near node )
//=========================================================
int	CGraph :: FindNearestNode ( const Vector &vecOrigin,  CBaseEntity *pEntity )
{
	return FindNearestNode( vecOrigin, NodeType( pEntity ) );
}

int	CGraph :: FindNearestNode ( const Vector &vecOrigin,  int afNodeTypes )
{
	int	i;
	TraceResult tr;

	if ( !m_fGraphPresent || !m_fGraphPointersSet )
	{// protect us in the case that the node graph isn't available
		ALERT ( at_aiconsole, "Graph not ready!\n" );
		return -1;
	}

	// Check with the cache
	//
	ULONG iHash = (CACHE_SIZE-1) & Hash((void *)(const float *)vecOrigin, sizeof(vecOrigin));
	if (m_Cache[iHash].v == vecOrigin)
	{
		//ALERT(at_aiconsole, "Cache Hit.\n");
		return m_Cache[iHash].n;
	}
	else
	{
		//ALERT(at_aiconsole, "Cache Miss.\n");
	}

	// Mark all points as unchecked.
	//
	m_CheckedCounter++;
	if (m_CheckedCounter == 0)
	{
		for (int i = 0; i < m_cNodes; i++)
		{
			m_di[i].m_CheckedEvent = 0;
		}
		m_CheckedCounter++;
	}

	m_iNearest = -1;
	m_flShortest = 999999.0; // just a big number.

	// If we can find a visible point, then let CalcBounds set the limits, but if
	// we have no visible point at all to start with, then don't restrict the limits.
	//
#if 1
	m_minX = 0; m_maxX = 255;
	m_minY = 0; m_maxY = 255;
	m_minZ = 0; m_maxZ = 255;
	m_minBoxX = 0; m_maxBoxX = 255;
	m_minBoxY = 0; m_maxBoxY = 255;
	m_minBoxZ = 0; m_maxBoxZ = 255;
#else
	m_minBoxX = CALC_RANGE(vecOrigin.x - flDist, m_RegionMin[0], m_RegionMax[0]);
	m_maxBoxX = CALC_RANGE(vecOrigin.x + flDist, m_RegionMin[0], m_RegionMax[0]);
	m_minBoxY = CALC_RANGE(vecOrigin.y - flDist, m_RegionMin[1], m_RegionMax[1]);
	m_maxBoxY = CALC_RANGE(vecOrigin.y + flDist, m_RegionMin[1], m_RegionMax[1]);
	m_minBoxZ = CALC_RANGE(vecOrigin.z - flDist, m_RegionMin[2], m_RegionMax[2]);
	m_maxBoxZ = CALC_RANGE(vecOrigin.z + flDist, m_RegionMin[2], m_RegionMax[2])
    CalcBounds(m_minX, m_maxX, CALC_RANGE(vecOrigin.x, m_RegionMin[0], m_RegionMax[0]), m_pNodes[m_iNearest].m_Region[0]);
    CalcBounds(m_minY, m_maxY, CALC_RANGE(vecOrigin.y, m_RegionMin[1], m_RegionMax[1]), m_pNodes[m_iNearest].m_Region[1]);
    CalcBounds(m_minZ, m_maxZ, CALC_RANGE(vecOrigin.z, m_RegionMin[2], m_RegionMax[2]), m_pNodes[m_iNearest].m_Region[2]);
#endif

    int halfX = (m_minX+m_maxX)/2;
    int halfY = (m_minY+m_maxY)/2;
    int halfZ = (m_minZ+m_maxZ)/2;

    int j;

    for (i = halfX; i >= m_minX; i--)
    {
        for (j = m_RangeStart[0][i]; j <= m_RangeEnd[0][i]; j++)
        {
			if (!(m_pNodes[m_di[j].m_SortedBy[0]].m_afNodeInfo & afNodeTypes)) continue;

			int rgY = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[1];
			if (rgY > m_maxBoxY) break;
            if (rgY < m_minBoxY) continue;

			int rgZ = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[2];
            if (rgZ < m_minBoxZ) continue;
            if (rgZ > m_maxBoxZ) continue;
            CheckNode(vecOrigin, m_di[j].m_SortedBy[0]);
        }
    }

    for (i = max(m_minY,halfY+1); i <= m_maxY; i++)
    {
        for (j = m_RangeStart[1][i]; j <= m_RangeEnd[1][i]; j++)
        {
			if (!(m_pNodes[m_di[j].m_SortedBy[1]].m_afNodeInfo & afNodeTypes)) continue;

			int rgZ = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[2];
            if (rgZ > m_maxBoxZ) break;
            if (rgZ < m_minBoxZ) continue;
			int rgX = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[0];
            if (rgX < m_minBoxX) continue;
            if (rgX > m_maxBoxX) continue;
            CheckNode(vecOrigin, m_di[j].m_SortedBy[1]);
        }
    }

    for (i = min(m_maxZ,halfZ); i >= m_minZ; i--)
    {
        for (j = m_RangeStart[2][i]; j <= m_RangeEnd[2][i]; j++)
        {
			if (!(m_pNodes[m_di[j].m_SortedBy[2]].m_afNodeInfo & afNodeTypes)) continue;

			int rgX = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[0];
            if (rgX > m_maxBoxX) break;
            if (rgX < m_minBoxX) continue;
			int rgY = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[1];
            if (rgY < m_minBoxY) continue;
			if (rgY > m_maxBoxY) continue;
            CheckNode(vecOrigin, m_di[j].m_SortedBy[2]);
        }
    }

    for (i = max(m_minX,halfX+1); i <= m_maxX; i++)
    {
        for (j = m_RangeStart[0][i]; j <= m_RangeEnd[0][i]; j++)
        {
			if (!(m_pNodes[m_di[j].m_SortedBy[0]].m_afNodeInfo & afNodeTypes)) continue;

			int rgY = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[1];
			if (rgY > m_maxBoxY) break;
            if (rgY < m_minBoxY) continue;

			int rgZ = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[2];
            if (rgZ < m_minBoxZ) continue;
            if (rgZ > m_maxBoxZ) continue;
            CheckNode(vecOrigin, m_di[j].m_SortedBy[0]);
        }
    }

    for (i = min(m_maxY,halfY); i >= m_minY; i--)
    {
        for (j = m_RangeStart[1][i]; j <= m_RangeEnd[1][i]; j++)
        {
			if (!(m_pNodes[m_di[j].m_SortedBy[1]].m_afNodeInfo & afNodeTypes)) continue;

			int rgZ = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[2];
            if (rgZ > m_maxBoxZ) break;
            if (rgZ < m_minBoxZ) continue;
			int rgX = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[0];
            if (rgX < m_minBoxX) continue;
            if (rgX > m_maxBoxX) continue;
            CheckNode(vecOrigin, m_di[j].m_SortedBy[1]);
        }
    }

    for (i = max(m_minZ,halfZ+1); i <= m_maxZ; i++)
    {
        for (j = m_RangeStart[2][i]; j <= m_RangeEnd[2][i]; j++)
        {
			if (!(m_pNodes[m_di[j].m_SortedBy[2]].m_afNodeInfo & afNodeTypes)) continue;

			int rgX = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[0];
            if (rgX > m_maxBoxX) break;
            if (rgX < m_minBoxX) continue;
			int rgY = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[1];
            if (rgY < m_minBoxY) continue;
			if (rgY > m_maxBoxY) continue;
            CheckNode(vecOrigin, m_di[j].m_SortedBy[2]);
        }
    }

#if 0
	// Verify our answers.
	//
	int iNearestCheck = -1;
	m_flShortest = 8192;// find nodes within this radius

	for ( i = 0 ; i < m_cNodes ; i++ )
	{
		float flDist = ( vecOrigin - m_pNodes[ i ].m_vecOriginPeek ).Length();

		if ( flDist < m_flShortest )
		{
			// make sure that vecOrigin can trace to this node!
			UTIL_TraceLine ( vecOrigin, m_pNodes[ i ].m_vecOriginPeek, ignore_monsters, 0, &tr );

			if ( tr.flFraction == 1.0 )
			{
				iNearestCheck = i;
				m_flShortest = flDist;
			}
		}
	}

	if (iNearestCheck != m_iNearest)
	{
		ALERT( at_aiconsole, "NOT closest %d(%f,%f,%f) %d(%f,%f,%f).\n",
			iNearestCheck,
			m_pNodes[iNearestCheck].m_vecOriginPeek.x,
			m_pNodes[iNearestCheck].m_vecOriginPeek.y,
			m_pNodes[iNearestCheck].m_vecOriginPeek.z,
			m_iNearest,
			(m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.x),
			(m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.y),
			(m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.z));
	}
	if (m_iNearest == -1)
	{
		ALERT(at_aiconsole, "All that work for nothing.\n");
	}
#endif
	m_Cache[iHash].v = vecOrigin;
	m_Cache[iHash].n = m_iNearest;
	return m_iNearest;
}

//=========================================================
// CGraph - ShowNodeConnections - draws a line from the given node
// to all connected nodes
//=========================================================
void CGraph :: ShowNodeConnections ( int iNode )
{
	Vector	vecSpot;
	CNode	*pNode;
	CNode	*pLinkNode;
	int	i;

	if ( !m_fGraphPresent || !m_fGraphPointersSet )
	{// protect us in the case that the node graph isn't available or built
		ALERT ( at_aiconsole, "Graph not ready!\n" );
		return;
	}

	if ( iNode < 0 )
	{
		ALERT( at_aiconsole, "Can't show connections for node %d\n", iNode );
		return;
	}

	pNode = &m_pNodes[ iNode ];

	UTIL_ParticleEffect( pNode->m_vecOrigin, g_vecZero, 255, 20 );// show node position
	
	if ( pNode->m_cNumLinks <= 0 )
	{// no connections!
		ALERT ( at_aiconsole, "**No Connections!\n" );
	}

	for ( i = 0 ; i < pNode->m_cNumLinks ; i++ )
	{
		
		pLinkNode = &Node( NodeLink( iNode, i).m_iDestNode );
		vecSpot = pLinkNode->m_vecOrigin;

		MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
			WRITE_BYTE( TE_SHOWLINE);
			
			WRITE_COORD( m_pNodes[ iNode ].m_vecOrigin.x );
			WRITE_COORD( m_pNodes[ iNode ].m_vecOrigin.y );
			WRITE_COORD( m_pNodes[ iNode ].m_vecOrigin.z + NODE_HEIGHT );

			WRITE_COORD( vecSpot.x );
			WRITE_COORD( vecSpot.y );
			WRITE_COORD( vecSpot.z + NODE_HEIGHT );
		MESSAGE_END();

	}
}

//=========================================================
// CGraph - LinkVisibleNodes - the first, most basic
// function of node graph creation, this connects every
// node to every other node that it can see. Expects a 
// pointer to an empty connection pool and a file pointer 
// to write progress to. Returns the total number of initial
// links.
//
// If there's a problem with this process, the index
// of the offending node will be written to piBadNode
//=========================================================
int CGraph :: LinkVisibleNodes ( CLink *pLinkPool, FILE *file, int *piBadNode )
{
	int			i,j,z;
	edict_t		*pTraceEnt;
	int			cTotalLinks, cLinksThisNode, cMaxInitialLinks;
	TraceResult	tr;
	
	// !!!BUGBUG - this function returns 0 if there is a problem in the middle of connecting the graph
	// it also returns 0 if none of the nodes in a level can see each other. piBadNode is ALWAYS read
	// by BuildNodeGraph() if this function returns a 0, so make sure that it doesn't get some random
	// number back.
	*piBadNode = 0;


	if ( m_cNodes <= 0 )
	{
		ALERT ( at_aiconsole, "No Nodes!\n" );
		return FALSE;
	}

	// if the file pointer is bad, don't blow up, just don't write the
	// file.
	if ( !file )
	{
		ALERT ( at_aiconsole, "**LinkVisibleNodes:\ncan't write to file." );
	}
	else
	{
		fprintf ( file, "----------------------------------------------------------------------------\n" );
		fprintf ( file, "LinkVisibleNodes - Initial Connections\n" );
		fprintf ( file, "----------------------------------------------------------------------------\n" );
	}

	cTotalLinks = 0;// start with no connections
	
	// to keep track of the maximum number of initial links any node had so far.
	// this lets us keep an eye on MAX_NODE_INITIAL_LINKS to ensure that we are
	// being generous enough.
	cMaxInitialLinks = 0;

	for ( i = 0 ; i < m_cNodes ; i++ )
	{
		cLinksThisNode = 0;// reset this count for each node.

		if ( file )
		{
			fprintf ( file, "Node #%4d:\n\n", i );
		}

		for ( z = 0 ; z < MAX_NODE_INITIAL_LINKS ; z++ )
		{// clear out the important fields in the link pool for this node
			pLinkPool [ cTotalLinks + z ].m_iSrcNode = i;// so each link knows which node it originates from
			pLinkPool [ cTotalLinks + z ].m_iDestNode = 0;
			pLinkPool [ cTotalLinks + z ].m_pLinkEnt = NULL;
		}

		m_pNodes [ i ].m_iFirstLink = cTotalLinks;

		// now build a list of every other node that this node can see
		for ( j = 0 ; j < m_cNodes ; j++ )
  		{
			if ( j == i )
			{// don't connect to self!
				continue;
			}

#if 0
			
			if ( (m_pNodes[ i ].m_afNodeInfo & bits_NODE_WATER) != (m_pNodes[ j ].m_afNodeInfo & bits_NODE_WATER) )
			{
				// don't connect water nodes to air nodes or land nodes. It just wouldn't be prudent at this juncture.
				continue;
			}
#else
			if ( (m_pNodes[ i ].m_afNodeInfo & bits_NODE_GROUP_REALM) != (m_pNodes[ j ].m_afNodeInfo & bits_NODE_GROUP_REALM) )
			{
				// don't connect air nodes to water nodes to land nodes. It just wouldn't be prudent at this juncture.
				continue;
			}
#endif

			tr.pHit = NULL;// clear every time so we don't get stuck with last trace's hit ent
			pTraceEnt = 0;

			UTIL_TraceLine ( m_pNodes[ i ].m_vecOrigin,
							 m_pNodes[ j ].m_vecOrigin,
							 ignore_monsters,
							 g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about
							 &tr );
			
			
			if ( tr.fStartSolid )
				continue;

			if ( tr.flFraction != 1.0 )
			{// trace hit a brush ent, trace backwards to make sure that this ent is the only thing in the way.
				
				pTraceEnt = tr.pHit;// store the ent that the trace hit, for comparison
	
				UTIL_TraceLine ( m_pNodes[ j ].m_vecOrigin,
								 m_pNodes[ i ].m_vecOrigin,
								 ignore_monsters,
								 g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about
								 &tr );

				
// there is a solid_bsp ent in the way of these two nodes, so we must record several things about in order to keep
// track of it in the pathfinding code, as well as through save and restore of the node graph. ANY data that is manipulated 
// as part of the process of adding a LINKENT to a connection here must also be done in CGraph::SetGraphPointers, where reloaded
// graphs are prepared for use.
				if ( tr.pHit == pTraceEnt && !FClassnameIs( tr.pHit, "worldspawn" ) )
				{
					// get a pointer
					pLinkPool [ cTotalLinks ].m_pLinkEnt = VARS( tr.pHit );

					// record the modelname, so that we can save/load node trees
					memcpy( pLinkPool [ cTotalLinks ].m_szLinkEntModelname, STRING( VARS(tr.pHit)->model ), 4 );

					// set the flag for this ent that indicates that it is attached to the world graph
					// if this ent is removed from the world, it must also be removed from the connections
					// that it formerly blocked.
					if ( !FBitSet( VARS( tr.pHit )->flags, FL_GRAPHED ) )
					{
						VARS( tr.pHit )->flags += FL_GRAPHED;
					}
				}
				else
				{// even if the ent wasn't there, these nodes couldn't be connected. Skip.
					continue;
				}
			}

			if ( file )
			{
				fprintf ( file, "%4d", j );

				if ( !FNullEnt( pLinkPool[ cTotalLinks ].m_pLinkEnt ) )
				{// record info about the ent in the way, if any.
					fprintf ( file, "  Entity on connection: %s, name: %s  Model: %s", STRING( VARS( pTraceEnt )->classname ), STRING ( VARS( pTraceEnt )->targetname ), STRING ( VARS(tr.pHit)->model ) );
				}
				
				fprintf ( file, "\n", j );
			}

			pLinkPool [ cTotalLinks ].m_iDestNode = j;
			cLinksThisNode++;
			cTotalLinks++;

			// If we hit this, either a level designer is placing too many nodes in the same area, or 
			// we need to allow for a larger initial link pool.
			if ( cLinksThisNode == MAX_NODE_INITIAL_LINKS )
			{
				ALERT ( at_aiconsole, "**LinkVisibleNodes:\nNode %d has NodeLinks > MAX_NODE_INITIAL_LINKS", i );
				fprintf ( file, "** NODE %d HAS NodeLinks > MAX_NODE_INITIAL_LINKS **\n", i );
				*piBadNode = i;
				return	FALSE;
			}
			else if ( cTotalLinks > MAX_NODE_INITIAL_LINKS * m_cNodes )
			{// this is paranoia
				ALERT ( at_aiconsole, "**LinkVisibleNodes:\nTotalLinks > MAX_NODE_INITIAL_LINKS * NUMNODES" );
				*piBadNode = i;
				return	FALSE;
			}

			if ( cLinksThisNode == 0 )
			{
				fprintf ( file, "**NO INITIAL LINKS**\n" );
			}

			// record the connection info in the link pool
			WorldGraph.m_pNodes [ i ].m_cNumLinks = cLinksThisNode;
			
			// keep track of the most initial links ANY node had, so we can figure out
			// if we have a large enough default link pool
			if ( cLinksThisNode > cMaxInitialLinks )
			{
				cMaxInitialLinks = cLinksThisNode;
			}
		}
		

		if ( file )
		{
			fprintf ( file, "----------------------------------------------------------------------------\n" );
		}
	}

	fprintf ( file, "\n%4d Total Initial Connections - %4d Maximum connections for a single node.\n", cTotalLinks, cMaxInitialLinks );
	fprintf ( file, "----------------------------------------------------------------------------\n\n\n" );

	return cTotalLinks;
}

//=========================================================
// CGraph - RejectInlineLinks - expects a pointer to a link
// pool, and a pointer to and already-open file ( if you
// want status reports written to disk ). RETURNS the number
// of connections that were rejected
//=========================================================
int	CGraph :: RejectInlineLinks ( CLink *pLinkPool, FILE *file )
{
	int		i,j,k;

	int		cRejectedLinks;

	BOOL	fRestartLoop;// have to restart the J loop if we eliminate a link.

	CNode	*pSrcNode;
	CNode	*pCheckNode;// the node we are testing for (one of pSrcNode's connections)
	CNode	*pTestNode;// the node we are checking against ( also one of pSrcNode's connections)

	float	flDistToTestNode, flDistToCheckNode;

	Vector2D	vec2DirToTestNode, vec2DirToCheckNode;

	if ( file )
	{
		fprintf ( file, "----------------------------------------------------------------------------\n" );
		fprintf ( file, "InLine Rejection:\n" );
		fprintf ( file, "----------------------------------------------------------------------------\n" );
	}

	cRejectedLinks = 0;

	for ( i = 0 ; i < m_cNodes ; i++ )
	{
		pSrcNode = &m_pNodes[ i ];

		if ( file )
		{
			fprintf ( file, "Node %3d:\n", i );
		}

		for ( j = 0 ; j < pSrcNode->m_cNumLinks ; j++ )
		{
			pCheckNode = &m_pNodes[ pLinkPool[ pSrcNode->m_iFirstLink + j ].m_iDestNode ];

			vec2DirToCheckNode = ( pCheckNode->m_vecOrigin - pSrcNode->m_vecOrigin ).Make2D(); 
			flDistToCheckNode = vec2DirToCheckNode.Length();
			vec2DirToCheckNode = vec2DirToCheckNode.Normalize();

			pLinkPool[ pSrcNode->m_iFirstLink + j ].m_flWeight = flDistToCheckNode;

			fRestartLoop = FALSE;
			for ( k = 0 ; k < pSrcNode->m_cNumLinks && !fRestartLoop ; k++ )
			{
				if ( k == j )
				{// don't check against same node
					continue;
				}

				pTestNode = &m_pNodes [ pLinkPool[ pSrcNode->m_iFirstLink + k ].m_iDestNode ];

				vec2DirToTestNode = ( pTestNode->m_vecOrigin - pSrcNode->m_vecOrigin ).Make2D(); 

				flDistToTestNode = vec2DirToTestNode.Length();
				vec2DirToTestNode = vec2DirToTestNode.Normalize();

				if ( DotProduct ( vec2DirToCheckNode, vec2DirToTestNode ) >= 0.998 )
				{
					// there's a chance that TestNode intersects the line to CheckNode. If so, we should disconnect the link to CheckNode. 
					if ( flDistToTestNode < flDistToCheckNode )
					{
						if ( file )
						{
							fprintf ( file, "REJECTED NODE %3d through Node %3d, Dot = %8f\n", pLinkPool[ pSrcNode->m_iFirstLink + j ].m_iDestNode, pLinkPool[ pSrcNode->m_iFirstLink + k ].m_iDestNode, DotProduct ( vec2DirToCheckNode, vec2DirToTestNode ) );
						}

						pLinkPool[ pSrcNode->m_iFirstLink + j ] = pLinkPool[ pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 ) ];
						pSrcNode->m_cNumLinks--;
						j--;

						cRejectedLinks++;// keeping track of how many links are cut, so that we can return that value.

						fRestartLoop = TRUE;
					}
				}
			}
		}

		if ( file )
		{
			fprintf ( file, "----------------------------------------------------------------------------\n\n" );
		}
	}

	return cRejectedLinks;
}

//=========================================================
// TestHull is a modelless clip hull that verifies reachable
// nodes by walking from every node to each of it's connections
//=========================================================
class CTestHull : public CBaseMonster
{

public:
	void Spawn( entvars_t *pevMasterNode );
	virtual int	ObjectCaps( void ) { return CBaseMonster :: ObjectCaps() & ~FCAP_ACROSS_TRANSITION; }
	void EXPORT CallBuildNodeGraph ( void );
	void BuildNodeGraph ( void );
	void EXPORT ShowBadNode ( void );
	void EXPORT DropDelay ( void );
	void EXPORT PathFind ( void );

	Vector	vecBadNodeOrigin;
};

LINK_ENTITY_TO_CLASS( testhull, CTestHull );

//=========================================================
// CTestHull::Spawn
//=========================================================
void CTestHull :: Spawn( entvars_t *pevMasterNode )
{
	SET_MODEL(ENT(pev), "models/player.mdl");
	UTIL_SetSize(pev, VEC_HUMAN_HULL_MIN, VEC_HUMAN_HULL_MAX);

	pev->solid			= SOLID_SLIDEBOX;
	pev->movetype		= MOVETYPE_STEP;
	pev->effects		= 0;
	pev->health			= 50;
	pev->yaw_speed		= 8;

	if ( WorldGraph.m_fGraphPresent )
	{// graph loaded from disk, so we don't need the test hull
		SetThink ( &CTestHull::SUB_Remove );
		pev->nextthink = gpGlobals->time;
	}
	else
	{
		SetThink ( &CTestHull::DropDelay );
		pev->nextthink = gpGlobals->time + 1;
	}

	// Make this invisible
	// UNDONE: Shouldn't we just use EF_NODRAW?  This doesn't need to go to the client.
	pev->rendermode = kRenderTransTexture;
	pev->renderamt = 0;
}

//=========================================================
// TestHull::DropDelay - spawns TestHull on top of 
// the 0th node and drops it to the ground.
//=========================================================
void CTestHull::DropDelay ( void )
{
	UTIL_CenterPrintAll( "Node Graph out of Date. Rebuilding..." );

	UTIL_SetOrigin ( VARS(pev), WorldGraph.m_pNodes[ 0 ].m_vecOrigin );

	SetThink ( &CTestHull::CallBuildNodeGraph );

	pev->nextthink = gpGlobals->time + 1;
}

//=========================================================
// nodes start out as ents in the world. As they are spawned,
// the node info is recorded then the ents are discarded.
//=========================================================
void CNodeEnt :: KeyValue( KeyValueData *pkvd )
{
	if (FStrEq(pkvd->szKeyName, "hinttype"))
	{
		m_sHintType = (short)atoi( pkvd->szValue );
		pkvd->fHandled = TRUE;
	}

	if (FStrEq(pkvd->szKeyName, "activity"))
	{
		m_sHintActivity = (short)atoi( pkvd->szValue );
		pkvd->fHandled = TRUE;
	}
	else
		CBaseEntity::KeyValue( pkvd );
}

//=========================================================
//=========================================================
void CNodeEnt :: Spawn( void )
{
	pev->movetype = MOVETYPE_NONE;
	pev->solid = SOLID_NOT;// always solid_not 

	if ( WorldGraph.m_fGraphPresent )
	{// graph loaded from disk, so discard all these node ents as soon as they spawn
		REMOVE_ENTITY( edict() );
		return;
	}

	if ( WorldGraph.m_cNodes == 0 )
	{// this is the first node to spawn, spawn the test hull entity that builds and walks the node tree
		CTestHull *pHull = GetClassPtr((CTestHull *)NULL);
		pHull->Spawn( pev );
	}

	if ( WorldGraph.m_cNodes >= MAX_NODES )
	{
		ALERT ( at_aiconsole, "cNodes > MAX_NODES\n" );
		return;
	}

	WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_vecOriginPeek =
		WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_vecOrigin = pev->origin;
	WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_flHintYaw = pev->angles.y;
	WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_sHintType = m_sHintType;
	WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_sHintActivity = m_sHintActivity;

	if (FClassnameIs( pev, "info_node_air" ))
		WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_afNodeInfo = bits_NODE_AIR;
	else
		WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_afNodeInfo = 0;

	WorldGraph.m_cNodes++;

	REMOVE_ENTITY( edict() );
}

//=========================================================
// CTestHull - ShowBadNode - makes a bad node fizzle. When
// there's a problem with node graph generation, the test 
// hull will be placed up the bad node's location and will generate
// particles
//=========================================================
void CTestHull :: ShowBadNode( void )
{
	pev->movetype = MOVETYPE_FLY;
	pev->angles.y = pev->angles.y + 4;

	UTIL_MakeVectors ( pev->angles );

	UTIL_ParticleEffect ( pev->origin, g_vecZero, 255, 25 );
	UTIL_ParticleEffect ( pev->origin + gpGlobals->v_forward * 64, g_vecZero, 255, 25 );
	UTIL_ParticleEffect ( pev->origin - gpGlobals->v_forward * 64, g_vecZero, 255, 25 );
	UTIL_ParticleEffect ( pev->origin + gpGlobals->v_right * 64, g_vecZero, 255, 25 );
	UTIL_ParticleEffect ( pev->origin - gpGlobals->v_right * 64, g_vecZero, 255, 25 );

	pev->nextthink = gpGlobals->time + 0.1;
}

extern BOOL gTouchDisabled;
void CTestHull::CallBuildNodeGraph( void )
{
	// TOUCH HACK -- Don't allow this entity to call anyone's "touch" function
	gTouchDisabled = TRUE;
	BuildNodeGraph();
	gTouchDisabled = FALSE;
	// Undo TOUCH HACK
}

//=========================================================
// BuildNodeGraph - think function called by the empty walk
// hull that is spawned by the first node to spawn. This
// function links all nodes that can see each other, then
// eliminates all inline links, then uses a monster-sized 
// hull that walks between each node and each of its links
// to ensure that a monster can actually fit through the space
//=========================================================
void CTestHull :: BuildNodeGraph( void )
{
	TraceResult	tr;
	FILE	*file;

	char	szNrpFilename [MAX_PATH];// text node report filename

	CLink	*pTempPool; // temporary link pool 

	CNode	*pSrcNode;// node we're currently working with
	CNode	*pDestNode;// the other node in comparison operations

	BOOL	fSkipRemainingHulls;//if smallest hull can't fit, don't check any others
	BOOL	fPairsValid;// are all links in the graph evenly paired?

	int		i, j, hull;

	int		iBadNode;// this is the node that caused graph generation to fail

	int		cMaxInitialLinks = 0;
	int		cMaxValidLinks	= 0;

	int		iPoolIndex = 0;
	int		cPoolLinks;// number of links in the pool.

	Vector	vecDirToCheckNode;
	Vector	vecDirToTestNode;
	Vector	vecStepCheckDir;
	Vector	vecTraceSpot;
	Vector  vecSpot;

	Vector2D	vec2DirToCheckNode;
	Vector2D	vec2DirToTestNode;
	Vector2D	vec2StepCheckDir;
	Vector2D	vec2TraceSpot;
	Vector2D	vec2Spot;

	float	flYaw;// use this stuff to walk the hull between nodes
	float	flDist;
	int		step;

	SetThink ( &CTestHull::SUB_Remove );// no matter what happens, the hull gets rid of itself.
	pev->nextthink = gpGlobals->time;

// 	malloc a swollen temporary connection pool that we trim down after we know exactly how many connections there are.
	pTempPool = (CLink *)calloc ( sizeof ( CLink ) , ( WorldGraph.m_cNodes * MAX_NODE_INITIAL_LINKS ) );
	if ( !pTempPool )
	{
		ALERT ( at_aiconsole, "**Could not malloc TempPool!\n" );
		return;
	}


	// make sure directories have been made
	GET_GAME_DIR( szNrpFilename );
	strcat( szNrpFilename, "/maps" );
	CreateDirectory( szNrpFilename, NULL );
	strcat( szNrpFilename, "/graphs" );
	CreateDirectory( szNrpFilename, NULL );

	strcat( szNrpFilename, "/" );
	strcat( szNrpFilename, STRING( gpGlobals->mapname ) );
	strcat( szNrpFilename, ".nrp" );

	file = fopen ( szNrpFilename, "w+" );

	if ( !file )
	{// file error
		ALERT ( at_aiconsole, "Couldn't create %s!\n", szNrpFilename );

		if ( pTempPool )
		{
			free ( pTempPool );
		}

		return;
	}

	fprintf( file, "Node Graph Report for map:  %s.bsp\n", STRING(gpGlobals->mapname) );
	fprintf ( file, "%d Total Nodes\n\n", WorldGraph.m_cNodes );

	for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
	{// print all node numbers and their locations to the file.
		WorldGraph.m_pNodes[ i ].m_cNumLinks = 0;
		WorldGraph.m_pNodes[ i ].m_iFirstLink = 0;
		memset(WorldGraph.m_pNodes[ i ].m_pNextBestNode, 0, sizeof(WorldGraph.m_pNodes[ i ].m_pNextBestNode));

		fprintf ( file, "Node#         %4d\n", i );
		fprintf ( file, "Location      %4d,%4d,%4d\n",(int)WorldGraph.m_pNodes[ i ].m_vecOrigin.x, (int)WorldGraph.m_pNodes[ i ].m_vecOrigin.y, (int)WorldGraph.m_pNodes[ i ].m_vecOrigin.z );
		fprintf ( file, "HintType:     %4d\n", WorldGraph.m_pNodes[ i ].m_sHintType );
		fprintf ( file, "HintActivity: %4d\n", WorldGraph.m_pNodes[ i ].m_sHintActivity );
		fprintf ( file, "HintYaw:      %4f\n", WorldGraph.m_pNodes[ i ].m_flHintYaw );
		fprintf ( file, "-------------------------------------------------------------------------------\n" );
	}
	fprintf ( file, "\n\n" );


	// Automatically recognize WATER nodes and drop the LAND nodes to the floor.
	//
	for ( i = 0; i < WorldGraph.m_cNodes; i++)
	{
		if (WorldGraph.m_pNodes[ i ].m_afNodeInfo & bits_NODE_AIR)
		{
			// do nothing
		}
		else if (UTIL_PointContents(WorldGraph.m_pNodes[ i ].m_vecOrigin) == CONTENTS_WATER)
		{
			WorldGraph.m_pNodes[ i ].m_afNodeInfo |= bits_NODE_WATER;
		}
		else
		{
			WorldGraph.m_pNodes[ i ].m_afNodeInfo |= bits_NODE_LAND;

			// trace to the ground, then pop up 8 units and place node there to make it
			// easier for them to connect (think stairs, chairs, and bumps in the floor).
			// After the routing is done, push them back down.
			//
			TraceResult	tr;

			UTIL_TraceLine ( WorldGraph.m_pNodes[i].m_vecOrigin,
							 WorldGraph.m_pNodes[i].m_vecOrigin - Vector ( 0, 0, 384 ),
							 ignore_monsters,
							 g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about
							 &tr );

			// This trace is ONLY used if we hit an entity flagged with FL_WORLDBRUSH
			TraceResult	trEnt;
			UTIL_TraceLine ( WorldGraph.m_pNodes[i].m_vecOrigin,
				 WorldGraph.m_pNodes[i].m_vecOrigin - Vector ( 0, 0, 384 ),
				 dont_ignore_monsters,
				 g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about
				 &trEnt );

			
			// Did we hit something closer than the floor?
			if ( trEnt.flFraction < tr.flFraction )
			{
				// If it was a world brush entity, copy the node location
				if ( trEnt.pHit && (trEnt.pHit->v.flags & FL_WORLDBRUSH) )
					tr.vecEndPos = trEnt.vecEndPos;
			}

			WorldGraph.m_pNodes[i].m_vecOriginPeek.z = 
				WorldGraph.m_pNodes[i].m_vecOrigin.z = tr.vecEndPos.z + NODE_HEIGHT;
		}
	}

	cPoolLinks = WorldGraph.LinkVisibleNodes( pTempPool, file, &iBadNode );
	
	if ( !cPoolLinks )
	{
		ALERT ( at_aiconsole, "**ConnectVisibleNodes FAILED!\n" );
		
		SetThink ( &CTestHull::ShowBadNode );// send the hull off to show the offending node.
		//pev->solid = SOLID_NOT;
		pev->origin = WorldGraph.m_pNodes[ iBadNode ].m_vecOrigin;
		
		if ( pTempPool )
		{
			free ( pTempPool );
		}

		if ( file )
		{// close the file
			fclose ( file );
		}

		return;
	}

// send the walkhull to all of this node's connections now. We'll do this here since
// so much of it relies on being able to control the test hull.
	fprintf ( file, "----------------------------------------------------------------------------\n" );
	fprintf ( file, "Walk Rejection:\n");	

	for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
	{
		pSrcNode = &WorldGraph.m_pNodes[ i ];

		fprintf ( file, "-------------------------------------------------------------------------------\n");
		fprintf ( file, "Node %4d:\n\n", i );
		
		for ( j = 0 ; j < pSrcNode->m_cNumLinks ; j++ )
		{
			// assume that all hulls can walk this link, then eliminate the ones that can't.
			pTempPool [ pSrcNode->m_iFirstLink + j ].m_afLinkInfo = bits_LINK_SMALL_HULL | bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL | bits_LINK_FLY_HULL;


			// do a check for each hull size.
			
			// if we can't fit a tiny hull through a connection, no other hulls with fit either, so we 
			// should just fall out of the loop. Do so by setting the SkipRemainingHulls flag.
			fSkipRemainingHulls = FALSE;
			for ( hull = 0 ; hull < MAX_NODE_HULLS; hull++ )
			{
				if (fSkipRemainingHulls && (hull == NODE_HUMAN_HULL || hull == NODE_LARGE_HULL)) // skip the remaining walk hulls
					continue;

				switch ( hull )
				{
				case NODE_SMALL_HULL:
					UTIL_SetSize(pev, Vector(-12, -12, 0), Vector(12, 12, 24));
					break;
				case NODE_HUMAN_HULL:
					UTIL_SetSize(pev, VEC_HUMAN_HULL_MIN, VEC_HUMAN_HULL_MAX );
					break;
				case NODE_LARGE_HULL:
					UTIL_SetSize(pev, Vector(-32, -32, 0), Vector(32, 32, 64));
					break;
				case NODE_FLY_HULL:
					UTIL_SetSize(pev, Vector(-32, -32, 0), Vector(32, 32, 64));
					// UTIL_SetSize(pev, Vector(0, 0, 0), Vector(0, 0, 0));
					break;
				}

				UTIL_SetOrigin ( pev, pSrcNode->m_vecOrigin );// place the hull on the node

				if ( !FBitSet ( pev->flags, FL_ONGROUND ) )
				{
					ALERT ( at_aiconsole, "OFFGROUND!\n" );
				}

				// now build a yaw that points to the dest node, and get the distance.
				if ( j < 0 )
				{
					ALERT ( at_aiconsole, "**** j = %d ****\n", j );
					if ( pTempPool )
					{
						free ( pTempPool );
					}

					if ( file )
					{// close the file
						fclose ( file );
					}
					return;
				}
				
				pDestNode = &WorldGraph.m_pNodes [ pTempPool[ pSrcNode->m_iFirstLink + j ].m_iDestNode ];

				vecSpot = pDestNode->m_vecOrigin;
				//vecSpot.z = pev->origin.z;

				if (hull < NODE_FLY_HULL)
				{
					int SaveFlags = pev->flags;
					int MoveMode = WALKMOVE_WORLDONLY;
					if (pSrcNode->m_afNodeInfo & bits_NODE_WATER)
					{
						pev->flags |= FL_SWIM;
						MoveMode = WALKMOVE_NORMAL;
					}

					flYaw = UTIL_VecToYaw ( pDestNode->m_vecOrigin - pev->origin );

					flDist = ( vecSpot - pev->origin ).Length2D();

					int fWalkFailed = FALSE;

					// in this loop we take tiny steps from the current node to the nodes that it links to, one at a time.
					// pev->angles.y = flYaw;
					for ( step = 0 ; step < flDist && !fWalkFailed ; step += HULL_STEP_SIZE )
					{
						float stepSize = HULL_STEP_SIZE;

						if ( (step + stepSize) >= (flDist-1) )
							stepSize = (flDist - step) - 1;

						if ( !WALK_MOVE( ENT(pev), flYaw, stepSize, MoveMode ) )
						{// can't take the next step

							fWalkFailed = TRUE;
							break;
						}
					}

					if (!fWalkFailed && (pev->origin - vecSpot).Length() > 64)
					{
						// ALERT( at_console, "bogus walk\n");
						// we thought we 
						fWalkFailed = TRUE;
					}

					if (fWalkFailed)
					{

						//pTempPool[ pSrcNode->m_iFirstLink + j ] = pTempPool [ pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 ) ];

						// now me must eliminate the hull that couldn't walk this connection
						switch ( hull )
						{
						case NODE_SMALL_HULL:	// if this hull can't fit, nothing can, so drop the connection
							fprintf ( file, "NODE_SMALL_HULL step %f\n", step );
							pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo &= ~(bits_LINK_SMALL_HULL | bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL);
							fSkipRemainingHulls = TRUE;// don't bother checking larger hulls
							break;
						case NODE_HUMAN_HULL:
							fprintf ( file, "NODE_HUMAN_HULL step %f\n", step );
							pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo &= ~(bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL);
							fSkipRemainingHulls = TRUE;// don't bother checking larger hulls
							break;
						case NODE_LARGE_HULL:
							fprintf ( file, "NODE_LARGE_HULL step %f\n", step );
							pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo &= ~bits_LINK_LARGE_HULL;
							break;
						}
					}
					pev->flags = SaveFlags;
				}
				else
				{
					TraceResult tr;

					UTIL_TraceHull( pSrcNode->m_vecOrigin + Vector( 0, 0, 32 ), pDestNode->m_vecOriginPeek + Vector( 0, 0, 32 ), ignore_monsters, large_hull, ENT( pev ), &tr );
					if (tr.fStartSolid || tr.flFraction < 1.0)
					{
						pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo &= ~bits_LINK_FLY_HULL;
					}
				}
			}

			if (pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo == 0)
			{
				fprintf ( file, "Rejected Node %3d - Unreachable by ", pTempPool [ pSrcNode->m_iFirstLink + j ].m_iDestNode );
				pTempPool[ pSrcNode->m_iFirstLink + j ] = pTempPool [ pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 ) ];
				fprintf ( file, "Any Hull\n" );
				
				pSrcNode->m_cNumLinks--;
				cPoolLinks--;// we just removed a link, so decrement the total number of links in the pool.
				j--;
			}

		}
	}
	fprintf ( file, "-------------------------------------------------------------------------------\n\n\n");

	cPoolLinks -= WorldGraph.RejectInlineLinks ( pTempPool, file );

// now malloc a pool just large enough to hold the links that are actually used
	WorldGraph.m_pLinkPool = (CLink *) calloc ( sizeof ( CLink ), cPoolLinks );

	if ( !WorldGraph.m_pLinkPool )
	{// couldn't make the link pool!
		ALERT ( at_aiconsole, "Couldn't malloc LinkPool!\n" );
		if ( pTempPool )
		{
			free ( pTempPool );
		}
		if ( file )
		{// close the file
			fclose ( file );
		}

		return;
	}
	WorldGraph.m_cLinks = cPoolLinks;

//copy only the used portions of the TempPool into the graph's link pool
	int iFinalPoolIndex = 0;
	int iOldFirstLink;

	for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
	{
		iOldFirstLink = WorldGraph.m_pNodes[ i ].m_iFirstLink;// store this, because we have to re-assign it before entering the copy loop

		WorldGraph.m_pNodes[ i ].m_iFirstLink = iFinalPoolIndex;

		for ( j = 0 ; j < WorldGraph.m_pNodes[ i ].m_cNumLinks ; j++ )
		{
			WorldGraph.m_pLinkPool[ iFinalPoolIndex++ ] = pTempPool[ iOldFirstLink + j ];
		}
	}

	
	// Node sorting numbers linked nodes close to each other
	//
	WorldGraph.SortNodes();

	// This is used for HashSearch
	//
	WorldGraph.BuildLinkLookups();

	fPairsValid = TRUE; // assume that the connection pairs are all valid to start

	fprintf ( file, "\n\n-------------------------------------------------------------------------------\n");
	fprintf ( file, "Link Pairings:\n");

// link integrity check. The idea here is that if Node A links to Node B, node B should
// link to node A. If not, we have a situation that prevents us from using a basic 
// optimization in the FindNearestLink function. 
	for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
	{
		for ( j = 0 ; j < WorldGraph.m_pNodes[ i ].m_cNumLinks ; j++ )
		{
			int iLink;
			WorldGraph.HashSearch(WorldGraph.INodeLink(i,j), i, iLink);
			if (iLink < 0)
			{
				fPairsValid = FALSE;// unmatched link pair.
				fprintf ( file, "WARNING: Node %3d does not connect back to Node %3d\n", WorldGraph.INodeLink(i, j), i);
			}
		}
	}

	// !!!LATER - if all connections are properly paired, when can enable an optimization in the pathfinding code
	// (in the find nearest line function)
	if ( fPairsValid )
	{
		fprintf ( file, "\nAll Connections are Paired!\n");
	}

	fprintf ( file, "-------------------------------------------------------------------------------\n");
	fprintf ( file, "\n\n-------------------------------------------------------------------------------\n");
	fprintf ( file, "Total Number of Connections in Pool: %d\n", cPoolLinks );
	fprintf ( file, "-------------------------------------------------------------------------------\n");
	fprintf ( file, "Connection Pool: %d bytes\n", sizeof ( CLink ) * cPoolLinks );
	fprintf ( file, "-------------------------------------------------------------------------------\n");


	ALERT ( at_aiconsole, "%d Nodes, %d Connections\n", WorldGraph.m_cNodes, cPoolLinks );
	
	// This is used for FindNearestNode
	//
	WorldGraph.BuildRegionTables();


	// Push all of the LAND nodes down to the ground now. Leave the water and air nodes alone.
	//
	for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
	{
		if ((WorldGraph.m_pNodes[ i ].m_afNodeInfo & bits_NODE_LAND))
		{
			WorldGraph.m_pNodes[ i ].m_vecOrigin.z -= NODE_HEIGHT;
		}
	}


	if ( pTempPool )
	{// free the temp pool
		free ( pTempPool );
	}

	if ( file )
	{
		fclose ( file );
	}

	// We now have some graphing capabilities.
	//
	WorldGraph.m_fGraphPresent = TRUE;//graph is in memory.
	WorldGraph.m_fGraphPointersSet = TRUE;// since the graph was generated, the pointers are ready
	WorldGraph.m_fRoutingComplete = FALSE; // Optimal routes aren't computed, yet.

	// Compute and compress the routing information.
	//
	WorldGraph.ComputeStaticRoutingTables();

// save the node graph for this level	
	WorldGraph.FSaveGraph( (char *)STRING( gpGlobals->mapname ) );
	ALERT( at_console, "Done.\n");
}


//=========================================================
// returns a hardcoded path.
//=========================================================
void CTestHull :: PathFind ( void )
{
	int	iPath[ 50 ];
	int	iPathSize;
	int	i;
	CNode	*pNode, *pNextNode;

	if ( !WorldGraph.m_fGraphPresent || !WorldGraph.m_fGraphPointersSet )
	{// protect us in the case that the node graph isn't available
		ALERT ( at_aiconsole, "Graph not ready!\n" );
		return;
	}

	iPathSize = WorldGraph.FindShortestPath ( iPath, 0, 19, 0, 0 ); // UNDONE use hull constant

	if ( !iPathSize )
	{
		ALERT ( at_aiconsole, "No Path!\n" );
		return;
	}
	
	ALERT ( at_aiconsole, "%d\n", iPathSize );

	pNode = &WorldGraph.m_pNodes[ iPath [ 0 ] ];

	for ( i = 0 ; i < iPathSize - 1 ; i++ )
	{

		pNextNode = &WorldGraph.m_pNodes[ iPath [ i + 1 ] ];

		MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
			WRITE_BYTE( TE_SHOWLINE);
			
			WRITE_COORD( pNode->m_vecOrigin.x );
			WRITE_COORD( pNode->m_vecOrigin.y );
			WRITE_COORD( pNode->m_vecOrigin.z + NODE_HEIGHT );

			WRITE_COORD( pNextNode->m_vecOrigin.x);
			WRITE_COORD( pNextNode->m_vecOrigin.y);
			WRITE_COORD( pNextNode->m_vecOrigin.z + NODE_HEIGHT);
		MESSAGE_END();

		pNode = pNextNode;
	}

}


//=========================================================
// CStack Constructor
//=========================================================
CStack :: CStack( void )
{
	m_level = 0;
}

//=========================================================
// pushes a value onto the stack
//=========================================================
void CStack :: Push( int value )
{
	if ( m_level >= MAX_STACK_NODES )
	{
		printf("Error!\n");
		return;
	}
	m_stack[m_level] = value;
	m_level++;
}

//=========================================================
// pops a value off of the stack
//=========================================================
int CStack :: Pop( void )
{
	if ( m_level <= 0 )
		return -1;

	m_level--;
	return m_stack[ m_level ];
}

//=========================================================
// returns the value on the top of the stack
//=========================================================
int CStack :: Top ( void )
{
	return m_stack[ m_level - 1 ];
}

//=========================================================
// copies every element on the stack into an array LIFO 
//=========================================================
void CStack :: CopyToArray ( int *piArray )
{
	int	i;

	for ( i = 0 ; i < m_level ; i++ )
	{
		piArray[ i ] = m_stack[ i ];
	}
}

//=========================================================
// CQueue constructor
//=========================================================
CQueue :: CQueue( void )
{
	m_cSize = 0;
	m_head = 0;
	m_tail = -1;
}

//=========================================================
// inserts a value into the queue
//=========================================================
void CQueue :: Insert ( int iValue, float fPriority )
{

	if ( Full() )
	{
		printf ( "Queue is full!\n" );
		return;
	}

	m_tail++;

	if ( m_tail == MAX_STACK_NODES )
	{//wrap around
		m_tail = 0;
	}

	m_queue[ m_tail ].Id = iValue;
	m_queue[ m_tail ].Priority = fPriority;
	m_cSize++;
}

//=========================================================
// removes a value from the queue (FIFO)
//=========================================================
int CQueue :: Remove ( float &fPriority )
{
	if ( m_head == MAX_STACK_NODES )
	{// wrap
		m_head = 0;
	}

	m_cSize--;
	fPriority = m_queue[ m_head ].Priority;
	return m_queue[ m_head++ ].Id;
}

//=========================================================
// CQueue constructor
//=========================================================
CQueuePriority :: CQueuePriority( void )
{
	m_cSize = 0;
}

//=========================================================
// inserts a value into the priority queue
//=========================================================
void CQueuePriority :: Insert( int iValue, float fPriority )
{

	if ( Full() )
	{
		printf ( "Queue is full!\n" );
		return;
	}

    m_heap[ m_cSize ].Priority = fPriority;
	m_heap[ m_cSize ].Id = iValue;
    m_cSize++;
    Heap_SiftUp();
}

//=========================================================
// removes the smallest item from the priority queue
//
//=========================================================
int CQueuePriority :: Remove( float &fPriority )
{
	int iReturn = m_heap[ 0 ].Id;
	fPriority = m_heap[ 0 ].Priority;

	m_cSize--;

	m_heap[ 0 ] = m_heap[ m_cSize ];

    Heap_SiftDown(0);
    return iReturn;
}

#define HEAP_LEFT_CHILD(x) (2*(x)+1)
#define HEAP_RIGHT_CHILD(x) (2*(x)+2)
#define HEAP_PARENT(x) (((x)-1)/2)

void CQueuePriority::Heap_SiftDown(int iSubRoot)
{
	int parent = iSubRoot;
	int child = HEAP_LEFT_CHILD(parent);

	struct tag_HEAP_NODE Ref = m_heap[ parent ];

    while (child < m_cSize)
	{
		int rightchild = HEAP_RIGHT_CHILD(parent);
		if (rightchild < m_cSize)
		{
			if ( m_heap[ rightchild ].Priority < m_heap[ child ].Priority )
			{
				child = rightchild;
			}
		}
		if ( Ref.Priority <= m_heap[ child ].Priority )
			break;

		m_heap[ parent ] = m_heap[ child ];
		parent = child;
		child = HEAP_LEFT_CHILD(parent);
	}
	m_heap[ parent ] = Ref;
}

void CQueuePriority::Heap_SiftUp(void)
{
	int child = m_cSize-1;
	while (child)
	{
		int parent = HEAP_PARENT(child);
		if ( m_heap[ parent ].Priority <= m_heap[ child ].Priority )
			break;

		struct tag_HEAP_NODE Tmp;
		Tmp = m_heap[ child ];
		m_heap[ child ] = m_heap[ parent ];
		m_heap[ parent ] = Tmp;

		child = parent;
	}
}

//=========================================================
// CGraph - FLoadGraph - attempts to load a node graph from disk.
// if the current level is maps/snar.bsp, maps/graphs/snar.nod
// will be loaded. If file cannot be loaded, the node tree
// will be created and saved to disk.
//=========================================================
int CGraph :: FLoadGraph ( char *szMapName )
{
	char	szFilename[MAX_PATH];
	int		iVersion;
	int     length;
	byte    *aMemFile;
	byte    *pMemFile;

	// make sure the directories have been made
	char	szDirName[MAX_PATH];
	GET_GAME_DIR( szDirName );
	strcat( szDirName, "/maps" );
	CreateDirectory( szDirName, NULL );
	strcat( szDirName, "/graphs" );
	CreateDirectory( szDirName, NULL );

	strcpy ( szFilename, "maps/graphs/" );
	strcat ( szFilename, szMapName );
	strcat( szFilename, ".nod" );

	pMemFile = aMemFile = LOAD_FILE_FOR_ME(szFilename, &length);

	if ( !aMemFile )
	{
		return FALSE;
	}
	else
	{
		// Read the graph version number
		//
		length -= sizeof(int);
		if (length < 0) goto ShortFile;
		memcpy(&iVersion, pMemFile, sizeof(int));
		pMemFile += sizeof(int);

		if ( iVersion != GRAPH_VERSION )
		{
			// This file was written by a different build of the dll!
			//
			ALERT ( at_aiconsole, "**ERROR** Graph version is %d, expected %d\n",iVersion, GRAPH_VERSION );
			goto ShortFile;
		}

		// Read the graph class
		//
		length -= sizeof(CGraph);
		if (length < 0) goto ShortFile;
		memcpy(this, pMemFile, sizeof(CGraph));
		pMemFile += sizeof(CGraph);

		// Set the pointers to zero, just in case we run out of memory.
		//
		m_pNodes     = NULL;
		m_pLinkPool  = NULL;
		m_di         = NULL;
		m_pRouteInfo = NULL;
		m_pHashLinks = NULL;


		// Malloc for the nodes
		//
		m_pNodes = ( CNode * )calloc ( sizeof ( CNode ), m_cNodes );

		if ( !m_pNodes )
		{
			ALERT ( at_aiconsole, "**ERROR**\nCouldn't malloc %d nodes!\n", m_cNodes );
			goto NoMemory;
		}

		// Read in all the nodes
		//
		length -= sizeof(CNode) * m_cNodes;
		if (length < 0) goto ShortFile;
		memcpy(m_pNodes, pMemFile, sizeof(CNode)*m_cNodes);
		pMemFile += sizeof(CNode) * m_cNodes;

		
		// Malloc for the link pool
		//
		m_pLinkPool = ( CLink * )calloc ( sizeof ( CLink ), m_cLinks );

		if ( !m_pLinkPool )
		{
			ALERT ( at_aiconsole, "**ERROR**\nCouldn't malloc %d link!\n", m_cLinks );
			goto NoMemory;
		}

		// Read in all the links
		//
		length -= sizeof(CLink)*m_cLinks;
		if (length < 0) goto ShortFile;
		memcpy(m_pLinkPool, pMemFile, sizeof(CLink)*m_cLinks);
		pMemFile += sizeof(CLink)*m_cLinks;

		// Malloc for the sorting info.
		//
		m_di = (DIST_INFO *)calloc( sizeof(DIST_INFO), m_cNodes );
		if ( !m_di )
		{
			ALERT ( at_aiconsole, "***ERROR**\nCouldn't malloc %d entries sorting nodes!\n", m_cNodes );
			goto NoMemory;
		}

		// Read it in.
		//
		length -= sizeof(DIST_INFO)*m_cNodes;
		if (length < 0) goto ShortFile;
		memcpy(m_di, pMemFile, sizeof(DIST_INFO)*m_cNodes);
		pMemFile += sizeof(DIST_INFO)*m_cNodes;

		// Malloc for the routing info.
		//
		m_fRoutingComplete = FALSE;
		m_pRouteInfo = (char *)calloc( sizeof(char), m_nRouteInfo );
		if ( !m_pRouteInfo )
		{
			ALERT ( at_aiconsole, "***ERROR**\nCounldn't malloc %d route bytes!\n", m_nRouteInfo );
			goto NoMemory;
		}
		m_CheckedCounter = 0;
		for (int i = 0; i < m_cNodes; i++)
		{
			m_di[i].m_CheckedEvent = 0;
		}
		
		// Read in the route information.
		//
		length -= sizeof(char)*m_nRouteInfo;
		if (length < 0) goto ShortFile;
		memcpy(m_pRouteInfo, pMemFile, sizeof(char)*m_nRouteInfo);
		pMemFile += sizeof(char)*m_nRouteInfo;
		m_fRoutingComplete = TRUE;;

		// malloc for the hash links
		//
		m_pHashLinks = (short *)calloc(sizeof(short), m_nHashLinks);
		if (!m_pHashLinks)
		{
			ALERT ( at_aiconsole, "***ERROR**\nCounldn't malloc %d hash link bytes!\n", m_nHashLinks );
			goto NoMemory;
		}

		// Read in the hash link information
		//
		length -= sizeof(short)*m_nHashLinks;
		if (length < 0) goto ShortFile;
		memcpy(m_pHashLinks, pMemFile, sizeof(short)*m_nHashLinks);
		pMemFile += sizeof(short)*m_nHashLinks;

		// Set the graph present flag, clear the pointers set flag
		//
		m_fGraphPresent = TRUE;
		m_fGraphPointersSet = FALSE;
		
		FREE_FILE(aMemFile);

		if (length != 0)
		{
			ALERT ( at_aiconsole, "***WARNING***:Node graph was longer than expected by %d bytes.!\n", length);
		}

		return TRUE;
	}

ShortFile:
NoMemory:
	FREE_FILE(aMemFile);
	return FALSE;
}

//=========================================================
// CGraph - FSaveGraph - It's not rocket science.
// this WILL overwrite existing files.
//=========================================================
int CGraph :: FSaveGraph ( char *szMapName )
{
	
	int		iVersion = GRAPH_VERSION;
	char	szFilename[MAX_PATH];
	FILE	*file;

	if ( !m_fGraphPresent || !m_fGraphPointersSet )
	{// protect us in the case that the node graph isn't available or built
		ALERT ( at_aiconsole, "Graph not ready!\n" );
		return FALSE;
	}

	// make sure directories have been made
	GET_GAME_DIR( szFilename );
	strcat( szFilename, "/maps" );
	CreateDirectory( szFilename, NULL );
	strcat( szFilename, "/graphs" );
	CreateDirectory( szFilename, NULL );

	strcat( szFilename, "/" );
	strcat( szFilename, szMapName );
	strcat( szFilename, ".nod" );

	file = fopen ( szFilename, "wb" );

	ALERT ( at_aiconsole, "Created: %s\n", szFilename );

	if ( !file )
	{// couldn't create
		ALERT ( at_aiconsole, "Couldn't Create: %s\n", szFilename );
		return FALSE;
	}
	else
	{
	// write the version
		fwrite ( &iVersion, sizeof ( int ), 1, file );

	// write the CGraph class
		fwrite ( this, sizeof ( CGraph ), 1, file );

	// write the nodes
		fwrite ( m_pNodes, sizeof ( CNode ), m_cNodes, file );

	// write the links
		fwrite ( m_pLinkPool, sizeof ( CLink ), m_cLinks, file );

		fwrite ( m_di, sizeof(DIST_INFO), m_cNodes, file );

		// Write the route info.
		//
		if ( m_pRouteInfo && m_nRouteInfo )
		{
			fwrite ( m_pRouteInfo, sizeof( char ), m_nRouteInfo, file );
		}

		if (m_pHashLinks && m_nHashLinks)
		{
			fwrite(m_pHashLinks, sizeof(short), m_nHashLinks, file);
		}
		fclose ( file );
		return TRUE;
	}
}

//=========================================================
// CGraph - FSetGraphPointers - Takes the modelnames of 
// all of the brush ents that block connections in the node
// graph and resolves them into pointers to those entities.
// this is done after loading the graph from disk, whereupon
// the pointers are not valid.
//=========================================================
int CGraph :: FSetGraphPointers ( void )
{
	int	i;
	edict_t	*pentLinkEnt;

	for ( i = 0 ; i < m_cLinks ; i++ )
	{// go through all of the links
		
		if ( m_pLinkPool[ i ].m_pLinkEnt != NULL )
		{
			char name[5];
			// when graphs are saved, any valid pointers are will be non-zero, signifying that we should
			// reset those pointers upon reloading. Any pointers that were NULL when the graph was saved
			// will be NULL when reloaded, and will ignored by this function.

			// m_szLinkEntModelname is not necessarily NULL terminated (so we can store it in a more alignment-friendly 4 bytes)
			memcpy( name, m_pLinkPool[ i ].m_szLinkEntModelname, 4 );
			name[4] = 0;
			pentLinkEnt =  FIND_ENTITY_BY_STRING( NULL, "model", name );

			if ( FNullEnt ( pentLinkEnt ) )
			{
			// the ent isn't around anymore? Either there is a major problem, or it was removed from the world
			// ( like a func_breakable that's been destroyed or something ). Make sure that LinkEnt is null.
				ALERT ( at_aiconsole, "**Could not find model %s\n", name );
				m_pLinkPool[ i ].m_pLinkEnt = NULL;
			}
			else
			{
				m_pLinkPool[ i ].m_pLinkEnt = VARS( pentLinkEnt );

				if ( !FBitSet( m_pLinkPool[ i ].m_pLinkEnt->flags, FL_GRAPHED ) )
				{
					m_pLinkPool[ i ].m_pLinkEnt->flags += FL_GRAPHED;
				}
			}
		}
	}

	// the pointers are now set.
	m_fGraphPointersSet = TRUE;
	return TRUE;
}

//=========================================================
// CGraph - CheckNODFile - this function checks the date of 
// the BSP file that was just loaded and the date of the a
// ssociated .NOD file. If the NOD file is not present, or 
// is older than the BSP file, we rebuild it.
//
// returns FALSE if the .NOD file doesn't qualify and needs
// to be rebuilt.
//
// !!!BUGBUG - the file times we get back are 20 hours ahead!
// since this happens consistantly, we can still correctly 
// determine which of the 2 files is newer. This needs fixed,
// though. ( I now suspect that we are getting GMT back from
// these functions and must compensate for local time ) (sjb)
//=========================================================
int CGraph :: CheckNODFile ( char *szMapName )
{
	int 		retValue;

	char		szBspFilename[MAX_PATH];
	char		szGraphFilename[MAX_PATH];
	

	strcpy ( szBspFilename, "maps/" );
	strcat ( szBspFilename, szMapName );
	strcat ( szBspFilename, ".bsp" );

	strcpy ( szGraphFilename, "maps/graphs/" );
	strcat ( szGraphFilename, szMapName );
	strcat ( szGraphFilename, ".nod" );
	
	retValue = TRUE;

	int iCompare;
	if (COMPARE_FILE_TIME(szBspFilename, szGraphFilename, &iCompare))
	{
		if ( iCompare > 0 )
		{// BSP file is newer.
			ALERT ( at_aiconsole, ".NOD File will be updated\n\n" );
			retValue = FALSE;
		}
	}
	else
	{
		retValue = FALSE;
	}

	return retValue;
}

#define ENTRY_STATE_EMPTY -1

struct tagNodePair
{
	short iSrc;
	short iDest;
};

void CGraph::HashInsert(int iSrcNode, int iDestNode, int iKey)
{
	struct tagNodePair np;

	np.iSrc  = iSrcNode;
	np.iDest = iDestNode;
	CRC32_t dwHash;
	CRC32_INIT(&dwHash);
	CRC32_PROCESS_BUFFER(&dwHash, &np, sizeof(np));
	dwHash = CRC32_FINAL(dwHash);

    int di = m_HashPrimes[dwHash&15];
    int i = (dwHash >> 4) % m_nHashLinks;
    while (m_pHashLinks[i] != ENTRY_STATE_EMPTY)
    {
        i += di;
        if (i >= m_nHashLinks) i -= m_nHashLinks;
    }
	m_pHashLinks[i] = iKey;
}

void CGraph::HashSearch(int iSrcNode, int iDestNode, int &iKey)
{
	struct tagNodePair np;

	np.iSrc  = iSrcNode;
	np.iDest = iDestNode;
	CRC32_t dwHash;
	CRC32_INIT(&dwHash);
	CRC32_PROCESS_BUFFER(&dwHash, &np, sizeof(np));
	dwHash = CRC32_FINAL(dwHash);

    int di = m_HashPrimes[dwHash&15];
    int i = (dwHash >> 4) % m_nHashLinks;
    while (m_pHashLinks[i] != ENTRY_STATE_EMPTY)
    {
		CLink &link = Link(m_pHashLinks[i]);
        if (iSrcNode == link.m_iSrcNode && iDestNode == link.m_iDestNode)
        {
			break;
        }
        else
        {
            i += di;
            if (i >= m_nHashLinks) i -= m_nHashLinks;
        }
    }
	iKey = m_pHashLinks[i];
}

#define NUMBER_OF_PRIMES 177

int Primes[NUMBER_OF_PRIMES] =
{ 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239,
241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337,
347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433,
439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,
751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857,
859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971,
977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 0 };

void CGraph::HashChoosePrimes(int TableSize)
{
    int LargestPrime = TableSize/2;
    if (LargestPrime > Primes[NUMBER_OF_PRIMES-2])
    {
        LargestPrime = Primes[NUMBER_OF_PRIMES-2];
    }
    int Spacing = LargestPrime/16;

    // Pick a set primes that are evenly spaced from (0 to LargestPrime)
    // We divide this interval into 16 equal sized zones. We want to find
    // one prime number that best represents that zone.
    //
    for (int iZone = 1, iPrime = 0; iPrime < 16; iZone += Spacing)
    {
        // Search for a prime number that is less than the target zone
        // number given by iZone.
        //
        int Lower = Primes[0];
        for (int jPrime = 0; Primes[jPrime] != 0; jPrime++)
        {
            if (jPrime != 0 && TableSize % Primes[jPrime] == 0) continue;
            int Upper = Primes[jPrime];
            if (Lower <= iZone && iZone <= Upper)
            {
                // Choose the closest lower prime number.
                //
                if (iZone - Lower <= Upper - iZone)
                {
                    m_HashPrimes[iPrime++] = Lower;
                }
                else
                {
                    m_HashPrimes[iPrime++] = Upper;
                }
                break;
            }
            Lower = Upper;
        }
    }

    // Alternate negative and positive numbers
    //
    for (iPrime = 0; iPrime < 16; iPrime += 2)
    {
        m_HashPrimes[iPrime] = TableSize-m_HashPrimes[iPrime];
    }

    // Shuffle the set of primes to reduce correlation with bits in
    // hash key.
    //
    for (iPrime = 0; iPrime < 16-1; iPrime++)
    {
        int Pick = RANDOM_LONG(0, 15-iPrime);
        int Temp = m_HashPrimes[Pick];
        m_HashPrimes[Pick] = m_HashPrimes[15-iPrime];
        m_HashPrimes[15-iPrime] = Temp;
    }
}

// Renumber nodes so that nodes that link together are together.
//
#define UNNUMBERED_NODE -1
void CGraph::SortNodes(void)
{
	// We are using m_iPreviousNode to be the new node number.
	// After assigning new node numbers to everything, we move
	// things and patchup the links.
	//
	int iNodeCnt = 0;
	m_pNodes[0].m_iPreviousNode = iNodeCnt++;
	for (int i = 1; i < m_cNodes; i++)
	{
		m_pNodes[i].m_iPreviousNode = UNNUMBERED_NODE;
	}

	for (i = 0; i < m_cNodes; i++)
	{
		// Run through all of this node's neighbors
		//
		for (int j = 0 ; j < m_pNodes[i].m_cNumLinks; j++ )
		{
			int iDestNode = INodeLink(i, j);
			if (m_pNodes[iDestNode].m_iPreviousNode == UNNUMBERED_NODE)
			{
				m_pNodes[iDestNode].m_iPreviousNode = iNodeCnt++;
			}
		}
	}

	// Assign remaining node numbers to unlinked nodes.
	//
	for (i = 0; i < m_cNodes; i++)
	{
		if (m_pNodes[i].m_iPreviousNode == UNNUMBERED_NODE)
		{
			m_pNodes[i].m_iPreviousNode = iNodeCnt++;
		}
	}

	// Alter links to reflect new node numbers.
	//
	for (i = 0; i < m_cLinks; i++)
	{
		m_pLinkPool[i].m_iSrcNode  = m_pNodes[m_pLinkPool[i].m_iSrcNode].m_iPreviousNode;
		m_pLinkPool[i].m_iDestNode = m_pNodes[m_pLinkPool[i].m_iDestNode].m_iPreviousNode;
	}

	// Rearrange nodes to reflect new node numbering.
	//
	for (i = 0; i < m_cNodes; i++)
	{
		while (m_pNodes[i].m_iPreviousNode != i)
		{
			// Move current node off to where it should be, and bring
			// that other node back into the current slot.
			//
			int iDestNode = m_pNodes[i].m_iPreviousNode;
			CNode TempNode = m_pNodes[iDestNode];
			m_pNodes[iDestNode] = m_pNodes[i];
			m_pNodes[i] = TempNode;
		}
	}
}

void CGraph::BuildLinkLookups(void)
{
	m_nHashLinks = 3*m_cLinks/2 + 3;

	HashChoosePrimes(m_nHashLinks);
	m_pHashLinks = (short *)calloc(sizeof(short), m_nHashLinks);
	if (!m_pHashLinks)
	{
		ALERT(at_aiconsole, "Couldn't allocated Link Lookup Table.\n");
		return;
	}
	for (int i = 0; i < m_nHashLinks; i++)
	{
		m_pHashLinks[i] = ENTRY_STATE_EMPTY;
	}

	for (i = 0; i < m_cLinks; i++)
	{
		CLink &link = Link(i);
		HashInsert(link.m_iSrcNode, link.m_iDestNode, i);
	}
#if 0
	for (i = 0; i < m_cLinks; i++)
	{
		CLink &link = Link(i);
		int iKey;
		HashSearch(link.m_iSrcNode, link.m_iDestNode, iKey);
		if (iKey != i)
		{
			ALERT(at_aiconsole, "HashLinks don't match (%d versus %d)\n", i, iKey);
		}
	}
#endif
}

void CGraph::BuildRegionTables(void)
{
	if (m_di) free(m_di);

	// Go ahead and setup for range searching the nodes for FindNearestNodes
	//
	m_di = (DIST_INFO *)calloc(sizeof(DIST_INFO), m_cNodes);
	if (!m_di)
	{
		ALERT(at_aiconsole, "Couldn't allocated node ordering array.\n");
		return;
	}

	// Calculate regions for all the nodes.
	//
	//
	for (int i = 0; i < 3; i++)
	{
		m_RegionMin[i] =  999999999.0; // just a big number out there;
		m_RegionMax[i] = -999999999.0; // just a big number out there;
	}
	for (i = 0; i < m_cNodes; i++)
	{
		if (m_pNodes[i].m_vecOrigin.x < m_RegionMin[0])
			m_RegionMin[0] = m_pNodes[i].m_vecOrigin.x;
		if (m_pNodes[i].m_vecOrigin.y < m_RegionMin[1])
			m_RegionMin[1] = m_pNodes[i].m_vecOrigin.y;
		if (m_pNodes[i].m_vecOrigin.z < m_RegionMin[2])
			m_RegionMin[2] = m_pNodes[i].m_vecOrigin.z;

		if (m_pNodes[i].m_vecOrigin.x > m_RegionMax[0])
			m_RegionMax[0] = m_pNodes[i].m_vecOrigin.x;
		if (m_pNodes[i].m_vecOrigin.y > m_RegionMax[1])
			m_RegionMax[1] = m_pNodes[i].m_vecOrigin.y;
		if (m_pNodes[i].m_vecOrigin.z > m_RegionMax[2])
			m_RegionMax[2] = m_pNodes[i].m_vecOrigin.z;
	}
	for (i = 0; i < m_cNodes; i++)
	{
		m_pNodes[i].m_Region[0] = CALC_RANGE(m_pNodes[i].m_vecOrigin.x, m_RegionMin[0], m_RegionMax[0]);
		m_pNodes[i].m_Region[1] = CALC_RANGE(m_pNodes[i].m_vecOrigin.y, m_RegionMin[1], m_RegionMax[1]);
		m_pNodes[i].m_Region[2] = CALC_RANGE(m_pNodes[i].m_vecOrigin.z, m_RegionMin[2], m_RegionMax[2]);
	}

	for (i = 0; i < 3; i++)
	{
		for (int j = 0; j < NUM_RANGES; j++)
		{
			m_RangeStart[i][j] = 255;
			m_RangeEnd[i][j] = 0;
		}
		for (j = 0; j < m_cNodes; j++)
		{
			m_di[j].m_SortedBy[i] = j;
		}

		for (j = 0; j < m_cNodes - 1; j++)
		{
			int jNode = m_di[j].m_SortedBy[i];
			int jCodeX = m_pNodes[jNode].m_Region[0];
			int jCodeY = m_pNodes[jNode].m_Region[1];
			int jCodeZ = m_pNodes[jNode].m_Region[2];
			int jCode;
			switch (i)
			{
			case 0:
				jCode = (jCodeX << 16) + (jCodeY << 8) + jCodeZ;
				break;
			case 1:
				jCode = (jCodeY << 16) + (jCodeZ << 8) + jCodeX;
				break;
			case 2:
				jCode = (jCodeZ << 16) + (jCodeX << 8) + jCodeY;
				break;
			}

			for (int k = j+1; k < m_cNodes; k++)
			{
				int kNode = m_di[k].m_SortedBy[i];
				int kCodeX = m_pNodes[kNode].m_Region[0];
				int kCodeY = m_pNodes[kNode].m_Region[1];
				int kCodeZ = m_pNodes[kNode].m_Region[2];
				int kCode;
				switch (i)
				{
				case 0:
					kCode = (kCodeX << 16) + (kCodeY << 8) + kCodeZ;
					break;
				case 1:
					kCode = (kCodeY << 16) + (kCodeZ << 8) + kCodeX;
					break;
				case 2:
					kCode = (kCodeZ << 16) + (kCodeX << 8) + kCodeY;
					break;
				}

				if (kCode < jCode)
				{
					// Swap j and k entries.
					//
					int Tmp = m_di[j].m_SortedBy[i];
					m_di[j].m_SortedBy[i] = m_di[k].m_SortedBy[i];
					m_di[k].m_SortedBy[i] = Tmp;
				}
			}
		}
	}

	// Generate lookup tables.
	//
	for (i = 0; i < m_cNodes; i++)
	{
		int CodeX = m_pNodes[m_di[i].m_SortedBy[0]].m_Region[0];
		int CodeY = m_pNodes[m_di[i].m_SortedBy[1]].m_Region[1];
		int CodeZ = m_pNodes[m_di[i].m_SortedBy[2]].m_Region[2];

        if (i < m_RangeStart[0][CodeX])
        {
            m_RangeStart[0][CodeX] = i;
        }
        if (i < m_RangeStart[1][CodeY])
        {
            m_RangeStart[1][CodeY] = i;
        }
        if (i < m_RangeStart[2][CodeZ])
        {
            m_RangeStart[2][CodeZ] = i;
        }
        if (m_RangeEnd[0][CodeX] < i)
        {
            m_RangeEnd[0][CodeX] = i;
        }
        if (m_RangeEnd[1][CodeY] < i)
        {
            m_RangeEnd[1][CodeY] = i;
        }
        if (m_RangeEnd[2][CodeZ] < i)
        {
            m_RangeEnd[2][CodeZ] = i;
        }
	}

	// Initialize the cache.
	//
	memset(m_Cache, 0, sizeof(m_Cache));
}

void CGraph :: ComputeStaticRoutingTables( void )
{
	int nRoutes = m_cNodes*m_cNodes;
#define FROM_TO(x,y) ((x)*m_cNodes+(y))
	short *Routes = new short[nRoutes];

	int *pMyPath = new int[m_cNodes];
	unsigned short *BestNextNodes = new unsigned short[m_cNodes];
	char *pRoute = new char[m_cNodes*2];


	if (Routes && pMyPath && BestNextNodes && pRoute)
	{
		int nTotalCompressedSize = 0;
		for (int iHull = 0; iHull < MAX_NODE_HULLS; iHull++)
		{
			for (int iCap = 0; iCap < 2; iCap++)
			{
				int iCapMask;
				switch (iCap)
				{
				case 0:
					iCapMask = 0;
					break;

				case 1:
					iCapMask = bits_CAP_OPEN_DOORS | bits_CAP_AUTO_DOORS | bits_CAP_USE;
					break;
				}


				// Initialize Routing table to uncalculated.
				//
				for (int iFrom = 0; iFrom < m_cNodes; iFrom++)
				{
					for (int iTo = 0; iTo < m_cNodes; iTo++)
					{
						Routes[FROM_TO(iFrom, iTo)] = -1;
					}
				}

				for (iFrom = 0; iFrom < m_cNodes; iFrom++)
				{
					for (int iTo = m_cNodes-1; iTo >= 0; iTo--)
					{
						if (Routes[FROM_TO(iFrom, iTo)] != -1) continue;

						int cPathSize = FindShortestPath(pMyPath, iFrom, iTo, iHull, iCapMask);

						// Use the computed path to update the routing table.
						//
						if (cPathSize > 1)
						{
							for (int iNode = 0; iNode < cPathSize-1; iNode++)
							{
								int iStart = pMyPath[iNode];
								int iNext  = pMyPath[iNode+1];
								for (int iNode1 = iNode+1; iNode1 < cPathSize; iNode1++)
								{
									int iEnd = pMyPath[iNode1];
									Routes[FROM_TO(iStart, iEnd)] = iNext;
								}
							}
#if 0
							// Well, at first glance, this should work, but actually it's safer
							// to be told explictly that you can take a series of node in a
							// particular direction. Some links don't appear to have links in
							// the opposite direction.
							//
							for (iNode = cPathSize-1; iNode >= 1; iNode--)
							{
								int iStart = pMyPath[iNode];
								int iNext  = pMyPath[iNode-1];
								for (int iNode1 = iNode-1; iNode1 >= 0; iNode1--)
								{
									int iEnd = pMyPath[iNode1];
									Routes[FROM_TO(iStart, iEnd)] = iNext;
								}
							}
#endif
						}
						else
						{
							Routes[FROM_TO(iFrom, iTo)] = iFrom;
							Routes[FROM_TO(iTo, iFrom)] = iTo;
						}
					}
				}

				for (iFrom = 0; iFrom < m_cNodes; iFrom++)
				{
					for (int iTo = 0; iTo < m_cNodes; iTo++)
					{
						BestNextNodes[iTo] = Routes[FROM_TO(iFrom, iTo)];
					}

					// Compress this node's routing table.
					//
					int iLastNode = 9999999; // just really big.
					int cSequence = 0;
					int cRepeats = 0;
					int CompressedSize = 0;
					char *p = pRoute;
					for (int i = 0; i < m_cNodes; i++)
					{
						BOOL CanRepeat = ((BestNextNodes[i] == iLastNode) && cRepeats < 127);
						BOOL CanSequence = (BestNextNodes[i] == i && cSequence < 128);

						if (cRepeats)
						{
							if (CanRepeat)
							{
								cRepeats++;
							}
							else
							{
								// Emit the repeat phrase.
								//
								CompressedSize += 2; // (count-1, iLastNode-i)
								*p++ = cRepeats - 1;
								int a = iLastNode - iFrom;
								int b = iLastNode - iFrom + m_cNodes;
								int c = iLastNode - iFrom - m_cNodes;
								if (-128 <= a && a <= 127)
								{
									*p++ = a;
								}
								else if (-128 <= b && b <= 127)
								{
									*p++ = b;
								}
								else if (-128 <= c && c <= 127)
								{
									*p++ = c;
								}
								else
								{
									ALERT( at_aiconsole, "Nodes need sorting (%d,%d)!\n", iLastNode, iFrom);
								}
								cRepeats = 0;

								if (CanSequence)
								{
									// Start a sequence.
									//
									cSequence++;
								}
								else
								{
									// Start another repeat.
									//
									cRepeats++;
								}
							}
						}
						else if (cSequence)
						{
							if (CanSequence)
							{
								cSequence++;
							}
							else
							{
								// It may be advantageous to combine
								// a single-entry sequence phrase with the
								// next repeat phrase.
								//
								if (cSequence == 1 && CanRepeat)
								{
									// Combine with repeat phrase.
									//
									cRepeats = 2;
									cSequence = 0;
								}
								else
								{
									// Emit the sequence phrase.
									//
									CompressedSize += 1; // (-count)
									*p++ = -cSequence;
									cSequence = 0;

									// Start a repeat sequence.
									//
									cRepeats++;
								}
							}
						}
						else
						{
							if (CanSequence)
							{
								// Start a sequence phrase.
								//
								cSequence++;
							}
							else
							{
								// Start a repeat sequence.
								//
								cRepeats++;
							}
						}
						iLastNode = BestNextNodes[i];
					}
					if (cRepeats)
					{
						// Emit the repeat phrase.
						//
						CompressedSize += 2;
						*p++ = cRepeats - 1;
#if 0
						iLastNode = iFrom + *pRoute;
						if (iLastNode >= m_cNodes) iLastNode -= m_cNodes;
						else if (iLastNode < 0) iLastNode += m_cNodes;
#endif
						int a = iLastNode - iFrom;
						int b = iLastNode - iFrom + m_cNodes;
						int c = iLastNode - iFrom - m_cNodes;
						if (-128 <= a && a <= 127)
						{
							*p++ = a;
						}
						else if (-128 <= b && b <= 127)
						{
							*p++ = b;
						}
						else if (-128 <= c && c <= 127)
						{
							*p++ = c;
						}
						else
						{
							ALERT( at_aiconsole, "Nodes need sorting (%d,%d)!\n", iLastNode, iFrom);
						}
					}
					if (cSequence)
					{
						// Emit the Sequence phrase.
						//
						CompressedSize += 1;
						*p++ = -cSequence;
					}

					// Go find a place to store this thing and point to it.
					//
					int nRoute = p - pRoute;
					if (m_pRouteInfo)
					{
						for (int i = 0; i < m_nRouteInfo - nRoute; i++)
						{
							if (memcmp(m_pRouteInfo + i, pRoute, nRoute) == 0)
							{
								break;
							}
						}
						if (i < m_nRouteInfo - nRoute)
						{
							m_pNodes[ iFrom ].m_pNextBestNode[iHull][iCap] = i;
						}
						else
						{
							char *Tmp = (char *)calloc(sizeof(char), (m_nRouteInfo + nRoute));
							memcpy(Tmp, m_pRouteInfo, m_nRouteInfo);
							free(m_pRouteInfo);
							m_pRouteInfo = Tmp;
							memcpy(m_pRouteInfo + m_nRouteInfo, pRoute, nRoute);
							m_pNodes[ iFrom ].m_pNextBestNode[iHull][iCap] = m_nRouteInfo;
							m_nRouteInfo += nRoute;
							nTotalCompressedSize += CompressedSize;
						}
					}
					else
					{
						m_nRouteInfo = nRoute;
						m_pRouteInfo = (char *)calloc(sizeof(char), nRoute);
						memcpy(m_pRouteInfo, pRoute, nRoute);
						m_pNodes[ iFrom ].m_pNextBestNode[iHull][iCap] = 0;
						nTotalCompressedSize += CompressedSize;
					}
				}
			}
		}		
		ALERT( at_aiconsole, "Size of Routes = %d\n", nTotalCompressedSize);
	}
	if (Routes) delete Routes;
	if (BestNextNodes) delete BestNextNodes;
	if (pRoute) delete pRoute;
	if (pMyPath) delete pMyPath;
	Routes = 0;
	BestNextNodes = 0;
	pRoute = 0;
	pMyPath = 0;

#if 0
	TestRoutingTables();
#endif
	m_fRoutingComplete = TRUE;
}

// Test those routing tables. Doesn't really work, yet.
//
void CGraph :: TestRoutingTables( void )
{
	int *pMyPath = new int[m_cNodes];
	int *pMyPath2 = new int[m_cNodes];
	if (pMyPath && pMyPath2)
	{
		for (int iHull = 0; iHull < MAX_NODE_HULLS; iHull++)
		{
			for (int iCap = 0; iCap < 2; iCap++)
			{
				int iCapMask;
				switch (iCap)
				{
				case 0:
					iCapMask = 0;
					break;

				case 1:
					iCapMask = bits_CAP_OPEN_DOORS | bits_CAP_AUTO_DOORS | bits_CAP_USE;
					break;
				}

				for (int iFrom = 0; iFrom < m_cNodes; iFrom++)
				{
					for (int iTo = 0; iTo < m_cNodes; iTo++)
					{
						m_fRoutingComplete = FALSE;
						int cPathSize1 = FindShortestPath(pMyPath, iFrom, iTo, iHull, iCapMask);
						m_fRoutingComplete = TRUE;
						int cPathSize2 = FindShortestPath(pMyPath2, iFrom, iTo, iHull, iCapMask);

						// Unless we can look at the entire path, we can verify that it's correct.
						//
						if (cPathSize2 == MAX_PATH_SIZE) continue;

						// Compare distances.
						//
#if 1
						float flDistance1 = 0.0;
						for (int i = 0; i < cPathSize1-1; i++)
						{
							// Find the link from pMyPath[i] to pMyPath[i+1]
							//
							if (pMyPath[i] == pMyPath[i+1]) continue;
							int iVisitNode;
							BOOL bFound = FALSE;
							for (int iLink = 0; iLink < m_pNodes[pMyPath[i]].m_cNumLinks; iLink++)
							{
								iVisitNode = INodeLink ( pMyPath[i], iLink );
								if (iVisitNode == pMyPath[i+1])
								{
									flDistance1 += m_pLinkPool[ m_pNodes[ pMyPath[i] ].m_iFirstLink + iLink].m_flWeight;
									bFound = TRUE;
									break;
								}
							}
							if (!bFound)
							{
								ALERT(at_aiconsole, "No link.\n");
							}
						}

						float flDistance2 = 0.0;
						for (i = 0; i < cPathSize2-1; i++)
						{
							// Find the link from pMyPath2[i] to pMyPath2[i+1]
							//
							if (pMyPath2[i] == pMyPath2[i+1]) continue;
							int iVisitNode;
							BOOL bFound = FALSE;
							for (int iLink = 0; iLink < m_pNodes[pMyPath2[i]].m_cNumLinks; iLink++)
							{
								iVisitNode = INodeLink ( pMyPath2[i], iLink );
								if (iVisitNode == pMyPath2[i+1])
								{
									flDistance2 += m_pLinkPool[ m_pNodes[ pMyPath2[i] ].m_iFirstLink + iLink].m_flWeight;
									bFound = TRUE;
									break;
								}
							}
							if (!bFound)
							{
								ALERT(at_aiconsole, "No link.\n");
							}
						}
						if (fabs(flDistance1 - flDistance2) > 0.10)
						{
#else
						if (cPathSize1 != cPathSize2 || memcmp(pMyPath, pMyPath2, sizeof(int)*cPathSize1) != 0)
						{
#endif
							ALERT(at_aiconsole, "Routing is inconsistent!!!\n");
							ALERT(at_aiconsole, "(%d to %d |%d/%d)1:", iFrom, iTo, iHull, iCap);
							for (int i = 0; i < cPathSize1; i++)
							{
								ALERT(at_aiconsole, "%d ", pMyPath[i]);
							}
							ALERT(at_aiconsole, "\n(%d to %d |%d/%d)2:", iFrom, iTo, iHull, iCap);
							for (i = 0; i < cPathSize2; i++)
							{
								ALERT(at_aiconsole, "%d ", pMyPath2[i]);
							}
							ALERT(at_aiconsole, "\n");
							m_fRoutingComplete = FALSE;
							cPathSize1 = FindShortestPath(pMyPath, iFrom, iTo, iHull, iCapMask);
							m_fRoutingComplete = TRUE;
							cPathSize2 = FindShortestPath(pMyPath2, iFrom, iTo, iHull, iCapMask);
							goto EnoughSaid;
						}
					}
				}
			}
		}
	}

EnoughSaid:

	if (pMyPath) delete pMyPath;
	if (pMyPath2) delete pMyPath2;
	pMyPath = 0;
	pMyPath2 = 0;
}









//=========================================================
// CNodeViewer - Draws a graph of the shorted path from all nodes
// to current location (typically the player).  It then draws
// as many connects as it can per frame, trying not to overflow the buffer
//=========================================================
class CNodeViewer : public CBaseEntity
{
public:
	void Spawn( void );

	int m_iBaseNode;
	int m_iDraw;
	int	m_nVisited;
	int m_aFrom[128];
	int m_aTo[128];
	int m_iHull;
	int m_afNodeType;
	Vector m_vecColor;

	void FindNodeConnections( int iNode );
	void AddNode( int iFrom, int iTo );
	void EXPORT DrawThink( void );

};
LINK_ENTITY_TO_CLASS( node_viewer, CNodeViewer );
LINK_ENTITY_TO_CLASS( node_viewer_human, CNodeViewer );
LINK_ENTITY_TO_CLASS( node_viewer_fly, CNodeViewer );
LINK_ENTITY_TO_CLASS( node_viewer_large, CNodeViewer );

void CNodeViewer::Spawn( )
{
	if ( !WorldGraph.m_fGraphPresent || !WorldGraph.m_fGraphPointersSet )
	{// protect us in the case that the node graph isn't available or built
		ALERT ( at_console, "Graph not ready!\n" );
		UTIL_Remove( this );
		return;
	}


	if (FClassnameIs( pev, "node_viewer_fly"))
	{
		m_iHull = NODE_FLY_HULL;
		m_afNodeType = bits_NODE_AIR;
		m_vecColor = Vector( 160, 100, 255 );
	}
	else if (FClassnameIs( pev, "node_viewer_large"))
	{
		m_iHull = NODE_LARGE_HULL;
		m_afNodeType = bits_NODE_LAND | bits_NODE_WATER;
		m_vecColor = Vector( 100, 255, 160 );
	}
	else
	{
		m_iHull = NODE_HUMAN_HULL;
		m_afNodeType = bits_NODE_LAND | bits_NODE_WATER;
		m_vecColor = Vector( 255, 160, 100 );
	}


	m_iBaseNode = WorldGraph.FindNearestNode ( pev->origin, m_afNodeType );

	if ( m_iBaseNode < 0 )
	{
		ALERT( at_console, "No nearby node\n" );
		return;
	}

	m_nVisited = 0;

	ALERT( at_aiconsole, "basenode %d\n", m_iBaseNode );

	if (WorldGraph.m_cNodes < 128)
	{
		for (int i = 0; i < WorldGraph.m_cNodes; i++)
		{
			AddNode( i, WorldGraph.NextNodeInRoute( i, m_iBaseNode, m_iHull, 0 ));
		}
	}
	else
	{
		// do a depth traversal
		FindNodeConnections( m_iBaseNode );

		int start = 0;
		int end;
		do {
			end = m_nVisited;
			// ALERT( at_console, "%d :", m_nVisited );
			for (end = m_nVisited; start < end; start++)
			{
				FindNodeConnections( m_aFrom[start] );
				FindNodeConnections( m_aTo[start] );
			}
		} while (end != m_nVisited);
	}

	ALERT( at_aiconsole, "%d nodes\n", m_nVisited );

	m_iDraw = 0;
	SetThink( &CNodeViewer::DrawThink );
	pev->nextthink = gpGlobals->time;
}


void CNodeViewer :: FindNodeConnections ( int iNode )
{
	AddNode( iNode, WorldGraph.NextNodeInRoute( iNode, m_iBaseNode, m_iHull, 0 ));
	for ( int i = 0 ; i < WorldGraph.m_pNodes[ iNode ].m_cNumLinks ; i++ )
	{
		CLink *pToLink = &WorldGraph.NodeLink( iNode, i);
		AddNode( pToLink->m_iDestNode, WorldGraph.NextNodeInRoute( pToLink->m_iDestNode, m_iBaseNode, m_iHull, 0 ));
	}
}

void CNodeViewer::AddNode( int iFrom, int iTo )
{
	if (m_nVisited >= 128)
	{
		return;
	}
	else
	{
		if (iFrom == iTo)
			return;

		for (int i = 0; i < m_nVisited; i++)
		{
			if (m_aFrom[i] == iFrom && m_aTo[i] == iTo)
				return;
			if (m_aFrom[i] == iTo && m_aTo[i] == iFrom)
				return;
		}
		m_aFrom[m_nVisited] = iFrom;
		m_aTo[m_nVisited] = iTo;
		m_nVisited++;
	}
}


void CNodeViewer :: DrawThink( void )
{
	pev->nextthink = gpGlobals->time;

	for (int i = 0; i < 10; i++)
	{
		if (m_iDraw == m_nVisited)
		{
			UTIL_Remove( this );
			return;
		}

		extern short g_sModelIndexLaser;
		MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
			WRITE_BYTE( TE_BEAMPOINTS );
			WRITE_COORD( WorldGraph.m_pNodes[ m_aFrom[m_iDraw] ].m_vecOrigin.x );
			WRITE_COORD( WorldGraph.m_pNodes[ m_aFrom[m_iDraw] ].m_vecOrigin.y );
			WRITE_COORD( WorldGraph.m_pNodes[ m_aFrom[m_iDraw] ].m_vecOrigin.z + NODE_HEIGHT );

			WRITE_COORD( WorldGraph.m_pNodes[ m_aTo[m_iDraw] ].m_vecOrigin.x );
			WRITE_COORD( WorldGraph.m_pNodes[ m_aTo[m_iDraw] ].m_vecOrigin.y );
			WRITE_COORD( WorldGraph.m_pNodes[ m_aTo[m_iDraw] ].m_vecOrigin.z + NODE_HEIGHT );
			WRITE_SHORT( g_sModelIndexLaser );
			WRITE_BYTE( 0 ); // framerate
			WRITE_BYTE( 0 ); // framerate
			WRITE_BYTE( 250 ); // life
			WRITE_BYTE( 40 );  // width
			WRITE_BYTE( 0 );   // noise
			WRITE_BYTE( m_vecColor.x );   // r, g, b
			WRITE_BYTE( m_vecColor.y );   // r, g, b
			WRITE_BYTE( m_vecColor.z );   // r, g, b
			WRITE_BYTE( 128 );	// brightness
			WRITE_BYTE( 0 );		// speed
		MESSAGE_END();

		m_iDraw++;
	}
}