dhewm3/neo/tools/compilers/roqvq/codec.cpp
dhewg 736ec20d4d Untangle the epic precompiled.h mess
Don't include the lazy precompiled.h everywhere, only what's
required for the compilation unit.
platform.h needs to be included instead to provide all essential
defines and types.
All includes use the relative path to the neo or the game
specific root.
Move all idlib related includes from idlib/Lib.h to precompiled.h.
precompiled.h still exists for the MFC stuff in tools/.
Add some missing header guards.
2011-12-19 23:21:47 +01:00

1690 lines
48 KiB
C++

/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "sys/platform.h"
#include "framework/FileSystem.h"
#include "framework/Session.h"
#include "tools/compilers/roqvq/codec.h"
float glimit( const float val ) {
if (val<0) return 0;
if (val>255) return 255;
return val;
}
codec::codec() {
int i;
common->Printf("init: initing.....\n");
codebooksize = 256;
codebook2 = (VQDATA **) Mem_ClearedAlloc(256*sizeof(VQDATA *));
for(i=0; i < 256; i++) {
codebook2[i] = (VQDATA *) Mem_ClearedAlloc(16*sizeof(VQDATA));
}
codebook4 = (VQDATA **) Mem_ClearedAlloc(256*sizeof(VQDATA *));
for(i=0; i < 256; i++) {
codebook4[i] = (VQDATA *) Mem_ClearedAlloc(64*sizeof(VQDATA));
}
previousImage[0] = 0;
previousImage[1] = 0;
image = 0;
whichFrame = 0;
qStatus = 0;
luti = 0;
overAmount = 0;
codebookmade = 0;
slop = 0;
}
codec::~codec()
{
common->Printf("codec: resetting\n");
if (qStatus) Mem_Free( qStatus);
if (luti) Mem_Free(luti);
if (previousImage[0]) delete previousImage[0];
if (previousImage[1]) delete previousImage[1];
qStatus = 0;
initRGBtab = 0;
previousImage[0] = 0;
whichFrame = 0;
luti = 0;
return;
}
/* Because Shellsort is a variation on Insertion Sort, it has the same
* inconsistency that I noted in the InsertionSort class. Notice where I
* subtract a move to compensate for calling a swap for visual purposes.
*/
void codec::Sort( float *list, int *intIndex, int numElements )
{
#define STRIDE_FACTOR 3 // good value for stride factor is not well-understood
// 3 is a fairly good choice (Sedgewick)
int c,d, stride;
bool found;
stride = 1;
while (stride <= numElements)
stride = stride*STRIDE_FACTOR +1;
while (stride>(STRIDE_FACTOR-1)) { // loop to sort for each value of stride
stride = stride / STRIDE_FACTOR;
for (c = stride; c < numElements; c++){
found = false;
d = c-stride;
while ((d >= 0) && !found) { // move to left until correct place
if (list[d]<list[d+stride]) {
float ftemp;
int itemp;
ftemp = list[d]; list[d] = list[d+stride]; list[d+stride] = ftemp;
itemp = intIndex[d]; intIndex[d] = intIndex[d+stride]; intIndex[d+stride] = itemp;
d -= stride; // jump by stride factor
} else
found = true;
}
}
}
}
void codec::Segment( int *alist, float *flist, int numElements, float rmse)
{
int x, y, yy, xx, numc, onf, index, temp, best, bpp, i, len;
byte find[16], *lineout, *cbook, *src, *dst;
float fy, fcr, fcb;
idFile *fpcb;
char cbFile[256], tempcb[256], temptb[256];
bool doopen;
float y0,y1,y2,y3,cr,cb;
doopen = false;
sprintf( tempcb, "%s.cb", theRoQ->CurrentFilename());
sprintf( temptb, "%s.tb", theRoQ->CurrentFilename());
onf = 0;
len = (int)strlen(tempcb);
for(x=0;x<len;x++) {
if (tempcb[x] == '\n') for(y=x;y<len;y++) if (tempcb[y] == '/') x = y+1;
cbFile[onf++] = tempcb[x];
}
cbFile[onf] = 0;
lineout = (byte *)Mem_ClearedAlloc( 4*1024 );
common->Printf("trying %s\n", cbFile);
fpcb = fileSystem->OpenFileRead( cbFile );
if ( !fpcb ) {
doopen = true;
common->Printf("failed....\n");
} else {
if ( dimension2 == 16 ) x = 3584; else x = 2560;
if ( fpcb->Read( lineout, x ) != x ) {
doopen = true;
common->Printf("failed....\n");
}
fileSystem->CloseFile( fpcb );
}
if ( doopen ) {
common->Printf("segment: making %s\n", cbFile);
numc = numElements;
if (numElements > numc) numc = numElements;
onf = 0;
for(x=0;x<256;x++) {
for(y=0;y<dimension2;y++) codebook2[x][y] = 0;
for(y=0;y<dimension4;y++) codebook4[x][y] = 0;
}
bpp = image->samplesPerPixel();
cbook = (byte *)Mem_ClearedAlloc( 3 * image->pixelsWide() * image->pixelsHigh());
float *snrBook = (float *)Mem_ClearedAlloc( image->pixelsWide() * image->pixelsHigh() );
dst = cbook;
int numEntries = 0;
for (i=0; i<numQuadCels; i++) {
if (qStatus[i].size == 8 && qStatus[i].rsnr >= MIN_SNR*4) {
for(y=qStatus[i].yat;y<qStatus[i].yat+8; y+=4) {
for(x=qStatus[i].xat;x<qStatus[i].xat+8; x+=4) {
if (qStatus[i].rsnr == 9999.0f) {
snrBook[numEntries] = 1.0f;
} else {
snrBook[numEntries] = qStatus[i].rsnr;
}
numEntries++;
for(yy=y;yy<(y+4);yy++) {
for(xx=x;xx<(x+4);xx++) {
src = image->bitmapData() + (yy*(bpp*image->pixelsWide())) + (xx*bpp);
memcpy( dst, src, 3); dst += 3;
}
}
}
}
}
}
common->Printf("segment: %d 4x4 cels to vq\n", numEntries );
VQ( numEntries, dimension4, cbook, snrBook, codebook4, true );
dst = cbook;
numEntries = 0;
for( i=0; i<256; i++ ) {
for(y=0;y<4;y+=2) {
for(x=0;x<4;x+=2) {
snrBook[numEntries] = 1.0f;
numEntries++;
for(yy=y;yy<(y+2);yy++) {
for(xx=x;xx<(x+2);xx++) {
dst[0] = codebook4[i][yy*12+xx*3+0];
dst[1] = codebook4[i][yy*12+xx*3+1];
dst[2] = codebook4[i][yy*12+xx*3+2];
dst += 3;
}
}
}
}
}
common->Printf("segment: %d 2x2 cels to vq\n", numEntries);
VQ( numEntries, dimension2, cbook, snrBook, codebook2, false );
Mem_Free(cbook);
Mem_Free(snrBook);
index = 0;
for( onf = 0; onf < 256; onf++ ) {
numc = 0; fcr = fcb = 0;
for( x = 0; x < 4; x++ ) {
fy = RMULT*(float)(codebook2[onf][numc+0]) +
GMULT*(float)(codebook2[onf][numc+1]) +
BMULT*(float)(codebook2[onf][numc+2]) + 0.5f;
if (fy<0) fy = 0; if (fy>255) fy = 255;
fcr += RIEMULT*(float)(codebook2[onf][numc+0]);
fcr += GIEMULT*(float)(codebook2[onf][numc+1]);
fcr += BIEMULT*(float)(codebook2[onf][numc+2]);
fcb += RQEMULT*(float)(codebook2[onf][numc+0]);
fcb += GQEMULT*(float)(codebook2[onf][numc+1]);
fcb += BQEMULT*(float)(codebook2[onf][numc+2]);
lineout[index++] = (byte)fy;
numc += 3;
}
fcr = (fcr/4)+128.5f; if (fcr<0) fcr = 0; if (fcr>255) fcr = 255;
fcb = (fcb/4)+128.5f; if (fcb<0) fcb = 0; if (fcb>255) fcr = 255;
//common->Printf(" fcr == %f, fcb == %f\n", fcr, fcb );
lineout[index++] = (byte)fcr;
lineout[index++] = (byte)fcb;
}
for(onf=0;onf<256;onf++) {
for(y=0;y<4;y+=2) {
for(x=0;x<4;x+=2) {
numc = 0;
for(yy=y;yy<(y+2);yy++) {
temp = (yy*dimension2)+x*(dimension2/4);
find[numc++] = (byte)(codebook4[onf][temp+0] + 0.50f);
find[numc++] = (byte)(codebook4[onf][temp+1] + 0.50f);
find[numc++] = (byte)(codebook4[onf][temp+2] + 0.50f);
find[numc++] = (byte)(codebook4[onf][temp+3] + 0.50f);
find[numc++] = (byte)(codebook4[onf][temp+4] + 0.50f);
find[numc++] = (byte)(codebook4[onf][temp+5] + 0.50f);
}
lineout[index++] = BestCodeword( find, dimension2, codebook2 );
}
}
}
fpcb = fileSystem->OpenFileWrite( cbFile );
common->Printf("made up %d entries\n", index);
fpcb->Write( lineout, index );
fileSystem->CloseFile( fpcb );
common->Printf("finished write\n");
}
for(y=0;y<256;y++) {
x = y*6;
y0 = (float)lineout[x++];
y1 = (float)lineout[x++];
y2 = (float)lineout[x++];
y3 = (float)lineout[x++];
cb = (float)lineout[x++]; cb -= 128;
cr = (float)lineout[x ]; cr -= 128;
x = 0;
codebook2[y][x++] = glimit( y0 + 1.40200f*cr );
codebook2[y][x++] = glimit( y0 - 0.34414f*cb - 0.71414f*cr );
codebook2[y][x++] = glimit( y0 + 1.77200f*cb );
codebook2[y][x++] = glimit( y1 + 1.40200f*cr );
codebook2[y][x++] = glimit( y1 - 0.34414f*cb - 0.71414f*cr );
codebook2[y][x++] = glimit( y1 + 1.77200f*cb );
codebook2[y][x++] = glimit( y2 + 1.40200f*cr );
codebook2[y][x++] = glimit( y2 - 0.34414f*cb - 0.71414f*cr );
codebook2[y][x++] = glimit( y2 + 1.77200f*cb );
codebook2[y][x++] = glimit( y3 + 1.40200f*cr );
codebook2[y][x++] = glimit( y3 - 0.34414f*cb - 0.71414f*cr );
codebook2[y][x++] = glimit( y3 + 1.77200f*cb );
}
index = 6*256;
for(onf=0;onf<256;onf++) {
for(y=0;y<4;y+=2) {
for(x=0;x<4;x+=2) {
best = lineout[index++];
numc = 0;
for(yy=y;yy<(y+2);yy++) {
temp = (yy*dimension2)+x*(dimension2/4);
codebook4[onf][temp+0] = codebook2[best][numc++]; //r
codebook4[onf][temp+1] = codebook2[best][numc++]; //g
codebook4[onf][temp+2] = codebook2[best][numc++]; //b
codebook4[onf][temp+3] = codebook2[best][numc++]; //r a
codebook4[onf][temp+4] = codebook2[best][numc++]; //g r
codebook4[onf][temp+5] = codebook2[best][numc++]; //b g
}
}
}
}
theRoQ->WriteCodeBook(lineout);
//PrepareCodeBook();
Mem_Free(lineout);
}
int codec::BestCodeword( unsigned char *tempvector, int dimension, VQDATA **codebook )
{
VQDATA dist;
VQDATA bestDist = HUGE;
VQDATA tempvq[64];
int bestIndex = -1;
for( int i=0; i<dimension; i++ ) {
tempvq[i] = tempvector[i];
}
for( int i=0; i<256; i++) {
dist = 0.0;
for( int x=0; x<dimension; x+=3 ) {
const VQDATA r0 = codebook[i][x];
const VQDATA r1 = tempvq[x];
const VQDATA g0 = codebook[i][x+1];
const VQDATA g1 = tempvq[x+1];
const VQDATA b0 = codebook[i][x+2];
const VQDATA b1 = tempvq[x+2];
dist += (r0-r1)*(r0-r1);
if (dist >= bestDist) {
continue;
}
dist += (g0-g1)*(g0-g1);
if (dist >= bestDist) {
continue;
}
dist += (b0-b1)*(b0-b1);
if (dist >= bestDist) {
continue;
}
}
if ( dist < bestDist ) {
bestDist = dist;
bestIndex = i;
}
}
return bestIndex;
}
void codec::SetPreviousImage( const char*filename, NSBitmapImageRep *timage )
{
if (previousImage[0]) {
delete previousImage[0];
}
if (previousImage[1]) {
delete previousImage[1];
}
common->Printf("setPreviousImage:%s\n", filename);
previousImage[0] = new NSBitmapImageRep( );
previousImage[1] = new NSBitmapImageRep( );
whichFrame=1;
*previousImage[0] = *timage;
*previousImage[1] = *timage;
pixelsHigh = previousImage[0]->pixelsHigh();
pixelsWide = previousImage[0]->pixelsWide();
common->Printf("setPreviousImage: %dx%d\n", pixelsWide, pixelsHigh );
}
void codec::MakePreviousImage( quadcel *pquad )
{
int i, dy, dx, pluck, size, ind, xx, yy, pWide;
int x, y;
byte *rgbmap, *idataA, *fccdictionary;
bool diff;
for(i=0;i<256;i++) { used2[i] = used4[i] = false; }
pWide = pixelsWide & 0xfff0;
if (!previousImage[0]) {
previousImage[0] = new NSBitmapImageRep( pWide, (pixelsHigh & 0xfff0) );
previousImage[1] = new NSBitmapImageRep( pWide, (pixelsHigh & 0xfff0) );
}
rgbmap = previousImage[(whichFrame&1)]->bitmapData();
if ((whichFrame&1) == 1) {
fccdictionary = previousImage[0]->bitmapData();
} else {
fccdictionary = previousImage[1]->bitmapData();
}
idataA = (byte *)Mem_Alloc( 16*16*4 );
for(i=0;i<numQuadCels;i++) {
diff = false;
size = pquad[i].size;
if (size) {
switch( pquad[i].status ) {
case DEP:
break;
case SLD:
ind = pquad[i].patten[0];
used4[ind] = true;
for( dy=0; dy<size; dy++ ) {
pluck = (((dy+pquad[i].yat)*pWide)+pquad[i].xat)*4;
for( dx=0; dx<size; dx++ ) {
xx = ((dy>>1)*dimension2)+(dx>>1)*(dimension2/4);
if (rgbmap[pluck+0] != codebook4[ind][xx+0]) diff = true;
if (rgbmap[pluck+1] != codebook4[ind][xx+1]) diff = true;
if (rgbmap[pluck+2] != codebook4[ind][xx+2]) diff = true;
if (dimension4 == 64 && rgbmap[pluck+3] != codebook4[ind][xx+3]) diff = true;
rgbmap[pluck+0] = (byte)codebook4[ind][xx+0];
rgbmap[pluck+1] = (byte)codebook4[ind][xx+1];
rgbmap[pluck+2] = (byte)codebook4[ind][xx+2];
if (dimension4 == 64)
rgbmap[pluck+3] = (byte)codebook4[ind][xx+3];
else
rgbmap[pluck+3] = 255;
pluck += 4;
}
}
if (diff == false && whichFrame) common->Printf("drawImage: SLD just changed the same thing\n");
break;
case PAT:
ind = pquad[i].patten[0];
used4[ind] = true;
for( dy=0; dy<size; dy++ ) {
pluck = (((dy+pquad[i].yat)*pWide)+pquad[i].xat)*4;
for( dx=0; dx<size; dx++ ) {
xx = (dy*size*(dimension2/4))+dx*(dimension2/4);
if (rgbmap[pluck+0] != codebook4[ind][xx+0]) diff = true;
if (rgbmap[pluck+1] != codebook4[ind][xx+1]) diff = true;
if (rgbmap[pluck+2] != codebook4[ind][xx+2]) diff = true;
if (dimension4 == 64 && rgbmap[pluck+3] != codebook4[ind][xx+3]) diff = true;
rgbmap[pluck+0] = (byte)codebook4[ind][xx+0];
rgbmap[pluck+1] = (byte)codebook4[ind][xx+1];
rgbmap[pluck+2] = (byte)codebook4[ind][xx+2];
if (dimension4 == 64)
rgbmap[pluck+3] = (byte)codebook4[ind][xx+3];
else
rgbmap[pluck+3] = 255;
pluck += 4;
}
}
if (diff == false && whichFrame) common->Printf("drawImage: PAT just changed the same thing\n");
break;
case CCC:
dx = 1;
for(yy=0;yy<4;yy+=2) {
for(xx=0;xx<4;xx+=2) {
ind = pquad[i].patten[dx++];
used2[ind] = true;
dy = 0;
for(y=yy;y<(yy+2);y++) {
for(x=xx;x<(xx+2);x++) {
pluck = (((y+pquad[i].yat)*pWide)+(pquad[i].xat+x))*4;
if (rgbmap[pluck+0] != codebook2[ind][dy+0]) diff = true;
if (rgbmap[pluck+1] != codebook2[ind][dy+1]) diff = true;
if (rgbmap[pluck+2] != codebook2[ind][dy+2]) diff = true;
if (dimension4 == 64 && rgbmap[pluck+3] != codebook2[ind][dy+3]) diff = true;
rgbmap[pluck+0] = (byte)codebook2[ind][dy+0];
rgbmap[pluck+1] = (byte)codebook2[ind][dy+1];
rgbmap[pluck+2] = (byte)codebook2[ind][dy+2];
if (dimension4 == 64) {
rgbmap[pluck+3] = (byte)codebook2[ind][dy+3];
dy += 4;
} else {
rgbmap[pluck+3] = 255;
dy += 3;
}
}
}
}
}
if (diff == false && whichFrame) {
/*
common->Printf("drawImage: CCC just changed the same thing\n");
common->Printf("sparseEncode: something is wrong here\n");
common->Printf("xat: %d\n", pquad[i].xat);
common->Printf("yat: %d\n", pquad[i].yat);
common->Printf("size %d\n", pquad[i].size);
common->Printf("type: %d\n", pquad[i].status);
common->Printf("motsnr: %0f\n", pquad[i].snr[FCC]);
common->Printf("cccsnr: %0f\n", pquad[i].snr[CCC]);
common->Printf("rmse: %0f\n", pquad[i].rsnr);
common->Printf("pat0: %0d\n", pquad[i].patten[1]);
common->Printf("pat1: %0d\n", pquad[i].patten[2]);
common->Printf("pat2: %0d\n", pquad[i].patten[3]);
common->Printf("pat3: %0d\n", pquad[i].patten[4]);
//exit(1);
*/
}
break;
case FCC:
dx = pquad[i].xat - ((pquad[i].domain >> 8 ) - 128);
dy = pquad[i].yat - ((pquad[i].domain & 0xff) - 128);
if (image->pixelsWide()==(image->pixelsHigh()*4)) dx = pquad[i].xat - ((pquad[i].domain >> 8 ) - 128)*2;
if (theRoQ->Scaleable()) {
dx = pquad[i].xat - ((pquad[i].domain >> 8 ) - 128)*2;
dy = pquad[i].yat - ((pquad[i].domain & 0xff) - 128)*2;
}
// if (pquad[i].yat == 0) common->Printf("dx = %d, dy = %d, xat = %d\n", dx, dy, pquad[i].xat);
ind = (dy*pWide+dx)*4;
for( dy=0; dy<size; dy++ ) {
pluck = (((dy+pquad[i].yat)*pWide)+pquad[i].xat)*4;
for( dx=0; dx<size; dx++ ) {
if (rgbmap[pluck+0] != fccdictionary[ind+0]) diff = true;
if (rgbmap[pluck+1] != fccdictionary[ind+1]) diff = true;
if (rgbmap[pluck+2] != fccdictionary[ind+2]) diff = true;
rgbmap[pluck+0] = fccdictionary[ind+0];
rgbmap[pluck+1] = fccdictionary[ind+1];
rgbmap[pluck+2] = fccdictionary[ind+2];
rgbmap[pluck+3] = fccdictionary[ind+3];
pluck += 4; ind += 4;
}
ind += (pWide - size)*4;
}
// if (diff == false && whichFrame) common->Printf("drawImage: FCC just changed the same thing\n");
break;
case MOT:
break;
default:
common->Error( "bad code!!\n");
break;
}
}
}
if (whichFrame == 0) {
memcpy( previousImage[1]->bitmapData(), previousImage[0]->bitmapData(), pWide*(pixelsHigh & 0xfff0)*4);
}
x = 0; y = 0;
for(i=0;i<256;i++) {
if (used4[i]) x++;
if (used2[i]) y++;
}
if (theRoQ->IsQuiet() == false) common->Printf("drawImage: used %d 4x4 and %d 2x2 VQ cels\n", x,y);
Mem_Free( idataA );
}
void codec::InitImages( void )
{
int x,y, index0, index1, temp;
float ftemp;
byte *lutimage;
numQuadCels = ((pixelsWide & 0xfff0)*(pixelsHigh & 0xfff0))/(MINSIZE*MINSIZE);
numQuadCels += numQuadCels/4 + numQuadCels/16;
if (qStatus) Mem_Free(qStatus);
qStatus = (quadcel *)Mem_ClearedAlloc(numQuadCels*sizeof (quadcel));
InitQStatus();
//
if (previousImage[0]) {
pixelsWide = previousImage[0]->pixelsWide();
pixelsHigh = previousImage[0]->pixelsHigh();
temp = ((whichFrame+1)&1);
if (!luti) luti = (byte *)Mem_Alloc(pixelsWide*pixelsHigh);
lutimage = previousImage[temp]->bitmapData();
if (theRoQ->IsQuiet() == false) {
common->Printf("initImage: remaking lut image using buffer %d\n", temp);
}
index0 = index1 = 0;
for(y=0;y<pixelsHigh; y++) {
for(x=0;x<pixelsWide; x++) {
ftemp = RMULT*lutimage[index0+0] + GMULT*lutimage[index0+1] + BMULT*lutimage[index0+2];
temp = (int)ftemp;
luti[index1] = temp;
index0 += previousImage[0]->samplesPerPixel();
index1++;
}
}
}
}
void codec::QuadX( int startX, int startY, int quadSize)
{
int startSize;
int bigx, bigy, lowx, lowy;
lowx = lowy = 0;
bigx = pixelsWide & 0xfff0;
bigy = pixelsHigh & 0xfff0;
if ( (startX >= lowx) && (startX+quadSize) <= (bigx) && (startY+quadSize) <= (bigy) && (startY >= lowy) && quadSize <= MAXSIZE) {
qStatus[onQuad].size = quadSize;
qStatus[onQuad].xat = startX;
qStatus[onQuad].yat = startY;
qStatus[onQuad].rsnr = 999999;
onQuad++;
}
if (quadSize != MINSIZE) {
startSize = quadSize>>1;
QuadX( startX , startY , startSize );
QuadX( startX+startSize , startY , startSize );
QuadX( startX , startY+startSize , startSize );
QuadX( startX+startSize , startY+startSize , startSize );
}
}
void codec::InitQStatus( void )
{
int i,x,y;
for (i=0; i<numQuadCels; i++)
qStatus[i].size = 0;
onQuad = 0;
for(y=0;y<pixelsHigh; y+=16) {
for(x=0;x<pixelsWide; x+=16) {
QuadX( x, y,16 );
}
}
}
void codec::VqData8( byte *cel, quadcel *pquad )
{
byte tempImage[8*8*4];
int x, y, i, best, temp;
i = 0;
for(y=0;y<4;y++) {
for(x=0;x<4;x++) {
temp = y*64+x*8;
tempImage[i++] = (cel[temp+0]+cel[temp+4]+cel[temp+32]+cel[temp+36])/4;
tempImage[i++] = (cel[temp+1]+cel[temp+5]+cel[temp+33]+cel[temp+37])/4;
tempImage[i++] = (cel[temp+2]+cel[temp+6]+cel[temp+34]+cel[temp+38])/4;
if (dimension4 == 64)
tempImage[i++] = (cel[temp+3]+cel[temp+7]+cel[temp+35]+cel[temp+39])/4;
}
}
pquad->patten[0] = best = BestCodeword( tempImage, dimension4, codebook4 );
for(y=0;y<8;y++) {
for(x=0;x<8;x++) {
temp = y*32+x*4;
i = ((y/2)*4*(dimension2/4))+(x/2)*(dimension2/4);
tempImage[temp+0] = (byte)codebook4[best][i+0];
tempImage[temp+1] = (byte)codebook4[best][i+1];
tempImage[temp+2] = (byte)codebook4[best][i+2];
if (dimension4 == 64)
tempImage[temp+3] = (byte)codebook4[best][i+3];
else
tempImage[temp+3] = 255;
}
}
pquad->snr[SLD] = Snr( cel, tempImage, 8 )+1.0;
}
void codec::VqData4( byte *cel, quadcel *pquad )
{
byte tempImage[64];
int i, best, bpp;
// if (theRoQ->makingVideo] && previousImage[0]) return self;
if (dimension4 == 64) bpp = 4; else bpp = 3;
for(i=0;i<16;i++) {
tempImage[i*bpp+0] = cel[i*4+0];
tempImage[i*bpp+1] = cel[i*4+1];
tempImage[i*bpp+2] = cel[i*4+2];
if (dimension4 == 64) tempImage[i*bpp+3] = cel[i*4+3];
}
pquad->patten[0] = best = BestCodeword( tempImage, dimension4, codebook4 );
for(i=0;i<16;i++) {
tempImage[i*4+0] = (byte)codebook4[best][i*bpp+0];
tempImage[i*4+1] = (byte)codebook4[best][i*bpp+1];
tempImage[i*4+2] = (byte)codebook4[best][i*bpp+2];
if (dimension4 == 64)
tempImage[i*4+3] = (byte)codebook4[best][i*bpp+3];
else
tempImage[i*4+3] = 255;
}
pquad->snr[PAT] = Snr( cel, tempImage, 4 );
}
void codec::VqData2( byte *cel, quadcel *pquad )
{
byte tempImage[16], tempOut[64];
int i, j, best,x,y,xx,yy;
j = 1;
for(yy=0;yy<4;yy+=2) {
for(xx=0;xx<4;xx+=2) {
i = 0;
for(y=yy;y<(yy+2);y++) {
for(x=xx;x<(xx+2);x++) {
tempImage[i++] = cel[y*16+x*4+0];
tempImage[i++] = cel[y*16+x*4+1];
tempImage[i++] = cel[y*16+x*4+2];
if (dimension4 == 64) tempImage[i++] = cel[y*16+x*4+3];
}
}
pquad->patten[j++] = best = BestCodeword( tempImage, dimension2, codebook2 );
i = 0;
for(y=yy;y<(yy+2);y++) {
for(x=xx;x<(xx+2);x++) {
tempOut[y*16+x*4+0] = (byte)codebook2[best][i++];
tempOut[y*16+x*4+1] = (byte)codebook2[best][i++];
tempOut[y*16+x*4+2] = (byte)codebook2[best][i++];
if (dimension4 == 64)
tempOut[y*16+x*4+3] = (byte)codebook2[best][i++];
else
tempOut[y*16+x*4+3] = 255;
}
}
}
}
pquad->snr[CCC] = Snr( cel, tempOut, 4 );
}
void codec::IRGBtab(void)
{
initRGBtab++;
}
float codec::Snr( byte *old, byte *bnew, int size ) {
int i, j;
float fsnr;
register int ind;
ind = 0;
for(i=0; i<size; i++) {
for(j=0; j<size; j++) {
if (old[3]||bnew[3]) ind += RGBADIST( old, bnew );
old += 4; bnew += 4;
}
}
fsnr = (float)ind;
fsnr /= (size*size);
fsnr = (float)sqrt( fsnr );
return (fsnr);
}
int codec::ComputeMotionBlock( byte *old, byte *bnew, int size )
{
int i,j,snr;
if (dimension4==64) return 0; // do not use this for alpha pieces
snr = 0;
for(i=0; i<size; i++) {
for(j=0; j<size; j++) {
snr += RGBADIST( old, bnew );
old += 4; bnew += 4;
}
}
snr /= (size*size);
return ( snr <= MOTION_MIN );
}
void codec::FvqData( byte *bitmap, int size, int realx, int realy, quadcel *pquad, bool clamp)
{
int x, y, xLen, yLen, mblur0, ripl, bpp, fabort, temp1;
int lowX, lowY, sX, sY, depthx, depthy, breakHigh;
float lowestSNR, fmblur0;
byte *scale1;
byte *bitma2;
int searchY, searchX, xxMean, yyMean;
if ( !previousImage[0] || dimension4 == 64) {
return;
}
for(x=0; x<(size*size); x++) {
fmblur0 = RMULT*bitmap[x*4+0] + GMULT*bitmap[x*4+1] + BMULT*bitmap[x*4+2];
luty[x] = (byte)fmblur0;
}
if (!luti) {
pquad->domain = 0x8080;
pquad->snr[FCC] = 9999;
return;
}
xLen = previousImage[0]->pixelsWide();
yLen = previousImage[0]->pixelsHigh();
ripl = xLen-size;
breakHigh = 99999999;
fabort = 0;
lowX = lowY = -1;
depthx = depthy = 1;
searchY = 8; //16;
searchX = 8; //32;
//if (xLen == (yLen*4)) depthx = 2;
//if (theRoQ->Scaleable()) depthx = depthy = 2;
if (clamp) { searchX = searchY = 8; }
searchX = searchX*depthx;
searchY = searchY*depthy;
xxMean = dxMean*depthx;
yyMean = dyMean*depthy;
if (((realx-xxMean)+searchX)<0 ||(((realx-xxMean)-searchX)+depthx+size)>xLen || ((realy-yyMean)+searchY)<0 || (((realy-yyMean)-searchY)+depthy+size)>yLen) {
pquad->snr[FCC] = 9999;
return;
}
for( sX=(((realx-xxMean)-searchX)+depthx); sX<=((realx-xxMean)+searchX) && !fabort; sX+=depthx ) {
for( sY=(((realy-yyMean)-searchY)+depthy); sY<=((realy-yyMean)+searchY) && breakHigh; sY+=depthy ) {
temp1 = xLen*sY+sX;
if ( sX >= 0 && (sX+size) <= xLen && sY >= 0 && (sY+size) <= yLen ) {
bpp = previousImage[0]->samplesPerPixel();
ripl = (xLen-size)*bpp;
mblur0 = 0;
bitma2 = bitmap;
scale1 = previousImage[((whichFrame+1)&1)]->bitmapData() + temp1*bpp;
// mblur0 = 0;
// bitma2 = luty;
// scale1 = luti + temp1;
for( y=0; y<size; y++) {
for( x=0; x<size; x++) {
mblur0 += RGBADIST( bitma2, scale1);
bitma2 += 4; scale1 += 4;
}
if (mblur0 > breakHigh) {
break;
}
scale1 += ripl;
}
if (breakHigh > mblur0) {
breakHigh = mblur0;
lowX = sX;
lowY = sY;
}
}
}
}
if (lowX != -1 && lowY != -1) {
bpp = previousImage[0]->samplesPerPixel();
ripl = (xLen-size)*bpp;
mblur0 = 0;
bitma2 = bitmap;
scale1 = previousImage[((whichFrame+1)&1)]->bitmapData() + (xLen*lowY+lowX)*bpp;
for( y=0; y<size; y++) {
for( x=0; x<size; x++) {
mblur0 += RGBADIST( bitma2, scale1 );
scale1 += 4; bitma2 += 4;
}
scale1 += ripl;
}
lowestSNR = (float)mblur0;
lowestSNR /= (size*size);
lowestSNR = (float)sqrt( lowestSNR );
sX = (realx-lowX+128);
sY = (realy-lowY+128);
if (depthx==2) {
sX = ((realx-lowX)/2+128);
}
if (depthy==2) {
sY = ((realy-lowY)/2+128);
}
pquad->domain = (sX<<8)+sY;
pquad->snr[FCC] = lowestSNR;
}
}
void codec::GetData( unsigned char *iData, int qSize, int startX, int startY, NSBitmapImageRep *bitmap)
{
int x,y,yoff,bpp,yend,xend;
byte *iPlane[5];
int r,g,b,a;
yend = qSize+startY;
xend = qSize+startX;
if (startY > bitmap->pixelsHigh()) return;
if (yend > bitmap->pixelsHigh()) yend = bitmap->pixelsHigh();
if (xend > bitmap->pixelsWide()) xend = bitmap->pixelsWide();
bpp = bitmap->samplesPerPixel();
if (bitmap->hasAlpha()) {
iPlane[0] = bitmap->bitmapData();
for(y=startY;y<yend;y++) {
yoff = y*bitmap->pixelsWide()*bpp;
for(x=startX;x<xend;x++) {
r = iPlane[0][yoff+(x*bpp)+0];
g = iPlane[0][yoff+(x*bpp)+1];
b = iPlane[0][yoff+(x*bpp)+2];
a = iPlane[0][yoff+(x*bpp)+3];
*iData++ = r; *iData++ = g; *iData++ = b; *iData++ = a;
}
}
} else {
iPlane[0] = bitmap->bitmapData();
for(y=startY;y<yend;y++) {
yoff = y*bitmap->pixelsWide()*bpp;
for(x=startX;x<xend;x++) {
r = iPlane[0][yoff+(x*bpp)+0];
g = iPlane[0][yoff+(x*bpp)+1];
b = iPlane[0][yoff+(x*bpp)+2];
*iData++ = r; *iData++ = g; *iData++ = b;
*iData++ = 255;
}
}
}
}
void codec::LowestQuad( quadcel*qtemp, int* status, float* snr, int bweigh)
{
float wtemp;
float quickadd[DEAD];
int i;
quickadd[CCC] = 1;
quickadd[SLD] = 1;
quickadd[MOT] = 1;
quickadd[FCC] = 1;
quickadd[PAT] = 1;
/*
if (slop > theRoQ->NormalFrameSize()) {
quickadd[CCC] = 0.5f;
quickadd[PAT] = 1.0f;
}
*/
wtemp = 99999;
for(i=(DEAD-1);i>0;i--) {
if ( qtemp->snr[i]*quickadd[i] < wtemp ) {
*status = i;
*snr = qtemp->snr[i];
wtemp = qtemp->snr[i]*quickadd[i];
}
}
if ( qtemp->mark ) *status = MOT;
}
int codec::GetCurrentQuadOutputSize( quadcel *pquad )
{
int totalbits, i, totalbytes;
int quickadd[DEAD+1];
totalbits = 0;
quickadd[DEP] = 2;
quickadd[SLD] = 10;
quickadd[PAT] = 10;
quickadd[CCC] = 34;
quickadd[MOT] = 2;
quickadd[FCC] = 10;
quickadd[DEAD] = 0;
for( i=0; i<numQuadCels; i++ ) {
if (pquad[i].size && pquad[i].size < 16 ) totalbits += quickadd[pquad[i].status];
}
totalbytes = (totalbits >> 3)+2;
return (totalbytes);
}
float codec::GetCurrentRMSE( quadcel *pquad )
{
int i, j;
double totalbits;
totalbits = 0;
j = 0;
for( i=0; i<numQuadCels; i++ ) {
if (pquad[i].size && pquad[i].status && pquad[i].status != DEAD) {
if (pquad[i].size == 8) { totalbits += pquad[i].rsnr*4; j += 4; }
if (pquad[i].size == 4) { totalbits += pquad[i].rsnr*1; j += 1; }
}
}
totalbits /= j;
return ((float)totalbits);
}
int codec::AddQuad( quadcel *pquad, int lownum )
{
int i, nx, nsize;
float newsnr;
byte *idataA, *idataB;
if (lownum != -1) {
if (pquad[lownum].size == 8) {
nx = 1; nsize = 4;
} else {
nx = 5; nsize = 8;
}
newsnr = 0;
idataA = (byte *)Mem_Alloc(8*8*4);
idataB = (byte *)Mem_Alloc(8*8*4);
for( i=lownum+1; i<lownum+(nx*4)+1; i+=nx ) {
pquad[i].size = nsize;
GetData( idataA, pquad[i].size, pquad[i].xat, pquad[i].yat, image );
VqData4( idataA ,&pquad[i] );
VqData2( idataA, &pquad[i] );
if (previousImage[0]) {
FvqData( idataA, pquad[i].size, pquad[i].xat, pquad[i].yat, &pquad[i], true );
GetData( idataB, pquad[i].size, pquad[i].xat, pquad[i].yat, previousImage[whichFrame&1] );
pquad[i].snr[MOT] = Snr( idataA, idataB, pquad[i].size );
if (ComputeMotionBlock( idataA, idataB, pquad[i].size ) && !theRoQ->IsLastFrame() && !detail) {
pquad[i].mark = true;
}
}
LowestQuad( &pquad[i] ,&pquad[i].status, &pquad[i].rsnr, true );
newsnr += pquad[i].rsnr;
}
Mem_Free(idataA); Mem_Free(idataB);
newsnr /= 4;
LowestQuad( &pquad[lownum], &pquad[lownum].status, &pquad[lownum].rsnr, false );
if ( pquad[lownum+nx*0+1].status == MOT && pquad[lownum+nx*1+1].status == MOT
&& pquad[lownum+nx*2+1].status == MOT && pquad[lownum+nx*3+1].status == MOT
&& nsize == 4) { newsnr = 9999; pquad[lownum].status = MOT; }
if ( pquad[lownum].rsnr > newsnr ) {
pquad[lownum].status = DEP;
pquad[lownum].rsnr = 0;
for( i=lownum+1; i<lownum+(nx*4)+1; i+=nx ) {
theRoQ->MarkQuadx( pquad[i].xat, pquad[i].yat, nsize, pquad[i].rsnr, qStatus[i].status );
}
} else {
theRoQ->MarkQuadx( pquad[lownum].xat, pquad[lownum].yat, nsize*2, pquad[lownum].rsnr, qStatus[lownum].status );
pquad[lownum+nx*0+1].status = 0;
pquad[lownum+nx*1+1].status = 0;
pquad[lownum+nx*2+1].status = 0;
pquad[lownum+nx*3+1].status = 0;
pquad[lownum+nx*0+1].size = 0;
pquad[lownum+nx*1+1].size = 0;
pquad[lownum+nx*2+1].size = 0;
pquad[lownum+nx*3+1].size = 0;
}
} else {
lownum = -1;
}
return lownum;
}
int codec::MotMeanX( void )
{
return dxMean;
}
int codec::MotMeanY( void )
{
return dyMean;
}
void codec::SparseEncode( void )
{
int i, j, osize, fsize, num[DEAD+1], *ilist, onf, ong, wtype, temp;
float *flist, sRMSE;
byte *idataA, *idataB;
osize = 8;
image = theRoQ->CurrentImage();
newImage = 0;
pixelsHigh = image->pixelsHigh();
pixelsWide = image->pixelsWide();
dimension2 = 12; dimension4 = 48;
if (image->hasAlpha()&&(theRoQ->ParamNoAlpha() == false)) { dimension2 = 16; dimension4 = 64; }
idataA = (byte *)Mem_Alloc( 16*16*4 );
idataB = (byte *)Mem_Alloc( 16*16*4 );
if (!previousImage[0]) common->Printf("sparseEncode: sparsely encoding a %d,%d image\n", pixelsWide, pixelsHigh);
InitImages();
flist = (float *)Mem_ClearedAlloc( (numQuadCels+1) *sizeof(float) );
ilist = (int *)Mem_ClearedAlloc( (numQuadCels+1) *sizeof(int ) );
fsize = 56*1024;
if (theRoQ->NumberOfFrames()>2) {
if (previousImage[0]) fsize = theRoQ->NormalFrameSize(); else fsize = theRoQ->FirstFrameSize();
if (theRoQ->HasSound() && fsize > 6000 && previousImage[0]) fsize = 6000;
}
fsize += (slop/50);
if (fsize > 64000) {
fsize = 64000;
}
if (previousImage[0] && fsize > theRoQ->NormalFrameSize()*2) {
fsize = theRoQ->NormalFrameSize()*2;
}
dxMean = dyMean = 0;
if (previousImage[0]) wtype = 1; else wtype = 0;
for( i=0; i<numQuadCels; i++ ) {
for(j=0;j<DEAD;j++) qStatus[i].snr[j] = 9999;
qStatus[i].mark = false;
if ( qStatus[i].size == osize ) {
if (previousImage[0]) {
GetData( idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, image );
GetData( idataB, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, previousImage[whichFrame&1] );
qStatus[i].snr[MOT] = Snr( idataA, idataB, qStatus[i].size );
if (ComputeMotionBlock( idataA, idataB, qStatus[i].size ) && !theRoQ->IsLastFrame()) {
qStatus[i].mark = true;
}
if (!qStatus[i].mark) {
FvqData( idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, &qStatus[i], false );
}
}
LowestQuad( &qStatus[i], &qStatus[i].status, &qStatus[i].rsnr, wtype );
if (qStatus[i].rsnr < 9999)
theRoQ->MarkQuadx( qStatus[i].xat, qStatus[i].yat, qStatus[i].size, qStatus[i].rsnr, qStatus[i].status );
} else {
if ( qStatus[i].size < osize ) {
qStatus[i].status = 0;
qStatus[i].size = 0;
} else {
qStatus[i].status = DEP;
qStatus[i].rsnr = 0;
}
}
}
//
// the quad is complete, so status can now be used for quad decomposition
// the first thing to do is to set it up for all the 4x4 cels to get output
// and then recurse from there to see what's what
//
sRMSE = GetCurrentRMSE( qStatus );
if (theRoQ->IsQuiet() == false) {
common->Printf("sparseEncode: rmse of quad0 is %f, size is %d (meant to be %d)\n", sRMSE, GetCurrentQuadOutputSize(qStatus), fsize );
}
onf = 0;
for(i=0;i<numQuadCels;i++) {
if ( qStatus[i].size && qStatus[i].status != DEP) {
flist[onf] = qStatus[i].rsnr;
ilist[onf] = i;
onf++;
}
}
Sort( flist, ilist, onf );
Segment( ilist, flist, onf, GetCurrentRMSE( qStatus ));
temp = dxMean = dyMean = 0;
/*
for( i=0; i<numQuadCels; i++ ) {
if (qStatus[i].size && qStatus[i].status == FCC) {
dxMean += (qStatus[i].domain >> 8 ) - 128;
dyMean += (qStatus[i].domain & 0xff) - 128;
temp++;
}
}
if (temp) { dxMean /= temp; dyMean /= temp; }
*/
common->Printf("sparseEncode: dx/dy mean is %d,%d\n", dxMean, dyMean);
detail = false;
if (codebookmade && whichFrame>4) fsize -= 256;
temp = 0;
for( i=0; i<numQuadCels; i++ ) {
if ( qStatus[i].size == osize && qStatus[i].mark == false && qStatus[i].snr[MOT] > 0 ) {
GetData( idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, image );
if (osize == 8) VqData8( idataA, &qStatus[i] );
if (previousImage[0]) {
int dx,dy;
dx = (qStatus[i].domain >> 8 ) - 128 - dxMean + 8;
dy = (qStatus[i].domain & 0xff) - 128 - dyMean + 8;
if (dx<0||dx>15||dy<0||dy>15) {
qStatus[i].snr[FCC] = 9999;
temp++;
FvqData( idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, &qStatus[i], true );
dx = (qStatus[i].domain >> 8 ) - 128 - dxMean + 8;
dy = (qStatus[i].domain & 0xff) - 128 - dyMean + 8;
if ((dx<0||dx>15||dy<0||dy>15)&&qStatus[i].snr[FCC]!=9999&&qStatus[i].status==FCC) {
common->Printf("sparseEncode: something is wrong here, dx/dy is %d,%d after being clamped\n", dx, dy);
common->Printf("xat: %d\n", qStatus[i].xat);
common->Printf("yat: %d\n", qStatus[i].yat);
common->Printf("size %d\n", qStatus[i].size);
common->Printf("type: %d\n", qStatus[i].status);
common->Printf("mot: %04x\n", qStatus[i].domain);
common->Printf("motsnr: %0f\n", qStatus[i].snr[FCC]);
common->Printf("rmse: %0f\n", qStatus[i].rsnr);
common->Error("need to go away now\n");
}
}
}
LowestQuad( &qStatus[i], &qStatus[i].status, &qStatus[i].rsnr, wtype );
theRoQ->MarkQuadx( qStatus[i].xat, qStatus[i].yat, qStatus[i].size, qStatus[i].rsnr, qStatus[i].status );
/*
if (qStatus[i].status==FCC && qStatus[i].snr[FCC]>qStatus[i].snr[SLD]) {
common->Printf("sparseEncode: something is wrong here\n");
common->Printf("xat: %d\n", qStatus[i].xat);
common->Printf("yat: %d\n", qStatus[i].yat);
common->Printf("size %d\n", qStatus[i].size);
common->Printf("type: %d\n", qStatus[i].status);
common->Printf("mot: %04x\n", qStatus[i].domain);
common->Printf("motsnr: %0f\n", qStatus[i].snr[FCC]);
common->Printf("sldsnr: %0f\n", qStatus[i].snr[SLD]);
common->Printf("rmse: %0f\n", qStatus[i].rsnr);
//common->Error("need to go away now\n");
}
*/
}
}
if (theRoQ->IsQuiet() == false) {
common->Printf("sparseEncode: rmse of quad0 is %f, size is %d (meant to be %d)\n", GetCurrentRMSE( qStatus ), GetCurrentQuadOutputSize( qStatus ), fsize );
common->Printf("sparseEncode: %d outside fcc limits\n", temp);
}
onf = 0;
for(i=0;i<numQuadCels;i++) {
if ( qStatus[i].size && qStatus[i].status != DEP) {
flist[onf] = qStatus[i].rsnr;
ilist[onf] = i;
onf++;
}
}
Sort(flist, ilist, onf );
ong = 0; detail = false;
while ( GetCurrentQuadOutputSize(qStatus) < fsize && ong < onf && flist[ong] > 0 && qStatus[ilist[ong]].mark == false) {
// badsnr = [self getCurrentRMSE: qStatus];
osize = AddQuad( qStatus, ilist[ong++] );
// if ([self getCurrentRMSE: qStatus] >= badsnr) {
// break;
// }
}
if ( GetCurrentQuadOutputSize( qStatus ) < fsize) {
ong = 0;
while ( GetCurrentQuadOutputSize(qStatus) < fsize && ong < onf) {
// badsnr = [self getCurrentRMSE: qStatus];
i = ilist[ong++];
if (qStatus[i].mark) {
detail = false;
qStatus[i].mark = false;
GetData( idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, image );
if (qStatus[i].size == 8) VqData8( idataA, &qStatus[i] );
if (qStatus[i].size == 4) VqData4( idataA, &qStatus[i] );
if (qStatus[i].size == 4) VqData2( idataA, &qStatus[i] );
if (previousImage[0]) {
FvqData( idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, &qStatus[i], true );
}
LowestQuad( &qStatus[i], &qStatus[i].status, &qStatus[i].rsnr, wtype );
if (qStatus[i].rsnr <= MIN_SNR) {
break;
}
theRoQ->MarkQuadx( qStatus[i].xat, qStatus[i].yat, qStatus[i].size, qStatus[i].rsnr, qStatus[i].status );
}
// if ([self getCurrentRMSE: qStatus] >= badsnr) {
// break;
// }
}
ong = 0;
while ( GetCurrentQuadOutputSize( qStatus ) < fsize && ong < onf && flist[ong] > 0) {
// badsnr = [self getCurrentRMSE: qStatus];
i = ilist[ong++];
// if (qStatus[i].rsnr <= MIN_SNR) {
// break;
// }
detail = true;
osize = AddQuad( qStatus, i );
// if ([self getCurrentRMSE: qStatus] >= badsnr) {
// break;
// }
}
}
common->Printf("sparseEncode: rmse of frame %d is %f, size is %d\n", whichFrame, GetCurrentRMSE(qStatus), GetCurrentQuadOutputSize(qStatus) );
if (previousImage[0])
fsize = theRoQ->NormalFrameSize();
else
fsize = theRoQ->FirstFrameSize();
slop += (fsize - GetCurrentQuadOutputSize(qStatus));
if (theRoQ->IsQuiet() == false) {
for(i=0;i<DEAD;i++) num[i] = 0;
j = 0;
for( i=0; i<numQuadCels; i++ ) {
if (qStatus[i].size == 8 && qStatus[i].status) {
if (qStatus[i].status < DEAD) num[qStatus[i].status]++; j++;
}
}
common->Printf("sparseEncode: for 08x08 CCC = %d, FCC = %d, MOT = %d, SLD = %d, PAT = %d\n", num[CCC], num[FCC], num[MOT], num[SLD], num[PAT]);
for(i=0;i<DEAD;i++) num[i] = 0;
for( i=0; i<numQuadCels; i++ ) {
if (qStatus[i].size == 4 && qStatus[i].status) {
if (qStatus[i].status < DEAD) num[qStatus[i].status]++; j++;
}
}
common->Printf("sparseEncode: for 04x04 CCC = %d, FCC = %d, MOT = %d, SLD = %d, PAT = %d\n", num[CCC], num[FCC], num[MOT], num[SLD], num[PAT]);
common->Printf("sparseEncode: average RMSE = %f, numActiveQuadCels = %d, estSize = %d, slop = %d \n", GetCurrentRMSE(qStatus), j, GetCurrentQuadOutputSize(qStatus), slop);
}
theRoQ->WriteFrame( qStatus );
MakePreviousImage( qStatus );
Mem_Free(idataA);
Mem_Free(idataB);
Mem_Free(flist);
Mem_Free(ilist);
if (newImage) delete newImage;
whichFrame++;
}
void codec::EncodeNothing( void )
{
int i, j, osize, fsize, num[DEAD+1], *ilist, wtype;
float *flist, sRMSE;
byte *idataA, *idataB;
osize = 8;
image = theRoQ->CurrentImage();
newImage = 0;
pixelsHigh = image->pixelsHigh();
pixelsWide = image->pixelsWide();
dimension2 = 12; dimension4 = 48;
if (image->hasAlpha()&&(theRoQ->ParamNoAlpha() == false)) { dimension2 = 16; dimension4 = 64; }
idataA = (byte *)Mem_Alloc( 16*16*4 );
idataB = (byte *)Mem_Alloc( 16*16*4 );
if (!previousImage[0]) common->Printf("sparseEncode: sparsely encoding a %d,%d image\n", pixelsWide, pixelsHigh);
InitImages();
flist = (float *)Mem_ClearedAlloc( (numQuadCels+1) * sizeof(float) );
ilist = (int *)Mem_ClearedAlloc( (numQuadCels+1) * sizeof(int ) );
fsize = 56*1024;
if (theRoQ->NumberOfFrames()>2) {
if (previousImage[0]) fsize = theRoQ->NormalFrameSize(); else fsize = theRoQ->FirstFrameSize();
if (theRoQ->HasSound() && fsize > 6000 && previousImage[0]) fsize = 6000;
}
dxMean = dyMean = 0;
if (previousImage[0]) wtype = 1; else wtype = 0;
for( i=0; i<numQuadCels; i++ ) {
for(j=0;j<DEAD;j++) qStatus[i].snr[j] = 9999;
qStatus[i].mark = false;
if ( qStatus[i].size == osize ) {
if (previousImage[0]) {
GetData( idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, image );
GetData( idataB, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, previousImage[whichFrame&1] );
qStatus[i].snr[MOT] = Snr( idataA, idataB, qStatus[i].size );
}
LowestQuad( &qStatus[i], &qStatus[i].status, &qStatus[i].rsnr, wtype );
if (qStatus[i].rsnr < 9999)
theRoQ->MarkQuadx( qStatus[i].xat, qStatus[i].yat, qStatus[i].size, qStatus[i].rsnr, qStatus[i].status );
} else {
if ( qStatus[i].size < osize ) {
qStatus[i].status = 0;
qStatus[i].size = 0;
} else {
qStatus[i].status = DEP;
qStatus[i].rsnr = 0;
}
}
}
//
// the quad is complete, so status can now be used for quad decomposition
// the first thing to do is to set it up for all the 4x4 cels to get output
// and then recurse from there to see what's what
//
sRMSE = GetCurrentRMSE( qStatus );
common->Printf("sparseEncode: rmse of frame %d is %f, size is %d\n", whichFrame, sRMSE, GetCurrentQuadOutputSize( qStatus ) );
if (theRoQ->IsQuiet() == false) {
for(i=0;i<DEAD;i++) num[i] = 0;
j = 0;
for( i=0; i<numQuadCels; i++ ) {
if (qStatus[i].size == 8 && qStatus[i].status) {
if (qStatus[i].status < DEAD) num[qStatus[i].status]++; j++;
}
}
common->Printf("sparseEncode: for 08x08 CCC = %d, FCC = %d, MOT = %d, SLD = %d, PAT = %d\n", num[CCC], num[FCC], num[MOT], num[SLD], num[PAT]);
for(i=0;i<DEAD;i++) num[i] = 0;
for( i=0; i<numQuadCels; i++ ) {
if (qStatus[i].size == 4 && qStatus[i].status) {
if (qStatus[i].status < DEAD) num[qStatus[i].status]++; j++;
}
}
common->Printf("sparseEncode: for 04x04 CCC = %d, FCC = %d, MOT = %d, SLD = %d, PAT = %d\n", num[CCC], num[FCC], num[MOT], num[SLD], num[PAT]);
common->Printf("sparseEncode: average RMSE = %f, numActiveQuadCels = %d, estSize = %d \n", GetCurrentRMSE(qStatus), j, GetCurrentQuadOutputSize(qStatus));
}
theRoQ->WriteFrame( qStatus );
MakePreviousImage( qStatus );
Mem_Free(idataA);
Mem_Free(idataB);
Mem_Free(flist);
Mem_Free(ilist);
if (newImage) delete newImage;
whichFrame++;
}
void codec::VQ( const int numEntries, const int dimension, const unsigned char *vectors, float *import, VQDATA **codebook, const bool optimize ) {
int startMsec = Sys_Milliseconds();
if (numEntries <= 256) {
//
// copy the entries into the codebooks
//
for( int i=0; i<numEntries; i++ ) {
for( int j=0; j<dimension; j++ ) {
codebook[i][j] = vectors[j+i*dimension];
}
}
return;
}
//
// okay, we need to wittle this down to less than 256 entries
//
// get rid of identical entries
int i, j, x, ibase, jbase;
bool *inuse = (bool *)_alloca( numEntries * sizeof(bool) );
float *snrs = (float *)_alloca( numEntries * sizeof(float) );
int *indexes = (int *)_alloca( numEntries * sizeof(int) );
int *indexet = (int *)_alloca( numEntries * sizeof(int) );
int numFinalEntries = numEntries;
for( i=0; i<numEntries; i++ ) {
inuse[i] = true;
snrs[i] = -1.0f;
indexes[i] = -1;
indexet[i] = -1;
}
for( i=0; i<numEntries-1; i++ ) {
for( j=i+1; j<numEntries; j++ ) {
if (inuse[i] && inuse[j]) {
if (!memcmp( &vectors[i*dimension], &vectors[j*dimension], dimension)) {
inuse[j] = false;
numFinalEntries--;
import[i] += import[j];
}
}
}
}
common->Printf("VQ: has %d entries to process\n", numFinalEntries );
//
// are we done?
//
int end;
if (numFinalEntries > 256) {
//
// find the closest two and eliminate one
//
double bestDist = HUGE;
double dist, simport;
int bestIndex = -1;
int bestOtherIndex = 0;
int aentries = 0;
for( i=0; i<numEntries-1; i++ ) {
if (inuse[i]) {
end = numEntries;
if (optimize) {
if (numFinalEntries>8192) {
end = i+32;
} else if (numFinalEntries>4096) {
end = i+64;
} else if (numFinalEntries>2048) {
end = i+128;
} else if (numFinalEntries>1024) {
end = i+256;
} else if (numFinalEntries>512) {
end = i+512;
}
if (end>numEntries) {
end = numEntries;
}
}
ibase = i*dimension;
for( j=i+1; j<end; j++ ) {
if (inuse[j]) {
dist = 0.0;
jbase = j*dimension;
for( x=0; x<dimension; x+=3 ) {
#if 0
r0 = (float)vectors[ibase+x];
r1 = (float)vectors[jbase+x];
g0 = (float)vectors[ibase+x+1];
g1 = (float)vectors[jbase+x+1];
b0 = (float)vectors[ibase+x+2];
b1 = (float)vectors[jbase+x+2];
dist += idMath::Sqrt16( (r0-r1)*(r0-r1) + (g0-g1)*(g0-g1) + (b0-b1)*(b0-b1) );
#else
// JDC: optimization
int dr = vectors[ibase+x] - vectors[jbase+x];
int dg = vectors[ibase+x+1] - vectors[jbase+x+1];
int db = vectors[ibase+x+2] - vectors[jbase+x+2];
dist += idMath::Sqrt16( dr * dr + dg * dg + db * db );
#endif
}
simport = import[i] * import[j];
dist *= simport;
if ( dist < bestDist ) {
bestDist = dist;
bestIndex = i;
bestOtherIndex = j;
}
}
}
snrs[aentries] = bestDist;
indexes[aentries] = bestIndex;
indexet[aentries] = bestOtherIndex;
aentries++;
}
}
//
// until we have reduced it to 256 entries, find one to toss
//
do {
bestDist = HUGE;
bestIndex = -1;
bestOtherIndex = -1;
if (optimize) {
for( i=0; i<aentries; i++ ) {
if (inuse[indexes[i]] && inuse[indexet[i]] ) {
if ( snrs[i] < bestDist ) {
bestDist = snrs[i];
bestIndex = indexes[i];
bestOtherIndex = indexet[i];
}
}
}
}
if (bestIndex == -1 || !optimize) {
bestDist = HUGE;
bestIndex = -1;
bestOtherIndex = 0;
aentries = 0;
for( i=0; i<numEntries-1; i++ ) {
if (!inuse[i]) {
continue;
}
end = numEntries;
if (optimize) {
if (numFinalEntries>8192) {
end = i+32;
} else if (numFinalEntries>4096) {
end = i+64;
} else if (numFinalEntries>2048) {
end = i+128;
} else if (numFinalEntries>1024) {
end = i+256;
} else if (numFinalEntries>512) {
end = i+512;
}
}
if (end>numEntries) {
end = numEntries;
}
ibase = i*dimension;
for( j=i+1; j<end; j++ ) {
if ( !inuse[j]) {
continue;
}
dist = 0.0;
jbase = j*dimension;
simport = import[i] * import[j];
float scaledBestDist = bestDist / simport;
for( x=0; x<dimension; x+=3 ) {
#if 0
r0 = (float)vectors[ibase+x];
r1 = (float)vectors[jbase+x];
g0 = (float)vectors[ibase+x+1];
g1 = (float)vectors[jbase+x+1];
b0 = (float)vectors[ibase+x+2];
b1 = (float)vectors[jbase+x+2];
dist += idMath::Sqrt16( (r0-r1)*(r0-r1) + (g0-g1)*(g0-g1) + (b0-b1)*(b0-b1) );
#else
// JDC: optimization
int dr = vectors[ibase+x] - vectors[jbase+x];
int dg = vectors[ibase+x+1] - vectors[jbase+x+1];
int db = vectors[ibase+x+2] - vectors[jbase+x+2];
dist += idMath::Sqrt16( dr * dr + dg * dg + db * db );
if ( dist > scaledBestDist ) {
break;
}
#endif
}
dist *= simport;
if ( dist < bestDist ) {
bestDist = dist;
bestIndex = i;
bestOtherIndex = j;
}
}
snrs[aentries] = bestDist;
indexes[aentries] = bestIndex;
indexet[aentries] = bestOtherIndex;
aentries++;
}
}
//
// and lose one
//
inuse[bestIndex] = false;
numFinalEntries--;
import[bestOtherIndex] += import[bestIndex];
if ((numFinalEntries&511)==0) {
common->Printf("VQ: has %d entries to process\n", numFinalEntries );
session->UpdateScreen();
}
} while (numFinalEntries > 256);
}
//
// copy the entries into the codebooks
//
int onEntry = 0;
for( i=0; i<numEntries; i++ ) {
if (inuse[i]) {
ibase = i*dimension;
for( x=0; x<dimension; x++ ) {
codebook[onEntry][x] = vectors[ibase + x];
}
if (onEntry == 0) {
common->Printf("First vq = %d\n ", i);
}
if (onEntry == 255) {
common->Printf("last vq = %d\n", i);
}
onEntry++;
}
}
int endMsec = Sys_Milliseconds();
common->Printf( "VQ took %i msec\n", endMsec - startMsec );
}