dhewm3/neo/renderer/tr_trace.cpp
dhewg 736ec20d4d Untangle the epic precompiled.h mess
Don't include the lazy precompiled.h everywhere, only what's
required for the compilation unit.
platform.h needs to be included instead to provide all essential
defines and types.
All includes use the relative path to the neo or the game
specific root.
Move all idlib related includes from idlib/Lib.h to precompiled.h.
precompiled.h still exists for the MFC stuff in tools/.
Add some missing header guards.
2011-12-19 23:21:47 +01:00

426 lines
11 KiB
C++

/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "sys/platform.h"
#include "renderer/tr_local.h"
//#define TEST_TRACE
/*
=================
R_LocalTrace
If we resort the vertexes so all silverts come first, we can save some work here.
=================
*/
localTrace_t R_LocalTrace( const idVec3 &start, const idVec3 &end, const float radius, const srfTriangles_t *tri ) {
int i, j;
byte * cullBits;
idPlane planes[4];
localTrace_t hit;
int c_testEdges, c_testPlanes, c_intersect;
idVec3 startDir;
byte totalOr;
float radiusSqr;
#ifdef TEST_TRACE
idTimer trace_timer;
trace_timer.Start();
#endif
hit.fraction = 1.0f;
// create two planes orthogonal to each other that intersect along the trace
startDir = end - start;
startDir.Normalize();
startDir.NormalVectors( planes[0].Normal(), planes[1].Normal() );
planes[0][3] = - start * planes[0].Normal();
planes[1][3] = - start * planes[1].Normal();
// create front and end planes so the trace is on the positive sides of both
planes[2] = startDir;
planes[2][3] = - start * planes[2].Normal();
planes[3] = -startDir;
planes[3][3] = - end * planes[3].Normal();
// catagorize each point against the four planes
cullBits = (byte *) _alloca16( tri->numVerts );
SIMDProcessor->TracePointCull( cullBits, totalOr, radius, planes, tri->verts, tri->numVerts );
// if we don't have points on both sides of both the ray planes, no intersection
if ( ( totalOr ^ ( totalOr >> 4 ) ) & 3 ) {
//common->Printf( "nothing crossed the trace planes\n" );
return hit;
}
// if we don't have any points between front and end, no intersection
if ( ( totalOr ^ ( totalOr >> 1 ) ) & 4 ) {
//common->Printf( "trace didn't reach any triangles\n" );
return hit;
}
// scan for triangles that cross both planes
c_testPlanes = 0;
c_testEdges = 0;
c_intersect = 0;
radiusSqr = Square( radius );
startDir = end - start;
if ( !tri->facePlanes || !tri->facePlanesCalculated ) {
R_DeriveFacePlanes( const_cast<srfTriangles_t *>( tri ) );
}
for ( i = 0, j = 0; i < tri->numIndexes; i += 3, j++ ) {
float d1, d2, f, d;
float edgeLengthSqr;
idPlane * plane;
idVec3 point;
idVec3 dir[3];
idVec3 cross;
idVec3 edge;
byte triOr;
// get sidedness info for the triangle
triOr = cullBits[ tri->indexes[i+0] ];
triOr |= cullBits[ tri->indexes[i+1] ];
triOr |= cullBits[ tri->indexes[i+2] ];
// if we don't have points on both sides of both the ray planes, no intersection
if ( ( triOr ^ ( triOr >> 4 ) ) & 3 ) {
continue;
}
// if we don't have any points between front and end, no intersection
if ( ( triOr ^ ( triOr >> 1 ) ) & 4 ) {
continue;
}
c_testPlanes++;
plane = &tri->facePlanes[j];
d1 = plane->Distance( start );
d2 = plane->Distance( end );
if ( d1 <= d2 ) {
continue; // comning at it from behind or parallel
}
if ( d1 < 0.0f ) {
continue; // starts past it
}
if ( d2 > 0.0f ) {
continue; // finishes in front of it
}
f = d1 / ( d1 - d2 );
if ( f < 0.0f ) {
continue; // shouldn't happen
}
if ( f >= hit.fraction ) {
continue; // have already hit something closer
}
c_testEdges++;
// find the exact point of impact with the plane
point = start + f * startDir;
// see if the point is within the three edges
// if radius > 0 the triangle is expanded with a circle in the triangle plane
dir[0] = tri->verts[ tri->indexes[i+0] ].xyz - point;
dir[1] = tri->verts[ tri->indexes[i+1] ].xyz - point;
cross = dir[0].Cross( dir[1] );
d = plane->Normal() * cross;
if ( d > 0.0f ) {
if ( radiusSqr <= 0.0f ) {
continue;
}
edge = tri->verts[ tri->indexes[i+0] ].xyz - tri->verts[ tri->indexes[i+1] ].xyz;
edgeLengthSqr = edge.LengthSqr();
if ( cross.LengthSqr() > edgeLengthSqr * radiusSqr ) {
continue;
}
d = edge * dir[0];
if ( d < 0.0f ) {
edge = tri->verts[ tri->indexes[i+0] ].xyz - tri->verts[ tri->indexes[i+2] ].xyz;
d = edge * dir[0];
if ( d < 0.0f ) {
if ( dir[0].LengthSqr() > radiusSqr ) {
continue;
}
}
} else if ( d > edgeLengthSqr ) {
edge = tri->verts[ tri->indexes[i+1] ].xyz - tri->verts[ tri->indexes[i+2] ].xyz;
d = edge * dir[1];
if ( d < 0.0f ) {
if ( dir[1].LengthSqr() > radiusSqr ) {
continue;
}
}
}
}
dir[2] = tri->verts[ tri->indexes[i+2] ].xyz - point;
cross = dir[1].Cross( dir[2] );
d = plane->Normal() * cross;
if ( d > 0.0f ) {
if ( radiusSqr <= 0.0f ) {
continue;
}
edge = tri->verts[ tri->indexes[i+1] ].xyz - tri->verts[ tri->indexes[i+2] ].xyz;
edgeLengthSqr = edge.LengthSqr();
if ( cross.LengthSqr() > edgeLengthSqr * radiusSqr ) {
continue;
}
d = edge * dir[1];
if ( d < 0.0f ) {
edge = tri->verts[ tri->indexes[i+1] ].xyz - tri->verts[ tri->indexes[i+0] ].xyz;
d = edge * dir[1];
if ( d < 0.0f ) {
if ( dir[1].LengthSqr() > radiusSqr ) {
continue;
}
}
} else if ( d > edgeLengthSqr ) {
edge = tri->verts[ tri->indexes[i+2] ].xyz - tri->verts[ tri->indexes[i+0] ].xyz;
d = edge * dir[2];
if ( d < 0.0f ) {
if ( dir[2].LengthSqr() > radiusSqr ) {
continue;
}
}
}
}
cross = dir[2].Cross( dir[0] );
d = plane->Normal() * cross;
if ( d > 0.0f ) {
if ( radiusSqr <= 0.0f ) {
continue;
}
edge = tri->verts[ tri->indexes[i+2] ].xyz - tri->verts[ tri->indexes[i+0] ].xyz;
edgeLengthSqr = edge.LengthSqr();
if ( cross.LengthSqr() > edgeLengthSqr * radiusSqr ) {
continue;
}
d = edge * dir[2];
if ( d < 0.0f ) {
edge = tri->verts[ tri->indexes[i+2] ].xyz - tri->verts[ tri->indexes[i+1] ].xyz;
d = edge * dir[2];
if ( d < 0.0f ) {
if ( dir[2].LengthSqr() > radiusSqr ) {
continue;
}
}
} else if ( d > edgeLengthSqr ) {
edge = tri->verts[ tri->indexes[i+0] ].xyz - tri->verts[ tri->indexes[i+1] ].xyz;
d = edge * dir[0];
if ( d < 0.0f ) {
if ( dir[0].LengthSqr() > radiusSqr ) {
continue;
}
}
}
}
// we hit it
c_intersect++;
hit.fraction = f;
hit.normal = plane->Normal();
hit.point = point;
hit.indexes[0] = tri->indexes[i];
hit.indexes[1] = tri->indexes[i+1];
hit.indexes[2] = tri->indexes[i+2];
}
#ifdef TEST_TRACE
trace_timer.Stop();
common->Printf( "testVerts:%i c_testPlanes:%i c_testEdges:%i c_intersect:%i msec:%1.4f\n",
tri->numVerts, c_testPlanes, c_testEdges, c_intersect, trace_timer.Milliseconds() );
#endif
return hit;
}
/*
=================
RB_DrawExpandedTriangles
=================
*/
void RB_DrawExpandedTriangles( const srfTriangles_t *tri, const float radius, const idVec3 &vieworg ) {
int i, j, k;
idVec3 dir[6], normal, point;
for ( i = 0; i < tri->numIndexes; i += 3 ) {
idVec3 p[3] = { tri->verts[ tri->indexes[ i + 0 ] ].xyz, tri->verts[ tri->indexes[ i + 1 ] ].xyz, tri->verts[ tri->indexes[ i + 2 ] ].xyz };
dir[0] = p[0] - p[1];
dir[1] = p[1] - p[2];
dir[2] = p[2] - p[0];
normal = dir[0].Cross( dir[1] );
if ( normal * p[0] < normal * vieworg ) {
continue;
}
dir[0] = normal.Cross( dir[0] );
dir[1] = normal.Cross( dir[1] );
dir[2] = normal.Cross( dir[2] );
dir[0].Normalize();
dir[1].Normalize();
dir[2].Normalize();
qglBegin( GL_LINE_LOOP );
for ( j = 0; j < 3; j++ ) {
k = ( j + 1 ) % 3;
dir[4] = ( dir[j] + dir[k] ) * 0.5f;
dir[4].Normalize();
dir[3] = ( dir[j] + dir[4] ) * 0.5f;
dir[3].Normalize();
dir[5] = ( dir[4] + dir[k] ) * 0.5f;
dir[5].Normalize();
point = p[k] + dir[j] * radius;
qglVertex3f( point[0], point[1], point[2] );
point = p[k] + dir[3] * radius;
qglVertex3f( point[0], point[1], point[2] );
point = p[k] + dir[4] * radius;
qglVertex3f( point[0], point[1], point[2] );
point = p[k] + dir[5] * radius;
qglVertex3f( point[0], point[1], point[2] );
point = p[k] + dir[k] * radius;
qglVertex3f( point[0], point[1], point[2] );
}
qglEnd();
}
}
/*
================
RB_ShowTrace
Debug visualization
================
*/
void RB_ShowTrace( drawSurf_t **drawSurfs, int numDrawSurfs ) {
int i;
const srfTriangles_t *tri;
const drawSurf_t *surf;
idVec3 start, end;
idVec3 localStart, localEnd;
localTrace_t hit;
float radius;
if ( r_showTrace.GetInteger() == 0 ) {
return;
}
if ( r_showTrace.GetInteger() == 2 ) {
radius = 5.0f;
} else {
radius = 0.0f;
}
// determine the points of the trace
start = backEnd.viewDef->renderView.vieworg;
end = start + 4000 * backEnd.viewDef->renderView.viewaxis[0];
// check and draw the surfaces
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
GL_TexEnv( GL_MODULATE );
globalImages->whiteImage->Bind();
// find how many are ambient
for ( i = 0 ; i < numDrawSurfs ; i++ ) {
surf = drawSurfs[i];
tri = surf->geo;
if ( tri == NULL || tri->verts == NULL ) {
continue;
}
// transform the points into local space
R_GlobalPointToLocal( surf->space->modelMatrix, start, localStart );
R_GlobalPointToLocal( surf->space->modelMatrix, end, localEnd );
// check the bounding box
if ( !tri->bounds.Expand( radius ).LineIntersection( localStart, localEnd ) ) {
continue;
}
qglLoadMatrixf( surf->space->modelViewMatrix );
// highlight the surface
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA );
qglColor4f( 1, 0, 0, 0.25 );
RB_DrawElementsImmediate( tri );
// draw the bounding box
GL_State( GLS_DEPTHFUNC_ALWAYS );
qglColor4f( 1, 1, 1, 1 );
RB_DrawBounds( tri->bounds );
if ( radius != 0.0f ) {
// draw the expanded triangles
qglColor4f( 0.5f, 0.5f, 1.0f, 1.0f );
RB_DrawExpandedTriangles( tri, radius, localStart );
}
// check the exact surfaces
hit = R_LocalTrace( localStart, localEnd, radius, tri );
if ( hit.fraction < 1.0 ) {
qglColor4f( 1, 1, 1, 1 );
RB_DrawBounds( idBounds( hit.point ).Expand( 1 ) );
}
}
}