/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "sys/platform.h" #include "idlib/bv/Bounds.h" idBounds bounds_zero( vec3_zero, vec3_zero ); /* ============ idBounds::GetRadius ============ */ float idBounds::GetRadius( void ) const { int i; float total, b0, b1; total = 0.0f; for ( i = 0; i < 3; i++ ) { b0 = (float)idMath::Fabs( b[0][i] ); b1 = (float)idMath::Fabs( b[1][i] ); if ( b0 > b1 ) { total += b0 * b0; } else { total += b1 * b1; } } return idMath::Sqrt( total ); } /* ============ idBounds::GetRadius ============ */ float idBounds::GetRadius( const idVec3 ¢er ) const { int i; float total, b0, b1; total = 0.0f; for ( i = 0; i < 3; i++ ) { b0 = (float)idMath::Fabs( center[i] - b[0][i] ); b1 = (float)idMath::Fabs( b[1][i] - center[i] ); if ( b0 > b1 ) { total += b0 * b0; } else { total += b1 * b1; } } return idMath::Sqrt( total ); } /* ================ idBounds::PlaneDistance ================ */ float idBounds::PlaneDistance( const idPlane &plane ) const { idVec3 center; float d1, d2; center = ( b[0] + b[1] ) * 0.5f; d1 = plane.Distance( center ); d2 = idMath::Fabs( ( b[1][0] - center[0] ) * plane.Normal()[0] ) + idMath::Fabs( ( b[1][1] - center[1] ) * plane.Normal()[1] ) + idMath::Fabs( ( b[1][2] - center[2] ) * plane.Normal()[2] ); if ( d1 - d2 > 0.0f ) { return d1 - d2; } if ( d1 + d2 < 0.0f ) { return d1 + d2; } return 0.0f; } /* ================ idBounds::PlaneSide ================ */ int idBounds::PlaneSide( const idPlane &plane, const float epsilon ) const { idVec3 center; float d1, d2; center = ( b[0] + b[1] ) * 0.5f; d1 = plane.Distance( center ); d2 = idMath::Fabs( ( b[1][0] - center[0] ) * plane.Normal()[0] ) + idMath::Fabs( ( b[1][1] - center[1] ) * plane.Normal()[1] ) + idMath::Fabs( ( b[1][2] - center[2] ) * plane.Normal()[2] ); if ( d1 - d2 > epsilon ) { return PLANESIDE_FRONT; } if ( d1 + d2 < -epsilon ) { return PLANESIDE_BACK; } return PLANESIDE_CROSS; } /* ============ idBounds::LineIntersection Returns true if the line intersects the bounds between the start and end point. ============ */ bool idBounds::LineIntersection( const idVec3 &start, const idVec3 &end ) const { float ld[3]; idVec3 center = ( b[0] + b[1] ) * 0.5f; idVec3 extents = b[1] - center; idVec3 lineDir = 0.5f * ( end - start ); idVec3 lineCenter = start + lineDir; idVec3 dir = lineCenter - center; ld[0] = idMath::Fabs( lineDir[0] ); if ( idMath::Fabs( dir[0] ) > extents[0] + ld[0] ) { return false; } ld[1] = idMath::Fabs( lineDir[1] ); if ( idMath::Fabs( dir[1] ) > extents[1] + ld[1] ) { return false; } ld[2] = idMath::Fabs( lineDir[2] ); if ( idMath::Fabs( dir[2] ) > extents[2] + ld[2] ) { return false; } idVec3 cross = lineDir.Cross( dir ); if ( idMath::Fabs( cross[0] ) > extents[1] * ld[2] + extents[2] * ld[1] ) { return false; } if ( idMath::Fabs( cross[1] ) > extents[0] * ld[2] + extents[2] * ld[0] ) { return false; } if ( idMath::Fabs( cross[2] ) > extents[0] * ld[1] + extents[1] * ld[0] ) { return false; } return true; } /* ============ idBounds::RayIntersection Returns true if the ray intersects the bounds. The ray can intersect the bounds in both directions from the start point. If start is inside the bounds it is considered an intersection with scale = 0 ============ */ bool idBounds::RayIntersection( const idVec3 &start, const idVec3 &dir, float &scale ) const { int i, ax0, ax1, ax2, side, inside; float f; idVec3 hit; ax0 = -1; inside = 0; for ( i = 0; i < 3; i++ ) { if ( start[i] < b[0][i] ) { side = 0; } else if ( start[i] > b[1][i] ) { side = 1; } else { inside++; continue; } if ( dir[i] == 0.0f ) { continue; } f = ( start[i] - b[side][i] ); if ( ax0 < 0 || idMath::Fabs( f ) > idMath::Fabs( scale * dir[i] ) ) { scale = - ( f / dir[i] ); ax0 = i; } } if ( ax0 < 0 ) { scale = 0.0f; // return true if the start point is inside the bounds return ( inside == 3 ); } ax1 = (ax0+1)%3; ax2 = (ax0+2)%3; hit[ax1] = start[ax1] + scale * dir[ax1]; hit[ax2] = start[ax2] + scale * dir[ax2]; return ( hit[ax1] >= b[0][ax1] && hit[ax1] <= b[1][ax1] && hit[ax2] >= b[0][ax2] && hit[ax2] <= b[1][ax2] ); } /* ============ idBounds::FromTransformedBounds ============ */ void idBounds::FromTransformedBounds( const idBounds &bounds, const idVec3 &origin, const idMat3 &axis ) { int i; idVec3 center, extents, rotatedExtents; center = (bounds[0] + bounds[1]) * 0.5f; extents = bounds[1] - center; for ( i = 0; i < 3; i++ ) { rotatedExtents[i] = idMath::Fabs( extents[0] * axis[0][i] ) + idMath::Fabs( extents[1] * axis[1][i] ) + idMath::Fabs( extents[2] * axis[2][i] ); } center = origin + center * axis; b[0] = center - rotatedExtents; b[1] = center + rotatedExtents; } /* ============ idBounds::FromPoints Most tight bounds for a point set. ============ */ void idBounds::FromPoints( const idVec3 *points, const int numPoints ) { SIMDProcessor->MinMax( b[0], b[1], points, numPoints ); } /* ============ idBounds::FromPointTranslation Most tight bounds for the translational movement of the given point. ============ */ void idBounds::FromPointTranslation( const idVec3 &point, const idVec3 &translation ) { int i; for ( i = 0; i < 3; i++ ) { if ( translation[i] < 0.0f ) { b[0][i] = point[i] + translation[i]; b[1][i] = point[i]; } else { b[0][i] = point[i]; b[1][i] = point[i] + translation[i]; } } } /* ============ idBounds::FromBoundsTranslation Most tight bounds for the translational movement of the given bounds. ============ */ void idBounds::FromBoundsTranslation( const idBounds &bounds, const idVec3 &origin, const idMat3 &axis, const idVec3 &translation ) { int i; if ( axis.IsRotated() ) { FromTransformedBounds( bounds, origin, axis ); } else { b[0] = bounds[0] + origin; b[1] = bounds[1] + origin; } for ( i = 0; i < 3; i++ ) { if ( translation[i] < 0.0f ) { b[0][i] += translation[i]; } else { b[1][i] += translation[i]; } } } /* ================ BoundsForPointRotation only for rotations < 180 degrees ================ */ idBounds BoundsForPointRotation( const idVec3 &start, const idRotation &rotation ) { int i; float radiusSqr; idVec3 v1, v2; idVec3 origin, axis, end; idBounds bounds; end = start * rotation; axis = rotation.GetVec(); origin = rotation.GetOrigin() + axis * ( axis * ( start - rotation.GetOrigin() ) ); radiusSqr = ( start - origin ).LengthSqr(); v1 = ( start - origin ).Cross( axis ); v2 = ( end - origin ).Cross( axis ); for ( i = 0; i < 3; i++ ) { // if the derivative changes sign along this axis during the rotation from start to end if ( ( v1[i] > 0.0f && v2[i] < 0.0f ) || ( v1[i] < 0.0f && v2[i] > 0.0f ) ) { if ( ( 0.5f * (start[i] + end[i]) - origin[i] ) > 0.0f ) { bounds[0][i] = Min( start[i], end[i] ); bounds[1][i] = origin[i] + idMath::Sqrt( radiusSqr * ( 1.0f - axis[i] * axis[i] ) ); } else { bounds[0][i] = origin[i] - idMath::Sqrt( radiusSqr * ( 1.0f - axis[i] * axis[i] ) ); bounds[1][i] = Max( start[i], end[i] ); } } else if ( start[i] > end[i] ) { bounds[0][i] = end[i]; bounds[1][i] = start[i]; } else { bounds[0][i] = start[i]; bounds[1][i] = end[i]; } } return bounds; } /* ============ idBounds::FromPointRotation Most tight bounds for the rotational movement of the given point. ============ */ void idBounds::FromPointRotation( const idVec3 &point, const idRotation &rotation ) { float radius; if ( idMath::Fabs( rotation.GetAngle() ) < 180.0f ) { (*this) = BoundsForPointRotation( point, rotation ); } else { radius = ( point - rotation.GetOrigin() ).Length(); // FIXME: these bounds are usually way larger b[0].Set( -radius, -radius, -radius ); b[1].Set( radius, radius, radius ); } } /* ============ idBounds::FromBoundsRotation Most tight bounds for the rotational movement of the given bounds. ============ */ void idBounds::FromBoundsRotation( const idBounds &bounds, const idVec3 &origin, const idMat3 &axis, const idRotation &rotation ) { int i; float radius; idVec3 point; idBounds rBounds; if ( idMath::Fabs( rotation.GetAngle() ) < 180.0f ) { (*this) = BoundsForPointRotation( bounds[0] * axis + origin, rotation ); for ( i = 1; i < 8; i++ ) { point[0] = bounds[(i^(i>>1))&1][0]; point[1] = bounds[(i>>1)&1][1]; point[2] = bounds[(i>>2)&1][2]; (*this) += BoundsForPointRotation( point * axis + origin, rotation ); } } else { point = (bounds[1] - bounds[0]) * 0.5f; radius = (bounds[1] - point).Length() + (point - rotation.GetOrigin()).Length(); // FIXME: these bounds are usually way larger b[0].Set( -radius, -radius, -radius ); b[1].Set( radius, radius, radius ); } } /* ============ idBounds::ToPoints ============ */ void idBounds::ToPoints( idVec3 points[8] ) const { for ( int i = 0; i < 8; i++ ) { points[i][0] = b[(i^(i>>1))&1][0]; points[i][1] = b[(i>>1)&1][1]; points[i][2] = b[(i>>2)&1][2]; } }