/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "../../../idlib/precompiled.h" #pragma hdrstop #include "dmap.h" /* T junction fixing never creates more xyz points, but new vertexes will be created when different surfaces cause a fix The vertex cleaning accomplishes two goals: removing extranious low order bits to avoid numbers like 1.000001233, and grouping nearby vertexes together. Straight truncation accomplishes the first foal, but two vertexes only a tiny epsilon apart could still be spread to different snap points. To avoid this, we allow the merge test to group points together that snapped to neighboring integer coordinates. Snaping verts can drag some triangles backwards or collapse them to points, which will cause them to be removed. When snapping to ints, a point can move a maximum of sqrt(3)/2 distance Two points that were an epsilon apart can then become sqrt(3) apart A case that causes recursive overflow with point to triangle fixing: A C D B Triangle ABC tests against point D and splits into triangles ADC and DBC Triangle DBC then tests against point A again and splits into ABC and ADB infinite recursive loop For a given source triangle init the no-check list to hold the three triangle hashVerts recursiveFixTriAgainstHash recursiveFixTriAgainstHashVert_r if hashVert is on the no-check list exit if the hashVert should split the triangle add to the no-check list recursiveFixTriAgainstHash(a) recursiveFixTriAgainstHash(b) */ #define SNAP_FRACTIONS 32 //#define SNAP_FRACTIONS 8 //#define SNAP_FRACTIONS 1 #define VERTEX_EPSILON ( 1.0 / SNAP_FRACTIONS ) #define COLINEAR_EPSILON ( 1.8 * VERTEX_EPSILON ) #define HASH_BINS 16 typedef struct hashVert_s { struct hashVert_s *next; idVec3 v; int iv[3]; } hashVert_t; static idBounds hashBounds; static idVec3 hashScale; static hashVert_t *hashVerts[HASH_BINS][HASH_BINS][HASH_BINS]; static int numHashVerts, numTotalVerts; static int hashIntMins[3], hashIntScale[3]; /* =============== GetHashVert Also modifies the original vert to the snapped value =============== */ struct hashVert_s *GetHashVert( idVec3 &v ) { int iv[3]; int block[3]; int i; hashVert_t *hv; numTotalVerts++; // snap the vert to integral values for ( i = 0 ; i < 3 ; i++ ) { iv[i] = floor( ( v[i] + 0.5/SNAP_FRACTIONS ) * SNAP_FRACTIONS ); block[i] = ( iv[i] - hashIntMins[i] ) / hashIntScale[i]; if ( block[i] < 0 ) { block[i] = 0; } else if ( block[i] >= HASH_BINS ) { block[i] = HASH_BINS - 1; } } // see if a vertex near enough already exists // this could still fail to find a near neighbor right at the hash block boundary for ( hv = hashVerts[block[0]][block[1]][block[2]] ; hv ; hv = hv->next ) { #if 0 if ( hv->iv[0] == iv[0] && hv->iv[1] == iv[1] && hv->iv[2] == iv[2] ) { VectorCopy( hv->v, v ); return hv; } #else for ( i = 0 ; i < 3 ; i++ ) { int d; d = hv->iv[i] - iv[i]; if ( d < -1 || d > 1 ) { break; } } if ( i == 3 ) { VectorCopy( hv->v, v ); return hv; } #endif } // create a new one hv = (hashVert_t *)Mem_Alloc( sizeof( *hv ) ); hv->next = hashVerts[block[0]][block[1]][block[2]]; hashVerts[block[0]][block[1]][block[2]] = hv; hv->iv[0] = iv[0]; hv->iv[1] = iv[1]; hv->iv[2] = iv[2]; hv->v[0] = (float)iv[0] / SNAP_FRACTIONS; hv->v[1] = (float)iv[1] / SNAP_FRACTIONS; hv->v[2] = (float)iv[2] / SNAP_FRACTIONS; VectorCopy( hv->v, v ); numHashVerts++; return hv; } /* ================== HashBlocksForTri Returns an inclusive bounding box of hash bins that should hold the triangle ================== */ static void HashBlocksForTri( const mapTri_t *tri, int blocks[2][3] ) { idBounds bounds; int i; bounds.Clear(); bounds.AddPoint( tri->v[0].xyz ); bounds.AddPoint( tri->v[1].xyz ); bounds.AddPoint( tri->v[2].xyz ); // add a 1.0 slop margin on each side for ( i = 0 ; i < 3 ; i++ ) { blocks[0][i] = ( bounds[0][i] - 1.0 - hashBounds[0][i] ) / hashScale[i]; if ( blocks[0][i] < 0 ) { blocks[0][i] = 0; } else if ( blocks[0][i] >= HASH_BINS ) { blocks[0][i] = HASH_BINS - 1; } blocks[1][i] = ( bounds[1][i] + 1.0 - hashBounds[0][i] ) / hashScale[i]; if ( blocks[1][i] < 0 ) { blocks[1][i] = 0; } else if ( blocks[1][i] >= HASH_BINS ) { blocks[1][i] = HASH_BINS - 1; } } } /* ================= HashTriangles Removes triangles that are degenerated or flipped backwards ================= */ void HashTriangles( optimizeGroup_t *groupList ) { mapTri_t *a; int vert; int i; optimizeGroup_t *group; // clear the hash tables memset( hashVerts, 0, sizeof( hashVerts ) ); numHashVerts = 0; numTotalVerts = 0; // bound all the triangles to determine the bucket size hashBounds.Clear(); for ( group = groupList ; group ; group = group->nextGroup ) { for ( a = group->triList ; a ; a = a->next ) { hashBounds.AddPoint( a->v[0].xyz ); hashBounds.AddPoint( a->v[1].xyz ); hashBounds.AddPoint( a->v[2].xyz ); } } // spread the bounds so it will never have a zero size for ( i = 0 ; i < 3 ; i++ ) { hashBounds[0][i] = floor( hashBounds[0][i] - 1 ); hashBounds[1][i] = ceil( hashBounds[1][i] + 1 ); hashIntMins[i] = hashBounds[0][i] * SNAP_FRACTIONS; hashScale[i] = ( hashBounds[1][i] - hashBounds[0][i] ) / HASH_BINS; hashIntScale[i] = hashScale[i] * SNAP_FRACTIONS; if ( hashIntScale[i] < 1 ) { hashIntScale[i] = 1; } } // add all the points to the hash buckets for ( group = groupList ; group ; group = group->nextGroup ) { // don't create tjunctions against discrete surfaces (blood decals, etc) if ( group->material != NULL && group->material->IsDiscrete() ) { continue; } for ( a = group->triList ; a ; a = a->next ) { for ( vert = 0 ; vert < 3 ; vert++ ) { a->hashVert[vert] = GetHashVert( a->v[vert].xyz ); } } } } /* ================= FreeTJunctionHash The optimizer may add some more crossing verts after t junction processing ================= */ void FreeTJunctionHash( void ) { int i, j, k; hashVert_t *hv, *next; for ( i = 0 ; i < HASH_BINS ; i++ ) { for ( j = 0 ; j < HASH_BINS ; j++ ) { for ( k = 0 ; k < HASH_BINS ; k++ ) { for ( hv = hashVerts[i][j][k] ; hv ; hv = next ) { next = hv->next; Mem_Free( hv ); } } } } memset( hashVerts, 0, sizeof( hashVerts ) ); } /* ================== FixTriangleAgainstHashVert Returns a list of two new mapTri if the hashVert is on an edge of the given mapTri, otherwise returns NULL. ================== */ static mapTri_t *FixTriangleAgainstHashVert( const mapTri_t *a, const hashVert_t *hv ) { int i; const idDrawVert *v1, *v2; idDrawVert split; idVec3 dir; float len; float frac; mapTri_t *new1, *new2; idVec3 temp; float d, off; const idVec3 *v; idPlane plane1, plane2; v = &hv->v; // if the triangle already has this hashVert as a vert, // it can't be split by it if ( a->hashVert[0] == hv || a->hashVert[1] == hv || a->hashVert[2] == hv ) { return NULL; } split.Clear(); // we probably should find the edge that the vertex is closest to. // it is possible to be < 1 unit away from multiple // edges, but we only want to split by one of them for ( i = 0 ; i < 3 ; i++ ) { v1 = &a->v[i]; v2 = &a->v[(i+1)%3]; VectorSubtract( v2->xyz, v1->xyz, dir ); len = dir.Normalize(); // if it is close to one of the edge vertexes, skip it VectorSubtract( *v, v1->xyz, temp ); d = DotProduct( temp, dir ); if ( d <= 0 || d >= len ) { continue; } // make sure it is on the line VectorMA( v1->xyz, d, dir, temp ); VectorSubtract( temp, *v, temp ); off = temp.Length(); if ( off <= -COLINEAR_EPSILON || off >= COLINEAR_EPSILON ) { continue; } // take the x/y/z from the splitter, // but interpolate everything else from the original tri VectorCopy( *v, split.xyz ); frac = d / len; split.st[0] = v1->st[0] + frac * ( v2->st[0] - v1->st[0] ); split.st[1] = v1->st[1] + frac * ( v2->st[1] - v1->st[1] ); split.normal[0] = v1->normal[0] + frac * ( v2->normal[0] - v1->normal[0] ); split.normal[1] = v1->normal[1] + frac * ( v2->normal[1] - v1->normal[1] ); split.normal[2] = v1->normal[2] + frac * ( v2->normal[2] - v1->normal[2] ); split.normal.Normalize(); // split the tri new1 = CopyMapTri( a ); new1->v[(i+1)%3] = split; new1->hashVert[(i+1)%3] = hv; new1->next = NULL; new2 = CopyMapTri( a ); new2->v[i] = split; new2->hashVert[i] = hv; new2->next = new1; plane1.FromPoints( new1->hashVert[0]->v, new1->hashVert[1]->v, new1->hashVert[2]->v ); plane2.FromPoints( new2->hashVert[0]->v, new2->hashVert[1]->v, new2->hashVert[2]->v ); d = DotProduct( plane1, plane2 ); // if the two split triangle's normals don't face the same way, // it should not be split if ( d <= 0 ) { FreeTriList( new2 ); continue; } return new2; } return NULL; } /* ================== FixTriangleAgainstHash Potentially splits a triangle into a list of triangles based on tjunctions ================== */ static mapTri_t *FixTriangleAgainstHash( const mapTri_t *tri ) { mapTri_t *fixed; mapTri_t *a; mapTri_t *test, *next; int blocks[2][3]; int i, j, k; hashVert_t *hv; // if this triangle is degenerate after point snapping, // do nothing (this shouldn't happen, because they should // be removed as they are hashed) if ( tri->hashVert[0] == tri->hashVert[1] || tri->hashVert[0] == tri->hashVert[2] || tri->hashVert[1] == tri->hashVert[2] ) { return NULL; } fixed = CopyMapTri( tri ); fixed->next = NULL; HashBlocksForTri( tri, blocks ); for ( i = blocks[0][0] ; i <= blocks[1][0] ; i++ ) { for ( j = blocks[0][1] ; j <= blocks[1][1] ; j++ ) { for ( k = blocks[0][2] ; k <= blocks[1][2] ; k++ ) { for ( hv = hashVerts[i][j][k] ; hv ; hv = hv->next ) { // fix all triangles in the list against this point test = fixed; fixed = NULL; for ( ; test ; test = next ) { next = test->next; a = FixTriangleAgainstHashVert( test, hv ); if ( a ) { // cut into two triangles a->next->next = fixed; fixed = a; FreeTri( test ); } else { test->next = fixed; fixed = test; } } } } } } return fixed; } /* ================== CountGroupListTris ================== */ int CountGroupListTris( const optimizeGroup_t *groupList ) { int c; c = 0; for ( ; groupList ; groupList = groupList->nextGroup ) { c += CountTriList( groupList->triList ); } return c; } /* ================== FixAreaGroupsTjunctions ================== */ void FixAreaGroupsTjunctions( optimizeGroup_t *groupList ) { const mapTri_t *tri; mapTri_t *newList; mapTri_t *fixed; int startCount, endCount; optimizeGroup_t *group; if ( dmapGlobals.noTJunc ) { return; } if ( !groupList ) { return; } startCount = CountGroupListTris( groupList ); if ( dmapGlobals.verbose ) { common->Printf( "----- FixAreaGroupsTjunctions -----\n" ); common->Printf( "%6i triangles in\n", startCount ); } HashTriangles( groupList ); for ( group = groupList ; group ; group = group->nextGroup ) { // don't touch discrete surfaces if ( group->material != NULL && group->material->IsDiscrete() ) { continue; } newList = NULL; for ( tri = group->triList ; tri ; tri = tri->next ) { fixed = FixTriangleAgainstHash( tri ); newList = MergeTriLists( newList, fixed ); } FreeTriList( group->triList ); group->triList = newList; } endCount = CountGroupListTris( groupList ); if ( dmapGlobals.verbose ) { common->Printf( "%6i triangles out\n", endCount ); } } /* ================== FixEntityTjunctions ================== */ void FixEntityTjunctions( uEntity_t *e ) { int i; for ( i = 0 ; i < e->numAreas ; i++ ) { FixAreaGroupsTjunctions( e->areas[i].groups ); FreeTJunctionHash(); } } /* ================== FixGlobalTjunctions ================== */ void FixGlobalTjunctions( uEntity_t *e ) { mapTri_t *a; int vert; int i; optimizeGroup_t *group; int areaNum; common->Printf( "----- FixGlobalTjunctions -----\n" ); // clear the hash tables memset( hashVerts, 0, sizeof( hashVerts ) ); numHashVerts = 0; numTotalVerts = 0; // bound all the triangles to determine the bucket size hashBounds.Clear(); for ( areaNum = 0 ; areaNum < e->numAreas ; areaNum++ ) { for ( group = e->areas[areaNum].groups ; group ; group = group->nextGroup ) { for ( a = group->triList ; a ; a = a->next ) { hashBounds.AddPoint( a->v[0].xyz ); hashBounds.AddPoint( a->v[1].xyz ); hashBounds.AddPoint( a->v[2].xyz ); } } } // spread the bounds so it will never have a zero size for ( i = 0 ; i < 3 ; i++ ) { hashBounds[0][i] = floor( hashBounds[0][i] - 1 ); hashBounds[1][i] = ceil( hashBounds[1][i] + 1 ); hashIntMins[i] = hashBounds[0][i] * SNAP_FRACTIONS; hashScale[i] = ( hashBounds[1][i] - hashBounds[0][i] ) / HASH_BINS; hashIntScale[i] = hashScale[i] * SNAP_FRACTIONS; if ( hashIntScale[i] < 1 ) { hashIntScale[i] = 1; } } // add all the points to the hash buckets for ( areaNum = 0 ; areaNum < e->numAreas ; areaNum++ ) { for ( group = e->areas[areaNum].groups ; group ; group = group->nextGroup ) { // don't touch discrete surfaces if ( group->material != NULL && group->material->IsDiscrete() ) { continue; } for ( a = group->triList ; a ; a = a->next ) { for ( vert = 0 ; vert < 3 ; vert++ ) { a->hashVert[vert] = GetHashVert( a->v[vert].xyz ); } } } } // add all the func_static model vertexes to the hash buckets // optionally inline some of the func_static models if ( dmapGlobals.entityNum == 0 ) { for ( int eNum = 1 ; eNum < dmapGlobals.num_entities ; eNum++ ) { uEntity_t *entity = &dmapGlobals.uEntities[eNum]; const char *className = entity->mapEntity->epairs.GetString( "classname" ); if ( idStr::Icmp( className, "func_static" ) ) { continue; } const char *modelName = entity->mapEntity->epairs.GetString( "model" ); if ( !modelName ) { continue; } if ( !strstr( modelName, ".lwo" ) && !strstr( modelName, ".ase" ) && !strstr( modelName, ".ma" ) ) { continue; } idRenderModel *model = renderModelManager->FindModel( modelName ); // common->Printf( "adding T junction verts for %s.\n", entity->mapEntity->epairs.GetString( "name" ) ); idMat3 axis; // get the rotation matrix in either full form, or single angle form if ( !entity->mapEntity->epairs.GetMatrix( "rotation", "1 0 0 0 1 0 0 0 1", axis ) ) { float angle = entity->mapEntity->epairs.GetFloat( "angle" ); if ( angle != 0.0f ) { axis = idAngles( 0.0f, angle, 0.0f ).ToMat3(); } else { axis.Identity(); } } idVec3 origin = entity->mapEntity->epairs.GetVector( "origin" ); for ( i = 0 ; i < model->NumSurfaces() ; i++ ) { const modelSurface_t *surface = model->Surface( i ); const srfTriangles_t *tri = surface->geometry; mapTri_t mapTri; memset( &mapTri, 0, sizeof( mapTri ) ); mapTri.material = surface->shader; // don't let discretes (autosprites, etc) merge together if ( mapTri.material->IsDiscrete() ) { mapTri.mergeGroup = (void *)surface; } for ( int j = 0 ; j < tri->numVerts ; j += 3 ) { idVec3 v = tri->verts[j].xyz * axis + origin; GetHashVert( v ); } } } } // now fix each area for ( areaNum = 0 ; areaNum < e->numAreas ; areaNum++ ) { for ( group = e->areas[areaNum].groups ; group ; group = group->nextGroup ) { // don't touch discrete surfaces if ( group->material != NULL && group->material->IsDiscrete() ) { continue; } mapTri_t *newList = NULL; for ( mapTri_t *tri = group->triList ; tri ; tri = tri->next ) { mapTri_t *fixed = FixTriangleAgainstHash( tri ); newList = MergeTriLists( newList, fixed ); } FreeTriList( group->triList ); group->triList = newList; } } // done FreeTJunctionHash(); }