/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "../precompiled.h" #pragma hdrstop //=============================================================== // // idWinding // //=============================================================== /* ============= idWinding::ReAllocate ============= */ bool idWinding::ReAllocate( int n, bool keep ) { idVec5 *oldP; oldP = p; n = (n+3) & ~3; // align up to multiple of four p = new idVec5[n]; if ( oldP ) { if ( keep ) { memcpy( p, oldP, numPoints * sizeof(p[0]) ); } delete[] oldP; } allocedSize = n; return true; } /* ============= idWinding::BaseForPlane ============= */ void idWinding::BaseForPlane( const idVec3 &normal, const float dist ) { idVec3 org, vright, vup; org = normal * dist; normal.NormalVectors( vup, vright ); vup *= MAX_WORLD_SIZE; vright *= MAX_WORLD_SIZE; EnsureAlloced( 4 ); numPoints = 4; p[0].ToVec3() = org - vright + vup; p[0].s = p[0].t = 0.0f; p[1].ToVec3() = org + vright + vup; p[1].s = p[1].t = 0.0f; p[2].ToVec3() = org + vright - vup; p[2].s = p[2].t = 0.0f; p[3].ToVec3() = org - vright - vup; p[3].s = p[3].t = 0.0f; } /* ============= idWinding::Split ============= */ int idWinding::Split( const idPlane &plane, const float epsilon, idWinding **front, idWinding **back ) const { float * dists; byte * sides; int counts[3]; float dot; int i, j; const idVec5 * p1, *p2; idVec5 mid; idWinding * f, *b; int maxpts; assert( this ); dists = (float *) _alloca( (numPoints+4) * sizeof( float ) ); sides = (byte *) _alloca( (numPoints+4) * sizeof( byte ) ); counts[0] = counts[1] = counts[2] = 0; // determine sides for each point for ( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.Distance( p[i].ToVec3() ); if ( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if ( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; *front = *back = NULL; // if coplanar, put on the front side if the normals match if ( !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { idPlane windingPlane; GetPlane( windingPlane ); if ( windingPlane.Normal() * plane.Normal() > 0.0f ) { *front = Copy(); return SIDE_FRONT; } else { *back = Copy(); return SIDE_BACK; } } // if nothing at the front of the clipping plane if ( !counts[SIDE_FRONT] ) { *back = Copy(); return SIDE_BACK; } // if nothing at the back of the clipping plane if ( !counts[SIDE_BACK] ) { *front = Copy(); return SIDE_FRONT; } maxpts = numPoints+4; // cant use counts[0]+2 because of fp grouping errors *front = f = new idWinding(maxpts); *back = b = new idWinding(maxpts); for (i = 0; i < numPoints; i++) { p1 = &p[i]; if ( sides[i] == SIDE_ON ) { f->p[f->numPoints] = *p1; f->numPoints++; b->p[b->numPoints] = *p1; b->numPoints++; continue; } if ( sides[i] == SIDE_FRONT ) { f->p[f->numPoints] = *p1; f->numPoints++; } if ( sides[i] == SIDE_BACK ) { b->p[b->numPoints] = *p1; b->numPoints++; } if ( sides[i+1] == SIDE_ON || sides[i+1] == sides[i] ) { continue; } // generate a split point p2 = &p[(i+1)%numPoints]; // always calculate the split going from the same side // or minor epsilon issues can happen if ( sides[i] == SIDE_FRONT ) { dot = dists[i] / ( dists[i] - dists[i+1] ); for ( j = 0; j < 3; j++ ) { // avoid round off error when possible if ( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if ( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = (*p1)[j] + dot * ( (*p2)[j] - (*p1)[j] ); } } mid.s = p1->s + dot * ( p2->s - p1->s ); mid.t = p1->t + dot * ( p2->t - p1->t ); } else { dot = dists[i+1] / ( dists[i+1] - dists[i] ); for ( j = 0; j < 3; j++ ) { // avoid round off error when possible if ( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if ( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = (*p2)[j] + dot * ( (*p1)[j] - (*p2)[j] ); } } mid.s = p2->s + dot * ( p1->s - p2->s ); mid.t = p2->t + dot * ( p1->t - p2->t ); } f->p[f->numPoints] = mid; f->numPoints++; b->p[b->numPoints] = mid; b->numPoints++; } if ( f->numPoints > maxpts || b->numPoints > maxpts ) { idLib::common->FatalError( "idWinding::Split: points exceeded estimate." ); } return SIDE_CROSS; } /* ============= idWinding::Clip ============= */ idWinding *idWinding::Clip( const idPlane &plane, const float epsilon, const bool keepOn ) { float * dists; byte * sides; idVec5 * newPoints; int newNumPoints; int counts[3]; float dot; int i, j; idVec5 * p1, *p2; idVec5 mid; int maxpts; assert( this ); dists = (float *) _alloca( (numPoints+4) * sizeof( float ) ); sides = (byte *) _alloca( (numPoints+4) * sizeof( byte ) ); counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; // determine sides for each point for ( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.Distance( p[i].ToVec3() ); if ( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if ( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; // if the winding is on the plane and we should keep it if ( keepOn && !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { return this; } // if nothing at the front of the clipping plane if ( !counts[SIDE_FRONT] ) { delete this; return NULL; } // if nothing at the back of the clipping plane if ( !counts[SIDE_BACK] ) { return this; } maxpts = numPoints + 4; // cant use counts[0]+2 because of fp grouping errors newPoints = (idVec5 *) _alloca16( maxpts * sizeof( idVec5 ) ); newNumPoints = 0; for ( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if ( newNumPoints+1 > maxpts ) { return this; // can't split -- fall back to original } if ( sides[i] == SIDE_ON ) { newPoints[newNumPoints] = *p1; newNumPoints++; continue; } if ( sides[i] == SIDE_FRONT ) { newPoints[newNumPoints] = *p1; newNumPoints++; } if ( sides[i+1] == SIDE_ON || sides[i+1] == sides[i] ) { continue; } if ( newNumPoints+1 > maxpts ) { return this; // can't split -- fall back to original } // generate a split point p2 = &p[(i+1)%numPoints]; dot = dists[i] / (dists[i] - dists[i+1]); for ( j = 0; j < 3; j++ ) { // avoid round off error when possible if ( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if ( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = (*p1)[j] + dot * ( (*p2)[j] - (*p1)[j] ); } } mid.s = p1->s + dot * ( p2->s - p1->s ); mid.t = p1->t + dot * ( p2->t - p1->t ); newPoints[newNumPoints] = mid; newNumPoints++; } if ( !EnsureAlloced( newNumPoints, false ) ) { return this; } numPoints = newNumPoints; memcpy( p, newPoints, newNumPoints * sizeof(idVec5) ); return this; } /* ============= idWinding::ClipInPlace ============= */ bool idWinding::ClipInPlace( const idPlane &plane, const float epsilon, const bool keepOn ) { float* dists; byte * sides; idVec5 * newPoints; int newNumPoints; int counts[3]; float dot; int i, j; idVec5 * p1, *p2; idVec5 mid; int maxpts; assert( this ); dists = (float *) _alloca( (numPoints+4) * sizeof( float ) ); sides = (byte *) _alloca( (numPoints+4) * sizeof( byte ) ); counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; // determine sides for each point for ( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.Distance( p[i].ToVec3() ); if ( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if ( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; // if the winding is on the plane and we should keep it if ( keepOn && !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { return true; } // if nothing at the front of the clipping plane if ( !counts[SIDE_FRONT] ) { numPoints = 0; return false; } // if nothing at the back of the clipping plane if ( !counts[SIDE_BACK] ) { return true; } maxpts = numPoints + 4; // cant use counts[0]+2 because of fp grouping errors newPoints = (idVec5 *) _alloca16( maxpts * sizeof( idVec5 ) ); newNumPoints = 0; for ( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if ( newNumPoints+1 > maxpts ) { return true; // can't split -- fall back to original } if ( sides[i] == SIDE_ON ) { newPoints[newNumPoints] = *p1; newNumPoints++; continue; } if ( sides[i] == SIDE_FRONT ) { newPoints[newNumPoints] = *p1; newNumPoints++; } if ( sides[i+1] == SIDE_ON || sides[i+1] == sides[i] ) { continue; } if ( newNumPoints+1 > maxpts ) { return true; // can't split -- fall back to original } // generate a split point p2 = &p[(i+1)%numPoints]; dot = dists[i] / (dists[i] - dists[i+1]); for ( j = 0; j < 3; j++ ) { // avoid round off error when possible if ( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if ( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = (*p1)[j] + dot * ( (*p2)[j] - (*p1)[j] ); } } mid.s = p1->s + dot * ( p2->s - p1->s ); mid.t = p1->t + dot * ( p2->t - p1->t ); newPoints[newNumPoints] = mid; newNumPoints++; } if ( !EnsureAlloced( newNumPoints, false ) ) { return true; } numPoints = newNumPoints; memcpy( p, newPoints, newNumPoints * sizeof(idVec5) ); return true; } /* ============= idWinding::Copy ============= */ idWinding *idWinding::Copy( void ) const { idWinding *w; w = new idWinding( numPoints ); w->numPoints = numPoints; memcpy( w->p, p, numPoints * sizeof(p[0]) ); return w; } /* ============= idWinding::Reverse ============= */ idWinding *idWinding::Reverse( void ) const { idWinding *w; int i; w = new idWinding( numPoints ); w->numPoints = numPoints; for ( i = 0; i < numPoints; i++ ) { w->p[ numPoints - i - 1 ] = p[i]; } return w; } /* ============= idWinding::ReverseSelf ============= */ void idWinding::ReverseSelf( void ) { idVec5 v; int i; for ( i = 0; i < (numPoints>>1); i++ ) { v = p[i]; p[i] = p[numPoints - i - 1]; p[numPoints - i - 1] = v; } } /* ============= idWinding::Check ============= */ bool idWinding::Check( bool print ) const { int i, j; float d, edgedist; idVec3 dir, edgenormal; float area; idPlane plane; if ( numPoints < 3 ) { if ( print ) { idLib::common->Printf( "idWinding::Check: only %i points.", numPoints ); } return false; } area = GetArea(); if ( area < 1.0f ) { if ( print ) { idLib::common->Printf( "idWinding::Check: tiny area: %f", area ); } return false; } GetPlane( plane ); for ( i = 0; i < numPoints; i++ ) { const idVec3 &p1 = p[i].ToVec3(); // check if the winding is huge for ( j = 0; j < 3; j++ ) { if ( p1[j] >= MAX_WORLD_COORD || p1[j] <= MIN_WORLD_COORD ) { if ( print ) { idLib::common->Printf( "idWinding::Check: point %d outside world %c-axis: %f", i, 'X'+j, p1[j] ); } return false; } } j = i + 1 == numPoints ? 0 : i + 1; // check if the point is on the face plane d = p1 * plane.Normal() + plane[3]; if ( d < -ON_EPSILON || d > ON_EPSILON ) { if ( print ) { idLib::common->Printf( "idWinding::Check: point %d off plane.", i ); } return false; } // check if the edge isn't degenerate const idVec3 &p2 = p[j].ToVec3(); dir = p2 - p1; if ( dir.Length() < ON_EPSILON) { if ( print ) { idLib::common->Printf( "idWinding::Check: edge %d is degenerate.", i ); } return false; } // check if the winding is convex edgenormal = plane.Normal().Cross( dir ); edgenormal.Normalize(); edgedist = p1 * edgenormal; edgedist += ON_EPSILON; // all other points must be on front side for ( j = 0; j < numPoints; j++ ) { if ( j == i ) { continue; } d = p[j].ToVec3() * edgenormal; if ( d > edgedist ) { if ( print ) { idLib::common->Printf( "idWinding::Check: non-convex." ); } return false; } } } return true; } /* ============= idWinding::GetArea ============= */ float idWinding::GetArea( void ) const { int i; idVec3 d1, d2, cross; float total; total = 0.0f; for ( i = 2; i < numPoints; i++ ) { d1 = p[i-1].ToVec3() - p[0].ToVec3(); d2 = p[i].ToVec3() - p[0].ToVec3(); cross = d1.Cross( d2 ); total += cross.Length(); } return total * 0.5f; } /* ============= idWinding::GetRadius ============= */ float idWinding::GetRadius( const idVec3 ¢er ) const { int i; float radius, r; idVec3 dir; radius = 0.0f; for ( i = 0; i < numPoints; i++ ) { dir = p[i].ToVec3() - center; r = dir * dir; if ( r > radius ) { radius = r; } } return idMath::Sqrt( radius ); } /* ============= idWinding::GetCenter ============= */ idVec3 idWinding::GetCenter( void ) const { int i; idVec3 center; center.Zero(); for ( i = 0; i < numPoints; i++ ) { center += p[i].ToVec3(); } center *= ( 1.0f / numPoints ); return center; } /* ============= idWinding::GetPlane ============= */ void idWinding::GetPlane( idVec3 &normal, float &dist ) const { idVec3 v1, v2, center; if ( numPoints < 3 ) { normal.Zero(); dist = 0.0f; return; } center = GetCenter(); v1 = p[0].ToVec3() - center; v2 = p[1].ToVec3() - center; normal = v2.Cross( v1 ); normal.Normalize(); dist = p[0].ToVec3() * normal; } /* ============= idWinding::GetPlane ============= */ void idWinding::GetPlane( idPlane &plane ) const { idVec3 v1, v2; idVec3 center; if ( numPoints < 3 ) { plane.Zero(); return; } center = GetCenter(); v1 = p[0].ToVec3() - center; v2 = p[1].ToVec3() - center; plane.SetNormal( v2.Cross( v1 ) ); plane.Normalize(); plane.FitThroughPoint( p[0].ToVec3() ); } /* ============= idWinding::GetBounds ============= */ void idWinding::GetBounds( idBounds &bounds ) const { int i; if ( !numPoints ) { bounds.Clear(); return; } bounds[0] = bounds[1] = p[0].ToVec3(); for ( i = 1; i < numPoints; i++ ) { if ( p[i].x < bounds[0].x ) { bounds[0].x = p[i].x; } else if ( p[i].x > bounds[1].x ) { bounds[1].x = p[i].x; } if ( p[i].y < bounds[0].y ) { bounds[0].y = p[i].y; } else if ( p[i].y > bounds[1].y ) { bounds[1].y = p[i].y; } if ( p[i].z < bounds[0].z ) { bounds[0].z = p[i].z; } else if ( p[i].z > bounds[1].z ) { bounds[1].z = p[i].z; } } } /* ============= idWinding::RemoveEqualPoints ============= */ void idWinding::RemoveEqualPoints( const float epsilon ) { int i, j; for ( i = 0; i < numPoints; i++ ) { if ( (p[i].ToVec3() - p[(i+numPoints-1)%numPoints].ToVec3()).LengthSqr() >= Square( epsilon ) ) { continue; } numPoints--; for ( j = i; j < numPoints; j++ ) { p[j] = p[j+1]; } i--; } } /* ============= idWinding::RemoveColinearPoints ============= */ void idWinding::RemoveColinearPoints( const idVec3 &normal, const float epsilon ) { int i, j; idVec3 edgeNormal; float dist; if ( numPoints <= 3 ) { return; } for ( i = 0; i < numPoints; i++ ) { // create plane through edge orthogonal to winding plane edgeNormal = (p[i].ToVec3() - p[(i+numPoints-1)%numPoints].ToVec3()).Cross( normal ); edgeNormal.Normalize(); dist = edgeNormal * p[i].ToVec3(); if ( idMath::Fabs( edgeNormal * p[(i+1)%numPoints].ToVec3() - dist ) > epsilon ) { continue; } numPoints--; for ( j = i; j < numPoints; j++ ) { p[j] = p[j+1]; } i--; } } /* ============= idWinding::AddToConvexHull Adds the given winding to the convex hull. Assumes the current winding already is a convex hull with three or more points. ============= */ void idWinding::AddToConvexHull( const idWinding *winding, const idVec3 &normal, const float epsilon ) { int i, j, k; idVec3 dir; float d; int maxPts; idVec3 * hullDirs; bool * hullSide; bool outside; int numNewHullPoints; idVec5 * newHullPoints; if ( !winding ) { return; } maxPts = this->numPoints + winding->numPoints; if ( !this->EnsureAlloced( maxPts, true ) ) { return; } newHullPoints = (idVec5 *) _alloca( maxPts * sizeof( idVec5 ) ); hullDirs = (idVec3 *) _alloca( maxPts * sizeof( idVec3 ) ); hullSide = (bool *) _alloca( maxPts * sizeof( bool ) ); for ( i = 0; i < winding->numPoints; i++ ) { const idVec5 &p1 = winding->p[i]; // calculate hull edge vectors for ( j = 0; j < this->numPoints; j++ ) { dir = this->p[ (j + 1) % this->numPoints ].ToVec3() - this->p[ j ].ToVec3(); dir.Normalize(); hullDirs[j] = normal.Cross( dir ); } // calculate side for each hull edge outside = false; for ( j = 0; j < this->numPoints; j++ ) { dir = p1.ToVec3() - this->p[j].ToVec3(); d = dir * hullDirs[j]; if ( d >= epsilon ) { outside = true; } if ( d >= -epsilon ) { hullSide[j] = true; } else { hullSide[j] = false; } } // if the point is effectively inside, do nothing if ( !outside ) { continue; } // find the back side to front side transition for ( j = 0; j < this->numPoints; j++ ) { if ( !hullSide[ j ] && hullSide[ (j + 1) % this->numPoints ] ) { break; } } if ( j >= this->numPoints ) { continue; } // insert the point here newHullPoints[0] = p1; numNewHullPoints = 1; // copy over all points that aren't double fronts j = (j+1) % this->numPoints; for ( k = 0; k < this->numPoints; k++ ) { if ( hullSide[ (j+k) % this->numPoints ] && hullSide[ (j+k+1) % this->numPoints ] ) { continue; } newHullPoints[numNewHullPoints] = this->p[ (j+k+1) % this->numPoints ]; numNewHullPoints++; } this->numPoints = numNewHullPoints; memcpy( this->p, newHullPoints, numNewHullPoints * sizeof(idVec5) ); } } /* ============= idWinding::AddToConvexHull Add a point to the convex hull. The current winding must be convex but may be degenerate and can have less than three points. ============= */ void idWinding::AddToConvexHull( const idVec3 &point, const idVec3 &normal, const float epsilon ) { int j, k, numHullPoints; idVec3 dir; float d; idVec3 * hullDirs; bool * hullSide; idVec5 * hullPoints; bool outside; switch( numPoints ) { case 0: { p[0] = point; numPoints++; return; } case 1: { // don't add the same point second if ( p[0].ToVec3().Compare( point, epsilon ) ) { return; } p[1].ToVec3() = point; numPoints++; return; } case 2: { // don't add a point if it already exists if ( p[0].ToVec3().Compare( point, epsilon ) || p[1].ToVec3().Compare( point, epsilon ) ) { return; } // if only two points make sure we have the right ordering according to the normal dir = point - p[0].ToVec3(); dir = dir.Cross( p[1].ToVec3() - p[0].ToVec3() ); if ( dir[0] == 0.0f && dir[1] == 0.0f && dir[2] == 0.0f ) { // points don't make a plane return; } if ( dir * normal > 0.0f ) { p[2].ToVec3() = point; } else { p[2] = p[1]; p[1].ToVec3() = point; } numPoints++; return; } } hullDirs = (idVec3 *) _alloca( numPoints * sizeof( idVec3 ) ); hullSide = (bool *) _alloca( numPoints * sizeof( bool ) ); // calculate hull edge vectors for ( j = 0; j < numPoints; j++ ) { dir = p[(j + 1) % numPoints].ToVec3() - p[j].ToVec3(); hullDirs[j] = normal.Cross( dir ); } // calculate side for each hull edge outside = false; for ( j = 0; j < numPoints; j++ ) { dir = point - p[j].ToVec3(); d = dir * hullDirs[j]; if ( d >= epsilon ) { outside = true; } if ( d >= -epsilon ) { hullSide[j] = true; } else { hullSide[j] = false; } } // if the point is effectively inside, do nothing if ( !outside ) { return; } // find the back side to front side transition for ( j = 0; j < numPoints; j++ ) { if ( !hullSide[ j ] && hullSide[ (j + 1) % numPoints ] ) { break; } } if ( j >= numPoints ) { return; } hullPoints = (idVec5 *) _alloca( (numPoints+1) * sizeof( idVec5 ) ); // insert the point here hullPoints[0] = point; numHullPoints = 1; // copy over all points that aren't double fronts j = (j+1) % numPoints; for ( k = 0; k < numPoints; k++ ) { if ( hullSide[ (j+k) % numPoints ] && hullSide[ (j+k+1) % numPoints ] ) { continue; } hullPoints[numHullPoints] = p[ (j+k+1) % numPoints ]; numHullPoints++; } if ( !EnsureAlloced( numHullPoints, false ) ) { return; } numPoints = numHullPoints; memcpy( p, hullPoints, numHullPoints * sizeof(idVec5) ); } /* ============= idWinding::TryMerge ============= */ #define CONTINUOUS_EPSILON 0.005f idWinding *idWinding::TryMerge( const idWinding &w, const idVec3 &planenormal, int keep ) const { idVec3 *p1, *p2, *p3, *p4, *back; idWinding *newf; const idWinding *f1, *f2; int i, j, k, l; idVec3 normal, delta; float dot; bool keep1, keep2; f1 = this; f2 = &w; // // find a idLib::common edge // p1 = p2 = NULL; // stop compiler warning j = 0; for ( i = 0; i < f1->numPoints; i++ ) { p1 = &f1->p[i].ToVec3(); p2 = &f1->p[(i+1) % f1->numPoints].ToVec3(); for ( j = 0; j < f2->numPoints; j++ ) { p3 = &f2->p[j].ToVec3(); p4 = &f2->p[(j+1) % f2->numPoints].ToVec3(); for (k = 0; k < 3; k++ ) { if ( idMath::Fabs((*p1)[k] - (*p4)[k]) > 0.1f ) { break; } if ( idMath::Fabs((*p2)[k] - (*p3)[k]) > 0.1f ) { break; } } if ( k == 3 ) { break; } } if ( j < f2->numPoints ) { break; } } if ( i == f1->numPoints ) { return NULL; // no matching edges } // // check slope of connected lines // if the slopes are colinear, the point can be removed // back = &f1->p[(i+f1->numPoints-1)%f1->numPoints].ToVec3(); delta = (*p1) - (*back); normal = planenormal.Cross(delta); normal.Normalize(); back = &f2->p[(j+2)%f2->numPoints].ToVec3(); delta = (*back) - (*p1); dot = delta * normal; if ( dot > CONTINUOUS_EPSILON ) { return NULL; // not a convex polygon } keep1 = (bool)(dot < -CONTINUOUS_EPSILON); back = &f1->p[(i+2)%f1->numPoints].ToVec3(); delta = (*back) - (*p2); normal = planenormal.Cross( delta ); normal.Normalize(); back = &f2->p[(j+f2->numPoints-1)%f2->numPoints].ToVec3(); delta = (*back) - (*p2); dot = delta * normal; if ( dot > CONTINUOUS_EPSILON ) { return NULL; // not a convex polygon } keep2 = (bool)(dot < -CONTINUOUS_EPSILON); // // build the new polygon // newf = new idWinding( f1->numPoints + f2->numPoints ); // copy first polygon for ( k = (i+1) % f1->numPoints; k != i; k = (k+1) % f1->numPoints ) { if ( !keep && k == (i+1) % f1->numPoints && !keep2 ) { continue; } newf->p[newf->numPoints] = f1->p[k]; newf->numPoints++; } // copy second polygon for ( l = (j+1) % f2->numPoints; l != j; l = (l+1) % f2->numPoints ) { if ( !keep && l == (j+1) % f2->numPoints && !keep1 ) { continue; } newf->p[newf->numPoints] = f2->p[l]; newf->numPoints++; } return newf; } /* ============= idWinding::RemovePoint ============= */ void idWinding::RemovePoint( int point ) { if ( point < 0 || point >= numPoints ) { idLib::common->FatalError( "idWinding::removePoint: point out of range" ); } if ( point < numPoints - 1) { memmove(&p[point], &p[point+1], (numPoints - point - 1) * sizeof(p[0]) ); } numPoints--; } /* ============= idWinding::InsertPoint ============= */ void idWinding::InsertPoint( const idVec3 &point, int spot ) { int i; if ( spot > numPoints ) { idLib::common->FatalError( "idWinding::insertPoint: spot > numPoints" ); } if ( spot < 0 ) { idLib::common->FatalError( "idWinding::insertPoint: spot < 0" ); } EnsureAlloced( numPoints+1, true ); for ( i = numPoints; i > spot; i-- ) { p[i] = p[i-1]; } p[spot] = point; numPoints++; } /* ============= idWinding::InsertPointIfOnEdge ============= */ bool idWinding::InsertPointIfOnEdge( const idVec3 &point, const idPlane &plane, const float epsilon ) { int i; float dist, dot; idVec3 normal; // point may not be too far from the winding plane if ( idMath::Fabs( plane.Distance( point ) ) > epsilon ) { return false; } for ( i = 0; i < numPoints; i++ ) { // create plane through edge orthogonal to winding plane normal = (p[(i+1)%numPoints].ToVec3() - p[i].ToVec3()).Cross( plane.Normal() ); normal.Normalize(); dist = normal * p[i].ToVec3(); if ( idMath::Fabs( normal * point - dist ) > epsilon ) { continue; } normal = plane.Normal().Cross( normal ); dot = normal * point; dist = dot - normal * p[i].ToVec3(); if ( dist < epsilon ) { // if the winding already has the point if ( dist > -epsilon ) { return false; } continue; } dist = dot - normal * p[(i+1)%numPoints].ToVec3(); if ( dist > -epsilon ) { // if the winding already has the point if ( dist < epsilon ) { return false; } continue; } InsertPoint( point, i+1 ); return true; } return false; } /* ============= idWinding::IsTiny ============= */ #define EDGE_LENGTH 0.2f bool idWinding::IsTiny( void ) const { int i; float len; idVec3 delta; int edges; edges = 0; for ( i = 0; i < numPoints; i++ ) { delta = p[(i+1)%numPoints].ToVec3() - p[i].ToVec3(); len = delta.Length(); if ( len > EDGE_LENGTH ) { if ( ++edges == 3 ) { return false; } } } return true; } /* ============= idWinding::IsHuge ============= */ bool idWinding::IsHuge( void ) const { int i, j; for ( i = 0; i < numPoints; i++ ) { for ( j = 0; j < 3; j++ ) { if ( p[i][j] <= MIN_WORLD_COORD || p[i][j] >= MAX_WORLD_COORD ) { return true; } } } return false; } /* ============= idWinding::Print ============= */ void idWinding::Print( void ) const { int i; for ( i = 0; i < numPoints; i++ ) { idLib::common->Printf( "(%5.1f, %5.1f, %5.1f)\n", p[i][0], p[i][1], p[i][2] ); } } /* ============= idWinding::PlaneDistance ============= */ float idWinding::PlaneDistance( const idPlane &plane ) const { int i; float d, min, max; min = idMath::INFINITY; max = -min; for ( i = 0; i < numPoints; i++ ) { d = plane.Distance( p[i].ToVec3() ); if ( d < min ) { min = d; if ( FLOATSIGNBITSET( min ) & FLOATSIGNBITNOTSET( max ) ) { return 0.0f; } } if ( d > max ) { max = d; if ( FLOATSIGNBITSET( min ) & FLOATSIGNBITNOTSET( max ) ) { return 0.0f; } } } if ( FLOATSIGNBITNOTSET( min ) ) { return min; } if ( FLOATSIGNBITSET( max ) ) { return max; } return 0.0f; } /* ============= idWinding::PlaneSide ============= */ int idWinding::PlaneSide( const idPlane &plane, const float epsilon ) const { bool front, back; int i; float d; front = false; back = false; for ( i = 0; i < numPoints; i++ ) { d = plane.Distance( p[i].ToVec3() ); if ( d < -epsilon ) { if ( front ) { return SIDE_CROSS; } back = true; continue; } else if ( d > epsilon ) { if ( back ) { return SIDE_CROSS; } front = true; continue; } } if ( back ) { return SIDE_BACK; } if ( front ) { return SIDE_FRONT; } return SIDE_ON; } /* ============= idWinding::PlanesConcave ============= */ #define WCONVEX_EPSILON 0.2f bool idWinding::PlanesConcave( const idWinding &w2, const idVec3 &normal1, const idVec3 &normal2, float dist1, float dist2 ) const { int i; // check if one of the points of winding 1 is at the back of the plane of winding 2 for ( i = 0; i < numPoints; i++ ) { if ( normal2 * p[i].ToVec3() - dist2 > WCONVEX_EPSILON ) { return true; } } // check if one of the points of winding 2 is at the back of the plane of winding 1 for ( i = 0; i < w2.numPoints; i++ ) { if ( normal1 * w2.p[i].ToVec3() - dist1 > WCONVEX_EPSILON ) { return true; } } return false; } /* ============= idWinding::PointInside ============= */ bool idWinding::PointInside( const idVec3 &normal, const idVec3 &point, const float epsilon ) const { int i; idVec3 dir, n, pointvec; for ( i = 0; i < numPoints; i++ ) { dir = p[(i+1) % numPoints].ToVec3() - p[i].ToVec3(); pointvec = point - p[i].ToVec3(); n = dir.Cross( normal ); if ( pointvec * n < -epsilon ) { return false; } } return true; } /* ============= idWinding::LineIntersection ============= */ bool idWinding::LineIntersection( const idPlane &windingPlane, const idVec3 &start, const idVec3 &end, bool backFaceCull ) const { float front, back, frac; idVec3 mid; front = windingPlane.Distance( start ); back = windingPlane.Distance( end ); // if both points at the same side of the plane if ( front < 0.0f && back < 0.0f ) { return false; } if ( front > 0.0f && back > 0.0f ) { return false; } // if back face culled if ( backFaceCull && front < 0.0f ) { return false; } // get point of intersection with winding plane if ( idMath::Fabs(front - back) < 0.0001f ) { mid = end; } else { frac = front / (front - back); mid[0] = start[0] + (end[0] - start[0]) * frac; mid[1] = start[1] + (end[1] - start[1]) * frac; mid[2] = start[2] + (end[2] - start[2]) * frac; } return PointInside( windingPlane.Normal(), mid, 0.0f ); } /* ============= idWinding::RayIntersection ============= */ bool idWinding::RayIntersection( const idPlane &windingPlane, const idVec3 &start, const idVec3 &dir, float &scale, bool backFaceCull ) const { int i; bool side, lastside = false; idPluecker pl1, pl2; scale = 0.0f; pl1.FromRay( start, dir ); for ( i = 0; i < numPoints; i++ ) { pl2.FromLine( p[i].ToVec3(), p[(i+1)%numPoints].ToVec3() ); side = pl1.PermutedInnerProduct( pl2 ) > 0.0f; if ( i && side != lastside ) { return false; } lastside = side; } if ( !backFaceCull || lastside ) { windingPlane.RayIntersection( start, dir, scale ); return true; } return false; } /* ================= idWinding::TriangleArea ================= */ float idWinding::TriangleArea( const idVec3 &a, const idVec3 &b, const idVec3 &c ) { idVec3 v1, v2; idVec3 cross; v1 = b - a; v2 = c - a; cross = v1.Cross( v2 ); return 0.5f * cross.Length(); } //=============================================================== // // idFixedWinding // //=============================================================== /* ============= idFixedWinding::ReAllocate ============= */ bool idFixedWinding::ReAllocate( int n, bool keep ) { assert( n <= MAX_POINTS_ON_WINDING ); if ( n > MAX_POINTS_ON_WINDING ) { idLib::common->Printf("WARNING: idFixedWinding -> MAX_POINTS_ON_WINDING overflowed\n"); return false; } return true; } /* ============= idFixedWinding::Split ============= */ int idFixedWinding::Split( idFixedWinding *back, const idPlane &plane, const float epsilon ) { int counts[3]; float dists[MAX_POINTS_ON_WINDING+4]; byte sides[MAX_POINTS_ON_WINDING+4]; float dot; int i, j; idVec5 *p1, *p2; idVec5 mid; idFixedWinding out; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; // determine sides for each point for ( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.Distance( p[i].ToVec3() ); if ( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if ( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } if ( !counts[SIDE_BACK] ) { if ( !counts[SIDE_FRONT] ) { return SIDE_ON; } else { return SIDE_FRONT; } } if ( !counts[SIDE_FRONT] ) { return SIDE_BACK; } sides[i] = sides[0]; dists[i] = dists[0]; out.numPoints = 0; back->numPoints = 0; for ( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if ( !out.EnsureAlloced( out.numPoints+1, true ) ) { return SIDE_FRONT; // can't split -- fall back to original } if ( !back->EnsureAlloced( back->numPoints+1, true ) ) { return SIDE_FRONT; // can't split -- fall back to original } if ( sides[i] == SIDE_ON ) { out.p[out.numPoints] = *p1; out.numPoints++; back->p[back->numPoints] = *p1; back->numPoints++; continue; } if ( sides[i] == SIDE_FRONT ) { out.p[out.numPoints] = *p1; out.numPoints++; } if ( sides[i] == SIDE_BACK ) { back->p[back->numPoints] = *p1; back->numPoints++; } if ( sides[i+1] == SIDE_ON || sides[i+1] == sides[i] ) { continue; } if ( !out.EnsureAlloced( out.numPoints+1, true ) ) { return SIDE_FRONT; // can't split -- fall back to original } if ( !back->EnsureAlloced( back->numPoints+1, true ) ) { return SIDE_FRONT; // can't split -- fall back to original } // generate a split point j = i + 1; if ( j >= numPoints ) { p2 = &p[0]; } else { p2 = &p[j]; } dot = dists[i] / (dists[i] - dists[i+1]); for ( j = 0; j < 3; j++ ) { // avoid round off error when possible if ( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if ( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = (*p1)[j] + dot * ( (*p2)[j] - (*p1)[j] ); } } mid.s = p1->s + dot * ( p2->s - p1->s ); mid.t = p1->t + dot * ( p2->t - p1->t ); out.p[out.numPoints] = mid; out.numPoints++; back->p[back->numPoints] = mid; back->numPoints++; } for ( i = 0; i < out.numPoints; i++ ) { p[i] = out.p[i]; } numPoints = out.numPoints; return SIDE_CROSS; }