/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "sys/platform.h" #include "idlib/Timer.h" #include "Game_local.h" #include "Pvs.h" #define MAX_BOUNDS_AREAS 16 typedef struct pvsPassage_s { byte * canSee; // bit set for all portals that can be seen through this passage } pvsPassage_t; typedef struct pvsPortal_s { int areaNum; // area this portal leads to idWinding * w; // winding goes counter clockwise seen from the area this portal is part of idBounds bounds; // winding bounds idPlane plane; // winding plane, normal points towards the area this portal leads to pvsPassage_t * passages; // passages to portals in the area this portal leads to bool done; // true if pvs is calculated for this portal byte * vis; // PVS for this portal byte * mightSee; // used during construction } pvsPortal_t; typedef struct pvsArea_s { int numPortals; // number of portals in this area idBounds bounds; // bounds of the whole area pvsPortal_t ** portals; // array with pointers to the portals of this area } pvsArea_t; typedef struct pvsStack_s { struct pvsStack_s * next; // next stack entry byte * mightSee; // bit set for all portals that might be visible through this passage/portal stack } pvsStack_t; /* ================ idPVS::idPVS ================ */ idPVS::idPVS( void ) { int i; numAreas = 0; numPortals = 0; connectedAreas = NULL; areaQueue = NULL; areaPVS = NULL; for ( i = 0; i < MAX_CURRENT_PVS; i++ ) { currentPVS[i].handle.i = -1; currentPVS[i].handle.h = 0; currentPVS[i].pvs = NULL; } pvsAreas = NULL; pvsPortals = NULL; } /* ================ idPVS::~idPVS ================ */ idPVS::~idPVS( void ) { Shutdown(); } /* ================ idPVS::GetPortalCount ================ */ int idPVS::GetPortalCount( void ) const { int i, na, np; na = gameRenderWorld->NumAreas(); np = 0; for ( i = 0; i < na; i++ ) { np += gameRenderWorld->NumPortalsInArea( i ); } return np; } /* ================ idPVS::CreatePVSData ================ */ void idPVS::CreatePVSData( void ) { int i, j, n, cp; exitPortal_t portal; pvsArea_t *area; pvsPortal_t *p, **portalPtrs; if ( !numPortals ) { return; } pvsPortals = new pvsPortal_t[numPortals]; pvsAreas = new pvsArea_t[numAreas]; memset( pvsAreas, 0, numAreas * sizeof( *pvsAreas ) ); cp = 0; portalPtrs = new pvsPortal_t*[numPortals]; for ( i = 0; i < numAreas; i++ ) { area = &pvsAreas[i]; area->bounds.Clear(); area->portals = portalPtrs + cp; n = gameRenderWorld->NumPortalsInArea( i ); for ( j = 0; j < n; j++ ) { portal = gameRenderWorld->GetPortal( i, j ); p = &pvsPortals[cp++]; // the winding goes counter clockwise seen from this area p->w = portal.w->Copy(); p->areaNum = portal.areas[1]; // area[1] is always the area the portal leads to p->vis = new byte[portalVisBytes]; memset( p->vis, 0, portalVisBytes ); p->mightSee = new byte[portalVisBytes]; memset( p->mightSee, 0, portalVisBytes ); p->w->GetBounds( p->bounds ); p->w->GetPlane( p->plane ); // plane normal points to outside the area p->plane = -p->plane; // no PVS calculated for this portal yet p->done = false; area->portals[area->numPortals] = p; area->numPortals++; area->bounds += p->bounds; } } } /* ================ idPVS::DestroyPVSData ================ */ void idPVS::DestroyPVSData( void ) { int i; if ( !pvsAreas ) { return; } // delete portal pointer array delete[] pvsAreas[0].portals; // delete all areas delete[] pvsAreas; pvsAreas = NULL; // delete portal data for ( i = 0; i < numPortals; i++ ) { delete[] pvsPortals[i].vis; delete[] pvsPortals[i].mightSee; delete pvsPortals[i].w; } // delete portals delete[] pvsPortals; pvsPortals = NULL; } /* ================ idPVS::FloodFrontPortalPVS_r ================ */ void idPVS::FloodFrontPortalPVS_r( pvsPortal_t *portal, int areaNum ) const { int i, n; pvsArea_t *area; pvsPortal_t *p; area = &pvsAreas[ areaNum ]; for ( i = 0; i < area->numPortals; i++ ) { p = area->portals[i]; n = p - pvsPortals; // don't flood through if this portal is not at the front if ( !( portal->mightSee[ n>>3 ] & (1 << (n&7)) ) ) { continue; } // don't flood through if already visited this portal if ( portal->vis[ n>>3 ] & (1 << (n&7)) ) { continue; } // this portal might be visible portal->vis[ n>>3 ] |= (1 << (n&7)); // flood through the portal FloodFrontPortalPVS_r( portal, p->areaNum ); } } /* ================ idPVS::FrontPortalPVS ================ */ void idPVS::FrontPortalPVS( void ) const { int i, j, k, n, p, side1, side2, areaSide; pvsPortal_t *p1, *p2; pvsArea_t *area; for ( i = 0; i < numPortals; i++ ) { p1 = &pvsPortals[i]; for ( j = 0; j < numAreas; j++ ) { area = &pvsAreas[j]; areaSide = side1 = area->bounds.PlaneSide( p1->plane ); // if the whole area is at the back side of the portal if ( areaSide == PLANESIDE_BACK ) { continue; } for ( p = 0; p < area->numPortals; p++ ) { p2 = area->portals[p]; // if we the whole area is not at the front we need to check if ( areaSide != PLANESIDE_FRONT ) { // if the second portal is completely at the back side of the first portal side1 = p2->bounds.PlaneSide( p1->plane ); if ( side1 == PLANESIDE_BACK ) { continue; } } // if the first portal is completely at the front of the second portal side2 = p1->bounds.PlaneSide( p2->plane ); if ( side2 == PLANESIDE_FRONT ) { continue; } // if the second portal is not completely at the front of the first portal if ( side1 != PLANESIDE_FRONT ) { // more accurate check for ( k = 0; k < p2->w->GetNumPoints(); k++ ) { // if more than an epsilon at the front side if ( p1->plane.Side( (*p2->w)[k].ToVec3(), ON_EPSILON ) == PLANESIDE_FRONT ) { break; } } if ( k >= p2->w->GetNumPoints() ) { continue; // second portal is at the back of the first portal } } // if the first portal is not completely at the back side of the second portal if ( side2 != PLANESIDE_BACK ) { // more accurate check for ( k = 0; k < p1->w->GetNumPoints(); k++ ) { // if more than an epsilon at the back side if ( p2->plane.Side( (*p1->w)[k].ToVec3(), ON_EPSILON ) == PLANESIDE_BACK ) { break; } } if ( k >= p1->w->GetNumPoints() ) { continue; // first portal is at the front of the second portal } } // the portal might be visible at the front n = p2 - pvsPortals; p1->mightSee[ n >> 3 ] |= 1 << (n&7); } } } // flood the front portal pvs for all portals for ( i = 0; i < numPortals; i++ ) { p1 = &pvsPortals[i]; FloodFrontPortalPVS_r( p1, p1->areaNum ); } } /* =============== idPVS::FloodPassagePVS_r =============== */ pvsStack_t *idPVS::FloodPassagePVS_r( pvsPortal_t *source, const pvsPortal_t *portal, pvsStack_t *prevStack ) const { int i, j, n, m; pvsPortal_t *p; pvsArea_t *area; pvsStack_t *stack; pvsPassage_t *passage; long *sourceVis, *passageVis, *portalVis, *mightSee, *prevMightSee, more; area = &pvsAreas[portal->areaNum]; stack = prevStack->next; // if no next stack entry allocated if ( !stack ) { stack = reinterpret_cast(new byte[sizeof(pvsStack_t) + portalVisBytes]); stack->mightSee = (reinterpret_cast(stack)) + sizeof(pvsStack_t); stack->next = NULL; prevStack->next = stack; } // check all portals for flooding into other areas for ( i = 0; i < area->numPortals; i++ ) { passage = &portal->passages[i]; // if this passage is completely empty if ( !passage->canSee ) { continue; } p = area->portals[i]; n = p - pvsPortals; // if this portal cannot be seen through our current portal/passage stack if ( !( prevStack->mightSee[n >> 3] & (1 << (n & 7)) ) ) { continue; } // mark the portal as visible source->vis[n >> 3] |= (1 << (n & 7)); // get pointers to vis data prevMightSee = reinterpret_cast(prevStack->mightSee); passageVis = reinterpret_cast(passage->canSee); sourceVis = reinterpret_cast(source->vis); mightSee = reinterpret_cast(stack->mightSee); more = 0; // use the portal PVS if it has been calculated if ( p->done ) { portalVis = reinterpret_cast(p->vis); for ( j = 0; j < portalVisLongs; j++ ) { // get new PVS which is decreased by going through this passage m = *prevMightSee++ & *passageVis++ & *portalVis++; // check if anything might be visible through this passage that wasn't yet visible more |= (m & ~(*sourceVis++)); // store new PVS *mightSee++ = m; } } else { // the p->mightSee is implicitely stored in the passageVis for ( j = 0; j < portalVisLongs; j++ ) { // get new PVS which is decreased by going through this passage m = *prevMightSee++ & *passageVis++; // check if anything might be visible through this passage that wasn't yet visible more |= (m & ~(*sourceVis++)); // store new PVS *mightSee++ = m; } } // if nothing more can be seen if ( !more ) { continue; } // go through the portal stack->next = FloodPassagePVS_r( source, p, stack ); } return stack; } /* =============== idPVS::PassagePVS =============== */ void idPVS::PassagePVS( void ) const { int i; pvsPortal_t *source; pvsStack_t *stack, *s; // create the passages CreatePassages(); // allocate first stack entry stack = reinterpret_cast(new byte[sizeof(pvsStack_t) + portalVisBytes]); stack->mightSee = (reinterpret_cast(stack)) + sizeof(pvsStack_t); stack->next = NULL; // calculate portal PVS by flooding through the passages for ( i = 0; i < numPortals; i++ ) { source = &pvsPortals[i]; memset( source->vis, 0, portalVisBytes ); memcpy( stack->mightSee, source->mightSee, portalVisBytes ); FloodPassagePVS_r( source, source, stack ); source->done = true; } // free the allocated stack for ( s = stack; s; s = stack ) { stack = stack->next; delete[] s; } // destroy the passages DestroyPassages(); } /* =============== idPVS::AddPassageBoundaries =============== */ void idPVS::AddPassageBoundaries( const idWinding &source, const idWinding &pass, bool flipClip, idPlane *bounds, int &numBounds, int maxBounds ) const { int i, j, k, l; idVec3 v1, v2, normal; float d, dist; bool flipTest, front; idPlane plane; // check all combinations for ( i = 0; i < source.GetNumPoints(); i++ ) { l = (i + 1) % source.GetNumPoints(); v1 = source[l].ToVec3() - source[i].ToVec3(); // find a vertex of pass that makes a plane that puts all of the // vertices of pass on the front side and all of the vertices of // source on the back side for ( j = 0; j < pass.GetNumPoints(); j++ ) { v2 = pass[j].ToVec3() - source[i].ToVec3(); normal = v1.Cross( v2 ); if ( normal.Normalize() < 0.01f ) { continue; } dist = normal * pass[j].ToVec3(); // // find out which side of the generated seperating plane has the // source portal // flipTest = false; for ( k = 0; k < source.GetNumPoints(); k++ ) { if ( k == i || k == l ) { continue; } d = source[k].ToVec3() * normal - dist; if ( d < -ON_EPSILON ) { // source is on the negative side, so we want all // pass and target on the positive side flipTest = false; break; } else if ( d > ON_EPSILON ) { // source is on the positive side, so we want all // pass and target on the negative side flipTest = true; break; } } if ( k == source.GetNumPoints() ) { continue; // planar with source portal } // flip the normal if the source portal is backwards if (flipTest) { normal = -normal; dist = -dist; } // if all of the pass portal points are now on the positive side, // this is the seperating plane front = false; for ( k = 0; k < pass.GetNumPoints(); k++ ) { if ( k == j ) { continue; } d = pass[k].ToVec3() * normal - dist; if ( d < -ON_EPSILON ) { break; } else if ( d > ON_EPSILON ) { front = true; } } if ( k < pass.GetNumPoints() ) { continue; // points on negative side, not a seperating plane } if ( !front ) { continue; // planar with seperating plane } // flip the normal if we want the back side if ( flipClip ) { plane.SetNormal( -normal ); plane.SetDist( -dist ); } else { plane.SetNormal( normal ); plane.SetDist( dist ); } // check if the plane is already a passage boundary for ( k = 0; k < numBounds; k++ ) { if ( plane.Compare( bounds[k], 0.001f, 0.01f ) ) { break; } } if ( k < numBounds ) { break; } if ( numBounds >= maxBounds ) { gameLocal.Warning( "max passage boundaries." ); break; } bounds[numBounds] = plane; numBounds++; break; } } } /* ================ idPVS::CreatePassages ================ */ #define MAX_PASSAGE_BOUNDS 128 void idPVS::CreatePassages( void ) const { int i, j, l, n, numBounds, front, passageMemory, byteNum, bitNum; int sides[MAX_PASSAGE_BOUNDS]; idPlane passageBounds[MAX_PASSAGE_BOUNDS]; pvsPortal_t *source, *target, *p; pvsArea_t *area; pvsPassage_t *passage; idFixedWinding winding; byte canSee, mightSee, bit; passageMemory = 0; for ( i = 0; i < numPortals; i++ ) { source = &pvsPortals[i]; area = &pvsAreas[source->areaNum]; source->passages = new pvsPassage_t[area->numPortals]; for ( j = 0; j < area->numPortals; j++ ) { target = area->portals[j]; n = target - pvsPortals; passage = &source->passages[j]; // if the source portal cannot see this portal if ( !( source->mightSee[ n>>3 ] & (1 << (n&7)) ) ) { // not all portals in the area have to be visible because areas are not necesarily convex // also no passage has to be created for the portal which is the opposite of the source passage->canSee = NULL; continue; } passage->canSee = new byte[portalVisBytes]; passageMemory += portalVisBytes; // boundary plane normals point inwards numBounds = 0; AddPassageBoundaries( *(source->w), *(target->w), false, passageBounds, numBounds, MAX_PASSAGE_BOUNDS ); AddPassageBoundaries( *(target->w), *(source->w), true, passageBounds, numBounds, MAX_PASSAGE_BOUNDS ); // get all portals visible through this passage for ( byteNum = 0; byteNum < portalVisBytes; byteNum++) { canSee = 0; mightSee = source->mightSee[byteNum] & target->mightSee[byteNum]; // go through eight portals at a time to speed things up for ( bitNum = 0; bitNum < 8; bitNum++ ) { bit = 1 << bitNum; if ( !( mightSee & bit ) ) { continue; } p = &pvsPortals[(byteNum << 3) + bitNum]; if ( p->areaNum == source->areaNum ) { continue; } for ( front = 0, l = 0; l < numBounds; l++ ) { sides[l] = p->bounds.PlaneSide( passageBounds[l] ); // if completely at the back of the passage bounding plane if ( sides[l] == PLANESIDE_BACK ) { break; } // if completely at the front if ( sides[l] == PLANESIDE_FRONT ) { front++; } } // if completely outside the passage if ( l < numBounds ) { continue; } // if not at the front of all bounding planes and thus not completely inside the passage if ( front != numBounds ) { winding = *p->w; for ( l = 0; l < numBounds; l++ ) { // only clip if the winding possibly crosses this plane if ( sides[l] != PLANESIDE_CROSS ) { continue; } // clip away the part at the back of the bounding plane winding.ClipInPlace( passageBounds[l] ); // if completely clipped away if ( !winding.GetNumPoints() ) { break; } } // if completely outside the passage if ( l < numBounds ) { continue; } } canSee |= bit; } // store results of all eight portals passage->canSee[byteNum] = canSee; } // can always see the target portal passage->canSee[n >> 3] |= (1 << (n&7)); } } if ( passageMemory < 1024 ) { gameLocal.Printf( "%5d bytes passage memory used to build PVS\n", passageMemory ); } else { gameLocal.Printf( "%5d KB passage memory used to build PVS\n", passageMemory>>10 ); } } /* ================ idPVS::DestroyPassages ================ */ void idPVS::DestroyPassages( void ) const { int i, j; pvsPortal_t *p; pvsArea_t *area; for ( i = 0; i < numPortals; i++ ) { p = &pvsPortals[i]; area = &pvsAreas[p->areaNum]; for ( j = 0; j < area->numPortals; j++ ) { if ( p->passages[j].canSee ) { delete[] p->passages[j].canSee; } } delete[] p->passages; } } /* ================ idPVS::CopyPortalPVSToMightSee ================ */ void idPVS::CopyPortalPVSToMightSee( void ) const { int i; pvsPortal_t *p; for ( i = 0; i < numPortals; i++ ) { p = &pvsPortals[i]; memcpy( p->mightSee, p->vis, portalVisBytes ); } } /* ================ idPVS::AreaPVSFromPortalPVS ================ */ int idPVS::AreaPVSFromPortalPVS( void ) const { int i, j, k, areaNum, totalVisibleAreas; long *p1, *p2; byte *pvs, *portalPVS; pvsArea_t *area; totalVisibleAreas = 0; if ( !numPortals ) { return totalVisibleAreas; } memset( areaPVS, 0, numAreas * areaVisBytes ); for ( i = 0; i < numAreas; i++ ) { area = &pvsAreas[i]; pvs = areaPVS + i * areaVisBytes; // the area is visible to itself pvs[ i >> 3 ] |= 1 << (i & 7); if ( !area->numPortals ) { continue; } // store the PVS of all portals in this area at the first portal for ( j = 1; j < area->numPortals; j++ ) { p1 = reinterpret_cast(area->portals[0]->vis); p2 = reinterpret_cast(area->portals[j]->vis); for ( k = 0; k < portalVisLongs; k++ ) { *p1++ |= *p2++; } } // the portals of this area are always visible for ( j = 0; j < area->numPortals; j++ ) { k = area->portals[j] - pvsPortals; area->portals[0]->vis[ k >> 3 ] |= 1 << (k & 7); } // set all areas to visible that can be seen from the portals of this area portalPVS = area->portals[0]->vis; for ( j = 0; j < numPortals; j++ ) { // if this portal is visible if ( portalPVS[j>>3] & (1 << (j&7)) ) { areaNum = pvsPortals[j].areaNum; pvs[ areaNum >> 3 ] |= 1 << (areaNum & 7); } } // count the number of visible areas for ( j = 0; j < numAreas; j++ ) { if ( pvs[j>>3] & (1 << (j&7)) ) { totalVisibleAreas++; } } } return totalVisibleAreas; } /* ================ idPVS::Init ================ */ void idPVS::Init( void ) { int totalVisibleAreas; Shutdown(); numAreas = gameRenderWorld->NumAreas(); if ( numAreas <= 0 ) { return; } connectedAreas = new bool[numAreas]; areaQueue = new int[numAreas]; areaVisBytes = ( ((numAreas+31)&~31) >> 3); areaVisLongs = areaVisBytes/sizeof(long); areaPVS = new byte[numAreas * areaVisBytes]; memset( areaPVS, 0xFF, numAreas * areaVisBytes ); numPortals = GetPortalCount(); portalVisBytes = ( ((numPortals+31)&~31) >> 3); portalVisLongs = portalVisBytes/sizeof(long); for ( int i = 0; i < MAX_CURRENT_PVS; i++ ) { currentPVS[i].handle.i = -1; currentPVS[i].handle.h = 0; currentPVS[i].pvs = new byte[areaVisBytes]; memset( currentPVS[i].pvs, 0, areaVisBytes ); } idTimer timer; timer.Start(); CreatePVSData(); FrontPortalPVS(); CopyPortalPVSToMightSee(); PassagePVS(); totalVisibleAreas = AreaPVSFromPortalPVS(); DestroyPVSData(); timer.Stop(); gameLocal.Printf( "%5.0f msec to calculate PVS\n", timer.Milliseconds() ); gameLocal.Printf( "%5d areas\n", numAreas ); gameLocal.Printf( "%5d portals\n", numPortals ); gameLocal.Printf( "%5d areas visible on average\n", totalVisibleAreas / numAreas ); if ( numAreas * areaVisBytes < 1024 ) { gameLocal.Printf( "%5d bytes PVS data\n", numAreas * areaVisBytes ); } else { gameLocal.Printf( "%5d KB PVS data\n", (numAreas * areaVisBytes) >> 10 ); } } /* ================ idPVS::Shutdown ================ */ void idPVS::Shutdown( void ) { if ( connectedAreas ) { delete connectedAreas; connectedAreas = NULL; } if ( areaQueue ) { delete areaQueue; areaQueue = NULL; } if ( areaPVS ) { delete areaPVS; areaPVS = NULL; } if ( currentPVS ) { for ( int i = 0; i < MAX_CURRENT_PVS; i++ ) { delete currentPVS[i].pvs; currentPVS[i].pvs = NULL; } } } /* ================ idPVS::GetConnectedAreas assumes the 'areas' array is initialized to false ================ */ void idPVS::GetConnectedAreas( int srcArea, bool *areas ) const { int curArea, nextArea; int queueStart, queueEnd; int i, n; exitPortal_t portal; queueStart = -1; queueEnd = 0; areas[srcArea] = true; for ( curArea = srcArea; queueStart < queueEnd; curArea = areaQueue[++queueStart] ) { n = gameRenderWorld->NumPortalsInArea( curArea ); for ( i = 0; i < n; i++ ) { portal = gameRenderWorld->GetPortal( curArea, i ); if ( portal.blockingBits & PS_BLOCK_VIEW ) { continue; } // area[1] is always the area the portal leads to nextArea = portal.areas[1]; // if already visited this area if ( areas[nextArea] ) { continue; } // add area to queue areaQueue[queueEnd++] = nextArea; areas[nextArea] = true; } } } /* ================ idPVS::GetPVSArea ================ */ int idPVS::GetPVSArea( const idVec3 &point ) const { return gameRenderWorld->PointInArea( point ); } /* ================ idPVS::GetPVSAreas ================ */ int idPVS::GetPVSAreas( const idBounds &bounds, int *areas, int maxAreas ) const { return gameRenderWorld->BoundsInAreas( bounds, areas, maxAreas ); } /* ================ idPVS::SetupCurrentPVS ================ */ pvsHandle_t idPVS::SetupCurrentPVS( const idVec3 &source, const pvsType_t type ) const { int sourceArea; sourceArea = gameRenderWorld->PointInArea( source ); return SetupCurrentPVS( sourceArea, type ); } /* ================ idPVS::SetupCurrentPVS ================ */ pvsHandle_t idPVS::SetupCurrentPVS( const idBounds &source, const pvsType_t type ) const { int numSourceAreas, sourceAreas[MAX_BOUNDS_AREAS]; numSourceAreas = gameRenderWorld->BoundsInAreas( source, sourceAreas, MAX_BOUNDS_AREAS ); return SetupCurrentPVS( sourceAreas, numSourceAreas, type ); } /* ================ idPVS::SetupCurrentPVS ================ */ pvsHandle_t idPVS::SetupCurrentPVS( const int sourceArea, const pvsType_t type ) const { int i; pvsHandle_t handle; handle = AllocCurrentPVS( *reinterpret_cast(&sourceArea) ); if ( sourceArea < 0 || sourceArea >= numAreas ) { memset( currentPVS[handle.i].pvs, 0, areaVisBytes ); return handle; } if ( type != PVS_CONNECTED_AREAS ) { memcpy( currentPVS[handle.i].pvs, areaPVS + sourceArea * areaVisBytes, areaVisBytes ); } else { memset( currentPVS[handle.i].pvs, -1, areaVisBytes ); } if ( type == PVS_ALL_PORTALS_OPEN ) { return handle; } memset( connectedAreas, 0, numAreas * sizeof( *connectedAreas ) ); GetConnectedAreas( sourceArea, connectedAreas ); for ( i = 0; i < numAreas; i++ ) { if ( !connectedAreas[i] ) { currentPVS[handle.i].pvs[i>>3] &= ~(1 << (i&7)); } } return handle; } /* ================ idPVS::SetupCurrentPVS ================ */ pvsHandle_t idPVS::SetupCurrentPVS( const int *sourceAreas, const int numSourceAreas, const pvsType_t type ) const { int i, j; unsigned int h; long *vis, *pvs; pvsHandle_t handle; h = 0; for ( i = 0; i < numSourceAreas; i++ ) { h ^= *reinterpret_cast(&sourceAreas[i]); } handle = AllocCurrentPVS( h ); if ( !numSourceAreas || sourceAreas[0] < 0 || sourceAreas[0] >= numAreas) { memset( currentPVS[handle.i].pvs, 0, areaVisBytes ); return handle; } if ( type != PVS_CONNECTED_AREAS ) { // merge PVS of all areas the source is in memcpy( currentPVS[handle.i].pvs, areaPVS + sourceAreas[0] * areaVisBytes, areaVisBytes ); for ( i = 1; i < numSourceAreas; i++ ) { assert( sourceAreas[i] >= 0 && sourceAreas[i] < numAreas ); vis = reinterpret_cast(areaPVS + sourceAreas[i] * areaVisBytes); pvs = reinterpret_cast(currentPVS[handle.i].pvs); for ( j = 0; j < areaVisLongs; j++ ) { *pvs++ |= *vis++; } } } else { memset( currentPVS[handle.i].pvs, -1, areaVisBytes ); } if ( type == PVS_ALL_PORTALS_OPEN ) { return handle; } memset( connectedAreas, 0, numAreas * sizeof( *connectedAreas ) ); // get all areas connected to any of the source areas for ( i = 0; i < numSourceAreas; i++ ) { if ( !connectedAreas[sourceAreas[i]] ) { GetConnectedAreas( sourceAreas[i], connectedAreas ); } } // remove unconnected areas from the PVS for ( i = 0; i < numAreas; i++ ) { if ( !connectedAreas[i] ) { currentPVS[handle.i].pvs[i>>3] &= ~(1 << (i&7)); } } return handle; } /* ================ idPVS::MergeCurrentPVS ================ */ pvsHandle_t idPVS::MergeCurrentPVS( pvsHandle_t pvs1, pvsHandle_t pvs2 ) const { int i; long *pvs1Ptr, *pvs2Ptr, *ptr; pvsHandle_t handle; if ( pvs1.i < 0 || pvs1.i >= MAX_CURRENT_PVS || pvs1.h != currentPVS[pvs1.i].handle.h || pvs2.i < 0 || pvs2.i >= MAX_CURRENT_PVS || pvs2.h != currentPVS[pvs2.i].handle.h ) { gameLocal.Error( "idPVS::MergeCurrentPVS: invalid handle" ); } handle = AllocCurrentPVS( pvs1.h ^ pvs2.h ); ptr = reinterpret_cast(currentPVS[handle.i].pvs); pvs1Ptr = reinterpret_cast(currentPVS[pvs1.i].pvs); pvs2Ptr = reinterpret_cast(currentPVS[pvs2.i].pvs); for ( i = 0; i < areaVisLongs; i++ ) { *ptr++ = *pvs1Ptr++ | *pvs2Ptr++; } return handle; } /* ================ idPVS::AllocCurrentPVS ================ */ pvsHandle_t idPVS::AllocCurrentPVS( unsigned int h ) const { int i; pvsHandle_t handle; for ( i = 0; i < MAX_CURRENT_PVS; i++ ) { if ( currentPVS[i].handle.i == -1 ) { currentPVS[i].handle.i = i; currentPVS[i].handle.h = h; return currentPVS[i].handle; } } gameLocal.Error( "idPVS::AllocCurrentPVS: no free PVS left" ); handle.i = -1; handle.h = 0; return handle; } /* ================ idPVS::FreeCurrentPVS ================ */ void idPVS::FreeCurrentPVS( pvsHandle_t handle ) const { if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS || handle.h != currentPVS[handle.i].handle.h ) { gameLocal.Error( "idPVS::FreeCurrentPVS: invalid handle" ); } currentPVS[handle.i].handle.i = -1; } /* ================ idPVS::InCurrentPVS ================ */ bool idPVS::InCurrentPVS( const pvsHandle_t handle, const idVec3 &target ) const { int targetArea; if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS || handle.h != currentPVS[handle.i].handle.h ) { gameLocal.Error( "idPVS::InCurrentPVS: invalid handle" ); } targetArea = gameRenderWorld->PointInArea( target ); if ( targetArea == -1 ) { return false; } return ( ( currentPVS[handle.i].pvs[targetArea>>3] & (1 << (targetArea&7)) ) != 0 ); } /* ================ idPVS::InCurrentPVS ================ */ bool idPVS::InCurrentPVS( const pvsHandle_t handle, const idBounds &target ) const { int i, numTargetAreas, targetAreas[MAX_BOUNDS_AREAS]; if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS || handle.h != currentPVS[handle.i].handle.h ) { gameLocal.Error( "idPVS::InCurrentPVS: invalid handle" ); } numTargetAreas = gameRenderWorld->BoundsInAreas( target, targetAreas, MAX_BOUNDS_AREAS ); for ( i = 0; i < numTargetAreas; i++ ) { if ( currentPVS[handle.i].pvs[targetAreas[i]>>3] & (1 << (targetAreas[i]&7)) ) { return true; } } return false; } /* ================ idPVS::InCurrentPVS ================ */ bool idPVS::InCurrentPVS( const pvsHandle_t handle, const int targetArea ) const { if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS || handle.h != currentPVS[handle.i].handle.h ) { gameLocal.Error( "idPVS::InCurrentPVS: invalid handle" ); } if ( targetArea < 0 || targetArea >= numAreas ) { return false; } return ( ( currentPVS[handle.i].pvs[targetArea>>3] & (1 << (targetArea&7)) ) != 0 ); } /* ================ idPVS::InCurrentPVS ================ */ bool idPVS::InCurrentPVS( const pvsHandle_t handle, const int *targetAreas, int numTargetAreas ) const { int i; if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS || handle.h != currentPVS[handle.i].handle.h ) { gameLocal.Error( "idPVS::InCurrentPVS: invalid handle" ); } for ( i = 0; i < numTargetAreas; i++ ) { if ( targetAreas[i] < 0 || targetAreas[i] >= numAreas ) { continue; } if ( currentPVS[handle.i].pvs[targetAreas[i]>>3] & (1 << (targetAreas[i]&7)) ) { return true; } } return false; } /* ================ idPVS::DrawPVS ================ */ void idPVS::DrawPVS( const idVec3 &source, const pvsType_t type ) const { int i, j, k, numPoints, n, sourceArea; exitPortal_t portal; idPlane plane; idVec3 offset; idVec4 *color; pvsHandle_t handle; sourceArea = gameRenderWorld->PointInArea( source ); if ( sourceArea == -1 ) { return; } handle = SetupCurrentPVS( source, type ); for ( j = 0; j < numAreas; j++ ) { if ( !( currentPVS[handle.i].pvs[j>>3] & (1 << (j&7)) ) ) { continue; } if ( j == sourceArea ) { color = &colorRed; } else { color = &colorCyan; } n = gameRenderWorld->NumPortalsInArea( j ); // draw all the portals of the area for ( i = 0; i < n; i++ ) { portal = gameRenderWorld->GetPortal( j, i ); numPoints = portal.w->GetNumPoints(); portal.w->GetPlane( plane ); offset = plane.Normal() * 4.0f; for ( k = 0; k < numPoints; k++ ) { gameRenderWorld->DebugLine( *color, (*portal.w)[k].ToVec3() + offset, (*portal.w)[(k+1)%numPoints].ToVec3() + offset ); } } } FreeCurrentPVS( handle ); } /* ================ idPVS::DrawPVS ================ */ void idPVS::DrawPVS( const idBounds &source, const pvsType_t type ) const { int i, j, k, numPoints, n, num, areas[MAX_BOUNDS_AREAS]; exitPortal_t portal; idPlane plane; idVec3 offset; idVec4 *color; pvsHandle_t handle; num = gameRenderWorld->BoundsInAreas( source, areas, MAX_BOUNDS_AREAS ); if ( !num ) { return; } handle = SetupCurrentPVS( source, type ); for ( j = 0; j < numAreas; j++ ) { if ( !( currentPVS[handle.i].pvs[j>>3] & (1 << (j&7)) ) ) { continue; } for ( i = 0; i < num; i++ ) { if ( j == areas[i] ) { break; } } if ( i < num ) { color = &colorRed; } else { color = &colorCyan; } n = gameRenderWorld->NumPortalsInArea( j ); // draw all the portals of the area for ( i = 0; i < n; i++ ) { portal = gameRenderWorld->GetPortal( j, i ); numPoints = portal.w->GetNumPoints(); portal.w->GetPlane( plane ); offset = plane.Normal() * 4.0f; for ( k = 0; k < numPoints; k++ ) { gameRenderWorld->DebugLine( *color, (*portal.w)[k].ToVec3() + offset, (*portal.w)[(k+1)%numPoints].ToVec3() + offset ); } } } FreeCurrentPVS( handle ); } /* ================ idPVS::DrawPVS ================ */ void idPVS::DrawCurrentPVS( const pvsHandle_t handle, const idVec3 &source ) const { int i, j, k, numPoints, n, sourceArea; exitPortal_t portal; idPlane plane; idVec3 offset; idVec4 *color; if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS || handle.h != currentPVS[handle.i].handle.h ) { gameLocal.Error( "idPVS::DrawCurrentPVS: invalid handle" ); } sourceArea = gameRenderWorld->PointInArea( source ); if ( sourceArea == -1 ) { return; } for ( j = 0; j < numAreas; j++ ) { if ( !( currentPVS[handle.i].pvs[j>>3] & (1 << (j&7)) ) ) { continue; } if ( j == sourceArea ) { color = &colorRed; } else { color = &colorCyan; } n = gameRenderWorld->NumPortalsInArea( j ); // draw all the portals of the area for ( i = 0; i < n; i++ ) { portal = gameRenderWorld->GetPortal( j, i ); numPoints = portal.w->GetNumPoints(); portal.w->GetPlane( plane ); offset = plane.Normal() * 4.0f; for ( k = 0; k < numPoints; k++ ) { gameRenderWorld->DebugLine( *color, (*portal.w)[k].ToVec3() + offset, (*portal.w)[(k+1)%numPoints].ToVec3() + offset ); } } } } #if ASYNC_WRITE_PVS /* =================== idPVS::WritePVS =================== */ void idPVS::WritePVS( const pvsHandle_t handle, idBitMsg &msg ) { msg.WriteData( currentPVS[ handle.i ].pvs, areaVisBytes ); } /* =================== idPVS::ReadPVS =================== */ void idPVS::ReadPVS( const pvsHandle_t handle, const idBitMsg &msg ) { byte l_pvs[ 256 ]; int i; assert( areaVisBytes <= 256 ); msg.ReadData( l_pvs, areaVisBytes ); if ( memcmp( l_pvs, currentPVS[ handle.i ].pvs, areaVisBytes ) ) { common->Printf( "PVS not matching ( %d areaVisBytes ) - server then client:\n", areaVisBytes ); for ( i = 0; i < areaVisBytes; i++ ) { common->Printf( "%x ", l_pvs[ i ] ); } common->Printf( "\n" ); for ( i = 0; i < areaVisBytes; i++ ) { common->Printf( "%x ", currentPVS[ handle.i ].pvs[ i ] ); } common->Printf( "\n" ); } } #endif #ifdef _D3XP /* ================ idPVS::CheckAreasForPortalSky ================ */ bool idPVS::CheckAreasForPortalSky( const pvsHandle_t handle, const idVec3 &origin ) { int j, sourceArea; if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS || handle.h != currentPVS[handle.i].handle.h ) { return false; } sourceArea = gameRenderWorld->PointInArea( origin ); if ( sourceArea == -1 ) { return false; } for ( j = 0; j < numAreas; j++ ) { if ( !( currentPVS[handle.i].pvs[j>>3] & (1 << (j&7)) ) ) { continue; } if ( gameRenderWorld->CheckAreaForPortalSky( j ) ) { return true; } } return false; } #endif