/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "sys/platform.h" #include "renderer/VertexCache.h" #include "renderer/tr_local.h" extern idCVar r_useCarmacksReverse; extern idCVar r_useStencilOpSeparate; /* ===================== RB_BakeTextureMatrixIntoTexgen ===================== */ void RB_BakeTextureMatrixIntoTexgen( idPlane lightProject[3], const float *textureMatrix ) { float genMatrix[16]; float final[16]; genMatrix[0] = lightProject[0][0]; genMatrix[4] = lightProject[0][1]; genMatrix[8] = lightProject[0][2]; genMatrix[12] = lightProject[0][3]; genMatrix[1] = lightProject[1][0]; genMatrix[5] = lightProject[1][1]; genMatrix[9] = lightProject[1][2]; genMatrix[13] = lightProject[1][3]; genMatrix[2] = 0; genMatrix[6] = 0; genMatrix[10] = 0; genMatrix[14] = 0; genMatrix[3] = lightProject[2][0]; genMatrix[7] = lightProject[2][1]; genMatrix[11] = lightProject[2][2]; genMatrix[15] = lightProject[2][3]; myGlMultMatrix( genMatrix, backEnd.lightTextureMatrix, final ); lightProject[0][0] = final[0]; lightProject[0][1] = final[4]; lightProject[0][2] = final[8]; lightProject[0][3] = final[12]; lightProject[1][0] = final[1]; lightProject[1][1] = final[5]; lightProject[1][2] = final[9]; lightProject[1][3] = final[13]; } /* ================ RB_PrepareStageTexturing ================ */ void RB_PrepareStageTexturing( const shaderStage_t *pStage, const drawSurf_t *surf, idDrawVert *ac ) { // set privatePolygonOffset if necessary if ( pStage->privatePolygonOffset ) { qglEnable( GL_POLYGON_OFFSET_FILL ); qglPolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * pStage->privatePolygonOffset ); } // set the texture matrix if needed if ( pStage->texture.hasMatrix ) { RB_LoadShaderTextureMatrix( surf->shaderRegisters, &pStage->texture ); } // texgens if ( pStage->texture.texgen == TG_DIFFUSE_CUBE ) { qglTexCoordPointer( 3, GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() ); } if ( pStage->texture.texgen == TG_SKYBOX_CUBE || pStage->texture.texgen == TG_WOBBLESKY_CUBE ) { qglTexCoordPointer( 3, GL_FLOAT, 0, vertexCache.Position( surf->dynamicTexCoords ) ); } if ( pStage->texture.texgen == TG_SCREEN ) { qglEnable( GL_TEXTURE_GEN_S ); qglEnable( GL_TEXTURE_GEN_T ); qglEnable( GL_TEXTURE_GEN_Q ); float mat[16], plane[4]; myGlMultMatrix( surf->space->modelViewMatrix, backEnd.viewDef->projectionMatrix, mat ); plane[0] = mat[0]; plane[1] = mat[4]; plane[2] = mat[8]; plane[3] = mat[12]; qglTexGenfv( GL_S, GL_OBJECT_PLANE, plane ); plane[0] = mat[1]; plane[1] = mat[5]; plane[2] = mat[9]; plane[3] = mat[13]; qglTexGenfv( GL_T, GL_OBJECT_PLANE, plane ); plane[0] = mat[3]; plane[1] = mat[7]; plane[2] = mat[11]; plane[3] = mat[15]; qglTexGenfv( GL_Q, GL_OBJECT_PLANE, plane ); } if ( pStage->texture.texgen == TG_SCREEN2 ) { qglEnable( GL_TEXTURE_GEN_S ); qglEnable( GL_TEXTURE_GEN_T ); qglEnable( GL_TEXTURE_GEN_Q ); float mat[16], plane[4]; myGlMultMatrix( surf->space->modelViewMatrix, backEnd.viewDef->projectionMatrix, mat ); plane[0] = mat[0]; plane[1] = mat[4]; plane[2] = mat[8]; plane[3] = mat[12]; qglTexGenfv( GL_S, GL_OBJECT_PLANE, plane ); plane[0] = mat[1]; plane[1] = mat[5]; plane[2] = mat[9]; plane[3] = mat[13]; qglTexGenfv( GL_T, GL_OBJECT_PLANE, plane ); plane[0] = mat[3]; plane[1] = mat[7]; plane[2] = mat[11]; plane[3] = mat[15]; qglTexGenfv( GL_Q, GL_OBJECT_PLANE, plane ); } if ( pStage->texture.texgen == TG_GLASSWARP ) { if ( tr.backEndRenderer == BE_ARB2 /*|| tr.backEndRenderer == BE_NV30*/ ) { qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, FPROG_GLASSWARP ); qglEnable( GL_FRAGMENT_PROGRAM_ARB ); GL_SelectTexture( 2 ); globalImages->scratchImage->Bind(); GL_SelectTexture( 1 ); globalImages->scratchImage2->Bind(); qglEnable( GL_TEXTURE_GEN_S ); qglEnable( GL_TEXTURE_GEN_T ); qglEnable( GL_TEXTURE_GEN_Q ); float mat[16], plane[4]; myGlMultMatrix( surf->space->modelViewMatrix, backEnd.viewDef->projectionMatrix, mat ); plane[0] = mat[0]; plane[1] = mat[4]; plane[2] = mat[8]; plane[3] = mat[12]; qglTexGenfv( GL_S, GL_OBJECT_PLANE, plane ); plane[0] = mat[1]; plane[1] = mat[5]; plane[2] = mat[9]; plane[3] = mat[13]; qglTexGenfv( GL_T, GL_OBJECT_PLANE, plane ); plane[0] = mat[3]; plane[1] = mat[7]; plane[2] = mat[11]; plane[3] = mat[15]; qglTexGenfv( GL_Q, GL_OBJECT_PLANE, plane ); GL_SelectTexture( 0 ); } } if ( pStage->texture.texgen == TG_REFLECT_CUBE ) { if ( tr.backEndRenderer == BE_ARB2 ) { // see if there is also a bump map specified const shaderStage_t *bumpStage = surf->material->GetBumpStage(); if ( bumpStage ) { // per-pixel reflection mapping with bump mapping GL_SelectTexture( 1 ); bumpStage->texture.image->Bind(); GL_SelectTexture( 0 ); qglNormalPointer( GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() ); qglVertexAttribPointerARB( 10, 3, GL_FLOAT, false, sizeof( idDrawVert ), ac->tangents[1].ToFloatPtr() ); qglVertexAttribPointerARB( 9, 3, GL_FLOAT, false, sizeof( idDrawVert ), ac->tangents[0].ToFloatPtr() ); qglEnableVertexAttribArrayARB( 9 ); qglEnableVertexAttribArrayARB( 10 ); qglEnableClientState( GL_NORMAL_ARRAY ); // Program env 5, 6, 7, 8 have been set in RB_SetProgramEnvironmentSpace qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, FPROG_BUMPY_ENVIRONMENT ); qglEnable( GL_FRAGMENT_PROGRAM_ARB ); qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, VPROG_BUMPY_ENVIRONMENT ); qglEnable( GL_VERTEX_PROGRAM_ARB ); } else { // per-pixel reflection mapping without a normal map qglNormalPointer( GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() ); qglEnableClientState( GL_NORMAL_ARRAY ); qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, FPROG_ENVIRONMENT ); qglEnable( GL_FRAGMENT_PROGRAM_ARB ); qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, VPROG_ENVIRONMENT ); qglEnable( GL_VERTEX_PROGRAM_ARB ); } } else { qglEnable( GL_TEXTURE_GEN_S ); qglEnable( GL_TEXTURE_GEN_T ); qglEnable( GL_TEXTURE_GEN_R ); qglTexGenf( GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT ); qglTexGenf( GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT ); qglTexGenf( GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT ); qglEnableClientState( GL_NORMAL_ARRAY ); qglNormalPointer( GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() ); qglMatrixMode( GL_TEXTURE ); float mat[16]; R_TransposeGLMatrix( backEnd.viewDef->worldSpace.modelViewMatrix, mat ); qglLoadMatrixf( mat ); qglMatrixMode( GL_MODELVIEW ); } } } /* ================ RB_FinishStageTexturing ================ */ void RB_FinishStageTexturing( const shaderStage_t *pStage, const drawSurf_t *surf, idDrawVert *ac ) { // unset privatePolygonOffset if necessary if ( pStage->privatePolygonOffset && !surf->material->TestMaterialFlag(MF_POLYGONOFFSET) ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } if ( pStage->texture.texgen == TG_DIFFUSE_CUBE || pStage->texture.texgen == TG_SKYBOX_CUBE || pStage->texture.texgen == TG_WOBBLESKY_CUBE ) { qglTexCoordPointer( 2, GL_FLOAT, sizeof( idDrawVert ), (void *)&ac->st ); } if ( pStage->texture.texgen == TG_SCREEN ) { qglDisable( GL_TEXTURE_GEN_S ); qglDisable( GL_TEXTURE_GEN_T ); qglDisable( GL_TEXTURE_GEN_Q ); } if ( pStage->texture.texgen == TG_SCREEN2 ) { qglDisable( GL_TEXTURE_GEN_S ); qglDisable( GL_TEXTURE_GEN_T ); qglDisable( GL_TEXTURE_GEN_Q ); } if ( pStage->texture.texgen == TG_GLASSWARP ) { if ( tr.backEndRenderer == BE_ARB2 /*|| tr.backEndRenderer == BE_NV30*/ ) { GL_SelectTexture( 2 ); globalImages->BindNull(); GL_SelectTexture( 1 ); if ( pStage->texture.hasMatrix ) { RB_LoadShaderTextureMatrix( surf->shaderRegisters, &pStage->texture ); } qglDisable( GL_TEXTURE_GEN_S ); qglDisable( GL_TEXTURE_GEN_T ); qglDisable( GL_TEXTURE_GEN_Q ); qglDisable( GL_FRAGMENT_PROGRAM_ARB ); globalImages->BindNull(); GL_SelectTexture( 0 ); } } if ( pStage->texture.texgen == TG_REFLECT_CUBE ) { if ( tr.backEndRenderer == BE_ARB2 ) { // see if there is also a bump map specified const shaderStage_t *bumpStage = surf->material->GetBumpStage(); if ( bumpStage ) { // per-pixel reflection mapping with bump mapping GL_SelectTexture( 1 ); globalImages->BindNull(); GL_SelectTexture( 0 ); qglDisableVertexAttribArrayARB( 9 ); qglDisableVertexAttribArrayARB( 10 ); } else { // per-pixel reflection mapping without bump mapping } qglDisableClientState( GL_NORMAL_ARRAY ); qglDisable( GL_FRAGMENT_PROGRAM_ARB ); qglDisable( GL_VERTEX_PROGRAM_ARB ); // Fixme: Hack to get around an apparent bug in ATI drivers. Should remove as soon as it gets fixed. qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, 0 ); // FIXME ... } else { qglDisable( GL_TEXTURE_GEN_S ); qglDisable( GL_TEXTURE_GEN_T ); qglDisable( GL_TEXTURE_GEN_R ); qglTexGenf( GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR ); qglTexGenf( GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR ); qglTexGenf( GL_R, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR ); qglDisableClientState( GL_NORMAL_ARRAY ); qglMatrixMode( GL_TEXTURE ); qglLoadIdentity(); qglMatrixMode( GL_MODELVIEW ); } } if ( pStage->texture.hasMatrix ) { qglMatrixMode( GL_TEXTURE ); qglLoadIdentity(); qglMatrixMode( GL_MODELVIEW ); } } /* ============================================================================================= FILL DEPTH BUFFER ============================================================================================= */ /* ================== RB_T_FillDepthBuffer ================== */ void RB_T_FillDepthBuffer( const drawSurf_t *surf ) { int stage; const idMaterial *shader; const shaderStage_t *pStage; const float *regs; float color[4]; const srfTriangles_t *tri; tri = surf->geo; shader = surf->material; // update the clip plane if needed if ( backEnd.viewDef->numClipPlanes && surf->space != backEnd.currentSpace ) { GL_SelectTexture( 1 ); idPlane plane; R_GlobalPlaneToLocal( surf->space->modelMatrix, backEnd.viewDef->clipPlanes[0], plane ); plane[3] += 0.5; // the notch is in the middle qglTexGenfv( GL_S, GL_OBJECT_PLANE, plane.ToFloatPtr() ); GL_SelectTexture( 0 ); } if ( !shader->IsDrawn() ) { return; } // some deforms may disable themselves by setting numIndexes = 0 if ( !tri->numIndexes ) { return; } // translucent surfaces don't put anything in the depth buffer and don't // test against it, which makes them fail the mirror clip plane operation if ( shader->Coverage() == MC_TRANSLUCENT ) { return; } if ( !tri->ambientCache ) { common->Printf( "RB_T_FillDepthBuffer: !tri->ambientCache\n" ); return; } // get the expressions for conditionals / color / texcoords regs = surf->shaderRegisters; // if all stages of a material have been conditioned off, don't do anything for ( stage = 0; stage < shader->GetNumStages() ; stage++ ) { pStage = shader->GetStage(stage); // check the stage enable condition if ( regs[ pStage->conditionRegister ] != 0 ) { break; } } if ( stage == shader->GetNumStages() ) { return; } // set polygon offset if necessary if ( shader->TestMaterialFlag(MF_POLYGONOFFSET) ) { qglEnable( GL_POLYGON_OFFSET_FILL ); qglPolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * shader->GetPolygonOffset() ); } // subviews will just down-modulate the color buffer by overbright if ( shader->GetSort() == SS_SUBVIEW ) { GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO | GLS_DEPTHFUNC_LESS ); color[0] = color[1] = color[2] = ( 1.0 / backEnd.overBright ); color[3] = 1; } else { // others just draw black color[0] = 0; color[1] = 0; color[2] = 0; color[3] = 1; } idDrawVert *ac = (idDrawVert *)vertexCache.Position( tri->ambientCache ); qglVertexPointer( 3, GL_FLOAT, sizeof( idDrawVert ), ac->xyz.ToFloatPtr() ); qglTexCoordPointer( 2, GL_FLOAT, sizeof( idDrawVert ), reinterpret_cast(&ac->st) ); bool drawSolid = false; if ( shader->Coverage() == MC_OPAQUE ) { drawSolid = true; } // we may have multiple alpha tested stages if ( shader->Coverage() == MC_PERFORATED ) { // if the only alpha tested stages are condition register omitted, // draw a normal opaque surface bool didDraw = false; qglEnable( GL_ALPHA_TEST ); // perforated surfaces may have multiple alpha tested stages for ( stage = 0; stage < shader->GetNumStages() ; stage++ ) { pStage = shader->GetStage(stage); if ( !pStage->hasAlphaTest ) { continue; } // check the stage enable condition if ( regs[ pStage->conditionRegister ] == 0 ) { continue; } // if we at least tried to draw an alpha tested stage, // we won't draw the opaque surface didDraw = true; // set the alpha modulate color[3] = regs[ pStage->color.registers[3] ]; // skip the entire stage if alpha would be black if ( color[3] <= 0 ) { continue; } qglColor4fv( color ); qglAlphaFunc( GL_GREATER, regs[ pStage->alphaTestRegister ] ); // bind the texture pStage->texture.image->Bind(); // set texture matrix and texGens RB_PrepareStageTexturing( pStage, surf, ac ); // draw it RB_DrawElementsWithCounters( tri ); RB_FinishStageTexturing( pStage, surf, ac ); } qglDisable( GL_ALPHA_TEST ); if ( !didDraw ) { drawSolid = true; } } // draw the entire surface solid if ( drawSolid ) { qglColor4fv( color ); globalImages->whiteImage->Bind(); // draw it RB_DrawElementsWithCounters( tri ); } // reset polygon offset if ( shader->TestMaterialFlag(MF_POLYGONOFFSET) ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } // reset blending if ( shader->GetSort() == SS_SUBVIEW ) { GL_State( GLS_DEPTHFUNC_LESS ); } } void RB_SetProgramEnvironment( bool isPostProcess ); // so RB_STD_FillDepthBuffer() can use it /* ===================== RB_STD_FillDepthBuffer If we are rendering a subview with a near clip plane, use a second texture to force the alpha test to fail when behind that clip plane ===================== */ void RB_STD_FillDepthBuffer( drawSurf_t **drawSurfs, int numDrawSurfs ) { // if we are just doing 2D rendering, no need to fill the depth buffer if ( !backEnd.viewDef->viewEntitys ) { return; } // enable the second texture for mirror plane clipping if needed if ( backEnd.viewDef->numClipPlanes ) { GL_SelectTexture( 1 ); globalImages->alphaNotchImage->Bind(); qglDisableClientState( GL_TEXTURE_COORD_ARRAY ); qglEnable( GL_TEXTURE_GEN_S ); qglTexCoord2f( 1, 0.5 ); } // the first texture will be used for alpha tested surfaces GL_SelectTexture( 0 ); qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); // decal surfaces may enable polygon offset qglPolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() ); GL_State( GLS_DEPTHFUNC_LESS ); // Enable stencil test if we are going to be using it for shadows. // If we didn't do this, it would be legal behavior to get z fighting // from the ambient pass and the light passes. qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_ALWAYS, 1, 255 ); RB_RenderDrawSurfListWithFunction( drawSurfs, numDrawSurfs, RB_T_FillDepthBuffer ); // Make the early depth pass available to shaders. #3877 bool getDepthCapture = r_enableDepthCapture.GetInteger() == 1 || (r_enableDepthCapture.GetInteger() == -1 && r_useSoftParticles.GetBool()); if ( getDepthCapture && backEnd.viewDef->renderView.viewID >= 0 ) // Suppress for lightgem rendering passes { globalImages->currentDepthImage->CopyDepthbuffer( backEnd.viewDef->viewport.x1, backEnd.viewDef->viewport.y1, backEnd.viewDef->viewport.x2 - backEnd.viewDef->viewport.x1 + 1, backEnd.viewDef->viewport.y2 - backEnd.viewDef->viewport.y1 + 1, true ); bool isPostProcess = false; RB_SetProgramEnvironment( isPostProcess ); } if ( backEnd.viewDef->numClipPlanes ) { GL_SelectTexture( 1 ); globalImages->BindNull(); qglDisable( GL_TEXTURE_GEN_S ); GL_SelectTexture( 0 ); } } /* ============================================================================================= SHADER PASSES ============================================================================================= */ /* ================== RB_SetProgramEnvironment Sets variables that can be used by all vertex programs [SteveL #3877] Note on the use of fragment program environmental variables. Parameters 0 and 1 are set here to allow conversion of screen coordinates to texture coordinates, for use when sampling _currentRender. Those same parameters 0 and 1, plus 2 and 3, are given entirely different meanings in draw_arb2.cpp while light interactions are being drawn. This function is called again before currentRender size is needed by post processing effects are done, so there's no clash. // TODO: I'm using 4 for gamma in shaders, so the following shit must be incremented by 1 Only parameters 0..3 were in use before #3877 - and in dhewm3 also 4, for gamma in shader. Now I've used a new parameter 5 for the size of _currentDepth. It's needed throughout, including by light interactions, and its size might in theory differ from _currentRender. Parameters 6 and 7 are used by soft particles #3878. Note these can be freely reused by different draw calls. ================== */ void RB_SetProgramEnvironment( bool isPostProcess ) { float parm[4]; int pot; if ( !glConfig.ARBVertexProgramAvailable ) { return; } #if 0 // screen power of two correction factor, one pixel in so we don't get a bilerp // of an uncopied pixel int w = backEnd.viewDef->viewport.x2 - backEnd.viewDef->viewport.x1 + 1; pot = globalImages->currentRenderImage->uploadWidth; if ( w == pot ) { parm[0] = 1.0; } else { parm[0] = (float)(w-1) / pot; } int h = backEnd.viewDef->viewport.y2 - backEnd.viewDef->viewport.y1 + 1; pot = globalImages->currentRenderImage->uploadHeight; if ( h == pot ) { parm[1] = 1.0; } else { parm[1] = (float)(h-1) / pot; } parm[2] = 0; parm[3] = 1; qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 0, parm ); #else // screen power of two correction factor, assuming the copy to _currentRender // also copied an extra row and column for the bilerp int w = backEnd.viewDef->viewport.x2 - backEnd.viewDef->viewport.x1 + 1; pot = globalImages->currentRenderImage->uploadWidth; parm[0] = (float)w / pot; int h = backEnd.viewDef->viewport.y2 - backEnd.viewDef->viewport.y1 + 1; pot = globalImages->currentRenderImage->uploadHeight; parm[1] = (float)h / pot; parm[2] = 0; parm[3] = 1; qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 0, parm ); #endif qglProgramEnvParameter4fvARB( GL_FRAGMENT_PROGRAM_ARB, 0, parm ); // window coord to 0.0 to 1.0 conversion parm[0] = 1.0 / w; parm[1] = 1.0 / h; parm[2] = 0; parm[3] = 1; qglProgramEnvParameter4fvARB( GL_FRAGMENT_PROGRAM_ARB, 1, parm ); // DG: brightness and gamma in shader as program.env[4] if ( r_gammaInShader.GetBool() ) { // program.env[4].xyz are all r_brightness, program.env[4].w is 1.0/r_gamma if ( !isPostProcess ) { parm[0] = parm[1] = parm[2] = r_brightness.GetFloat(); parm[3] = 1.0/r_gamma.GetFloat(); // 1.0/gamma so the shader doesn't have to do this calculation } else { // don't apply gamma/brightness in postprocess passes to avoid applying them twice // (setting them to 1.0 makes them no-ops) parm[0] = parm[1] = parm[2] = parm[3] = 1.0f; } qglProgramEnvParameter4fvARB( GL_FRAGMENT_PROGRAM_ARB, PP_GAMMA_BRIGHTNESS, parm ); } // #3877: Allow shaders to access depth buffer. // Two useful ratios are packed into this parm: [0] and [1] hold the x,y multipliers you need to map a screen // coordinate (fragment position) to the depth image: those are simply the reciprocal of the depth // image size, which has been rounded up to a power of two. Slots [3] and [4] hold the ratio of the depth image // size to the current render image size. These sizes can differ if the game crops the render viewport temporarily // during post-processing effects. The depth render is smaller during the effect too, but the depth image doesn't // need to be downsized, whereas the current render image does get downsized when it's captured by the game after // the skybox render pass. The ratio is needed to map between the two render images. parm[0] = 1.0f / globalImages->currentDepthImage->uploadWidth; parm[1] = 1.0f / globalImages->currentDepthImage->uploadHeight; parm[2] = static_cast(globalImages->currentRenderImage->uploadWidth) / globalImages->currentDepthImage->uploadWidth; parm[3] = static_cast(globalImages->currentRenderImage->uploadHeight) / globalImages->currentDepthImage->uploadHeight; qglProgramEnvParameter4fvARB( GL_FRAGMENT_PROGRAM_ARB, PP_CURDEPTH_RECIPR, parm ); // // set eye position in global space // parm[0] = backEnd.viewDef->renderView.vieworg[0]; parm[1] = backEnd.viewDef->renderView.vieworg[1]; parm[2] = backEnd.viewDef->renderView.vieworg[2]; parm[3] = 1.0; qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 1, parm ); } /* ================== RB_SetProgramEnvironmentSpace Sets variables related to the current space that can be used by all vertex programs ================== */ void RB_SetProgramEnvironmentSpace( void ) { if ( !glConfig.ARBVertexProgramAvailable ) { return; } const struct viewEntity_s *space = backEnd.currentSpace; float parm[4]; // set eye position in local space R_GlobalPointToLocal( space->modelMatrix, backEnd.viewDef->renderView.vieworg, *(idVec3 *)parm ); parm[3] = 1.0; qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 5, parm ); // we need the model matrix without it being combined with the view matrix // so we can transform local vectors to global coordinates parm[0] = space->modelMatrix[0]; parm[1] = space->modelMatrix[4]; parm[2] = space->modelMatrix[8]; parm[3] = space->modelMatrix[12]; qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 6, parm ); parm[0] = space->modelMatrix[1]; parm[1] = space->modelMatrix[5]; parm[2] = space->modelMatrix[9]; parm[3] = space->modelMatrix[13]; qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 7, parm ); parm[0] = space->modelMatrix[2]; parm[1] = space->modelMatrix[6]; parm[2] = space->modelMatrix[10]; parm[3] = space->modelMatrix[14]; qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 8, parm ); } /* ================== RB_STD_T_RenderShaderPasses This is also called for the generated 2D rendering ================== */ void RB_STD_T_RenderShaderPasses( const drawSurf_t *surf ) { int stage; const idMaterial *shader; const shaderStage_t *pStage; const float *regs; float color[4]; const srfTriangles_t *tri; tri = surf->geo; shader = surf->material; if ( !shader->HasAmbient() ) { return; } if ( shader->IsPortalSky() ) { return; } // change the matrix if needed if ( surf->space != backEnd.currentSpace ) { qglLoadMatrixf( surf->space->modelViewMatrix ); backEnd.currentSpace = surf->space; RB_SetProgramEnvironmentSpace(); } // change the scissor if needed if ( r_useScissor.GetBool() && !backEnd.currentScissor.Equals( surf->scissorRect ) ) { backEnd.currentScissor = surf->scissorRect; qglScissor( backEnd.viewDef->viewport.x1 + backEnd.currentScissor.x1, backEnd.viewDef->viewport.y1 + backEnd.currentScissor.y1, backEnd.currentScissor.x2 + 1 - backEnd.currentScissor.x1, backEnd.currentScissor.y2 + 1 - backEnd.currentScissor.y1 ); } // some deforms may disable themselves by setting numIndexes = 0 if ( !tri->numIndexes ) { return; } if ( !tri->ambientCache ) { common->Printf( "RB_T_RenderShaderPasses: !tri->ambientCache\n" ); return; } // check whether we're drawing a soft particle surface #3878 const bool soft_particle = ( surf->dsFlags & DSF_SOFT_PARTICLE ) != 0; // get the expressions for conditionals / color / texcoords regs = surf->shaderRegisters; // set face culling appropriately GL_Cull( shader->GetCullType() ); // set polygon offset if necessary if ( shader->TestMaterialFlag(MF_POLYGONOFFSET) ) { qglEnable( GL_POLYGON_OFFSET_FILL ); qglPolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * shader->GetPolygonOffset() ); } if ( surf->space->weaponDepthHack ) { RB_EnterWeaponDepthHack(); } if ( surf->space->modelDepthHack != 0.0f && !soft_particle ) // #3878 soft particles don't want modelDepthHack, which is { // an older way to slightly "soften" particles RB_EnterModelDepthHack( surf->space->modelDepthHack ); } idDrawVert *ac = (idDrawVert *)vertexCache.Position( tri->ambientCache ); qglVertexPointer( 3, GL_FLOAT, sizeof( idDrawVert ), ac->xyz.ToFloatPtr() ); qglTexCoordPointer( 2, GL_FLOAT, sizeof( idDrawVert ), reinterpret_cast(&ac->st) ); for ( stage = 0; stage < shader->GetNumStages() ; stage++ ) { pStage = shader->GetStage(stage); // check the enable condition if ( regs[ pStage->conditionRegister ] == 0 ) { continue; } // skip the stages involved in lighting if ( pStage->lighting != SL_AMBIENT ) { continue; } // skip if the stage is ( GL_ZERO, GL_ONE ), which is used for some alpha masks if ( ( pStage->drawStateBits & (GLS_SRCBLEND_BITS|GLS_DSTBLEND_BITS) ) == ( GLS_SRCBLEND_ZERO | GLS_DSTBLEND_ONE ) ) { continue; } // determine the blend mode (used by soft particles #3878) const int src_blend = pStage->drawStateBits & GLS_SRCBLEND_BITS; // see if we are a new-style stage newShaderStage_t *newStage = pStage->newStage; if ( newStage ) { //-------------------------- // // new style stages // //-------------------------- // completely skip the stage if we don't have the capability if ( tr.backEndRenderer != BE_ARB2 ) { continue; } if ( r_skipNewAmbient.GetBool() ) { continue; } qglColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( idDrawVert ), (void *)&ac->color ); qglVertexAttribPointerARB( 9, 3, GL_FLOAT, false, sizeof( idDrawVert ), ac->tangents[0].ToFloatPtr() ); qglVertexAttribPointerARB( 10, 3, GL_FLOAT, false, sizeof( idDrawVert ), ac->tangents[1].ToFloatPtr() ); qglNormalPointer( GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() ); qglEnableClientState( GL_COLOR_ARRAY ); qglEnableVertexAttribArrayARB( 9 ); qglEnableVertexAttribArrayARB( 10 ); qglEnableClientState( GL_NORMAL_ARRAY ); GL_State( pStage->drawStateBits ); qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, newStage->vertexProgram ); qglEnable( GL_VERTEX_PROGRAM_ARB ); // megaTextures bind a lot of images and set a lot of parameters if ( newStage->megaTexture ) { newStage->megaTexture->SetMappingForSurface( tri ); idVec3 localViewer; R_GlobalPointToLocal( surf->space->modelMatrix, backEnd.viewDef->renderView.vieworg, localViewer ); newStage->megaTexture->BindForViewOrigin( localViewer ); } for ( int i = 0 ; i < newStage->numVertexParms ; i++ ) { float parm[4]; parm[0] = regs[ newStage->vertexParms[i][0] ]; parm[1] = regs[ newStage->vertexParms[i][1] ]; parm[2] = regs[ newStage->vertexParms[i][2] ]; parm[3] = regs[ newStage->vertexParms[i][3] ]; qglProgramLocalParameter4fvARB( GL_VERTEX_PROGRAM_ARB, i, parm ); } for ( int i = 0 ; i < newStage->numFragmentProgramImages ; i++ ) { if ( newStage->fragmentProgramImages[i] ) { GL_SelectTexture( i ); newStage->fragmentProgramImages[i]->Bind(); } } qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, newStage->fragmentProgram ); qglEnable( GL_FRAGMENT_PROGRAM_ARB ); // draw it RB_DrawElementsWithCounters( tri ); for ( int i = 1 ; i < newStage->numFragmentProgramImages ; i++ ) { if ( newStage->fragmentProgramImages[i] ) { GL_SelectTexture( i ); globalImages->BindNull(); } } if ( newStage->megaTexture ) { newStage->megaTexture->Unbind(); } GL_SelectTexture( 0 ); qglDisable( GL_VERTEX_PROGRAM_ARB ); qglDisable( GL_FRAGMENT_PROGRAM_ARB ); // Fixme: Hack to get around an apparent bug in ATI drivers. Should remove as soon as it gets fixed. qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, 0 ); // FIXME: ... qglDisableClientState( GL_COLOR_ARRAY ); qglDisableVertexAttribArrayARB( 9 ); qglDisableVertexAttribArrayARB( 10 ); qglDisableClientState( GL_NORMAL_ARRAY ); continue; } else if ( soft_particle && surf->particle_radius > 0.0f && ( src_blend == GLS_SRCBLEND_ONE || src_blend == GLS_SRCBLEND_SRC_ALPHA ) && tr.backEndRenderer == BE_ARB2 && !r_skipNewAmbient.GetBool() ) { // SteveL #3878. Particles are automatically softened by the engine, unless they have shader programs of // their own (i.e. are "newstages" handled above). This section comes after the newstage part so that if a // designer has specified their own shader programs, those will be used instead of the soft particle program. if ( pStage->vertexColor == SVC_IGNORE ) { // Ignoring vertexColor is not recommended for particles. The particle system uses vertexColor for fading. // However, there are existing particle effects that don't use it, in which case we default to using the // rgb color modulation specified in the material like the "old stages" do below. color[0] = regs[pStage->color.registers[0]]; color[1] = regs[pStage->color.registers[1]]; color[2] = regs[pStage->color.registers[2]]; color[3] = regs[pStage->color.registers[3]]; qglColor4fv( color ); } else { // A properly set-up particle shader qglColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( idDrawVert ), (void *)&ac->color ); qglEnableClientState( GL_COLOR_ARRAY ); } #if 0 // debug stuff: render particles opaque so debug colors written in the shader are properly visible int dsbits = pStage->drawStateBits | GLS_DEPTHFUNC_ALWAYS; dsbits &= ~(GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS); //dsbits |= GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO; both values are 0, so this would be a noop GL_State( dsbits ); #endif GL_State( pStage->drawStateBits | GLS_DEPTHFUNC_ALWAYS ); // Disable depth clipping. The fragment program will // handle it to allow overdraw. qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, VPROG_SOFT_PARTICLE ); qglEnable( GL_VERTEX_PROGRAM_ARB ); // Bind image and _currentDepth GL_SelectTexture( 0 ); pStage->texture.image->Bind(); GL_SelectTexture( 1 ); globalImages->currentDepthImage->Bind(); qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, FPROG_SOFT_PARTICLE ); qglEnable( GL_FRAGMENT_PROGRAM_ARB ); #if 0 // debug stuff // Set up parameters for fragment program const char* srcblendstr = "???"; if ( src_blend >= 0 && src_blend <= 9 ) { const char* blendModes[] = { "ONE", "ZERO", "!! INVALID !!", "DST_COLOR", "ONE_MINUS_DST_COLOR", "SRC_ALPHA", "ONE_MINUS_SRC_ALPHA", "DST_ALPHA", "ONE_MINUS_DST_ALPHA", "ALPHA_SATURATE" }; srcblendstr = blendModes[src_blend]; } int dst_blend = pStage->drawStateBits & GLS_DSTBLEND_BITS; const char* dstblend = "???"; switch ( dst_blend ) { #define MY_CASE(X) case GLS_DSTBLEND_ ##X : dstblend = #X; break; MY_CASE(ZERO) MY_CASE(ONE) MY_CASE(SRC_COLOR) MY_CASE(ONE_MINUS_SRC_COLOR) MY_CASE(SRC_ALPHA) MY_CASE(ONE_MINUS_SRC_ALPHA) MY_CASE(DST_ALPHA) MY_CASE(ONE_MINUS_DST_ALPHA) #undef MY_CASE } printf("XX mat: %s, src_blend = %s dest_blend = %s radius = %g\n", shader->GetName(), srcblendstr, dstblend, surf->particle_radius); #endif // program.env[23] is the particle radius, given as { radius, 1/(faderange), 1/radius } float fadeRange = 1.0f; // fadeRange is the particle diameter for alpha blends (like smoke), but the particle radius for additive // blends (light glares), because additive effects work differently. Fog is half as apparent when a wall // is in the middle of it. Light glares lose no visibility when they have something to reflect off. See // The Dark Mod issue #3878 for diagram if ( src_blend == GLS_SRCBLEND_SRC_ALPHA ) // an alpha blend material { fadeRange = surf->particle_radius * 2.0f; } else if ( src_blend == GLS_SRCBLEND_ONE ) // an additive (blend add) material { fadeRange = surf->particle_radius; } float parm[4] = { surf->particle_radius, 1.0f / ( fadeRange ), 1.0f / surf->particle_radius, 0.0f }; qglProgramEnvParameter4fvARB( GL_FRAGMENT_PROGRAM_ARB, PP_PARTICLE_RADIUS, parm ); // program.env[24] is the color channel mask. It gets added to the fade multiplier, so adding 1 // to a channel will make sure it doesn't get faded at all. Particles with additive blend // need their RGB channels modifying to blend them out. Particles with an alpha blend need // their alpha channel modifying. if ( src_blend == GLS_SRCBLEND_SRC_ALPHA ) // an alpha blend material { parm[0] = parm[1] = parm[2] = 1.0f; // Leave the rgb channels at full strength when fading parm[3] = 0.0f; // but fade the alpha channel } else if ( src_blend == GLS_SRCBLEND_ONE ) // an additive (blend add) material { parm[0] = parm[1] = parm[2] = 0.0f; // Fade the rgb channels but parm[3] = 1.0f; // leave the alpha channel at full strength } qglProgramEnvParameter4fvARB( GL_FRAGMENT_PROGRAM_ARB, PP_PARTICLE_COLCHAN_MASK, parm ); // draw it RB_DrawElementsWithCounters( tri ); // Clean up GL state GL_SelectTexture( 1 ); globalImages->BindNull(); GL_SelectTexture( 0 ); globalImages->BindNull(); qglDisable( GL_VERTEX_PROGRAM_ARB ); qglDisable( GL_FRAGMENT_PROGRAM_ARB ); if ( pStage->vertexColor != SVC_IGNORE ) { qglDisableClientState( GL_COLOR_ARRAY ); } continue; } //-------------------------- // // old style stages // //-------------------------- // set the color color[0] = regs[ pStage->color.registers[0] ]; color[1] = regs[ pStage->color.registers[1] ]; color[2] = regs[ pStage->color.registers[2] ]; color[3] = regs[ pStage->color.registers[3] ]; // skip the entire stage if an add would be black if ( ( pStage->drawStateBits & (GLS_SRCBLEND_BITS|GLS_DSTBLEND_BITS) ) == ( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE ) && color[0] <= 0 && color[1] <= 0 && color[2] <= 0 ) { continue; } // skip the entire stage if a blend would be completely transparent if ( ( pStage->drawStateBits & (GLS_SRCBLEND_BITS|GLS_DSTBLEND_BITS) ) == ( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ) && color[3] <= 0 ) { continue; } // select the vertex color source if ( pStage->vertexColor == SVC_IGNORE ) { qglColor4fv( color ); } else { qglColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( idDrawVert ), (void *)&ac->color ); qglEnableClientState( GL_COLOR_ARRAY ); if ( pStage->vertexColor == SVC_INVERSE_MODULATE ) { GL_TexEnv( GL_COMBINE_ARB ); qglTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE ); qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE ); qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR_ARB ); qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR ); qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_ONE_MINUS_SRC_COLOR ); qglTexEnvi( GL_TEXTURE_ENV, GL_RGB_SCALE_ARB, 1 ); } // for vertex color and modulated color, we need to enable a second // texture stage if ( color[0] != 1 || color[1] != 1 || color[2] != 1 || color[3] != 1 ) { GL_SelectTexture( 1 ); globalImages->whiteImage->Bind(); GL_TexEnv( GL_COMBINE_ARB ); qglTexEnvfv( GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, color ); qglTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE ); qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB ); qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_CONSTANT_ARB ); qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR ); qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR ); qglTexEnvi( GL_TEXTURE_ENV, GL_RGB_SCALE_ARB, 1 ); qglTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_MODULATE ); qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS_ARB ); qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_ARB, GL_CONSTANT_ARB ); qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA ); qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_ARB, GL_SRC_ALPHA ); qglTexEnvi( GL_TEXTURE_ENV, GL_ALPHA_SCALE, 1 ); GL_SelectTexture( 0 ); } } // bind the texture RB_BindVariableStageImage( &pStage->texture, regs ); // set the state GL_State( pStage->drawStateBits ); RB_PrepareStageTexturing( pStage, surf, ac ); // draw it RB_DrawElementsWithCounters( tri ); RB_FinishStageTexturing( pStage, surf, ac ); if ( pStage->vertexColor != SVC_IGNORE ) { qglDisableClientState( GL_COLOR_ARRAY ); GL_SelectTexture( 1 ); GL_TexEnv( GL_MODULATE ); globalImages->BindNull(); GL_SelectTexture( 0 ); GL_TexEnv( GL_MODULATE ); } } // reset polygon offset if ( shader->TestMaterialFlag(MF_POLYGONOFFSET) ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } if ( surf->space->weaponDepthHack || ( !soft_particle && surf->space->modelDepthHack != 0.0f ) ) // #3878 soft particles { RB_LeaveDepthHack(); } } /* ===================== RB_STD_DrawShaderPasses Draw non-light dependent passes ===================== */ int RB_STD_DrawShaderPasses( drawSurf_t **drawSurfs, int numDrawSurfs ) { int i; // only obey skipAmbient if we are rendering a view if ( backEnd.viewDef->viewEntitys && r_skipAmbient.GetBool() ) { return numDrawSurfs; } bool isPostProcess = false; // if we are about to draw the first surface that needs // the rendering in a texture, copy it over if ( drawSurfs[0]->material->GetSort() >= SS_POST_PROCESS ) { if ( r_skipPostProcess.GetBool() ) { return 0; } isPostProcess = true; // only dump if in a 3d view if ( backEnd.viewDef->viewEntitys && tr.backEndRenderer == BE_ARB2 ) { globalImages->currentRenderImage->CopyFramebuffer( backEnd.viewDef->viewport.x1, backEnd.viewDef->viewport.y1, backEnd.viewDef->viewport.x2 - backEnd.viewDef->viewport.x1 + 1, backEnd.viewDef->viewport.y2 - backEnd.viewDef->viewport.y1 + 1, true ); } backEnd.currentRenderCopied = true; } GL_SelectTexture( 1 ); globalImages->BindNull(); GL_SelectTexture( 0 ); qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); RB_SetProgramEnvironment( isPostProcess ); // we don't use RB_RenderDrawSurfListWithFunction() // because we want to defer the matrix load because many // surfaces won't draw any ambient passes backEnd.currentSpace = NULL; for (i = 0 ; i < numDrawSurfs ; i++ ) { if ( drawSurfs[i]->material->SuppressInSubview() ) { continue; } if ( backEnd.viewDef->isXraySubview && drawSurfs[i]->space->entityDef ) { if ( drawSurfs[i]->space->entityDef->parms.xrayIndex != 2 ) { continue; } } // we need to draw the post process shaders after we have drawn the fog lights if ( drawSurfs[i]->material->GetSort() >= SS_POST_PROCESS && !backEnd.currentRenderCopied ) { break; } RB_STD_T_RenderShaderPasses( drawSurfs[i] ); } GL_Cull( CT_FRONT_SIDED ); qglColor3f( 1, 1, 1 ); return i; } /* ============================================================================== BACK END RENDERING OF STENCIL SHADOWS ============================================================================== */ /* ===================== RB_T_Shadow the shadow volumes face INSIDE ===================== */ static void RB_T_Shadow( const drawSurf_t *surf ) { const srfTriangles_t *tri; // set the light position if we are using a vertex program to project the rear surfaces if ( tr.backEndRendererHasVertexPrograms && r_useShadowVertexProgram.GetBool() && surf->space != backEnd.currentSpace ) { idVec4 localLight; R_GlobalPointToLocal( surf->space->modelMatrix, backEnd.vLight->globalLightOrigin, localLight.ToVec3() ); localLight.w = 0.0f; qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, PP_LIGHT_ORIGIN, localLight.ToFloatPtr() ); } tri = surf->geo; if ( !tri->shadowCache ) { return; } qglVertexPointer( 4, GL_FLOAT, sizeof( shadowCache_t ), vertexCache.Position(tri->shadowCache) ); // we always draw the sil planes, but we may not need to draw the front or rear caps int numIndexes; bool external = false; if ( !r_useExternalShadows.GetInteger() ) { numIndexes = tri->numIndexes; } else if ( r_useExternalShadows.GetInteger() == 2 ) { // force to no caps for testing numIndexes = tri->numShadowIndexesNoCaps; } else if ( !(surf->dsFlags & DSF_VIEW_INSIDE_SHADOW) ) { // if we aren't inside the shadow projection, no caps are ever needed needed numIndexes = tri->numShadowIndexesNoCaps; external = true; } else if ( !backEnd.vLight->viewInsideLight && !(surf->geo->shadowCapPlaneBits & SHADOW_CAP_INFINITE) ) { // if we are inside the shadow projection, but outside the light, and drawing // a non-infinite shadow, we can skip some caps if ( backEnd.vLight->viewSeesShadowPlaneBits & surf->geo->shadowCapPlaneBits ) { // we can see through a rear cap, so we need to draw it, but we can skip the // caps on the actual surface numIndexes = tri->numShadowIndexesNoFrontCaps; } else { // we don't need to draw any caps numIndexes = tri->numShadowIndexesNoCaps; } external = true; } else { // must draw everything numIndexes = tri->numIndexes; } // set depth bounds if( glConfig.depthBoundsTestAvailable && r_useDepthBoundsTest.GetBool() ) { qglDepthBoundsEXT( surf->scissorRect.zmin, surf->scissorRect.zmax ); } // debug visualization if ( r_showShadows.GetInteger() ) { if ( r_showShadows.GetInteger() == 3 ) { if ( external ) { qglColor3f( 0.1/backEnd.overBright, 1/backEnd.overBright, 0.1/backEnd.overBright ); } else { // these are the surfaces that require the reverse qglColor3f( 1/backEnd.overBright, 0.1/backEnd.overBright, 0.1/backEnd.overBright ); } } else { // draw different color for turboshadows if ( surf->geo->shadowCapPlaneBits & SHADOW_CAP_INFINITE ) { if ( numIndexes == tri->numIndexes ) { qglColor3f( 1/backEnd.overBright, 0.1/backEnd.overBright, 0.1/backEnd.overBright ); } else { qglColor3f( 1/backEnd.overBright, 0.4/backEnd.overBright, 0.1/backEnd.overBright ); } } else { if ( numIndexes == tri->numIndexes ) { qglColor3f( 0.1/backEnd.overBright, 1/backEnd.overBright, 0.1/backEnd.overBright ); } else if ( numIndexes == tri->numShadowIndexesNoFrontCaps ) { qglColor3f( 0.1/backEnd.overBright, 1/backEnd.overBright, 0.6/backEnd.overBright ); } else { qglColor3f( 0.6/backEnd.overBright, 1/backEnd.overBright, 0.1/backEnd.overBright ); } } } qglStencilOp( GL_KEEP, GL_KEEP, GL_KEEP ); qglDisable( GL_STENCIL_TEST ); GL_Cull( CT_TWO_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); GL_Cull( CT_FRONT_SIDED ); qglEnable( GL_STENCIL_TEST ); return; } // DG: that bloody patent on depth-fail stencil shadows has finally expired on 2019-10-13, // so use them (see https://patents.google.com/patent/US6384822B1/en for expiration status) bool useStencilOpSeperate = r_useStencilOpSeparate.GetBool() && qglStencilOpSeparate != NULL; if( !r_useCarmacksReverse.GetBool() ) { if( useStencilOpSeperate ) { // not using z-fail, but using qglStencilOpSeparate() GLenum firstFace = backEnd.viewDef->isMirror ? GL_FRONT : GL_BACK; GLenum secondFace = backEnd.viewDef->isMirror ? GL_BACK : GL_FRONT; GL_Cull( CT_TWO_SIDED ); if ( !external ) { qglStencilOpSeparate( firstFace, GL_KEEP, tr.stencilDecr, tr.stencilDecr ); qglStencilOpSeparate( secondFace, GL_KEEP, tr.stencilIncr, tr.stencilIncr ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); } qglStencilOpSeparate( firstFace, GL_KEEP, GL_KEEP, tr.stencilIncr ); qglStencilOpSeparate( secondFace, GL_KEEP, GL_KEEP, tr.stencilDecr ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); } else { // DG: this is the original code: // patent-free work around if ( !external ) { // "preload" the stencil buffer with the number of volumes // that get clipped by the near or far clip plane qglStencilOp( GL_KEEP, tr.stencilDecr, tr.stencilDecr ); GL_Cull( CT_FRONT_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); qglStencilOp( GL_KEEP, tr.stencilIncr, tr.stencilIncr ); GL_Cull( CT_BACK_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); } // traditional depth-pass stencil shadows qglStencilOp( GL_KEEP, GL_KEEP, tr.stencilIncr ); GL_Cull( CT_FRONT_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); qglStencilOp( GL_KEEP, GL_KEEP, tr.stencilDecr ); GL_Cull( CT_BACK_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); } } else { // use the formerly patented "Carmack's Reverse" Z-Fail code if( useStencilOpSeperate ) { // Z-Fail with glStencilOpSeparate() which will reduce draw calls GLenum firstFace = backEnd.viewDef->isMirror ? GL_FRONT : GL_BACK; GLenum secondFace = backEnd.viewDef->isMirror ? GL_BACK : GL_FRONT; if ( !external ) { // z-fail qglStencilOpSeparate( firstFace, GL_KEEP, tr.stencilDecr, GL_KEEP ); qglStencilOpSeparate( secondFace, GL_KEEP, tr.stencilIncr, GL_KEEP ); } else { // depth-pass qglStencilOpSeparate( firstFace, GL_KEEP, GL_KEEP, tr.stencilIncr ); qglStencilOpSeparate( secondFace, GL_KEEP, GL_KEEP, tr.stencilDecr ); } GL_Cull( CT_TWO_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); } else { // Z-Fail without glStencilOpSeparate() // LEITH: the (formerly patented) "Carmack's Reverse" code // depth-fail/Z-Fail stencil shadows if ( !external ) { qglStencilOp( GL_KEEP, tr.stencilDecr, GL_KEEP ); GL_Cull( CT_FRONT_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); qglStencilOp( GL_KEEP, tr.stencilIncr, GL_KEEP ); GL_Cull( CT_BACK_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); } // traditional depth-pass stencil shadows else { qglStencilOp( GL_KEEP, GL_KEEP, tr.stencilIncr ); GL_Cull( CT_FRONT_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); qglStencilOp( GL_KEEP, GL_KEEP, tr.stencilDecr ); GL_Cull( CT_BACK_SIDED ); RB_DrawShadowElementsWithCounters( tri, numIndexes ); } } } } /* ===================== RB_StencilShadowPass Stencil test should already be enabled, and the stencil buffer should have been set to 128 on any surfaces that might receive shadows ===================== */ void RB_StencilShadowPass( const drawSurf_t *drawSurfs ) { if ( !r_shadows.GetBool() ) { return; } if ( !drawSurfs ) { return; } globalImages->BindNull(); qglDisableClientState( GL_TEXTURE_COORD_ARRAY ); // for visualizing the shadows if ( r_showShadows.GetInteger() ) { if ( r_showShadows.GetInteger() == 2 ) { // draw filled in GL_State( GLS_DEPTHMASK | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_LESS ); } else { // draw as lines, filling the depth buffer GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO | GLS_POLYMODE_LINE | GLS_DEPTHFUNC_ALWAYS ); } } else { // don't write to the color buffer, just the stencil buffer GL_State( GLS_DEPTHMASK | GLS_COLORMASK | GLS_ALPHAMASK | GLS_DEPTHFUNC_LESS ); } if ( r_shadowPolygonFactor.GetFloat() || r_shadowPolygonOffset.GetFloat() ) { qglPolygonOffset( r_shadowPolygonFactor.GetFloat(), -r_shadowPolygonOffset.GetFloat() ); qglEnable( GL_POLYGON_OFFSET_FILL ); } qglStencilFunc( GL_ALWAYS, 1, 255 ); if ( glConfig.depthBoundsTestAvailable && r_useDepthBoundsTest.GetBool() ) { qglEnable( GL_DEPTH_BOUNDS_TEST_EXT ); } RB_RenderDrawSurfChainWithFunction( drawSurfs, RB_T_Shadow ); GL_Cull( CT_FRONT_SIDED ); if ( r_shadowPolygonFactor.GetFloat() || r_shadowPolygonOffset.GetFloat() ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } if ( glConfig.depthBoundsTestAvailable && r_useDepthBoundsTest.GetBool() ) { qglDisable( GL_DEPTH_BOUNDS_TEST_EXT ); } qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); qglStencilFunc( GL_GEQUAL, 128, 255 ); qglStencilOp( GL_KEEP, GL_KEEP, GL_KEEP ); } /* ============================================================================================= BLEND LIGHT PROJECTION ============================================================================================= */ /* ===================== RB_T_BlendLight ===================== */ static void RB_T_BlendLight( const drawSurf_t *surf ) { const srfTriangles_t *tri; tri = surf->geo; if ( backEnd.currentSpace != surf->space ) { idPlane lightProject[4]; int i; for ( i = 0 ; i < 4 ; i++ ) { R_GlobalPlaneToLocal( surf->space->modelMatrix, backEnd.vLight->lightProject[i], lightProject[i] ); } GL_SelectTexture( 0 ); qglTexGenfv( GL_S, GL_OBJECT_PLANE, lightProject[0].ToFloatPtr() ); qglTexGenfv( GL_T, GL_OBJECT_PLANE, lightProject[1].ToFloatPtr() ); qglTexGenfv( GL_Q, GL_OBJECT_PLANE, lightProject[2].ToFloatPtr() ); GL_SelectTexture( 1 ); qglTexGenfv( GL_S, GL_OBJECT_PLANE, lightProject[3].ToFloatPtr() ); } // this gets used for both blend lights and shadow draws if ( tri->ambientCache ) { idDrawVert *ac = (idDrawVert *)vertexCache.Position( tri->ambientCache ); qglVertexPointer( 3, GL_FLOAT, sizeof( idDrawVert ), ac->xyz.ToFloatPtr() ); } else if ( tri->shadowCache ) { shadowCache_t *sc = (shadowCache_t *)vertexCache.Position( tri->shadowCache ); qglVertexPointer( 3, GL_FLOAT, sizeof( shadowCache_t ), sc->xyz.ToFloatPtr() ); } RB_DrawElementsWithCounters( tri ); } /* ===================== RB_BlendLight Dual texture together the falloff and projection texture with a blend mode to the framebuffer, instead of interacting with the surface texture ===================== */ static void RB_BlendLight( const drawSurf_t *drawSurfs, const drawSurf_t *drawSurfs2 ) { const idMaterial *lightShader; const shaderStage_t *stage; int i; const float *regs; if ( !drawSurfs ) { return; } if ( r_skipBlendLights.GetBool() ) { return; } lightShader = backEnd.vLight->lightShader; regs = backEnd.vLight->shaderRegisters; // texture 1 will get the falloff texture GL_SelectTexture( 1 ); qglDisableClientState( GL_TEXTURE_COORD_ARRAY ); qglEnable( GL_TEXTURE_GEN_S ); qglTexCoord2f( 0, 0.5 ); backEnd.vLight->falloffImage->Bind(); // texture 0 will get the projected texture GL_SelectTexture( 0 ); qglDisableClientState( GL_TEXTURE_COORD_ARRAY ); qglEnable( GL_TEXTURE_GEN_S ); qglEnable( GL_TEXTURE_GEN_T ); qglEnable( GL_TEXTURE_GEN_Q ); for ( i = 0 ; i < lightShader->GetNumStages() ; i++ ) { stage = lightShader->GetStage(i); if ( !regs[ stage->conditionRegister ] ) { continue; } GL_State( GLS_DEPTHMASK | stage->drawStateBits | GLS_DEPTHFUNC_EQUAL ); GL_SelectTexture( 0 ); stage->texture.image->Bind(); if ( stage->texture.hasMatrix ) { RB_LoadShaderTextureMatrix( regs, &stage->texture ); } // get the modulate values from the light, including alpha, unlike normal lights backEnd.lightColor[0] = regs[ stage->color.registers[0] ]; backEnd.lightColor[1] = regs[ stage->color.registers[1] ]; backEnd.lightColor[2] = regs[ stage->color.registers[2] ]; backEnd.lightColor[3] = regs[ stage->color.registers[3] ]; qglColor4fv( backEnd.lightColor ); RB_RenderDrawSurfChainWithFunction( drawSurfs, RB_T_BlendLight ); RB_RenderDrawSurfChainWithFunction( drawSurfs2, RB_T_BlendLight ); if ( stage->texture.hasMatrix ) { GL_SelectTexture( 0 ); qglMatrixMode( GL_TEXTURE ); qglLoadIdentity(); qglMatrixMode( GL_MODELVIEW ); } } GL_SelectTexture( 1 ); qglDisable( GL_TEXTURE_GEN_S ); globalImages->BindNull(); GL_SelectTexture( 0 ); qglDisable( GL_TEXTURE_GEN_S ); qglDisable( GL_TEXTURE_GEN_T ); qglDisable( GL_TEXTURE_GEN_Q ); } //======================================================================== static idPlane fogPlanes[4]; /* ===================== RB_T_BasicFog ===================== */ static void RB_T_BasicFog( const drawSurf_t *surf ) { if ( backEnd.currentSpace != surf->space ) { idPlane local; GL_SelectTexture( 0 ); R_GlobalPlaneToLocal( surf->space->modelMatrix, fogPlanes[0], local ); local[3] += 0.5; qglTexGenfv( GL_S, GL_OBJECT_PLANE, local.ToFloatPtr() ); // R_GlobalPlaneToLocal( surf->space->modelMatrix, fogPlanes[1], local ); // local[3] += 0.5; local[0] = local[1] = local[2] = 0; local[3] = 0.5; qglTexGenfv( GL_T, GL_OBJECT_PLANE, local.ToFloatPtr() ); GL_SelectTexture( 1 ); // GL_S is constant per viewer R_GlobalPlaneToLocal( surf->space->modelMatrix, fogPlanes[2], local ); local[3] += FOG_ENTER; qglTexGenfv( GL_T, GL_OBJECT_PLANE, local.ToFloatPtr() ); R_GlobalPlaneToLocal( surf->space->modelMatrix, fogPlanes[3], local ); qglTexGenfv( GL_S, GL_OBJECT_PLANE, local.ToFloatPtr() ); } RB_T_RenderTriangleSurface( surf ); } /* ================== RB_FogPass ================== */ static void RB_FogPass( const drawSurf_t *drawSurfs, const drawSurf_t *drawSurfs2 ) { const srfTriangles_t*frustumTris; drawSurf_t ds; const idMaterial *lightShader; const shaderStage_t *stage; const float *regs; // create a surface for the light frustom triangles, which are oriented drawn side out frustumTris = backEnd.vLight->frustumTris; // if we ran out of vertex cache memory, skip it if ( !frustumTris->ambientCache ) { return; } memset( &ds, 0, sizeof( ds ) ); ds.space = &backEnd.viewDef->worldSpace; ds.geo = frustumTris; ds.scissorRect = backEnd.viewDef->scissor; // find the current color and density of the fog lightShader = backEnd.vLight->lightShader; regs = backEnd.vLight->shaderRegisters; // assume fog shaders have only a single stage stage = lightShader->GetStage(0); backEnd.lightColor[0] = regs[ stage->color.registers[0] ]; backEnd.lightColor[1] = regs[ stage->color.registers[1] ]; backEnd.lightColor[2] = regs[ stage->color.registers[2] ]; backEnd.lightColor[3] = regs[ stage->color.registers[3] ]; qglColor3fv( backEnd.lightColor ); // calculate the falloff planes float a; // if they left the default value on, set a fog distance of 500 if ( backEnd.lightColor[3] <= 1.0 ) { a = -0.5f / DEFAULT_FOG_DISTANCE; } else { // otherwise, distance = alpha color a = -0.5f / backEnd.lightColor[3]; } GL_State( GLS_DEPTHMASK | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL ); // texture 0 is the falloff image GL_SelectTexture( 0 ); globalImages->fogImage->Bind(); //GL_Bind( tr.whiteImage ); qglDisableClientState( GL_TEXTURE_COORD_ARRAY ); qglEnable( GL_TEXTURE_GEN_S ); qglEnable( GL_TEXTURE_GEN_T ); qglTexCoord2f( 0.5f, 0.5f ); // make sure Q is set fogPlanes[0][0] = a * backEnd.viewDef->worldSpace.modelViewMatrix[2]; fogPlanes[0][1] = a * backEnd.viewDef->worldSpace.modelViewMatrix[6]; fogPlanes[0][2] = a * backEnd.viewDef->worldSpace.modelViewMatrix[10]; fogPlanes[0][3] = a * backEnd.viewDef->worldSpace.modelViewMatrix[14]; fogPlanes[1][0] = a * backEnd.viewDef->worldSpace.modelViewMatrix[0]; fogPlanes[1][1] = a * backEnd.viewDef->worldSpace.modelViewMatrix[4]; fogPlanes[1][2] = a * backEnd.viewDef->worldSpace.modelViewMatrix[8]; fogPlanes[1][3] = a * backEnd.viewDef->worldSpace.modelViewMatrix[12]; // texture 1 is the entering plane fade correction GL_SelectTexture( 1 ); globalImages->fogEnterImage->Bind(); qglDisableClientState( GL_TEXTURE_COORD_ARRAY ); qglEnable( GL_TEXTURE_GEN_S ); qglEnable( GL_TEXTURE_GEN_T ); // T will get a texgen for the fade plane, which is always the "top" plane on unrotated lights fogPlanes[2][0] = 0.001f * backEnd.vLight->fogPlane[0]; fogPlanes[2][1] = 0.001f * backEnd.vLight->fogPlane[1]; fogPlanes[2][2] = 0.001f * backEnd.vLight->fogPlane[2]; fogPlanes[2][3] = 0.001f * backEnd.vLight->fogPlane[3]; // S is based on the view origin float s = backEnd.viewDef->renderView.vieworg * fogPlanes[2].Normal() + fogPlanes[2][3]; fogPlanes[3][0] = 0; fogPlanes[3][1] = 0; fogPlanes[3][2] = 0; fogPlanes[3][3] = FOG_ENTER + s; qglTexCoord2f( FOG_ENTER + s, FOG_ENTER ); // draw it RB_RenderDrawSurfChainWithFunction( drawSurfs, RB_T_BasicFog ); RB_RenderDrawSurfChainWithFunction( drawSurfs2, RB_T_BasicFog ); // the light frustum bounding planes aren't in the depth buffer, so use depthfunc_less instead // of depthfunc_equal GL_State( GLS_DEPTHMASK | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_LESS ); GL_Cull( CT_BACK_SIDED ); RB_RenderDrawSurfChainWithFunction( &ds, RB_T_BasicFog ); GL_Cull( CT_FRONT_SIDED ); GL_SelectTexture( 1 ); qglDisable( GL_TEXTURE_GEN_S ); qglDisable( GL_TEXTURE_GEN_T ); globalImages->BindNull(); GL_SelectTexture( 0 ); qglDisable( GL_TEXTURE_GEN_S ); qglDisable( GL_TEXTURE_GEN_T ); } /* ================== RB_STD_FogAllLights ================== */ void RB_STD_FogAllLights( void ) { viewLight_t *vLight; if ( r_skipFogLights.GetBool() || r_showOverDraw.GetInteger() != 0 || backEnd.viewDef->isXraySubview /* dont fog in xray mode*/ ) { return; } qglDisable( GL_STENCIL_TEST ); for ( vLight = backEnd.viewDef->viewLights ; vLight ; vLight = vLight->next ) { backEnd.vLight = vLight; if ( !vLight->lightShader->IsFogLight() && !vLight->lightShader->IsBlendLight() ) { continue; } #if 0 // _D3XP disabled that if ( r_ignore.GetInteger() ) { // we use the stencil buffer to guarantee that no pixels will be // double fogged, which happens in some areas that are thousands of // units from the origin backEnd.currentScissor = vLight->scissorRect; if ( r_useScissor.GetBool() ) { qglScissor( backEnd.viewDef->viewport.x1 + backEnd.currentScissor.x1, backEnd.viewDef->viewport.y1 + backEnd.currentScissor.y1, backEnd.currentScissor.x2 + 1 - backEnd.currentScissor.x1, backEnd.currentScissor.y2 + 1 - backEnd.currentScissor.y1 ); } qglClear( GL_STENCIL_BUFFER_BIT ); qglEnable( GL_STENCIL_TEST ); // only pass on the cleared stencil values qglStencilFunc( GL_EQUAL, 128, 255 ); // when we pass the stencil test and depth test and are going to draw, // increment the stencil buffer so we don't ever draw on that pixel again qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); } #endif if ( vLight->lightShader->IsFogLight() ) { RB_FogPass( vLight->globalInteractions, vLight->localInteractions ); } else if ( vLight->lightShader->IsBlendLight() ) { RB_BlendLight( vLight->globalInteractions, vLight->localInteractions ); } qglDisable( GL_STENCIL_TEST ); } qglEnable( GL_STENCIL_TEST ); } //========================================================================================= /* ================== RB_STD_LightScale Perform extra blending passes to multiply the entire buffer by a floating point value ================== */ void RB_STD_LightScale( void ) { float v, f; if ( backEnd.overBright == 1.0f ) { return; } if ( r_skipLightScale.GetBool() ) { return; } // the scissor may be smaller than the viewport for subviews if ( r_useScissor.GetBool() ) { qglScissor( backEnd.viewDef->viewport.x1 + backEnd.viewDef->scissor.x1, backEnd.viewDef->viewport.y1 + backEnd.viewDef->scissor.y1, backEnd.viewDef->scissor.x2 - backEnd.viewDef->scissor.x1 + 1, backEnd.viewDef->scissor.y2 - backEnd.viewDef->scissor.y1 + 1 ); backEnd.currentScissor = backEnd.viewDef->scissor; } // full screen blends qglLoadIdentity(); qglMatrixMode( GL_PROJECTION ); qglPushMatrix(); qglLoadIdentity(); qglOrtho( 0, 1, 0, 1, -1, 1 ); GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_SRC_COLOR ); GL_Cull( CT_TWO_SIDED ); // so mirror views also get it globalImages->BindNull(); qglDisable( GL_DEPTH_TEST ); qglDisable( GL_STENCIL_TEST ); v = 1; while ( idMath::Fabs( v - backEnd.overBright ) > 0.01 ) { // a little extra slop f = backEnd.overBright / v; f /= 2; if ( f > 1 ) { f = 1; } qglColor3f( f, f, f ); v = v * f * 2; qglBegin( GL_QUADS ); qglVertex2f( 0,0 ); qglVertex2f( 0,1 ); qglVertex2f( 1,1 ); qglVertex2f( 1,0 ); qglEnd(); } qglPopMatrix(); qglEnable( GL_DEPTH_TEST ); qglMatrixMode( GL_MODELVIEW ); GL_Cull( CT_FRONT_SIDED ); } //========================================================================================= /* ============= RB_STD_DrawView ============= */ void RB_STD_DrawView( void ) { drawSurf_t **drawSurfs; int numDrawSurfs; backEnd.depthFunc = GLS_DEPTHFUNC_EQUAL; drawSurfs = (drawSurf_t **)&backEnd.viewDef->drawSurfs[0]; numDrawSurfs = backEnd.viewDef->numDrawSurfs; // clear the z buffer, set the projection matrix, etc RB_BeginDrawingView(); // decide how much overbrighting we are going to do RB_DetermineLightScale(); // fill the depth buffer and clear color buffer to black except on // subviews RB_STD_FillDepthBuffer( drawSurfs, numDrawSurfs ); // main light renderer switch( tr.backEndRenderer ) { case BE_ARB2: RB_ARB2_DrawInteractions(); break; } // disable stencil shadow test qglStencilFunc( GL_ALWAYS, 128, 255 ); // uplight the entire screen to crutch up not having better blending range RB_STD_LightScale(); // now draw any non-light dependent shading passes int processed = RB_STD_DrawShaderPasses( drawSurfs, numDrawSurfs ); // fob and blend lights RB_STD_FogAllLights(); // now draw any post-processing effects using _currentRender if ( processed < numDrawSurfs ) { RB_STD_DrawShaderPasses( drawSurfs+processed, numDrawSurfs-processed ); } RB_RenderDebugTools( drawSurfs, numDrawSurfs ); }