/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "../idlib/precompiled.h" #pragma hdrstop #include "tr_local.h" /* =========================================================================== idInteraction implementation =========================================================================== */ // FIXME: use private allocator for srfCullInfo_t /* ================ R_CalcInteractionFacing Determines which triangles of the surface are facing towards the light origin. The facing array should be allocated with one extra index than the number of surface triangles, which will be used to handle dangling edge silhouettes. ================ */ void R_CalcInteractionFacing( const idRenderEntityLocal *ent, const srfTriangles_t *tri, const idRenderLightLocal *light, srfCullInfo_t &cullInfo ) { idVec3 localLightOrigin; if ( cullInfo.facing != NULL ) { return; } R_GlobalPointToLocal( ent->modelMatrix, light->globalLightOrigin, localLightOrigin ); int numFaces = tri->numIndexes / 3; if ( !tri->facePlanes || !tri->facePlanesCalculated ) { R_DeriveFacePlanes( const_cast(tri) ); } cullInfo.facing = (byte *) R_StaticAlloc( ( numFaces + 1 ) * sizeof( cullInfo.facing[0] ) ); // calculate back face culling float *planeSide = (float *) _alloca16( numFaces * sizeof( float ) ); // exact geometric cull against face SIMDProcessor->Dot( planeSide, localLightOrigin, tri->facePlanes, numFaces ); SIMDProcessor->CmpGE( cullInfo.facing, planeSide, 0.0f, numFaces ); cullInfo.facing[ numFaces ] = 1; // for dangling edges to reference } /* ===================== R_CalcInteractionCullBits We want to cull a little on the sloppy side, because the pre-clipping of geometry to the lights in dmap will give many cases that are right at the border we throw things out on the border, because if any one vertex is clearly inside, the entire triangle will be accepted. ===================== */ void R_CalcInteractionCullBits( const idRenderEntityLocal *ent, const srfTriangles_t *tri, const idRenderLightLocal *light, srfCullInfo_t &cullInfo ) { int i, frontBits; if ( cullInfo.cullBits != NULL ) { return; } frontBits = 0; // cull the triangle surface bounding box for ( i = 0; i < 6; i++ ) { R_GlobalPlaneToLocal( ent->modelMatrix, -light->frustum[i], cullInfo.localClipPlanes[i] ); // get front bits for the whole surface if ( tri->bounds.PlaneDistance( cullInfo.localClipPlanes[i] ) >= LIGHT_CLIP_EPSILON ) { frontBits |= 1<numVerts * sizeof( cullInfo.cullBits[0] ) ); SIMDProcessor->Memset( cullInfo.cullBits, 0, tri->numVerts * sizeof( cullInfo.cullBits[0] ) ); float *planeSide = (float *) _alloca16( tri->numVerts * sizeof( float ) ); for ( i = 0; i < 6; i++ ) { // if completely infront of this clipping plane if ( frontBits & ( 1 << i ) ) { continue; } SIMDProcessor->Dot( planeSide, cullInfo.localClipPlanes[i], tri->verts, tri->numVerts ); SIMDProcessor->CmpLT( cullInfo.cullBits, i, planeSide, LIGHT_CLIP_EPSILON, tri->numVerts ); } } /* ================ R_FreeInteractionCullInfo ================ */ void R_FreeInteractionCullInfo( srfCullInfo_t &cullInfo ) { if ( cullInfo.facing != NULL ) { R_StaticFree( cullInfo.facing ); cullInfo.facing = NULL; } if ( cullInfo.cullBits != NULL ) { if ( cullInfo.cullBits != LIGHT_CULL_ALL_FRONT ) { R_StaticFree( cullInfo.cullBits ); } cullInfo.cullBits = NULL; } } #define MAX_CLIPPED_POINTS 20 typedef struct { int numVerts; idVec3 verts[MAX_CLIPPED_POINTS]; } clipTri_t; /* ============= R_ChopWinding Clips a triangle from one buffer to another, setting edge flags The returned buffer may be the same as inNum if no clipping is done If entirely clipped away, clipTris[returned].numVerts == 0 I have some worries about edge flag cases when polygons are clipped multiple times near the epsilon. ============= */ static int R_ChopWinding( clipTri_t clipTris[2], int inNum, const idPlane plane ) { clipTri_t *in, *out; float dists[MAX_CLIPPED_POINTS]; int sides[MAX_CLIPPED_POINTS]; int counts[3]; float dot; int i, j; idVec3 mid; bool front; in = &clipTris[inNum]; out = &clipTris[inNum^1]; counts[0] = counts[1] = counts[2] = 0; // determine sides for each point front = false; for ( i = 0; i < in->numVerts; i++ ) { dot = in->verts[i] * plane.Normal() + plane[3]; dists[i] = dot; if ( dot < LIGHT_CLIP_EPSILON ) { // slop onto the back sides[i] = SIDE_BACK; } else { sides[i] = SIDE_FRONT; if ( dot > LIGHT_CLIP_EPSILON ) { front = true; } } counts[sides[i]]++; } // if none in front, it is completely clipped away if ( !front ) { in->numVerts = 0; return inNum; } if ( !counts[SIDE_BACK] ) { return inNum; // inout stays the same } // avoid wrapping checks by duplicating first value to end sides[i] = sides[0]; dists[i] = dists[0]; in->verts[in->numVerts] = in->verts[0]; out->numVerts = 0; for ( i = 0 ; i < in->numVerts ; i++ ) { idVec3 &p1 = in->verts[i]; if ( sides[i] == SIDE_FRONT ) { out->verts[out->numVerts] = p1; out->numVerts++; } if ( sides[i+1] == sides[i] ) { continue; } // generate a split point idVec3 &p2 = in->verts[i+1]; dot = dists[i] / ( dists[i] - dists[i+1] ); for ( j = 0; j < 3; j++ ) { mid[j] = p1[j] + dot * ( p2[j] - p1[j] ); } out->verts[out->numVerts] = mid; out->numVerts++; } return inNum ^ 1; } /* =================== R_ClipTriangleToLight Returns false if nothing is left after clipping =================== */ static bool R_ClipTriangleToLight( const idVec3 &a, const idVec3 &b, const idVec3 &c, int planeBits, const idPlane frustum[6] ) { int i; clipTri_t pingPong[2]; int p; pingPong[0].numVerts = 3; pingPong[0].verts[0] = a; pingPong[0].verts[1] = b; pingPong[0].verts[2] = c; p = 0; for ( i = 0 ; i < 6 ; i++ ) { if ( planeBits & ( 1 << i ) ) { p = R_ChopWinding( pingPong, p, frustum[i] ); if ( pingPong[p].numVerts < 1 ) { return false; } } } return true; } /* ==================== R_CreateLightTris The resulting surface will be a subset of the original triangles, it will never clip triangles, but it may cull on a per-triangle basis. ==================== */ static srfTriangles_t *R_CreateLightTris( const idRenderEntityLocal *ent, const srfTriangles_t *tri, const idRenderLightLocal *light, const idMaterial *shader, srfCullInfo_t &cullInfo ) { int i; int numIndexes; glIndex_t *indexes; srfTriangles_t *newTri; int c_backfaced; int c_distance; idBounds bounds; bool includeBackFaces; int faceNum; tr.pc.c_createLightTris++; c_backfaced = 0; c_distance = 0; numIndexes = 0; indexes = NULL; // it is debatable if non-shadowing lights should light back faces. we aren't at the moment if ( r_lightAllBackFaces.GetBool() || light->lightShader->LightEffectsBackSides() || shader->ReceivesLightingOnBackSides() || ent->parms.noSelfShadow || ent->parms.noShadow ) { includeBackFaces = true; } else { includeBackFaces = false; } // allocate a new surface for the lit triangles newTri = R_AllocStaticTriSurf(); // save a reference to the original surface newTri->ambientSurface = const_cast(tri); // the light surface references the verts of the ambient surface newTri->numVerts = tri->numVerts; R_ReferenceStaticTriSurfVerts( newTri, tri ); // calculate cull information if ( !includeBackFaces ) { R_CalcInteractionFacing( ent, tri, light, cullInfo ); } R_CalcInteractionCullBits( ent, tri, light, cullInfo ); // if the surface is completely inside the light frustum if ( cullInfo.cullBits == LIGHT_CULL_ALL_FRONT ) { // if we aren't self shadowing, let back facing triangles get // through so the smooth shaded bump maps light all the way around if ( includeBackFaces ) { // the whole surface is lit so the light surface just references the indexes of the ambient surface R_ReferenceStaticTriSurfIndexes( newTri, tri ); numIndexes = tri->numIndexes; bounds = tri->bounds; } else { // the light tris indexes are going to be a subset of the original indexes so we generally // allocate too much memory here but we decrease the memory block when the number of indexes is known R_AllocStaticTriSurfIndexes( newTri, tri->numIndexes ); // back face cull the individual triangles indexes = newTri->indexes; const byte *facing = cullInfo.facing; for ( faceNum = i = 0; i < tri->numIndexes; i += 3, faceNum++ ) { if ( !facing[ faceNum ] ) { c_backfaced++; continue; } indexes[numIndexes+0] = tri->indexes[i+0]; indexes[numIndexes+1] = tri->indexes[i+1]; indexes[numIndexes+2] = tri->indexes[i+2]; numIndexes += 3; } // get bounds for the surface SIMDProcessor->MinMax( bounds[0], bounds[1], tri->verts, indexes, numIndexes ); // decrease the size of the memory block to the size of the number of used indexes R_ResizeStaticTriSurfIndexes( newTri, numIndexes ); } } else { // the light tris indexes are going to be a subset of the original indexes so we generally // allocate too much memory here but we decrease the memory block when the number of indexes is known R_AllocStaticTriSurfIndexes( newTri, tri->numIndexes ); // cull individual triangles indexes = newTri->indexes; const byte *facing = cullInfo.facing; const byte *cullBits = cullInfo.cullBits; for ( faceNum = i = 0; i < tri->numIndexes; i += 3, faceNum++ ) { int i1, i2, i3; // if we aren't self shadowing, let back facing triangles get // through so the smooth shaded bump maps light all the way around if ( !includeBackFaces ) { // back face cull if ( !facing[ faceNum ] ) { c_backfaced++; continue; } } i1 = tri->indexes[i+0]; i2 = tri->indexes[i+1]; i3 = tri->indexes[i+2]; // fast cull outside the frustum // if all three points are off one plane side, it definately isn't visible if ( cullBits[i1] & cullBits[i2] & cullBits[i3] ) { c_distance++; continue; } if ( r_usePreciseTriangleInteractions.GetBool() ) { // do a precise clipped cull if none of the points is completely inside the frustum // note that we do not actually use the clipped triangle, which would have Z fighting issues. if ( cullBits[i1] && cullBits[i2] && cullBits[i3] ) { int cull = cullBits[i1] | cullBits[i2] | cullBits[i3]; if ( !R_ClipTriangleToLight( tri->verts[i1].xyz, tri->verts[i2].xyz, tri->verts[i3].xyz, cull, cullInfo.localClipPlanes ) ) { continue; } } } // add to the list indexes[numIndexes+0] = i1; indexes[numIndexes+1] = i2; indexes[numIndexes+2] = i3; numIndexes += 3; } // get bounds for the surface SIMDProcessor->MinMax( bounds[0], bounds[1], tri->verts, indexes, numIndexes ); // decrease the size of the memory block to the size of the number of used indexes R_ResizeStaticTriSurfIndexes( newTri, numIndexes ); } if ( !numIndexes ) { R_ReallyFreeStaticTriSurf( newTri ); return NULL; } newTri->numIndexes = numIndexes; newTri->bounds = bounds; return newTri; } /* =============== idInteraction::idInteraction =============== */ idInteraction::idInteraction( void ) { numSurfaces = 0; surfaces = NULL; entityDef = NULL; lightDef = NULL; lightNext = NULL; lightPrev = NULL; entityNext = NULL; entityPrev = NULL; dynamicModelFrameCount = 0; frustumState = FRUSTUM_UNINITIALIZED; frustumAreas = NULL; } /* =============== idInteraction::AllocAndLink =============== */ idInteraction *idInteraction::AllocAndLink( idRenderEntityLocal *edef, idRenderLightLocal *ldef ) { if ( !edef || !ldef ) { common->Error( "idInteraction::AllocAndLink: NULL parm" ); } idRenderWorldLocal *renderWorld = edef->world; idInteraction *interaction = renderWorld->interactionAllocator.Alloc(); // link and initialize interaction->dynamicModelFrameCount = 0; interaction->lightDef = ldef; interaction->entityDef = edef; interaction->numSurfaces = -1; // not checked yet interaction->surfaces = NULL; interaction->frustumState = idInteraction::FRUSTUM_UNINITIALIZED; interaction->frustumAreas = NULL; // link at the start of the entity's list interaction->lightNext = ldef->firstInteraction; interaction->lightPrev = NULL; ldef->firstInteraction = interaction; if ( interaction->lightNext != NULL ) { interaction->lightNext->lightPrev = interaction; } else { ldef->lastInteraction = interaction; } // link at the start of the light's list interaction->entityNext = edef->firstInteraction; interaction->entityPrev = NULL; edef->firstInteraction = interaction; if ( interaction->entityNext != NULL ) { interaction->entityNext->entityPrev = interaction; } else { edef->lastInteraction = interaction; } // update the interaction table if ( renderWorld->interactionTable ) { int index = ldef->index * renderWorld->interactionTableWidth + edef->index; if ( renderWorld->interactionTable[index] != NULL ) { common->Error( "idInteraction::AllocAndLink: non NULL table entry" ); } renderWorld->interactionTable[ index ] = interaction; } return interaction; } /* =============== idInteraction::FreeSurfaces Frees the surfaces, but leaves the interaction linked in, so it will be regenerated automatically =============== */ void idInteraction::FreeSurfaces( void ) { if ( this->surfaces ) { for ( int i = 0 ; i < this->numSurfaces ; i++ ) { surfaceInteraction_t *sint = &this->surfaces[i]; if ( sint->lightTris ) { if ( sint->lightTris != LIGHT_TRIS_DEFERRED ) { R_FreeStaticTriSurf( sint->lightTris ); } sint->lightTris = NULL; } if ( sint->shadowTris ) { // if it doesn't have an entityDef, it is part of a prelight // model, not a generated interaction if ( this->entityDef ) { R_FreeStaticTriSurf( sint->shadowTris ); sint->shadowTris = NULL; } } R_FreeInteractionCullInfo( sint->cullInfo ); } R_StaticFree( this->surfaces ); this->surfaces = NULL; } this->numSurfaces = -1; } /* =============== idInteraction::Unlink =============== */ void idInteraction::Unlink( void ) { // unlink from the entity's list if ( this->entityPrev ) { this->entityPrev->entityNext = this->entityNext; } else { this->entityDef->firstInteraction = this->entityNext; } if ( this->entityNext ) { this->entityNext->entityPrev = this->entityPrev; } else { this->entityDef->lastInteraction = this->entityPrev; } this->entityNext = this->entityPrev = NULL; // unlink from the light's list if ( this->lightPrev ) { this->lightPrev->lightNext = this->lightNext; } else { this->lightDef->firstInteraction = this->lightNext; } if ( this->lightNext ) { this->lightNext->lightPrev = this->lightPrev; } else { this->lightDef->lastInteraction = this->lightPrev; } this->lightNext = this->lightPrev = NULL; } /* =============== idInteraction::UnlinkAndFree Removes links and puts it back on the free list. =============== */ void idInteraction::UnlinkAndFree( void ) { // clear the table pointer idRenderWorldLocal *renderWorld = this->lightDef->world; if ( renderWorld->interactionTable ) { int index = this->lightDef->index * renderWorld->interactionTableWidth + this->entityDef->index; if ( renderWorld->interactionTable[index] != this ) { common->Error( "idInteraction::UnlinkAndFree: interactionTable wasn't set" ); } renderWorld->interactionTable[index] = NULL; } Unlink(); FreeSurfaces(); // free the interaction area references areaNumRef_t *area, *nextArea; for ( area = frustumAreas; area; area = nextArea ) { nextArea = area->next; renderWorld->areaNumRefAllocator.Free( area ); } // put it back on the free list renderWorld->interactionAllocator.Free( this ); } /* =============== idInteraction::MakeEmpty Makes the interaction empty and links it at the end of the entity's and light's interaction lists. =============== */ void idInteraction::MakeEmpty( void ) { // an empty interaction has no surfaces numSurfaces = 0; Unlink(); // relink at the end of the entity's list this->entityNext = NULL; this->entityPrev = this->entityDef->lastInteraction; this->entityDef->lastInteraction = this; if ( this->entityPrev ) { this->entityPrev->entityNext = this; } else { this->entityDef->firstInteraction = this; } // relink at the end of the light's list this->lightNext = NULL; this->lightPrev = this->lightDef->lastInteraction; this->lightDef->lastInteraction = this; if ( this->lightPrev ) { this->lightPrev->lightNext = this; } else { this->lightDef->firstInteraction = this; } } /* =============== idInteraction::HasShadows =============== */ ID_INLINE bool idInteraction::HasShadows( void ) const { return ( !lightDef->parms.noShadows && !entityDef->parms.noShadow && lightDef->lightShader->LightCastsShadows() ); } /* =============== idInteraction::MemoryUsed Counts up the memory used by all the surfaceInteractions, which will be used to determine when we need to start purging old interactions. =============== */ int idInteraction::MemoryUsed( void ) { int total = 0; for ( int i = 0 ; i < numSurfaces ; i++ ) { surfaceInteraction_t *inter = &surfaces[i]; total += R_TriSurfMemory( inter->lightTris ); total += R_TriSurfMemory( inter->shadowTris ); } return total; } /* ================== idInteraction::CalcInteractionScissorRectangle ================== */ idScreenRect idInteraction::CalcInteractionScissorRectangle( const idFrustum &viewFrustum ) { idBounds projectionBounds; idScreenRect portalRect; idScreenRect scissorRect; if ( r_useInteractionScissors.GetInteger() == 0 ) { return lightDef->viewLight->scissorRect; } if ( r_useInteractionScissors.GetInteger() < 0 ) { // this is the code from Cass at nvidia, it is more precise, but slower return R_CalcIntersectionScissor( lightDef, entityDef, tr.viewDef ); } // the following is Mr.E's code // frustum must be initialized and valid if ( frustumState == idInteraction::FRUSTUM_UNINITIALIZED || frustumState == idInteraction::FRUSTUM_INVALID ) { return lightDef->viewLight->scissorRect; } // calculate scissors for the portals through which the interaction is visible if ( r_useInteractionScissors.GetInteger() > 1 ) { areaNumRef_t *area; if ( frustumState == idInteraction::FRUSTUM_VALID ) { // retrieve all the areas the interaction frustum touches for ( areaReference_t *ref = entityDef->entityRefs; ref; ref = ref->ownerNext ) { area = entityDef->world->areaNumRefAllocator.Alloc(); area->areaNum = ref->area->areaNum; area->next = frustumAreas; frustumAreas = area; } frustumAreas = tr.viewDef->renderWorld->FloodFrustumAreas( frustum, frustumAreas ); frustumState = idInteraction::FRUSTUM_VALIDAREAS; } portalRect.Clear(); for ( area = frustumAreas; area; area = area->next ) { portalRect.Union( entityDef->world->GetAreaScreenRect( area->areaNum ) ); } portalRect.Intersect( lightDef->viewLight->scissorRect ); } else { portalRect = lightDef->viewLight->scissorRect; } // early out if the interaction is not visible through any portals if ( portalRect.IsEmpty() ) { return portalRect; } // calculate bounds of the interaction frustum projected into the view frustum if ( lightDef->parms.pointLight ) { viewFrustum.ClippedProjectionBounds( frustum, idBox( lightDef->parms.origin, lightDef->parms.lightRadius, lightDef->parms.axis ), projectionBounds ); } else { viewFrustum.ClippedProjectionBounds( frustum, idBox( lightDef->frustumTris->bounds ), projectionBounds ); } if ( projectionBounds.IsCleared() ) { return portalRect; } // derive a scissor rectangle from the projection bounds scissorRect = R_ScreenRectFromViewFrustumBounds( projectionBounds ); // intersect with the portal crossing scissor rectangle scissorRect.Intersect( portalRect ); if ( r_showInteractionScissors.GetInteger() > 0 ) { R_ShowColoredScreenRect( scissorRect, lightDef->index ); } return scissorRect; } /* =================== idInteraction::CullInteractionByViewFrustum =================== */ bool idInteraction::CullInteractionByViewFrustum( const idFrustum &viewFrustum ) { if ( !r_useInteractionCulling.GetBool() ) { return false; } if ( frustumState == idInteraction::FRUSTUM_INVALID ) { return false; } if ( frustumState == idInteraction::FRUSTUM_UNINITIALIZED ) { frustum.FromProjection( idBox( entityDef->referenceBounds, entityDef->parms.origin, entityDef->parms.axis ), lightDef->globalLightOrigin, MAX_WORLD_SIZE ); if ( !frustum.IsValid() ) { frustumState = idInteraction::FRUSTUM_INVALID; return false; } if ( lightDef->parms.pointLight ) { frustum.ConstrainToBox( idBox( lightDef->parms.origin, lightDef->parms.lightRadius, lightDef->parms.axis ) ); } else { frustum.ConstrainToBox( idBox( lightDef->frustumTris->bounds ) ); } frustumState = idInteraction::FRUSTUM_VALID; } if ( !viewFrustum.IntersectsFrustum( frustum ) ) { return true; } if ( r_showInteractionFrustums.GetInteger() ) { static idVec4 colors[] = { colorRed, colorGreen, colorBlue, colorYellow, colorMagenta, colorCyan, colorWhite, colorPurple }; tr.viewDef->renderWorld->DebugFrustum( colors[lightDef->index & 7], frustum, ( r_showInteractionFrustums.GetInteger() > 1 ) ); if ( r_showInteractionFrustums.GetInteger() > 2 ) { tr.viewDef->renderWorld->DebugBox( colorWhite, idBox( entityDef->referenceBounds, entityDef->parms.origin, entityDef->parms.axis ) ); } } return false; } /* ==================== idInteraction::CreateInteraction Called when a entityDef and a lightDef are both present in a portalArea, and might be visible. Performs cull checking before doing the expensive computations. References tr.viewCount so lighting surfaces will only be created if the ambient surface is visible, otherwise it will be marked as deferred. The results of this are cached and valid until the light or entity change. ==================== */ void idInteraction::CreateInteraction( const idRenderModel *model ) { const idMaterial * lightShader = lightDef->lightShader; const idMaterial* shader; bool interactionGenerated; idBounds bounds; tr.pc.c_createInteractions++; bounds = model->Bounds( &entityDef->parms ); // if it doesn't contact the light frustum, none of the surfaces will if ( R_CullLocalBox( bounds, entityDef->modelMatrix, 6, lightDef->frustum ) ) { MakeEmpty(); return; } // use the turbo shadow path shadowGen_t shadowGen = SG_DYNAMIC; // really large models, like outside terrain meshes, should use // the more exactly culled static shadow path instead of the turbo shadow path. // FIXME: this is a HACK, we should probably have a material flag. if ( bounds[1][0] - bounds[0][0] > 3000 ) { shadowGen = SG_STATIC; } // // create slots for each of the model's surfaces // numSurfaces = model->NumSurfaces(); surfaces = (surfaceInteraction_t *)R_ClearedStaticAlloc( sizeof( *surfaces ) * numSurfaces ); interactionGenerated = false; // check each surface in the model for ( int c = 0 ; c < model->NumSurfaces() ; c++ ) { const modelSurface_t *surf; srfTriangles_t *tri; surf = model->Surface( c ); tri = surf->geometry; if ( !tri ) { continue; } // determine the shader for this surface, possibly by skinning shader = surf->shader; shader = R_RemapShaderBySkin( shader, entityDef->parms.customSkin, entityDef->parms.customShader ); if ( !shader ) { continue; } // try to cull each surface if ( R_CullLocalBox( tri->bounds, entityDef->modelMatrix, 6, lightDef->frustum ) ) { continue; } surfaceInteraction_t *sint = &surfaces[c]; sint->shader = shader; // save the ambient tri pointer so we can reject lightTri interactions // when the ambient surface isn't in view, and we can get shared vertex // and shadow data from the source surface sint->ambientTris = tri; // "invisible ink" lights and shaders if ( shader->Spectrum() != lightShader->Spectrum() ) { continue; } // generate a lighted surface and add it if ( shader->ReceivesLighting() ) { if ( tri->ambientViewCount == tr.viewCount ) { sint->lightTris = R_CreateLightTris( entityDef, tri, lightDef, shader, sint->cullInfo ); } else { // this will be calculated when sint->ambientTris is actually in view sint->lightTris = LIGHT_TRIS_DEFERRED; } interactionGenerated = true; } // if the interaction has shadows and this surface casts a shadow if ( HasShadows() && shader->SurfaceCastsShadow() && tri->silEdges != NULL ) { // if the light has an optimized shadow volume, don't create shadows for any models that are part of the base areas if ( lightDef->parms.prelightModel == NULL || !model->IsStaticWorldModel() || !r_useOptimizedShadows.GetBool() ) { // this is the only place during gameplay (outside the utilities) that R_CreateShadowVolume() is called sint->shadowTris = R_CreateShadowVolume( entityDef, tri, lightDef, shadowGen, sint->cullInfo ); if ( sint->shadowTris ) { if ( shader->Coverage() != MC_OPAQUE || ( !r_skipSuppress.GetBool() && entityDef->parms.suppressSurfaceInViewID ) ) { // if any surface is a shadow-casting perforated or translucent surface, or the // base surface is suppressed in the view (world weapon shadows) we can't use // the external shadow optimizations because we can see through some of the faces sint->shadowTris->numShadowIndexesNoCaps = sint->shadowTris->numIndexes; sint->shadowTris->numShadowIndexesNoFrontCaps = sint->shadowTris->numIndexes; } } interactionGenerated = true; } } // free the cull information when it's no longer needed if ( sint->lightTris != LIGHT_TRIS_DEFERRED ) { R_FreeInteractionCullInfo( sint->cullInfo ); } } // if none of the surfaces generated anything, don't even bother checking? if ( !interactionGenerated ) { MakeEmpty(); } } /* ====================== R_PotentiallyInsideInfiniteShadow If we know that we are "off to the side" of an infinite shadow volume, we can draw it without caps in zpass mode ====================== */ static bool R_PotentiallyInsideInfiniteShadow( const srfTriangles_t *occluder, const idVec3 &localView, const idVec3 &localLight ) { idBounds exp; // expand the bounds to account for the near clip plane, because the // view could be mathematically outside, but if the near clip plane // chops a volume edge, the zpass rendering would fail. float znear = r_znear.GetFloat(); if ( tr.viewDef->renderView.cramZNear ) { znear *= 0.25f; } float stretch = znear * 2; // in theory, should vary with FOV exp[0][0] = occluder->bounds[0][0] - stretch; exp[0][1] = occluder->bounds[0][1] - stretch; exp[0][2] = occluder->bounds[0][2] - stretch; exp[1][0] = occluder->bounds[1][0] + stretch; exp[1][1] = occluder->bounds[1][1] + stretch; exp[1][2] = occluder->bounds[1][2] + stretch; if ( exp.ContainsPoint( localView ) ) { return true; } if ( exp.ContainsPoint( localLight ) ) { return true; } // if the ray from localLight to localView intersects a face of the // expanded bounds, we will be inside the projection idVec3 ray = localView - localLight; // intersect the ray from the view to the light with the near side of the bounds for ( int axis = 0; axis < 3; axis++ ) { float d, frac; idVec3 hit; if ( localLight[axis] < exp[0][axis] ) { if ( localView[axis] < exp[0][axis] ) { continue; } d = exp[0][axis] - localLight[axis]; frac = d / ray[axis]; hit = localLight + frac * ray; hit[axis] = exp[0][axis]; } else if ( localLight[axis] > exp[1][axis] ) { if ( localView[axis] > exp[1][axis] ) { continue; } d = exp[1][axis] - localLight[axis]; frac = d / ray[axis]; hit = localLight + frac * ray; hit[axis] = exp[1][axis]; } else { continue; } if ( exp.ContainsPoint( hit ) ) { return true; } } // the view is definitely not inside the projected shadow return false; } /* ================== idInteraction::AddActiveInteraction Create and add any necessary light and shadow triangles If the model doesn't have any surfaces that need interactions with this type of light, it can be skipped, but we might need to instantiate the dynamic model to find out ================== */ void idInteraction::AddActiveInteraction( void ) { viewLight_t * vLight; viewEntity_t * vEntity; idScreenRect shadowScissor; idScreenRect lightScissor; idVec3 localLightOrigin; idVec3 localViewOrigin; vLight = lightDef->viewLight; vEntity = entityDef->viewEntity; // do not waste time culling the interaction frustum if there will be no shadows if ( !HasShadows() ) { // use the entity scissor rectangle shadowScissor = vEntity->scissorRect; // culling does not seem to be worth it for static world models } else if ( entityDef->parms.hModel->IsStaticWorldModel() ) { // use the light scissor rectangle shadowScissor = vLight->scissorRect; } else { // try to cull the interaction // this will also cull the case where the light origin is inside the // view frustum and the entity bounds are outside the view frustum if ( CullInteractionByViewFrustum( tr.viewDef->viewFrustum ) ) { return; } // calculate the shadow scissor rectangle shadowScissor = CalcInteractionScissorRectangle( tr.viewDef->viewFrustum ); } // get out before making the dynamic model if the shadow scissor rectangle is empty if ( shadowScissor.IsEmpty() ) { return; } // We will need the dynamic surface created to make interactions, even if the // model itself wasn't visible. This just returns a cached value after it // has been generated once in the view. idRenderModel *model = R_EntityDefDynamicModel( entityDef ); if ( model == NULL || model->NumSurfaces() <= 0 ) { return; } // the dynamic model may have changed since we built the surface list if ( !IsDeferred() && entityDef->dynamicModelFrameCount != dynamicModelFrameCount ) { FreeSurfaces(); } dynamicModelFrameCount = entityDef->dynamicModelFrameCount; // actually create the interaction if needed, building light and shadow surfaces as needed if ( IsDeferred() ) { CreateInteraction( model ); } R_GlobalPointToLocal( vEntity->modelMatrix, lightDef->globalLightOrigin, localLightOrigin ); R_GlobalPointToLocal( vEntity->modelMatrix, tr.viewDef->renderView.vieworg, localViewOrigin ); // calculate the scissor as the intersection of the light and model rects // this is used for light triangles, but not for shadow triangles lightScissor = vLight->scissorRect; lightScissor.Intersect( vEntity->scissorRect ); bool lightScissorsEmpty = lightScissor.IsEmpty(); // for each surface of this entity / light interaction for ( int i = 0; i < numSurfaces; i++ ) { surfaceInteraction_t *sint = &surfaces[i]; // see if the base surface is visible, we may still need to add shadows even if empty if ( !lightScissorsEmpty && sint->ambientTris && sint->ambientTris->ambientViewCount == tr.viewCount ) { // make sure we have created this interaction, which may have been deferred // on a previous use that only needed the shadow if ( sint->lightTris == LIGHT_TRIS_DEFERRED ) { sint->lightTris = R_CreateLightTris( vEntity->entityDef, sint->ambientTris, vLight->lightDef, sint->shader, sint->cullInfo ); R_FreeInteractionCullInfo( sint->cullInfo ); } srfTriangles_t *lightTris = sint->lightTris; if ( lightTris ) { // try to cull before adding // FIXME: this may not be worthwhile. We have already done culling on the ambient, // but individual surfaces may still be cropped somewhat more if ( !R_CullLocalBox( lightTris->bounds, vEntity->modelMatrix, 5, tr.viewDef->frustum ) ) { // make sure the original surface has its ambient cache created srfTriangles_t *tri = sint->ambientTris; if ( !tri->ambientCache ) { if ( !R_CreateAmbientCache( tri, sint->shader->ReceivesLighting() ) ) { // skip if we were out of vertex memory continue; } } // reference the original surface's ambient cache lightTris->ambientCache = tri->ambientCache; // touch the ambient surface so it won't get purged vertexCache.Touch( lightTris->ambientCache ); // regenerate the lighting cache (for non-vertex program cards) if it has been purged if ( !lightTris->lightingCache ) { if ( !R_CreateLightingCache( entityDef, lightDef, lightTris ) ) { // skip if we are out of vertex memory continue; } } // touch the light surface so it won't get purged // (vertex program cards won't have a light cache at all) if ( lightTris->lightingCache ) { vertexCache.Touch( lightTris->lightingCache ); } if ( !lightTris->indexCache && r_useIndexBuffers.GetBool() ) { vertexCache.Alloc( lightTris->indexes, lightTris->numIndexes * sizeof( lightTris->indexes[0] ), &lightTris->indexCache, true ); } if ( lightTris->indexCache ) { vertexCache.Touch( lightTris->indexCache ); } // add the surface to the light list const idMaterial *shader = sint->shader; R_GlobalShaderOverride( &shader ); // there will only be localSurfaces if the light casts shadows and // there are surfaces with NOSELFSHADOW if ( sint->shader->Coverage() == MC_TRANSLUCENT ) { R_LinkLightSurf( &vLight->translucentInteractions, lightTris, vEntity, lightDef, shader, lightScissor, false ); } else if ( !lightDef->parms.noShadows && sint->shader->TestMaterialFlag(MF_NOSELFSHADOW) ) { R_LinkLightSurf( &vLight->localInteractions, lightTris, vEntity, lightDef, shader, lightScissor, false ); } else { R_LinkLightSurf( &vLight->globalInteractions, lightTris, vEntity, lightDef, shader, lightScissor, false ); } } } } srfTriangles_t *shadowTris = sint->shadowTris; // the shadows will always have to be added, unless we can tell they // are from a surface in an unconnected area if ( shadowTris ) { // check for view specific shadow suppression (player shadows, etc) if ( !r_skipSuppress.GetBool() ) { if ( entityDef->parms.suppressShadowInViewID && entityDef->parms.suppressShadowInViewID == tr.viewDef->renderView.viewID ) { continue; } if ( entityDef->parms.suppressShadowInLightID && entityDef->parms.suppressShadowInLightID == lightDef->parms.lightId ) { continue; } } // cull static shadows that have a non-empty bounds // dynamic shadows that use the turboshadow code will not have valid // bounds, because the perspective projection extends them to infinity if ( r_useShadowCulling.GetBool() && !shadowTris->bounds.IsCleared() ) { if ( R_CullLocalBox( shadowTris->bounds, vEntity->modelMatrix, 5, tr.viewDef->frustum ) ) { continue; } } // copy the shadow vertexes to the vertex cache if they have been purged // if we are using shared shadowVertexes and letting a vertex program fix them up, // get the shadowCache from the parent ambient surface if ( !shadowTris->shadowVertexes ) { // the data may have been purged, so get the latest from the "home position" shadowTris->shadowCache = sint->ambientTris->shadowCache; } // if we have been purged, re-upload the shadowVertexes if ( !shadowTris->shadowCache ) { if ( shadowTris->shadowVertexes ) { // each interaction has unique vertexes R_CreatePrivateShadowCache( shadowTris ); } else { R_CreateVertexProgramShadowCache( sint->ambientTris ); shadowTris->shadowCache = sint->ambientTris->shadowCache; } // if we are out of vertex cache space, skip the interaction if ( !shadowTris->shadowCache ) { continue; } } // touch the shadow surface so it won't get purged vertexCache.Touch( shadowTris->shadowCache ); if ( !shadowTris->indexCache && r_useIndexBuffers.GetBool() ) { vertexCache.Alloc( shadowTris->indexes, shadowTris->numIndexes * sizeof( shadowTris->indexes[0] ), &shadowTris->indexCache, true ); vertexCache.Touch( shadowTris->indexCache ); } // see if we can avoid using the shadow volume caps bool inside = R_PotentiallyInsideInfiniteShadow( sint->ambientTris, localViewOrigin, localLightOrigin ); if ( sint->shader->TestMaterialFlag( MF_NOSELFSHADOW ) ) { R_LinkLightSurf( &vLight->localShadows, shadowTris, vEntity, lightDef, NULL, shadowScissor, inside ); } else { R_LinkLightSurf( &vLight->globalShadows, shadowTris, vEntity, lightDef, NULL, shadowScissor, inside ); } } } } /* =================== R_ShowInteractionMemory_f =================== */ void R_ShowInteractionMemory_f( const idCmdArgs &args ) { int total = 0; int entities = 0; int interactions = 0; int deferredInteractions = 0; int emptyInteractions = 0; int lightTris = 0; int lightTriVerts = 0; int lightTriIndexes = 0; int shadowTris = 0; int shadowTriVerts = 0; int shadowTriIndexes = 0; for ( int i = 0; i < tr.primaryWorld->entityDefs.Num(); i++ ) { idRenderEntityLocal *def = tr.primaryWorld->entityDefs[i]; if ( !def ) { continue; } if ( def->firstInteraction == NULL ) { continue; } entities++; for ( idInteraction *inter = def->firstInteraction; inter != NULL; inter = inter->entityNext ) { interactions++; total += inter->MemoryUsed(); if ( inter->IsDeferred() ) { deferredInteractions++; continue; } if ( inter->IsEmpty() ) { emptyInteractions++; continue; } for ( int j = 0; j < inter->numSurfaces; j++ ) { surfaceInteraction_t *srf = &inter->surfaces[j]; if ( srf->lightTris && srf->lightTris != LIGHT_TRIS_DEFERRED ) { lightTris++; lightTriVerts += srf->lightTris->numVerts; lightTriIndexes += srf->lightTris->numIndexes; } if ( srf->shadowTris ) { shadowTris++; shadowTriVerts += srf->shadowTris->numVerts; shadowTriIndexes += srf->shadowTris->numIndexes; } } } } common->Printf( "%i entities with %i total interactions totalling %ik\n", entities, interactions, total / 1024 ); common->Printf( "%i deferred interactions, %i empty interactions\n", deferredInteractions, emptyInteractions ); common->Printf( "%5i indexes %5i verts in %5i light tris\n", lightTriIndexes, lightTriVerts, lightTris ); common->Printf( "%5i indexes %5i verts in %5i shadow tris\n", shadowTriIndexes, shadowTriVerts, shadowTris ); }