/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see .
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "sys/platform.h"
#include "renderer/VertexCache.h"
#include "renderer/tr_local.h"
/*
=====================
RB_BakeTextureMatrixIntoTexgen
=====================
*/
void RB_BakeTextureMatrixIntoTexgen( idPlane lightProject[3], const float *textureMatrix ) {
float genMatrix[16];
float final[16];
genMatrix[0] = lightProject[0][0];
genMatrix[4] = lightProject[0][1];
genMatrix[8] = lightProject[0][2];
genMatrix[12] = lightProject[0][3];
genMatrix[1] = lightProject[1][0];
genMatrix[5] = lightProject[1][1];
genMatrix[9] = lightProject[1][2];
genMatrix[13] = lightProject[1][3];
genMatrix[2] = 0;
genMatrix[6] = 0;
genMatrix[10] = 0;
genMatrix[14] = 0;
genMatrix[3] = lightProject[2][0];
genMatrix[7] = lightProject[2][1];
genMatrix[11] = lightProject[2][2];
genMatrix[15] = lightProject[2][3];
myGlMultMatrix( genMatrix, backEnd.lightTextureMatrix, final );
lightProject[0][0] = final[0];
lightProject[0][1] = final[4];
lightProject[0][2] = final[8];
lightProject[0][3] = final[12];
lightProject[1][0] = final[1];
lightProject[1][1] = final[5];
lightProject[1][2] = final[9];
lightProject[1][3] = final[13];
}
/*
================
RB_PrepareStageTexturing
================
*/
void RB_PrepareStageTexturing( const shaderStage_t *pStage, const drawSurf_t *surf, idDrawVert *ac ) {
// set privatePolygonOffset if necessary
if ( pStage->privatePolygonOffset ) {
qglEnable( GL_POLYGON_OFFSET_FILL );
qglPolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * pStage->privatePolygonOffset );
}
// set the texture matrix if needed
if ( pStage->texture.hasMatrix ) {
RB_LoadShaderTextureMatrix( surf->shaderRegisters, &pStage->texture );
}
// texgens
if ( pStage->texture.texgen == TG_DIFFUSE_CUBE ) {
qglTexCoordPointer( 3, GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() );
}
if ( pStage->texture.texgen == TG_SKYBOX_CUBE || pStage->texture.texgen == TG_WOBBLESKY_CUBE ) {
qglTexCoordPointer( 3, GL_FLOAT, 0, vertexCache.Position( surf->dynamicTexCoords ) );
}
if ( pStage->texture.texgen == TG_SCREEN ) {
qglEnable( GL_TEXTURE_GEN_S );
qglEnable( GL_TEXTURE_GEN_T );
qglEnable( GL_TEXTURE_GEN_Q );
float mat[16], plane[4];
myGlMultMatrix( surf->space->modelViewMatrix, backEnd.viewDef->projectionMatrix, mat );
plane[0] = mat[0];
plane[1] = mat[4];
plane[2] = mat[8];
plane[3] = mat[12];
qglTexGenfv( GL_S, GL_OBJECT_PLANE, plane );
plane[0] = mat[1];
plane[1] = mat[5];
plane[2] = mat[9];
plane[3] = mat[13];
qglTexGenfv( GL_T, GL_OBJECT_PLANE, plane );
plane[0] = mat[3];
plane[1] = mat[7];
plane[2] = mat[11];
plane[3] = mat[15];
qglTexGenfv( GL_Q, GL_OBJECT_PLANE, plane );
}
if ( pStage->texture.texgen == TG_SCREEN2 ) {
qglEnable( GL_TEXTURE_GEN_S );
qglEnable( GL_TEXTURE_GEN_T );
qglEnable( GL_TEXTURE_GEN_Q );
float mat[16], plane[4];
myGlMultMatrix( surf->space->modelViewMatrix, backEnd.viewDef->projectionMatrix, mat );
plane[0] = mat[0];
plane[1] = mat[4];
plane[2] = mat[8];
plane[3] = mat[12];
qglTexGenfv( GL_S, GL_OBJECT_PLANE, plane );
plane[0] = mat[1];
plane[1] = mat[5];
plane[2] = mat[9];
plane[3] = mat[13];
qglTexGenfv( GL_T, GL_OBJECT_PLANE, plane );
plane[0] = mat[3];
plane[1] = mat[7];
plane[2] = mat[11];
plane[3] = mat[15];
qglTexGenfv( GL_Q, GL_OBJECT_PLANE, plane );
}
if ( pStage->texture.texgen == TG_GLASSWARP ) {
if ( tr.backEndRenderer == BE_ARB2 /*|| tr.backEndRenderer == BE_NV30*/ ) {
qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, FPROG_GLASSWARP );
qglEnable( GL_FRAGMENT_PROGRAM_ARB );
GL_SelectTexture( 2 );
globalImages->scratchImage->Bind();
GL_SelectTexture( 1 );
globalImages->scratchImage2->Bind();
qglEnable( GL_TEXTURE_GEN_S );
qglEnable( GL_TEXTURE_GEN_T );
qglEnable( GL_TEXTURE_GEN_Q );
float mat[16], plane[4];
myGlMultMatrix( surf->space->modelViewMatrix, backEnd.viewDef->projectionMatrix, mat );
plane[0] = mat[0];
plane[1] = mat[4];
plane[2] = mat[8];
plane[3] = mat[12];
qglTexGenfv( GL_S, GL_OBJECT_PLANE, plane );
plane[0] = mat[1];
plane[1] = mat[5];
plane[2] = mat[9];
plane[3] = mat[13];
qglTexGenfv( GL_T, GL_OBJECT_PLANE, plane );
plane[0] = mat[3];
plane[1] = mat[7];
plane[2] = mat[11];
plane[3] = mat[15];
qglTexGenfv( GL_Q, GL_OBJECT_PLANE, plane );
GL_SelectTexture( 0 );
}
}
if ( pStage->texture.texgen == TG_REFLECT_CUBE ) {
if ( tr.backEndRenderer == BE_ARB2 ) {
// see if there is also a bump map specified
const shaderStage_t *bumpStage = surf->material->GetBumpStage();
if ( bumpStage ) {
// per-pixel reflection mapping with bump mapping
GL_SelectTexture( 1 );
bumpStage->texture.image->Bind();
GL_SelectTexture( 0 );
qglNormalPointer( GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() );
qglVertexAttribPointerARB( 10, 3, GL_FLOAT, false, sizeof( idDrawVert ), ac->tangents[1].ToFloatPtr() );
qglVertexAttribPointerARB( 9, 3, GL_FLOAT, false, sizeof( idDrawVert ), ac->tangents[0].ToFloatPtr() );
qglEnableVertexAttribArrayARB( 9 );
qglEnableVertexAttribArrayARB( 10 );
qglEnableClientState( GL_NORMAL_ARRAY );
// Program env 5, 6, 7, 8 have been set in RB_SetProgramEnvironmentSpace
qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, FPROG_BUMPY_ENVIRONMENT );
qglEnable( GL_FRAGMENT_PROGRAM_ARB );
qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, VPROG_BUMPY_ENVIRONMENT );
qglEnable( GL_VERTEX_PROGRAM_ARB );
} else {
// per-pixel reflection mapping without a normal map
qglNormalPointer( GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() );
qglEnableClientState( GL_NORMAL_ARRAY );
qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, FPROG_ENVIRONMENT );
qglEnable( GL_FRAGMENT_PROGRAM_ARB );
qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, VPROG_ENVIRONMENT );
qglEnable( GL_VERTEX_PROGRAM_ARB );
}
} else {
qglEnable( GL_TEXTURE_GEN_S );
qglEnable( GL_TEXTURE_GEN_T );
qglEnable( GL_TEXTURE_GEN_R );
qglTexGenf( GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT );
qglTexGenf( GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT );
qglTexGenf( GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_EXT );
qglEnableClientState( GL_NORMAL_ARRAY );
qglNormalPointer( GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() );
qglMatrixMode( GL_TEXTURE );
float mat[16];
R_TransposeGLMatrix( backEnd.viewDef->worldSpace.modelViewMatrix, mat );
qglLoadMatrixf( mat );
qglMatrixMode( GL_MODELVIEW );
}
}
}
/*
================
RB_FinishStageTexturing
================
*/
void RB_FinishStageTexturing( const shaderStage_t *pStage, const drawSurf_t *surf, idDrawVert *ac ) {
// unset privatePolygonOffset if necessary
if ( pStage->privatePolygonOffset && !surf->material->TestMaterialFlag(MF_POLYGONOFFSET) ) {
qglDisable( GL_POLYGON_OFFSET_FILL );
}
if ( pStage->texture.texgen == TG_DIFFUSE_CUBE || pStage->texture.texgen == TG_SKYBOX_CUBE
|| pStage->texture.texgen == TG_WOBBLESKY_CUBE ) {
qglTexCoordPointer( 2, GL_FLOAT, sizeof( idDrawVert ), (void *)&ac->st );
}
if ( pStage->texture.texgen == TG_SCREEN ) {
qglDisable( GL_TEXTURE_GEN_S );
qglDisable( GL_TEXTURE_GEN_T );
qglDisable( GL_TEXTURE_GEN_Q );
}
if ( pStage->texture.texgen == TG_SCREEN2 ) {
qglDisable( GL_TEXTURE_GEN_S );
qglDisable( GL_TEXTURE_GEN_T );
qglDisable( GL_TEXTURE_GEN_Q );
}
if ( pStage->texture.texgen == TG_GLASSWARP ) {
if ( tr.backEndRenderer == BE_ARB2 /*|| tr.backEndRenderer == BE_NV30*/ ) {
GL_SelectTexture( 2 );
globalImages->BindNull();
GL_SelectTexture( 1 );
if ( pStage->texture.hasMatrix ) {
RB_LoadShaderTextureMatrix( surf->shaderRegisters, &pStage->texture );
}
qglDisable( GL_TEXTURE_GEN_S );
qglDisable( GL_TEXTURE_GEN_T );
qglDisable( GL_TEXTURE_GEN_Q );
qglDisable( GL_FRAGMENT_PROGRAM_ARB );
globalImages->BindNull();
GL_SelectTexture( 0 );
}
}
if ( pStage->texture.texgen == TG_REFLECT_CUBE ) {
if ( tr.backEndRenderer == BE_ARB2 ) {
// see if there is also a bump map specified
const shaderStage_t *bumpStage = surf->material->GetBumpStage();
if ( bumpStage ) {
// per-pixel reflection mapping with bump mapping
GL_SelectTexture( 1 );
globalImages->BindNull();
GL_SelectTexture( 0 );
qglDisableVertexAttribArrayARB( 9 );
qglDisableVertexAttribArrayARB( 10 );
} else {
// per-pixel reflection mapping without bump mapping
}
qglDisableClientState( GL_NORMAL_ARRAY );
qglDisable( GL_FRAGMENT_PROGRAM_ARB );
qglDisable( GL_VERTEX_PROGRAM_ARB );
// Fixme: Hack to get around an apparent bug in ATI drivers. Should remove as soon as it gets fixed.
qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, 0 );
} else {
qglDisable( GL_TEXTURE_GEN_S );
qglDisable( GL_TEXTURE_GEN_T );
qglDisable( GL_TEXTURE_GEN_R );
qglTexGenf( GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR );
qglTexGenf( GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR );
qglTexGenf( GL_R, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR );
qglDisableClientState( GL_NORMAL_ARRAY );
qglMatrixMode( GL_TEXTURE );
qglLoadIdentity();
qglMatrixMode( GL_MODELVIEW );
}
}
if ( pStage->texture.hasMatrix ) {
qglMatrixMode( GL_TEXTURE );
qglLoadIdentity();
qglMatrixMode( GL_MODELVIEW );
}
}
/*
=============================================================================================
FILL DEPTH BUFFER
=============================================================================================
*/
/*
==================
RB_T_FillDepthBuffer
==================
*/
void RB_T_FillDepthBuffer( const drawSurf_t *surf ) {
int stage;
const idMaterial *shader;
const shaderStage_t *pStage;
const float *regs;
float color[4];
const srfTriangles_t *tri;
tri = surf->geo;
shader = surf->material;
// update the clip plane if needed
if ( backEnd.viewDef->numClipPlanes && surf->space != backEnd.currentSpace ) {
GL_SelectTexture( 1 );
idPlane plane;
R_GlobalPlaneToLocal( surf->space->modelMatrix, backEnd.viewDef->clipPlanes[0], plane );
plane[3] += 0.5; // the notch is in the middle
qglTexGenfv( GL_S, GL_OBJECT_PLANE, plane.ToFloatPtr() );
GL_SelectTexture( 0 );
}
if ( !shader->IsDrawn() ) {
return;
}
// some deforms may disable themselves by setting numIndexes = 0
if ( !tri->numIndexes ) {
return;
}
// translucent surfaces don't put anything in the depth buffer and don't
// test against it, which makes them fail the mirror clip plane operation
if ( shader->Coverage() == MC_TRANSLUCENT ) {
return;
}
if ( !tri->ambientCache ) {
common->Printf( "RB_T_FillDepthBuffer: !tri->ambientCache\n" );
return;
}
// get the expressions for conditionals / color / texcoords
regs = surf->shaderRegisters;
// if all stages of a material have been conditioned off, don't do anything
for ( stage = 0; stage < shader->GetNumStages() ; stage++ ) {
pStage = shader->GetStage(stage);
// check the stage enable condition
if ( regs[ pStage->conditionRegister ] != 0 ) {
break;
}
}
if ( stage == shader->GetNumStages() ) {
return;
}
// set polygon offset if necessary
if ( shader->TestMaterialFlag(MF_POLYGONOFFSET) ) {
qglEnable( GL_POLYGON_OFFSET_FILL );
qglPolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * shader->GetPolygonOffset() );
}
// subviews will just down-modulate the color buffer by overbright
if ( shader->GetSort() == SS_SUBVIEW ) {
GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO | GLS_DEPTHFUNC_LESS );
color[0] =
color[1] =
color[2] = ( 1.0 / backEnd.overBright );
color[3] = 1;
} else {
// others just draw black
color[0] = 0;
color[1] = 0;
color[2] = 0;
color[3] = 1;
}
idDrawVert *ac = (idDrawVert *)vertexCache.Position( tri->ambientCache );
qglVertexPointer( 3, GL_FLOAT, sizeof( idDrawVert ), ac->xyz.ToFloatPtr() );
qglTexCoordPointer( 2, GL_FLOAT, sizeof( idDrawVert ), reinterpret_cast(&ac->st) );
bool drawSolid = false;
if ( shader->Coverage() == MC_OPAQUE ) {
drawSolid = true;
}
// we may have multiple alpha tested stages
if ( shader->Coverage() == MC_PERFORATED ) {
// if the only alpha tested stages are condition register omitted,
// draw a normal opaque surface
bool didDraw = false;
qglEnable( GL_ALPHA_TEST );
// perforated surfaces may have multiple alpha tested stages
for ( stage = 0; stage < shader->GetNumStages() ; stage++ ) {
pStage = shader->GetStage(stage);
if ( !pStage->hasAlphaTest ) {
continue;
}
// check the stage enable condition
if ( regs[ pStage->conditionRegister ] == 0 ) {
continue;
}
// if we at least tried to draw an alpha tested stage,
// we won't draw the opaque surface
didDraw = true;
// set the alpha modulate
color[3] = regs[ pStage->color.registers[3] ];
// skip the entire stage if alpha would be black
if ( color[3] <= 0 ) {
continue;
}
qglColor4fv( color );
qglAlphaFunc( GL_GREATER, regs[ pStage->alphaTestRegister ] );
// bind the texture
pStage->texture.image->Bind();
// set texture matrix and texGens
RB_PrepareStageTexturing( pStage, surf, ac );
// draw it
RB_DrawElementsWithCounters( tri );
RB_FinishStageTexturing( pStage, surf, ac );
}
qglDisable( GL_ALPHA_TEST );
if ( !didDraw ) {
drawSolid = true;
}
}
// draw the entire surface solid
if ( drawSolid ) {
qglColor4fv( color );
globalImages->whiteImage->Bind();
// draw it
RB_DrawElementsWithCounters( tri );
}
// reset polygon offset
if ( shader->TestMaterialFlag(MF_POLYGONOFFSET) ) {
qglDisable( GL_POLYGON_OFFSET_FILL );
}
// reset blending
if ( shader->GetSort() == SS_SUBVIEW ) {
GL_State( GLS_DEPTHFUNC_LESS );
}
}
/*
=====================
RB_STD_FillDepthBuffer
If we are rendering a subview with a near clip plane, use a second texture
to force the alpha test to fail when behind that clip plane
=====================
*/
void RB_STD_FillDepthBuffer( drawSurf_t **drawSurfs, int numDrawSurfs ) {
// if we are just doing 2D rendering, no need to fill the depth buffer
if ( !backEnd.viewDef->viewEntitys ) {
return;
}
// enable the second texture for mirror plane clipping if needed
if ( backEnd.viewDef->numClipPlanes ) {
GL_SelectTexture( 1 );
globalImages->alphaNotchImage->Bind();
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglEnable( GL_TEXTURE_GEN_S );
qglTexCoord2f( 1, 0.5 );
}
// the first texture will be used for alpha tested surfaces
GL_SelectTexture( 0 );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
// decal surfaces may enable polygon offset
qglPolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() );
GL_State( GLS_DEPTHFUNC_LESS );
// Enable stencil test if we are going to be using it for shadows.
// If we didn't do this, it would be legal behavior to get z fighting
// from the ambient pass and the light passes.
qglEnable( GL_STENCIL_TEST );
qglStencilFunc( GL_ALWAYS, 1, 255 );
RB_RenderDrawSurfListWithFunction( drawSurfs, numDrawSurfs, RB_T_FillDepthBuffer );
if ( backEnd.viewDef->numClipPlanes ) {
GL_SelectTexture( 1 );
globalImages->BindNull();
qglDisable( GL_TEXTURE_GEN_S );
GL_SelectTexture( 0 );
}
}
/*
=============================================================================================
SHADER PASSES
=============================================================================================
*/
/*
==================
RB_SetProgramEnvironment
Sets variables that can be used by all vertex programs
==================
*/
void RB_SetProgramEnvironment( void ) {
float parm[4];
int pot;
if ( !glConfig.ARBVertexProgramAvailable ) {
return;
}
#if 0
// screen power of two correction factor, one pixel in so we don't get a bilerp
// of an uncopied pixel
int w = backEnd.viewDef->viewport.x2 - backEnd.viewDef->viewport.x1 + 1;
pot = globalImages->currentRenderImage->uploadWidth;
if ( w == pot ) {
parm[0] = 1.0;
} else {
parm[0] = (float)(w-1) / pot;
}
int h = backEnd.viewDef->viewport.y2 - backEnd.viewDef->viewport.y1 + 1;
pot = globalImages->currentRenderImage->uploadHeight;
if ( h == pot ) {
parm[1] = 1.0;
} else {
parm[1] = (float)(h-1) / pot;
}
parm[2] = 0;
parm[3] = 1;
qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 0, parm );
#else
// screen power of two correction factor, assuming the copy to _currentRender
// also copied an extra row and column for the bilerp
int w = backEnd.viewDef->viewport.x2 - backEnd.viewDef->viewport.x1 + 1;
pot = globalImages->currentRenderImage->uploadWidth;
parm[0] = (float)w / pot;
int h = backEnd.viewDef->viewport.y2 - backEnd.viewDef->viewport.y1 + 1;
pot = globalImages->currentRenderImage->uploadHeight;
parm[1] = (float)h / pot;
parm[2] = 0;
parm[3] = 1;
qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 0, parm );
#endif
qglProgramEnvParameter4fvARB( GL_FRAGMENT_PROGRAM_ARB, 0, parm );
// window coord to 0.0 to 1.0 conversion
parm[0] = 1.0 / w;
parm[1] = 1.0 / h;
parm[2] = 0;
parm[3] = 1;
qglProgramEnvParameter4fvARB( GL_FRAGMENT_PROGRAM_ARB, 1, parm );
//
// set eye position in global space
//
parm[0] = backEnd.viewDef->renderView.vieworg[0];
parm[1] = backEnd.viewDef->renderView.vieworg[1];
parm[2] = backEnd.viewDef->renderView.vieworg[2];
parm[3] = 1.0;
qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 1, parm );
}
/*
==================
RB_SetProgramEnvironmentSpace
Sets variables related to the current space that can be used by all vertex programs
==================
*/
void RB_SetProgramEnvironmentSpace( void ) {
if ( !glConfig.ARBVertexProgramAvailable ) {
return;
}
const struct viewEntity_s *space = backEnd.currentSpace;
float parm[4];
// set eye position in local space
R_GlobalPointToLocal( space->modelMatrix, backEnd.viewDef->renderView.vieworg, *(idVec3 *)parm );
parm[3] = 1.0;
qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 5, parm );
// we need the model matrix without it being combined with the view matrix
// so we can transform local vectors to global coordinates
parm[0] = space->modelMatrix[0];
parm[1] = space->modelMatrix[4];
parm[2] = space->modelMatrix[8];
parm[3] = space->modelMatrix[12];
qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 6, parm );
parm[0] = space->modelMatrix[1];
parm[1] = space->modelMatrix[5];
parm[2] = space->modelMatrix[9];
parm[3] = space->modelMatrix[13];
qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 7, parm );
parm[0] = space->modelMatrix[2];
parm[1] = space->modelMatrix[6];
parm[2] = space->modelMatrix[10];
parm[3] = space->modelMatrix[14];
qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, 8, parm );
}
/*
==================
RB_STD_T_RenderShaderPasses
This is also called for the generated 2D rendering
==================
*/
void RB_STD_T_RenderShaderPasses( const drawSurf_t *surf ) {
int stage;
const idMaterial *shader;
const shaderStage_t *pStage;
const float *regs;
float color[4];
const srfTriangles_t *tri;
tri = surf->geo;
shader = surf->material;
if ( !shader->HasAmbient() ) {
return;
}
if ( shader->IsPortalSky() ) {
return;
}
// change the matrix if needed
if ( surf->space != backEnd.currentSpace ) {
qglLoadMatrixf( surf->space->modelViewMatrix );
backEnd.currentSpace = surf->space;
RB_SetProgramEnvironmentSpace();
}
// change the scissor if needed
if ( r_useScissor.GetBool() && !backEnd.currentScissor.Equals( surf->scissorRect ) ) {
backEnd.currentScissor = surf->scissorRect;
qglScissor( backEnd.viewDef->viewport.x1 + backEnd.currentScissor.x1,
backEnd.viewDef->viewport.y1 + backEnd.currentScissor.y1,
backEnd.currentScissor.x2 + 1 - backEnd.currentScissor.x1,
backEnd.currentScissor.y2 + 1 - backEnd.currentScissor.y1 );
}
// some deforms may disable themselves by setting numIndexes = 0
if ( !tri->numIndexes ) {
return;
}
if ( !tri->ambientCache ) {
common->Printf( "RB_T_RenderShaderPasses: !tri->ambientCache\n" );
return;
}
// get the expressions for conditionals / color / texcoords
regs = surf->shaderRegisters;
// set face culling appropriately
GL_Cull( shader->GetCullType() );
// set polygon offset if necessary
if ( shader->TestMaterialFlag(MF_POLYGONOFFSET) ) {
qglEnable( GL_POLYGON_OFFSET_FILL );
qglPolygonOffset( r_offsetFactor.GetFloat(), r_offsetUnits.GetFloat() * shader->GetPolygonOffset() );
}
if ( surf->space->weaponDepthHack ) {
RB_EnterWeaponDepthHack();
}
if ( surf->space->modelDepthHack != 0.0f ) {
RB_EnterModelDepthHack( surf->space->modelDepthHack );
}
idDrawVert *ac = (idDrawVert *)vertexCache.Position( tri->ambientCache );
qglVertexPointer( 3, GL_FLOAT, sizeof( idDrawVert ), ac->xyz.ToFloatPtr() );
qglTexCoordPointer( 2, GL_FLOAT, sizeof( idDrawVert ), reinterpret_cast(&ac->st) );
for ( stage = 0; stage < shader->GetNumStages() ; stage++ ) {
pStage = shader->GetStage(stage);
// check the enable condition
if ( regs[ pStage->conditionRegister ] == 0 ) {
continue;
}
// skip the stages involved in lighting
if ( pStage->lighting != SL_AMBIENT ) {
continue;
}
// skip if the stage is ( GL_ZERO, GL_ONE ), which is used for some alpha masks
if ( ( pStage->drawStateBits & (GLS_SRCBLEND_BITS|GLS_DSTBLEND_BITS) ) == ( GLS_SRCBLEND_ZERO | GLS_DSTBLEND_ONE ) ) {
continue;
}
// see if we are a new-style stage
newShaderStage_t *newStage = pStage->newStage;
if ( newStage ) {
//--------------------------
//
// new style stages
//
//--------------------------
// completely skip the stage if we don't have the capability
if ( tr.backEndRenderer != BE_ARB2 ) {
continue;
}
if ( r_skipNewAmbient.GetBool() ) {
continue;
}
qglColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( idDrawVert ), (void *)&ac->color );
qglVertexAttribPointerARB( 9, 3, GL_FLOAT, false, sizeof( idDrawVert ), ac->tangents[0].ToFloatPtr() );
qglVertexAttribPointerARB( 10, 3, GL_FLOAT, false, sizeof( idDrawVert ), ac->tangents[1].ToFloatPtr() );
qglNormalPointer( GL_FLOAT, sizeof( idDrawVert ), ac->normal.ToFloatPtr() );
qglEnableClientState( GL_COLOR_ARRAY );
qglEnableVertexAttribArrayARB( 9 );
qglEnableVertexAttribArrayARB( 10 );
qglEnableClientState( GL_NORMAL_ARRAY );
GL_State( pStage->drawStateBits );
qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, newStage->vertexProgram );
qglEnable( GL_VERTEX_PROGRAM_ARB );
// megaTextures bind a lot of images and set a lot of parameters
if ( newStage->megaTexture ) {
newStage->megaTexture->SetMappingForSurface( tri );
idVec3 localViewer;
R_GlobalPointToLocal( surf->space->modelMatrix, backEnd.viewDef->renderView.vieworg, localViewer );
newStage->megaTexture->BindForViewOrigin( localViewer );
}
for ( int i = 0 ; i < newStage->numVertexParms ; i++ ) {
float parm[4];
parm[0] = regs[ newStage->vertexParms[i][0] ];
parm[1] = regs[ newStage->vertexParms[i][1] ];
parm[2] = regs[ newStage->vertexParms[i][2] ];
parm[3] = regs[ newStage->vertexParms[i][3] ];
qglProgramLocalParameter4fvARB( GL_VERTEX_PROGRAM_ARB, i, parm );
}
for ( int i = 0 ; i < newStage->numFragmentProgramImages ; i++ ) {
if ( newStage->fragmentProgramImages[i] ) {
GL_SelectTexture( i );
newStage->fragmentProgramImages[i]->Bind();
}
}
qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, newStage->fragmentProgram );
qglEnable( GL_FRAGMENT_PROGRAM_ARB );
// draw it
RB_DrawElementsWithCounters( tri );
for ( int i = 1 ; i < newStage->numFragmentProgramImages ; i++ ) {
if ( newStage->fragmentProgramImages[i] ) {
GL_SelectTexture( i );
globalImages->BindNull();
}
}
if ( newStage->megaTexture ) {
newStage->megaTexture->Unbind();
}
GL_SelectTexture( 0 );
qglDisable( GL_VERTEX_PROGRAM_ARB );
qglDisable( GL_FRAGMENT_PROGRAM_ARB );
// Fixme: Hack to get around an apparent bug in ATI drivers. Should remove as soon as it gets fixed.
qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, 0 );
qglDisableClientState( GL_COLOR_ARRAY );
qglDisableVertexAttribArrayARB( 9 );
qglDisableVertexAttribArrayARB( 10 );
qglDisableClientState( GL_NORMAL_ARRAY );
continue;
}
//--------------------------
//
// old style stages
//
//--------------------------
// set the color
color[0] = regs[ pStage->color.registers[0] ];
color[1] = regs[ pStage->color.registers[1] ];
color[2] = regs[ pStage->color.registers[2] ];
color[3] = regs[ pStage->color.registers[3] ];
// skip the entire stage if an add would be black
if ( ( pStage->drawStateBits & (GLS_SRCBLEND_BITS|GLS_DSTBLEND_BITS) ) == ( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE )
&& color[0] <= 0 && color[1] <= 0 && color[2] <= 0 ) {
continue;
}
// skip the entire stage if a blend would be completely transparent
if ( ( pStage->drawStateBits & (GLS_SRCBLEND_BITS|GLS_DSTBLEND_BITS) ) == ( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA )
&& color[3] <= 0 ) {
continue;
}
// select the vertex color source
if ( pStage->vertexColor == SVC_IGNORE ) {
qglColor4fv( color );
} else {
qglColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( idDrawVert ), (void *)&ac->color );
qglEnableClientState( GL_COLOR_ARRAY );
if ( pStage->vertexColor == SVC_INVERSE_MODULATE ) {
GL_TexEnv( GL_COMBINE_ARB );
qglTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE );
qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE );
qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR_ARB );
qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR );
qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_ONE_MINUS_SRC_COLOR );
qglTexEnvi( GL_TEXTURE_ENV, GL_RGB_SCALE_ARB, 1 );
}
// for vertex color and modulated color, we need to enable a second
// texture stage
if ( color[0] != 1 || color[1] != 1 || color[2] != 1 || color[3] != 1 ) {
GL_SelectTexture( 1 );
globalImages->whiteImage->Bind();
GL_TexEnv( GL_COMBINE_ARB );
qglTexEnvfv( GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, color );
qglTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE );
qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB );
qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_CONSTANT_ARB );
qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR );
qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR );
qglTexEnvi( GL_TEXTURE_ENV, GL_RGB_SCALE_ARB, 1 );
qglTexEnvi( GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_MODULATE );
qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS_ARB );
qglTexEnvi( GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_ARB, GL_CONSTANT_ARB );
qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA );
qglTexEnvi( GL_TEXTURE_ENV, GL_OPERAND1_ALPHA_ARB, GL_SRC_ALPHA );
qglTexEnvi( GL_TEXTURE_ENV, GL_ALPHA_SCALE, 1 );
GL_SelectTexture( 0 );
}
}
// bind the texture
RB_BindVariableStageImage( &pStage->texture, regs );
// set the state
GL_State( pStage->drawStateBits );
RB_PrepareStageTexturing( pStage, surf, ac );
// draw it
RB_DrawElementsWithCounters( tri );
RB_FinishStageTexturing( pStage, surf, ac );
if ( pStage->vertexColor != SVC_IGNORE ) {
qglDisableClientState( GL_COLOR_ARRAY );
GL_SelectTexture( 1 );
GL_TexEnv( GL_MODULATE );
globalImages->BindNull();
GL_SelectTexture( 0 );
GL_TexEnv( GL_MODULATE );
}
}
// reset polygon offset
if ( shader->TestMaterialFlag(MF_POLYGONOFFSET) ) {
qglDisable( GL_POLYGON_OFFSET_FILL );
}
if ( surf->space->weaponDepthHack || surf->space->modelDepthHack != 0.0f ) {
RB_LeaveDepthHack();
}
}
/*
=====================
RB_STD_DrawShaderPasses
Draw non-light dependent passes
=====================
*/
int RB_STD_DrawShaderPasses( drawSurf_t **drawSurfs, int numDrawSurfs ) {
int i;
// only obey skipAmbient if we are rendering a view
if ( backEnd.viewDef->viewEntitys && r_skipAmbient.GetBool() ) {
return numDrawSurfs;
}
// if we are about to draw the first surface that needs
// the rendering in a texture, copy it over
if ( drawSurfs[0]->material->GetSort() >= SS_POST_PROCESS ) {
if ( r_skipPostProcess.GetBool() ) {
return 0;
}
// only dump if in a 3d view
if ( backEnd.viewDef->viewEntitys && tr.backEndRenderer == BE_ARB2 ) {
globalImages->currentRenderImage->CopyFramebuffer( backEnd.viewDef->viewport.x1,
backEnd.viewDef->viewport.y1, backEnd.viewDef->viewport.x2 - backEnd.viewDef->viewport.x1 + 1,
backEnd.viewDef->viewport.y2 - backEnd.viewDef->viewport.y1 + 1, true );
}
backEnd.currentRenderCopied = true;
}
GL_SelectTexture( 1 );
globalImages->BindNull();
GL_SelectTexture( 0 );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
RB_SetProgramEnvironment();
// we don't use RB_RenderDrawSurfListWithFunction()
// because we want to defer the matrix load because many
// surfaces won't draw any ambient passes
backEnd.currentSpace = NULL;
for (i = 0 ; i < numDrawSurfs ; i++ ) {
if ( drawSurfs[i]->material->SuppressInSubview() ) {
continue;
}
if ( backEnd.viewDef->isXraySubview && drawSurfs[i]->space->entityDef ) {
if ( drawSurfs[i]->space->entityDef->parms.xrayIndex != 2 ) {
continue;
}
}
// we need to draw the post process shaders after we have drawn the fog lights
if ( drawSurfs[i]->material->GetSort() >= SS_POST_PROCESS
&& !backEnd.currentRenderCopied ) {
break;
}
RB_STD_T_RenderShaderPasses( drawSurfs[i] );
}
GL_Cull( CT_FRONT_SIDED );
qglColor3f( 1, 1, 1 );
return i;
}
/*
==============================================================================
BACK END RENDERING OF STENCIL SHADOWS
==============================================================================
*/
/*
=====================
RB_T_Shadow
the shadow volumes face INSIDE
=====================
*/
static void RB_T_Shadow( const drawSurf_t *surf ) {
const srfTriangles_t *tri;
// set the light position if we are using a vertex program to project the rear surfaces
if ( tr.backEndRendererHasVertexPrograms && r_useShadowVertexProgram.GetBool()
&& surf->space != backEnd.currentSpace ) {
idVec4 localLight;
R_GlobalPointToLocal( surf->space->modelMatrix, backEnd.vLight->globalLightOrigin, localLight.ToVec3() );
localLight.w = 0.0f;
qglProgramEnvParameter4fvARB( GL_VERTEX_PROGRAM_ARB, PP_LIGHT_ORIGIN, localLight.ToFloatPtr() );
}
tri = surf->geo;
if ( !tri->shadowCache ) {
return;
}
qglVertexPointer( 4, GL_FLOAT, sizeof( shadowCache_t ), vertexCache.Position(tri->shadowCache) );
// we always draw the sil planes, but we may not need to draw the front or rear caps
int numIndexes;
bool external = false;
if ( !r_useExternalShadows.GetInteger() ) {
numIndexes = tri->numIndexes;
} else if ( r_useExternalShadows.GetInteger() == 2 ) { // force to no caps for testing
numIndexes = tri->numShadowIndexesNoCaps;
} else if ( !(surf->dsFlags & DSF_VIEW_INSIDE_SHADOW) ) {
// if we aren't inside the shadow projection, no caps are ever needed needed
numIndexes = tri->numShadowIndexesNoCaps;
external = true;
} else if ( !backEnd.vLight->viewInsideLight && !(surf->geo->shadowCapPlaneBits & SHADOW_CAP_INFINITE) ) {
// if we are inside the shadow projection, but outside the light, and drawing
// a non-infinite shadow, we can skip some caps
if ( backEnd.vLight->viewSeesShadowPlaneBits & surf->geo->shadowCapPlaneBits ) {
// we can see through a rear cap, so we need to draw it, but we can skip the
// caps on the actual surface
numIndexes = tri->numShadowIndexesNoFrontCaps;
} else {
// we don't need to draw any caps
numIndexes = tri->numShadowIndexesNoCaps;
}
external = true;
} else {
// must draw everything
numIndexes = tri->numIndexes;
}
// set depth bounds
if( glConfig.depthBoundsTestAvailable && r_useDepthBoundsTest.GetBool() ) {
qglDepthBoundsEXT( surf->scissorRect.zmin, surf->scissorRect.zmax );
}
// debug visualization
if ( r_showShadows.GetInteger() ) {
if ( r_showShadows.GetInteger() == 3 ) {
if ( external ) {
qglColor3f( 0.1/backEnd.overBright, 1/backEnd.overBright, 0.1/backEnd.overBright );
} else {
// these are the surfaces that require the reverse
qglColor3f( 1/backEnd.overBright, 0.1/backEnd.overBright, 0.1/backEnd.overBright );
}
} else {
// draw different color for turboshadows
if ( surf->geo->shadowCapPlaneBits & SHADOW_CAP_INFINITE ) {
if ( numIndexes == tri->numIndexes ) {
qglColor3f( 1/backEnd.overBright, 0.1/backEnd.overBright, 0.1/backEnd.overBright );
} else {
qglColor3f( 1/backEnd.overBright, 0.4/backEnd.overBright, 0.1/backEnd.overBright );
}
} else {
if ( numIndexes == tri->numIndexes ) {
qglColor3f( 0.1/backEnd.overBright, 1/backEnd.overBright, 0.1/backEnd.overBright );
} else if ( numIndexes == tri->numShadowIndexesNoFrontCaps ) {
qglColor3f( 0.1/backEnd.overBright, 1/backEnd.overBright, 0.6/backEnd.overBright );
} else {
qglColor3f( 0.6/backEnd.overBright, 1/backEnd.overBright, 0.1/backEnd.overBright );
}
}
}
qglStencilOp( GL_KEEP, GL_KEEP, GL_KEEP );
qglDisable( GL_STENCIL_TEST );
GL_Cull( CT_TWO_SIDED );
RB_DrawShadowElementsWithCounters( tri, numIndexes );
GL_Cull( CT_FRONT_SIDED );
qglEnable( GL_STENCIL_TEST );
return;
}
// patent-free work around
if ( !external ) {
// "preload" the stencil buffer with the number of volumes
// that get clipped by the near or far clip plane
qglStencilOp( GL_KEEP, tr.stencilDecr, tr.stencilDecr );
GL_Cull( CT_FRONT_SIDED );
RB_DrawShadowElementsWithCounters( tri, numIndexes );
qglStencilOp( GL_KEEP, tr.stencilIncr, tr.stencilIncr );
GL_Cull( CT_BACK_SIDED );
RB_DrawShadowElementsWithCounters( tri, numIndexes );
}
// traditional depth-pass stencil shadows
qglStencilOp( GL_KEEP, GL_KEEP, tr.stencilIncr );
GL_Cull( CT_FRONT_SIDED );
RB_DrawShadowElementsWithCounters( tri, numIndexes );
qglStencilOp( GL_KEEP, GL_KEEP, tr.stencilDecr );
GL_Cull( CT_BACK_SIDED );
RB_DrawShadowElementsWithCounters( tri, numIndexes );
}
/*
=====================
RB_StencilShadowPass
Stencil test should already be enabled, and the stencil buffer should have
been set to 128 on any surfaces that might receive shadows
=====================
*/
void RB_StencilShadowPass( const drawSurf_t *drawSurfs ) {
if ( !r_shadows.GetBool() ) {
return;
}
if ( !drawSurfs ) {
return;
}
globalImages->BindNull();
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
// for visualizing the shadows
if ( r_showShadows.GetInteger() ) {
if ( r_showShadows.GetInteger() == 2 ) {
// draw filled in
GL_State( GLS_DEPTHMASK | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_LESS );
} else {
// draw as lines, filling the depth buffer
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO | GLS_POLYMODE_LINE | GLS_DEPTHFUNC_ALWAYS );
}
} else {
// don't write to the color buffer, just the stencil buffer
GL_State( GLS_DEPTHMASK | GLS_COLORMASK | GLS_ALPHAMASK | GLS_DEPTHFUNC_LESS );
}
if ( r_shadowPolygonFactor.GetFloat() || r_shadowPolygonOffset.GetFloat() ) {
qglPolygonOffset( r_shadowPolygonFactor.GetFloat(), -r_shadowPolygonOffset.GetFloat() );
qglEnable( GL_POLYGON_OFFSET_FILL );
}
qglStencilFunc( GL_ALWAYS, 1, 255 );
if ( glConfig.depthBoundsTestAvailable && r_useDepthBoundsTest.GetBool() ) {
qglEnable( GL_DEPTH_BOUNDS_TEST_EXT );
}
RB_RenderDrawSurfChainWithFunction( drawSurfs, RB_T_Shadow );
GL_Cull( CT_FRONT_SIDED );
if ( r_shadowPolygonFactor.GetFloat() || r_shadowPolygonOffset.GetFloat() ) {
qglDisable( GL_POLYGON_OFFSET_FILL );
}
if ( glConfig.depthBoundsTestAvailable && r_useDepthBoundsTest.GetBool() ) {
qglDisable( GL_DEPTH_BOUNDS_TEST_EXT );
}
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglStencilFunc( GL_GEQUAL, 128, 255 );
qglStencilOp( GL_KEEP, GL_KEEP, GL_KEEP );
}
/*
=============================================================================================
BLEND LIGHT PROJECTION
=============================================================================================
*/
/*
=====================
RB_T_BlendLight
=====================
*/
static void RB_T_BlendLight( const drawSurf_t *surf ) {
const srfTriangles_t *tri;
tri = surf->geo;
if ( backEnd.currentSpace != surf->space ) {
idPlane lightProject[4];
int i;
for ( i = 0 ; i < 4 ; i++ ) {
R_GlobalPlaneToLocal( surf->space->modelMatrix, backEnd.vLight->lightProject[i], lightProject[i] );
}
GL_SelectTexture( 0 );
qglTexGenfv( GL_S, GL_OBJECT_PLANE, lightProject[0].ToFloatPtr() );
qglTexGenfv( GL_T, GL_OBJECT_PLANE, lightProject[1].ToFloatPtr() );
qglTexGenfv( GL_Q, GL_OBJECT_PLANE, lightProject[2].ToFloatPtr() );
GL_SelectTexture( 1 );
qglTexGenfv( GL_S, GL_OBJECT_PLANE, lightProject[3].ToFloatPtr() );
}
// this gets used for both blend lights and shadow draws
if ( tri->ambientCache ) {
idDrawVert *ac = (idDrawVert *)vertexCache.Position( tri->ambientCache );
qglVertexPointer( 3, GL_FLOAT, sizeof( idDrawVert ), ac->xyz.ToFloatPtr() );
} else if ( tri->shadowCache ) {
shadowCache_t *sc = (shadowCache_t *)vertexCache.Position( tri->shadowCache );
qglVertexPointer( 3, GL_FLOAT, sizeof( shadowCache_t ), sc->xyz.ToFloatPtr() );
}
RB_DrawElementsWithCounters( tri );
}
/*
=====================
RB_BlendLight
Dual texture together the falloff and projection texture with a blend
mode to the framebuffer, instead of interacting with the surface texture
=====================
*/
static void RB_BlendLight( const drawSurf_t *drawSurfs, const drawSurf_t *drawSurfs2 ) {
const idMaterial *lightShader;
const shaderStage_t *stage;
int i;
const float *regs;
if ( !drawSurfs ) {
return;
}
if ( r_skipBlendLights.GetBool() ) {
return;
}
lightShader = backEnd.vLight->lightShader;
regs = backEnd.vLight->shaderRegisters;
// texture 1 will get the falloff texture
GL_SelectTexture( 1 );
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglEnable( GL_TEXTURE_GEN_S );
qglTexCoord2f( 0, 0.5 );
backEnd.vLight->falloffImage->Bind();
// texture 0 will get the projected texture
GL_SelectTexture( 0 );
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglEnable( GL_TEXTURE_GEN_S );
qglEnable( GL_TEXTURE_GEN_T );
qglEnable( GL_TEXTURE_GEN_Q );
for ( i = 0 ; i < lightShader->GetNumStages() ; i++ ) {
stage = lightShader->GetStage(i);
if ( !regs[ stage->conditionRegister ] ) {
continue;
}
GL_State( GLS_DEPTHMASK | stage->drawStateBits | GLS_DEPTHFUNC_EQUAL );
GL_SelectTexture( 0 );
stage->texture.image->Bind();
if ( stage->texture.hasMatrix ) {
RB_LoadShaderTextureMatrix( regs, &stage->texture );
}
// get the modulate values from the light, including alpha, unlike normal lights
backEnd.lightColor[0] = regs[ stage->color.registers[0] ];
backEnd.lightColor[1] = regs[ stage->color.registers[1] ];
backEnd.lightColor[2] = regs[ stage->color.registers[2] ];
backEnd.lightColor[3] = regs[ stage->color.registers[3] ];
qglColor4fv( backEnd.lightColor );
RB_RenderDrawSurfChainWithFunction( drawSurfs, RB_T_BlendLight );
RB_RenderDrawSurfChainWithFunction( drawSurfs2, RB_T_BlendLight );
if ( stage->texture.hasMatrix ) {
GL_SelectTexture( 0 );
qglMatrixMode( GL_TEXTURE );
qglLoadIdentity();
qglMatrixMode( GL_MODELVIEW );
}
}
GL_SelectTexture( 1 );
qglDisable( GL_TEXTURE_GEN_S );
globalImages->BindNull();
GL_SelectTexture( 0 );
qglDisable( GL_TEXTURE_GEN_S );
qglDisable( GL_TEXTURE_GEN_T );
qglDisable( GL_TEXTURE_GEN_Q );
}
//========================================================================
static idPlane fogPlanes[4];
/*
=====================
RB_T_BasicFog
=====================
*/
static void RB_T_BasicFog( const drawSurf_t *surf ) {
if ( backEnd.currentSpace != surf->space ) {
idPlane local;
GL_SelectTexture( 0 );
R_GlobalPlaneToLocal( surf->space->modelMatrix, fogPlanes[0], local );
local[3] += 0.5;
qglTexGenfv( GL_S, GL_OBJECT_PLANE, local.ToFloatPtr() );
// R_GlobalPlaneToLocal( surf->space->modelMatrix, fogPlanes[1], local );
// local[3] += 0.5;
local[0] = local[1] = local[2] = 0; local[3] = 0.5;
qglTexGenfv( GL_T, GL_OBJECT_PLANE, local.ToFloatPtr() );
GL_SelectTexture( 1 );
// GL_S is constant per viewer
R_GlobalPlaneToLocal( surf->space->modelMatrix, fogPlanes[2], local );
local[3] += FOG_ENTER;
qglTexGenfv( GL_T, GL_OBJECT_PLANE, local.ToFloatPtr() );
R_GlobalPlaneToLocal( surf->space->modelMatrix, fogPlanes[3], local );
qglTexGenfv( GL_S, GL_OBJECT_PLANE, local.ToFloatPtr() );
}
RB_T_RenderTriangleSurface( surf );
}
/*
==================
RB_FogPass
==================
*/
static void RB_FogPass( const drawSurf_t *drawSurfs, const drawSurf_t *drawSurfs2 ) {
const srfTriangles_t*frustumTris;
drawSurf_t ds;
const idMaterial *lightShader;
const shaderStage_t *stage;
const float *regs;
// create a surface for the light frustom triangles, which are oriented drawn side out
frustumTris = backEnd.vLight->frustumTris;
// if we ran out of vertex cache memory, skip it
if ( !frustumTris->ambientCache ) {
return;
}
memset( &ds, 0, sizeof( ds ) );
ds.space = &backEnd.viewDef->worldSpace;
ds.geo = frustumTris;
ds.scissorRect = backEnd.viewDef->scissor;
// find the current color and density of the fog
lightShader = backEnd.vLight->lightShader;
regs = backEnd.vLight->shaderRegisters;
// assume fog shaders have only a single stage
stage = lightShader->GetStage(0);
backEnd.lightColor[0] = regs[ stage->color.registers[0] ];
backEnd.lightColor[1] = regs[ stage->color.registers[1] ];
backEnd.lightColor[2] = regs[ stage->color.registers[2] ];
backEnd.lightColor[3] = regs[ stage->color.registers[3] ];
qglColor3fv( backEnd.lightColor );
// calculate the falloff planes
float a;
// if they left the default value on, set a fog distance of 500
if ( backEnd.lightColor[3] <= 1.0 ) {
a = -0.5f / DEFAULT_FOG_DISTANCE;
} else {
// otherwise, distance = alpha color
a = -0.5f / backEnd.lightColor[3];
}
GL_State( GLS_DEPTHMASK | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL );
// texture 0 is the falloff image
GL_SelectTexture( 0 );
globalImages->fogImage->Bind();
//GL_Bind( tr.whiteImage );
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglEnable( GL_TEXTURE_GEN_S );
qglEnable( GL_TEXTURE_GEN_T );
qglTexCoord2f( 0.5f, 0.5f ); // make sure Q is set
fogPlanes[0][0] = a * backEnd.viewDef->worldSpace.modelViewMatrix[2];
fogPlanes[0][1] = a * backEnd.viewDef->worldSpace.modelViewMatrix[6];
fogPlanes[0][2] = a * backEnd.viewDef->worldSpace.modelViewMatrix[10];
fogPlanes[0][3] = a * backEnd.viewDef->worldSpace.modelViewMatrix[14];
fogPlanes[1][0] = a * backEnd.viewDef->worldSpace.modelViewMatrix[0];
fogPlanes[1][1] = a * backEnd.viewDef->worldSpace.modelViewMatrix[4];
fogPlanes[1][2] = a * backEnd.viewDef->worldSpace.modelViewMatrix[8];
fogPlanes[1][3] = a * backEnd.viewDef->worldSpace.modelViewMatrix[12];
// texture 1 is the entering plane fade correction
GL_SelectTexture( 1 );
globalImages->fogEnterImage->Bind();
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglEnable( GL_TEXTURE_GEN_S );
qglEnable( GL_TEXTURE_GEN_T );
// T will get a texgen for the fade plane, which is always the "top" plane on unrotated lights
fogPlanes[2][0] = 0.001f * backEnd.vLight->fogPlane[0];
fogPlanes[2][1] = 0.001f * backEnd.vLight->fogPlane[1];
fogPlanes[2][2] = 0.001f * backEnd.vLight->fogPlane[2];
fogPlanes[2][3] = 0.001f * backEnd.vLight->fogPlane[3];
// S is based on the view origin
float s = backEnd.viewDef->renderView.vieworg * fogPlanes[2].Normal() + fogPlanes[2][3];
fogPlanes[3][0] = 0;
fogPlanes[3][1] = 0;
fogPlanes[3][2] = 0;
fogPlanes[3][3] = FOG_ENTER + s;
qglTexCoord2f( FOG_ENTER + s, FOG_ENTER );
// draw it
RB_RenderDrawSurfChainWithFunction( drawSurfs, RB_T_BasicFog );
RB_RenderDrawSurfChainWithFunction( drawSurfs2, RB_T_BasicFog );
// the light frustum bounding planes aren't in the depth buffer, so use depthfunc_less instead
// of depthfunc_equal
GL_State( GLS_DEPTHMASK | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_LESS );
GL_Cull( CT_BACK_SIDED );
RB_RenderDrawSurfChainWithFunction( &ds, RB_T_BasicFog );
GL_Cull( CT_FRONT_SIDED );
GL_SelectTexture( 1 );
qglDisable( GL_TEXTURE_GEN_S );
qglDisable( GL_TEXTURE_GEN_T );
globalImages->BindNull();
GL_SelectTexture( 0 );
qglDisable( GL_TEXTURE_GEN_S );
qglDisable( GL_TEXTURE_GEN_T );
}
/*
==================
RB_STD_FogAllLights
==================
*/
void RB_STD_FogAllLights( void ) {
viewLight_t *vLight;
if ( r_skipFogLights.GetBool() || r_showOverDraw.GetInteger() != 0
|| backEnd.viewDef->isXraySubview /* dont fog in xray mode*/
) {
return;
}
qglDisable( GL_STENCIL_TEST );
for ( vLight = backEnd.viewDef->viewLights ; vLight ; vLight = vLight->next ) {
backEnd.vLight = vLight;
if ( !vLight->lightShader->IsFogLight() && !vLight->lightShader->IsBlendLight() ) {
continue;
}
#if 0 // _D3XP disabled that
if ( r_ignore.GetInteger() ) {
// we use the stencil buffer to guarantee that no pixels will be
// double fogged, which happens in some areas that are thousands of
// units from the origin
backEnd.currentScissor = vLight->scissorRect;
if ( r_useScissor.GetBool() ) {
qglScissor( backEnd.viewDef->viewport.x1 + backEnd.currentScissor.x1,
backEnd.viewDef->viewport.y1 + backEnd.currentScissor.y1,
backEnd.currentScissor.x2 + 1 - backEnd.currentScissor.x1,
backEnd.currentScissor.y2 + 1 - backEnd.currentScissor.y1 );
}
qglClear( GL_STENCIL_BUFFER_BIT );
qglEnable( GL_STENCIL_TEST );
// only pass on the cleared stencil values
qglStencilFunc( GL_EQUAL, 128, 255 );
// when we pass the stencil test and depth test and are going to draw,
// increment the stencil buffer so we don't ever draw on that pixel again
qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR );
}
#endif
if ( vLight->lightShader->IsFogLight() ) {
RB_FogPass( vLight->globalInteractions, vLight->localInteractions );
} else if ( vLight->lightShader->IsBlendLight() ) {
RB_BlendLight( vLight->globalInteractions, vLight->localInteractions );
}
qglDisable( GL_STENCIL_TEST );
}
qglEnable( GL_STENCIL_TEST );
}
//=========================================================================================
/*
==================
RB_STD_LightScale
Perform extra blending passes to multiply the entire buffer by
a floating point value
==================
*/
void RB_STD_LightScale( void ) {
float v, f;
if ( backEnd.overBright == 1.0f ) {
return;
}
if ( r_skipLightScale.GetBool() ) {
return;
}
// the scissor may be smaller than the viewport for subviews
if ( r_useScissor.GetBool() ) {
qglScissor( backEnd.viewDef->viewport.x1 + backEnd.viewDef->scissor.x1,
backEnd.viewDef->viewport.y1 + backEnd.viewDef->scissor.y1,
backEnd.viewDef->scissor.x2 - backEnd.viewDef->scissor.x1 + 1,
backEnd.viewDef->scissor.y2 - backEnd.viewDef->scissor.y1 + 1 );
backEnd.currentScissor = backEnd.viewDef->scissor;
}
// full screen blends
qglLoadIdentity();
qglMatrixMode( GL_PROJECTION );
qglPushMatrix();
qglLoadIdentity();
qglOrtho( 0, 1, 0, 1, -1, 1 );
GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_SRC_COLOR );
GL_Cull( CT_TWO_SIDED ); // so mirror views also get it
globalImages->BindNull();
qglDisable( GL_DEPTH_TEST );
qglDisable( GL_STENCIL_TEST );
v = 1;
while ( idMath::Fabs( v - backEnd.overBright ) > 0.01 ) { // a little extra slop
f = backEnd.overBright / v;
f /= 2;
if ( f > 1 ) {
f = 1;
}
qglColor3f( f, f, f );
v = v * f * 2;
qglBegin( GL_QUADS );
qglVertex2f( 0,0 );
qglVertex2f( 0,1 );
qglVertex2f( 1,1 );
qglVertex2f( 1,0 );
qglEnd();
}
qglPopMatrix();
qglEnable( GL_DEPTH_TEST );
qglMatrixMode( GL_MODELVIEW );
GL_Cull( CT_FRONT_SIDED );
}
//=========================================================================================
/*
=============
RB_STD_DrawView
=============
*/
void RB_STD_DrawView( void ) {
drawSurf_t **drawSurfs;
int numDrawSurfs;
backEnd.depthFunc = GLS_DEPTHFUNC_EQUAL;
drawSurfs = (drawSurf_t **)&backEnd.viewDef->drawSurfs[0];
numDrawSurfs = backEnd.viewDef->numDrawSurfs;
// clear the z buffer, set the projection matrix, etc
RB_BeginDrawingView();
// decide how much overbrighting we are going to do
RB_DetermineLightScale();
// fill the depth buffer and clear color buffer to black except on
// subviews
RB_STD_FillDepthBuffer( drawSurfs, numDrawSurfs );
// main light renderer
switch( tr.backEndRenderer ) {
case BE_ARB:
RB_ARB_DrawInteractions();
break;
case BE_ARB2:
RB_ARB2_DrawInteractions();
break;
case BE_NV20:
RB_NV20_DrawInteractions();
break;
}
// disable stencil shadow test
qglStencilFunc( GL_ALWAYS, 128, 255 );
// uplight the entire screen to crutch up not having better blending range
RB_STD_LightScale();
// now draw any non-light dependent shading passes
int processed = RB_STD_DrawShaderPasses( drawSurfs, numDrawSurfs );
// fob and blend lights
RB_STD_FogAllLights();
// now draw any post-processing effects using _currentRender
if ( processed < numDrawSurfs ) {
RB_STD_DrawShaderPasses( drawSurfs+processed, numDrawSurfs-processed );
}
RB_RenderDebugTools( drawSurfs, numDrawSurfs );
}