/* =========================================================================== Doom 3 GPL Source Code Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code"). Doom 3 Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 Source Code. If not, see . In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "../precompiled.h" #pragma hdrstop //=============================================================== // // idMat2 // //=============================================================== idMat2 mat2_zero( idVec2( 0, 0 ), idVec2( 0, 0 ) ); idMat2 mat2_identity( idVec2( 1, 0 ), idVec2( 0, 1 ) ); /* ============ idMat2::InverseSelf ============ */ bool idMat2::InverseSelf( void ) { // 2+4 = 6 multiplications // 1 division double det, invDet, a; det = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; a = mat[0][0]; mat[0][0] = mat[1][1] * invDet; mat[0][1] = - mat[0][1] * invDet; mat[1][0] = - mat[1][0] * invDet; mat[1][1] = a * invDet; return true; } /* ============ idMat2::InverseFastSelf ============ */ bool idMat2::InverseFastSelf( void ) { #if 1 // 2+4 = 6 multiplications // 1 division double det, invDet, a; det = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; a = mat[0][0]; mat[0][0] = mat[1][1] * invDet; mat[0][1] = - mat[0][1] * invDet; mat[1][0] = - mat[1][0] * invDet; mat[1][1] = a * invDet; return true; #else // 2*4 = 8 multiplications // 2 division float *mat = reinterpret_cast(this); double d, di; float s; di = mat[0]; s = di; mat[0*2+0] = d = 1.0f / di; mat[0*2+1] *= d; d = -d; mat[1*2+0] *= d; d = mat[1*2+0] * di; mat[1*2+1] += mat[0*2+1] * d; di = mat[1*2+1]; s *= di; mat[1*2+1] = d = 1.0f / di; mat[1*2+0] *= d; d = -d; mat[0*2+1] *= d; d = mat[0*2+1] * di; mat[0*2+0] += mat[1*2+0] * d; return ( s != 0.0f && !FLOAT_IS_NAN( s ) ); #endif } /* ============= idMat2::ToString ============= */ const char *idMat2::ToString( int precision ) const { return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision ); } //=============================================================== // // idMat3 // //=============================================================== idMat3 mat3_zero( idVec3( 0, 0, 0 ), idVec3( 0, 0, 0 ), idVec3( 0, 0, 0 ) ); idMat3 mat3_identity( idVec3( 1, 0, 0 ), idVec3( 0, 1, 0 ), idVec3( 0, 0, 1 ) ); /* ============ idMat3::ToAngles ============ */ idAngles idMat3::ToAngles( void ) const { idAngles angles; double theta; double cp; float sp; sp = mat[ 0 ][ 2 ]; // cap off our sin value so that we don't get any NANs if ( sp > 1.0f ) { sp = 1.0f; } else if ( sp < -1.0f ) { sp = -1.0f; } theta = -asin( sp ); cp = cos( theta ); if ( cp > 8192.0f * idMath::FLT_EPSILON ) { angles.pitch = RAD2DEG( theta ); angles.yaw = RAD2DEG( atan2( mat[ 0 ][ 1 ], mat[ 0 ][ 0 ] ) ); angles.roll = RAD2DEG( atan2( mat[ 1 ][ 2 ], mat[ 2 ][ 2 ] ) ); } else { angles.pitch = RAD2DEG( theta ); angles.yaw = RAD2DEG( -atan2( mat[ 1 ][ 0 ], mat[ 1 ][ 1 ] ) ); angles.roll = 0; } return angles; } /* ============ idMat3::ToQuat ============ */ idQuat idMat3::ToQuat( void ) const { idQuat q; float trace; float s; float t; int i; int j; int k; static int next[ 3 ] = { 1, 2, 0 }; trace = mat[ 0 ][ 0 ] + mat[ 1 ][ 1 ] + mat[ 2 ][ 2 ]; if ( trace > 0.0f ) { t = trace + 1.0f; s = idMath::InvSqrt( t ) * 0.5f; q[3] = s * t; q[0] = ( mat[ 2 ][ 1 ] - mat[ 1 ][ 2 ] ) * s; q[1] = ( mat[ 0 ][ 2 ] - mat[ 2 ][ 0 ] ) * s; q[2] = ( mat[ 1 ][ 0 ] - mat[ 0 ][ 1 ] ) * s; } else { i = 0; if ( mat[ 1 ][ 1 ] > mat[ 0 ][ 0 ] ) { i = 1; } if ( mat[ 2 ][ 2 ] > mat[ i ][ i ] ) { i = 2; } j = next[ i ]; k = next[ j ]; t = ( mat[ i ][ i ] - ( mat[ j ][ j ] + mat[ k ][ k ] ) ) + 1.0f; s = idMath::InvSqrt( t ) * 0.5f; q[i] = s * t; q[3] = ( mat[ k ][ j ] - mat[ j ][ k ] ) * s; q[j] = ( mat[ j ][ i ] + mat[ i ][ j ] ) * s; q[k] = ( mat[ k ][ i ] + mat[ i ][ k ] ) * s; } return q; } /* ============ idMat3::ToCQuat ============ */ idCQuat idMat3::ToCQuat( void ) const { idQuat q = ToQuat(); if ( q.w < 0.0f ) { return idCQuat( -q.x, -q.y, -q.z ); } return idCQuat( q.x, q.y, q.z ); } /* ============ idMat3::ToRotation ============ */ idRotation idMat3::ToRotation( void ) const { idRotation r; float trace; float s; float t; int i; int j; int k; static int next[ 3 ] = { 1, 2, 0 }; trace = mat[ 0 ][ 0 ] + mat[ 1 ][ 1 ] + mat[ 2 ][ 2 ]; if ( trace > 0.0f ) { t = trace + 1.0f; s = idMath::InvSqrt( t ) * 0.5f; r.angle = s * t; r.vec[0] = ( mat[ 2 ][ 1 ] - mat[ 1 ][ 2 ] ) * s; r.vec[1] = ( mat[ 0 ][ 2 ] - mat[ 2 ][ 0 ] ) * s; r.vec[2] = ( mat[ 1 ][ 0 ] - mat[ 0 ][ 1 ] ) * s; } else { i = 0; if ( mat[ 1 ][ 1 ] > mat[ 0 ][ 0 ] ) { i = 1; } if ( mat[ 2 ][ 2 ] > mat[ i ][ i ] ) { i = 2; } j = next[ i ]; k = next[ j ]; t = ( mat[ i ][ i ] - ( mat[ j ][ j ] + mat[ k ][ k ] ) ) + 1.0f; s = idMath::InvSqrt( t ) * 0.5f; r.vec[i] = s * t; r.angle = ( mat[ k ][ j ] - mat[ j ][ k ] ) * s; r.vec[j] = ( mat[ j ][ i ] + mat[ i ][ j ] ) * s; r.vec[k] = ( mat[ k ][ i ] + mat[ i ][ k ] ) * s; } r.angle = idMath::ACos( r.angle ); if ( idMath::Fabs( r.angle ) < 1e-10f ) { r.vec.Set( 0.0f, 0.0f, 1.0f ); r.angle = 0.0f; } else { //vec *= (1.0f / sin( angle )); r.vec.Normalize(); r.vec.FixDegenerateNormal(); r.angle *= 2.0f * idMath::M_RAD2DEG; } r.origin.Zero(); r.axis = *this; r.axisValid = true; return r; } /* ================= idMat3::ToAngularVelocity ================= */ idVec3 idMat3::ToAngularVelocity( void ) const { idRotation rotation = ToRotation(); return rotation.GetVec() * DEG2RAD( rotation.GetAngle() ); } /* ============ idMat3::Determinant ============ */ float idMat3::Determinant( void ) const { float det2_12_01 = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]; float det2_12_02 = mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0]; float det2_12_12 = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]; return mat[0][0] * det2_12_12 - mat[0][1] * det2_12_02 + mat[0][2] * det2_12_01; } /* ============ idMat3::InverseSelf ============ */ bool idMat3::InverseSelf( void ) { // 18+3+9 = 30 multiplications // 1 division idMat3 inverse; double det, invDet; inverse[0][0] = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]; inverse[1][0] = mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]; inverse[2][0] = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]; det = mat[0][0] * inverse[0][0] + mat[0][1] * inverse[1][0] + mat[0][2] * inverse[2][0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; inverse[0][1] = mat[0][2] * mat[2][1] - mat[0][1] * mat[2][2]; inverse[0][2] = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1]; inverse[1][1] = mat[0][0] * mat[2][2] - mat[0][2] * mat[2][0]; inverse[1][2] = mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]; inverse[2][1] = mat[0][1] * mat[2][0] - mat[0][0] * mat[2][1]; inverse[2][2] = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]; mat[0][0] = inverse[0][0] * invDet; mat[0][1] = inverse[0][1] * invDet; mat[0][2] = inverse[0][2] * invDet; mat[1][0] = inverse[1][0] * invDet; mat[1][1] = inverse[1][1] * invDet; mat[1][2] = inverse[1][2] * invDet; mat[2][0] = inverse[2][0] * invDet; mat[2][1] = inverse[2][1] * invDet; mat[2][2] = inverse[2][2] * invDet; return true; } /* ============ idMat3::InverseFastSelf ============ */ bool idMat3::InverseFastSelf( void ) { #if 1 // 18+3+9 = 30 multiplications // 1 division idMat3 inverse; double det, invDet; inverse[0][0] = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]; inverse[1][0] = mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]; inverse[2][0] = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]; det = mat[0][0] * inverse[0][0] + mat[0][1] * inverse[1][0] + mat[0][2] * inverse[2][0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; inverse[0][1] = mat[0][2] * mat[2][1] - mat[0][1] * mat[2][2]; inverse[0][2] = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1]; inverse[1][1] = mat[0][0] * mat[2][2] - mat[0][2] * mat[2][0]; inverse[1][2] = mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]; inverse[2][1] = mat[0][1] * mat[2][0] - mat[0][0] * mat[2][1]; inverse[2][2] = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]; mat[0][0] = inverse[0][0] * invDet; mat[0][1] = inverse[0][1] * invDet; mat[0][2] = inverse[0][2] * invDet; mat[1][0] = inverse[1][0] * invDet; mat[1][1] = inverse[1][1] * invDet; mat[1][2] = inverse[1][2] * invDet; mat[2][0] = inverse[2][0] * invDet; mat[2][1] = inverse[2][1] * invDet; mat[2][2] = inverse[2][2] * invDet; return true; #elif 0 // 3*10 = 30 multiplications // 3 divisions float *mat = reinterpret_cast(this); float s; double d, di; di = mat[0]; s = di; mat[0] = d = 1.0f / di; mat[1] *= d; mat[2] *= d; d = -d; mat[3] *= d; mat[6] *= d; d = mat[3] * di; mat[4] += mat[1] * d; mat[5] += mat[2] * d; d = mat[6] * di; mat[7] += mat[1] * d; mat[8] += mat[2] * d; di = mat[4]; s *= di; mat[4] = d = 1.0f / di; mat[3] *= d; mat[5] *= d; d = -d; mat[1] *= d; mat[7] *= d; d = mat[1] * di; mat[0] += mat[3] * d; mat[2] += mat[5] * d; d = mat[7] * di; mat[6] += mat[3] * d; mat[8] += mat[5] * d; di = mat[8]; s *= di; mat[8] = d = 1.0f / di; mat[6] *= d; mat[7] *= d; d = -d; mat[2] *= d; mat[5] *= d; d = mat[2] * di; mat[0] += mat[6] * d; mat[1] += mat[7] * d; d = mat[5] * di; mat[3] += mat[6] * d; mat[4] += mat[7] * d; return ( s != 0.0f && !FLOAT_IS_NAN( s ) ); #else // 4*2+4*4 = 24 multiplications // 2*1 = 2 divisions idMat2 r0; float r1[2], r2[2], r3; float det, invDet; float *mat = reinterpret_cast(this); // r0 = m0.Inverse(); // 2x2 det = mat[0*3+0] * mat[1*3+1] - mat[0*3+1] * mat[1*3+0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; r0[0][0] = mat[1*3+1] * invDet; r0[0][1] = - mat[0*3+1] * invDet; r0[1][0] = - mat[1*3+0] * invDet; r0[1][1] = mat[0*3+0] * invDet; // r1 = r0 * m1; // 2x1 = 2x2 * 2x1 r1[0] = r0[0][0] * mat[0*3+2] + r0[0][1] * mat[1*3+2]; r1[1] = r0[1][0] * mat[0*3+2] + r0[1][1] * mat[1*3+2]; // r2 = m2 * r1; // 1x1 = 1x2 * 2x1 r2[0] = mat[2*3+0] * r1[0] + mat[2*3+1] * r1[1]; // r3 = r2 - m3; // 1x1 = 1x1 - 1x1 r3 = r2[0] - mat[2*3+2]; // r3.InverseSelf(); if ( idMath::Fabs( r3 ) < MATRIX_INVERSE_EPSILON ) { return false; } r3 = 1.0f / r3; // r2 = m2 * r0; // 1x2 = 1x2 * 2x2 r2[0] = mat[2*3+0] * r0[0][0] + mat[2*3+1] * r0[1][0]; r2[1] = mat[2*3+0] * r0[0][1] + mat[2*3+1] * r0[1][1]; // m2 = r3 * r2; // 1x2 = 1x1 * 1x2 mat[2*3+0] = r3 * r2[0]; mat[2*3+1] = r3 * r2[1]; // m0 = r0 - r1 * m2; // 2x2 - 2x1 * 1x2 mat[0*3+0] = r0[0][0] - r1[0] * mat[2*3+0]; mat[0*3+1] = r0[0][1] - r1[0] * mat[2*3+1]; mat[1*3+0] = r0[1][0] - r1[1] * mat[2*3+0]; mat[1*3+1] = r0[1][1] - r1[1] * mat[2*3+1]; // m1 = r1 * r3; // 2x1 = 2x1 * 1x1 mat[0*3+2] = r1[0] * r3; mat[1*3+2] = r1[1] * r3; // m3 = -r3; mat[2*3+2] = -r3; return true; #endif } /* ============ idMat3::InertiaTranslate ============ */ idMat3 idMat3::InertiaTranslate( const float mass, const idVec3 ¢erOfMass, const idVec3 &translation ) const { idMat3 m; idVec3 newCenter; newCenter = centerOfMass + translation; m[0][0] = mass * ( ( centerOfMass[1] * centerOfMass[1] + centerOfMass[2] * centerOfMass[2] ) - ( newCenter[1] * newCenter[1] + newCenter[2] * newCenter[2] ) ); m[1][1] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[2] * centerOfMass[2] ) - ( newCenter[0] * newCenter[0] + newCenter[2] * newCenter[2] ) ); m[2][2] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[1] * centerOfMass[1] ) - ( newCenter[0] * newCenter[0] + newCenter[1] * newCenter[1] ) ); m[0][1] = m[1][0] = mass * ( newCenter[0] * newCenter[1] - centerOfMass[0] * centerOfMass[1] ); m[1][2] = m[2][1] = mass * ( newCenter[1] * newCenter[2] - centerOfMass[1] * centerOfMass[2] ); m[0][2] = m[2][0] = mass * ( newCenter[0] * newCenter[2] - centerOfMass[0] * centerOfMass[2] ); return (*this) + m; } /* ============ idMat3::InertiaTranslateSelf ============ */ idMat3 &idMat3::InertiaTranslateSelf( const float mass, const idVec3 ¢erOfMass, const idVec3 &translation ) { idMat3 m; idVec3 newCenter; newCenter = centerOfMass + translation; m[0][0] = mass * ( ( centerOfMass[1] * centerOfMass[1] + centerOfMass[2] * centerOfMass[2] ) - ( newCenter[1] * newCenter[1] + newCenter[2] * newCenter[2] ) ); m[1][1] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[2] * centerOfMass[2] ) - ( newCenter[0] * newCenter[0] + newCenter[2] * newCenter[2] ) ); m[2][2] = mass * ( ( centerOfMass[0] * centerOfMass[0] + centerOfMass[1] * centerOfMass[1] ) - ( newCenter[0] * newCenter[0] + newCenter[1] * newCenter[1] ) ); m[0][1] = m[1][0] = mass * ( newCenter[0] * newCenter[1] - centerOfMass[0] * centerOfMass[1] ); m[1][2] = m[2][1] = mass * ( newCenter[1] * newCenter[2] - centerOfMass[1] * centerOfMass[2] ); m[0][2] = m[2][0] = mass * ( newCenter[0] * newCenter[2] - centerOfMass[0] * centerOfMass[2] ); (*this) += m; return (*this); } /* ============ idMat3::InertiaRotate ============ */ idMat3 idMat3::InertiaRotate( const idMat3 &rotation ) const { // NOTE: the rotation matrix is stored column-major return rotation.Transpose() * (*this) * rotation; } /* ============ idMat3::InertiaRotateSelf ============ */ idMat3 &idMat3::InertiaRotateSelf( const idMat3 &rotation ) { // NOTE: the rotation matrix is stored column-major *this = rotation.Transpose() * (*this) * rotation; return *this; } /* ============= idMat3::ToString ============= */ const char *idMat3::ToString( int precision ) const { return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision ); } //=============================================================== // // idMat4 // //=============================================================== idMat4 mat4_zero( idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ), idVec4( 0, 0, 0, 0 ) ); idMat4 mat4_identity( idVec4( 1, 0, 0, 0 ), idVec4( 0, 1, 0, 0 ), idVec4( 0, 0, 1, 0 ), idVec4( 0, 0, 0, 1 ) ); /* ============ idMat4::Transpose ============ */ idMat4 idMat4::Transpose( void ) const { idMat4 transpose; int i, j; for( i = 0; i < 4; i++ ) { for( j = 0; j < 4; j++ ) { transpose[ i ][ j ] = mat[ j ][ i ]; } } return transpose; } /* ============ idMat4::TransposeSelf ============ */ idMat4 &idMat4::TransposeSelf( void ) { float temp; int i, j; for( i = 0; i < 4; i++ ) { for( j = i + 1; j < 4; j++ ) { temp = mat[ i ][ j ]; mat[ i ][ j ] = mat[ j ][ i ]; mat[ j ][ i ] = temp; } } return *this; } /* ============ idMat4::Determinant ============ */ float idMat4::Determinant( void ) const { // 2x2 sub-determinants float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]; float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0]; float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0]; float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1]; float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1]; float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2]; // 3x3 sub-determinants float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01; float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01; float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02; float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12; return ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] ); } /* ============ idMat4::InverseSelf ============ */ bool idMat4::InverseSelf( void ) { // 84+4+16 = 104 multiplications // 1 division double det, invDet; // 2x2 sub-determinants required to calculate 4x4 determinant float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]; float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0]; float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0]; float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1]; float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1]; float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2]; // 3x3 sub-determinants required to calculate 4x4 determinant float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01; float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01; float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02; float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12; det = ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] ); if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; // remaining 2x2 sub-determinants float det2_03_01 = mat[0][0] * mat[3][1] - mat[0][1] * mat[3][0]; float det2_03_02 = mat[0][0] * mat[3][2] - mat[0][2] * mat[3][0]; float det2_03_03 = mat[0][0] * mat[3][3] - mat[0][3] * mat[3][0]; float det2_03_12 = mat[0][1] * mat[3][2] - mat[0][2] * mat[3][1]; float det2_03_13 = mat[0][1] * mat[3][3] - mat[0][3] * mat[3][1]; float det2_03_23 = mat[0][2] * mat[3][3] - mat[0][3] * mat[3][2]; float det2_13_01 = mat[1][0] * mat[3][1] - mat[1][1] * mat[3][0]; float det2_13_02 = mat[1][0] * mat[3][2] - mat[1][2] * mat[3][0]; float det2_13_03 = mat[1][0] * mat[3][3] - mat[1][3] * mat[3][0]; float det2_13_12 = mat[1][1] * mat[3][2] - mat[1][2] * mat[3][1]; float det2_13_13 = mat[1][1] * mat[3][3] - mat[1][3] * mat[3][1]; float det2_13_23 = mat[1][2] * mat[3][3] - mat[1][3] * mat[3][2]; // remaining 3x3 sub-determinants float det3_203_012 = mat[2][0] * det2_03_12 - mat[2][1] * det2_03_02 + mat[2][2] * det2_03_01; float det3_203_013 = mat[2][0] * det2_03_13 - mat[2][1] * det2_03_03 + mat[2][3] * det2_03_01; float det3_203_023 = mat[2][0] * det2_03_23 - mat[2][2] * det2_03_03 + mat[2][3] * det2_03_02; float det3_203_123 = mat[2][1] * det2_03_23 - mat[2][2] * det2_03_13 + mat[2][3] * det2_03_12; float det3_213_012 = mat[2][0] * det2_13_12 - mat[2][1] * det2_13_02 + mat[2][2] * det2_13_01; float det3_213_013 = mat[2][0] * det2_13_13 - mat[2][1] * det2_13_03 + mat[2][3] * det2_13_01; float det3_213_023 = mat[2][0] * det2_13_23 - mat[2][2] * det2_13_03 + mat[2][3] * det2_13_02; float det3_213_123 = mat[2][1] * det2_13_23 - mat[2][2] * det2_13_13 + mat[2][3] * det2_13_12; float det3_301_012 = mat[3][0] * det2_01_12 - mat[3][1] * det2_01_02 + mat[3][2] * det2_01_01; float det3_301_013 = mat[3][0] * det2_01_13 - mat[3][1] * det2_01_03 + mat[3][3] * det2_01_01; float det3_301_023 = mat[3][0] * det2_01_23 - mat[3][2] * det2_01_03 + mat[3][3] * det2_01_02; float det3_301_123 = mat[3][1] * det2_01_23 - mat[3][2] * det2_01_13 + mat[3][3] * det2_01_12; mat[0][0] = - det3_213_123 * invDet; mat[1][0] = + det3_213_023 * invDet; mat[2][0] = - det3_213_013 * invDet; mat[3][0] = + det3_213_012 * invDet; mat[0][1] = + det3_203_123 * invDet; mat[1][1] = - det3_203_023 * invDet; mat[2][1] = + det3_203_013 * invDet; mat[3][1] = - det3_203_012 * invDet; mat[0][2] = + det3_301_123 * invDet; mat[1][2] = - det3_301_023 * invDet; mat[2][2] = + det3_301_013 * invDet; mat[3][2] = - det3_301_012 * invDet; mat[0][3] = - det3_201_123 * invDet; mat[1][3] = + det3_201_023 * invDet; mat[2][3] = - det3_201_013 * invDet; mat[3][3] = + det3_201_012 * invDet; return true; } /* ============ idMat4::InverseFastSelf ============ */ bool idMat4::InverseFastSelf( void ) { #if 0 // 84+4+16 = 104 multiplications // 1 division double det, invDet; // 2x2 sub-determinants required to calculate 4x4 determinant float det2_01_01 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]; float det2_01_02 = mat[0][0] * mat[1][2] - mat[0][2] * mat[1][0]; float det2_01_03 = mat[0][0] * mat[1][3] - mat[0][3] * mat[1][0]; float det2_01_12 = mat[0][1] * mat[1][2] - mat[0][2] * mat[1][1]; float det2_01_13 = mat[0][1] * mat[1][3] - mat[0][3] * mat[1][1]; float det2_01_23 = mat[0][2] * mat[1][3] - mat[0][3] * mat[1][2]; // 3x3 sub-determinants required to calculate 4x4 determinant float det3_201_012 = mat[2][0] * det2_01_12 - mat[2][1] * det2_01_02 + mat[2][2] * det2_01_01; float det3_201_013 = mat[2][0] * det2_01_13 - mat[2][1] * det2_01_03 + mat[2][3] * det2_01_01; float det3_201_023 = mat[2][0] * det2_01_23 - mat[2][2] * det2_01_03 + mat[2][3] * det2_01_02; float det3_201_123 = mat[2][1] * det2_01_23 - mat[2][2] * det2_01_13 + mat[2][3] * det2_01_12; det = ( - det3_201_123 * mat[3][0] + det3_201_023 * mat[3][1] - det3_201_013 * mat[3][2] + det3_201_012 * mat[3][3] ); if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; // remaining 2x2 sub-determinants float det2_03_01 = mat[0][0] * mat[3][1] - mat[0][1] * mat[3][0]; float det2_03_02 = mat[0][0] * mat[3][2] - mat[0][2] * mat[3][0]; float det2_03_03 = mat[0][0] * mat[3][3] - mat[0][3] * mat[3][0]; float det2_03_12 = mat[0][1] * mat[3][2] - mat[0][2] * mat[3][1]; float det2_03_13 = mat[0][1] * mat[3][3] - mat[0][3] * mat[3][1]; float det2_03_23 = mat[0][2] * mat[3][3] - mat[0][3] * mat[3][2]; float det2_13_01 = mat[1][0] * mat[3][1] - mat[1][1] * mat[3][0]; float det2_13_02 = mat[1][0] * mat[3][2] - mat[1][2] * mat[3][0]; float det2_13_03 = mat[1][0] * mat[3][3] - mat[1][3] * mat[3][0]; float det2_13_12 = mat[1][1] * mat[3][2] - mat[1][2] * mat[3][1]; float det2_13_13 = mat[1][1] * mat[3][3] - mat[1][3] * mat[3][1]; float det2_13_23 = mat[1][2] * mat[3][3] - mat[1][3] * mat[3][2]; // remaining 3x3 sub-determinants float det3_203_012 = mat[2][0] * det2_03_12 - mat[2][1] * det2_03_02 + mat[2][2] * det2_03_01; float det3_203_013 = mat[2][0] * det2_03_13 - mat[2][1] * det2_03_03 + mat[2][3] * det2_03_01; float det3_203_023 = mat[2][0] * det2_03_23 - mat[2][2] * det2_03_03 + mat[2][3] * det2_03_02; float det3_203_123 = mat[2][1] * det2_03_23 - mat[2][2] * det2_03_13 + mat[2][3] * det2_03_12; float det3_213_012 = mat[2][0] * det2_13_12 - mat[2][1] * det2_13_02 + mat[2][2] * det2_13_01; float det3_213_013 = mat[2][0] * det2_13_13 - mat[2][1] * det2_13_03 + mat[2][3] * det2_13_01; float det3_213_023 = mat[2][0] * det2_13_23 - mat[2][2] * det2_13_03 + mat[2][3] * det2_13_02; float det3_213_123 = mat[2][1] * det2_13_23 - mat[2][2] * det2_13_13 + mat[2][3] * det2_13_12; float det3_301_012 = mat[3][0] * det2_01_12 - mat[3][1] * det2_01_02 + mat[3][2] * det2_01_01; float det3_301_013 = mat[3][0] * det2_01_13 - mat[3][1] * det2_01_03 + mat[3][3] * det2_01_01; float det3_301_023 = mat[3][0] * det2_01_23 - mat[3][2] * det2_01_03 + mat[3][3] * det2_01_02; float det3_301_123 = mat[3][1] * det2_01_23 - mat[3][2] * det2_01_13 + mat[3][3] * det2_01_12; mat[0][0] = - det3_213_123 * invDet; mat[1][0] = + det3_213_023 * invDet; mat[2][0] = - det3_213_013 * invDet; mat[3][0] = + det3_213_012 * invDet; mat[0][1] = + det3_203_123 * invDet; mat[1][1] = - det3_203_023 * invDet; mat[2][1] = + det3_203_013 * invDet; mat[3][1] = - det3_203_012 * invDet; mat[0][2] = + det3_301_123 * invDet; mat[1][2] = - det3_301_023 * invDet; mat[2][2] = + det3_301_013 * invDet; mat[3][2] = - det3_301_012 * invDet; mat[0][3] = - det3_201_123 * invDet; mat[1][3] = + det3_201_023 * invDet; mat[2][3] = - det3_201_013 * invDet; mat[3][3] = + det3_201_012 * invDet; return true; #elif 0 // 4*18 = 72 multiplications // 4 divisions float *mat = reinterpret_cast(this); float s; double d, di; di = mat[0]; s = di; mat[0] = d = 1.0f / di; mat[1] *= d; mat[2] *= d; mat[3] *= d; d = -d; mat[4] *= d; mat[8] *= d; mat[12] *= d; d = mat[4] * di; mat[5] += mat[1] * d; mat[6] += mat[2] * d; mat[7] += mat[3] * d; d = mat[8] * di; mat[9] += mat[1] * d; mat[10] += mat[2] * d; mat[11] += mat[3] * d; d = mat[12] * di; mat[13] += mat[1] * d; mat[14] += mat[2] * d; mat[15] += mat[3] * d; di = mat[5]; s *= di; mat[5] = d = 1.0f / di; mat[4] *= d; mat[6] *= d; mat[7] *= d; d = -d; mat[1] *= d; mat[9] *= d; mat[13] *= d; d = mat[1] * di; mat[0] += mat[4] * d; mat[2] += mat[6] * d; mat[3] += mat[7] * d; d = mat[9] * di; mat[8] += mat[4] * d; mat[10] += mat[6] * d; mat[11] += mat[7] * d; d = mat[13] * di; mat[12] += mat[4] * d; mat[14] += mat[6] * d; mat[15] += mat[7] * d; di = mat[10]; s *= di; mat[10] = d = 1.0f / di; mat[8] *= d; mat[9] *= d; mat[11] *= d; d = -d; mat[2] *= d; mat[6] *= d; mat[14] *= d; d = mat[2] * di; mat[0] += mat[8] * d; mat[1] += mat[9] * d; mat[3] += mat[11] * d; d = mat[6] * di; mat[4] += mat[8] * d; mat[5] += mat[9] * d; mat[7] += mat[11] * d; d = mat[14] * di; mat[12] += mat[8] * d; mat[13] += mat[9] * d; mat[15] += mat[11] * d; di = mat[15]; s *= di; mat[15] = d = 1.0f / di; mat[12] *= d; mat[13] *= d; mat[14] *= d; d = -d; mat[3] *= d; mat[7] *= d; mat[11] *= d; d = mat[3] * di; mat[0] += mat[12] * d; mat[1] += mat[13] * d; mat[2] += mat[14] * d; d = mat[7] * di; mat[4] += mat[12] * d; mat[5] += mat[13] * d; mat[6] += mat[14] * d; d = mat[11] * di; mat[8] += mat[12] * d; mat[9] += mat[13] * d; mat[10] += mat[14] * d; return ( s != 0.0f && !FLOAT_IS_NAN( s ) ); #else // 6*8+2*6 = 60 multiplications // 2*1 = 2 divisions idMat2 r0, r1, r2, r3; float a, det, invDet; float *mat = reinterpret_cast(this); // r0 = m0.Inverse(); det = mat[0*4+0] * mat[1*4+1] - mat[0*4+1] * mat[1*4+0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; r0[0][0] = mat[1*4+1] * invDet; r0[0][1] = - mat[0*4+1] * invDet; r0[1][0] = - mat[1*4+0] * invDet; r0[1][1] = mat[0*4+0] * invDet; // r1 = r0 * m1; r1[0][0] = r0[0][0] * mat[0*4+2] + r0[0][1] * mat[1*4+2]; r1[0][1] = r0[0][0] * mat[0*4+3] + r0[0][1] * mat[1*4+3]; r1[1][0] = r0[1][0] * mat[0*4+2] + r0[1][1] * mat[1*4+2]; r1[1][1] = r0[1][0] * mat[0*4+3] + r0[1][1] * mat[1*4+3]; // r2 = m2 * r1; r2[0][0] = mat[2*4+0] * r1[0][0] + mat[2*4+1] * r1[1][0]; r2[0][1] = mat[2*4+0] * r1[0][1] + mat[2*4+1] * r1[1][1]; r2[1][0] = mat[3*4+0] * r1[0][0] + mat[3*4+1] * r1[1][0]; r2[1][1] = mat[3*4+0] * r1[0][1] + mat[3*4+1] * r1[1][1]; // r3 = r2 - m3; r3[0][0] = r2[0][0] - mat[2*4+2]; r3[0][1] = r2[0][1] - mat[2*4+3]; r3[1][0] = r2[1][0] - mat[3*4+2]; r3[1][1] = r2[1][1] - mat[3*4+3]; // r3.InverseSelf(); det = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; a = r3[0][0]; r3[0][0] = r3[1][1] * invDet; r3[0][1] = - r3[0][1] * invDet; r3[1][0] = - r3[1][0] * invDet; r3[1][1] = a * invDet; // r2 = m2 * r0; r2[0][0] = mat[2*4+0] * r0[0][0] + mat[2*4+1] * r0[1][0]; r2[0][1] = mat[2*4+0] * r0[0][1] + mat[2*4+1] * r0[1][1]; r2[1][0] = mat[3*4+0] * r0[0][0] + mat[3*4+1] * r0[1][0]; r2[1][1] = mat[3*4+0] * r0[0][1] + mat[3*4+1] * r0[1][1]; // m2 = r3 * r2; mat[2*4+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0]; mat[2*4+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1]; mat[3*4+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0]; mat[3*4+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1]; // m0 = r0 - r1 * m2; mat[0*4+0] = r0[0][0] - r1[0][0] * mat[2*4+0] - r1[0][1] * mat[3*4+0]; mat[0*4+1] = r0[0][1] - r1[0][0] * mat[2*4+1] - r1[0][1] * mat[3*4+1]; mat[1*4+0] = r0[1][0] - r1[1][0] * mat[2*4+0] - r1[1][1] * mat[3*4+0]; mat[1*4+1] = r0[1][1] - r1[1][0] * mat[2*4+1] - r1[1][1] * mat[3*4+1]; // m1 = r1 * r3; mat[0*4+2] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0]; mat[0*4+3] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1]; mat[1*4+2] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0]; mat[1*4+3] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1]; // m3 = -r3; mat[2*4+2] = -r3[0][0]; mat[2*4+3] = -r3[0][1]; mat[3*4+2] = -r3[1][0]; mat[3*4+3] = -r3[1][1]; return true; #endif } /* ============= idMat4::ToString ============= */ const char *idMat4::ToString( int precision ) const { return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision ); } //=============================================================== // // idMat5 // //=============================================================== idMat5 mat5_zero( idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ), idVec5( 0, 0, 0, 0, 0 ) ); idMat5 mat5_identity( idVec5( 1, 0, 0, 0, 0 ), idVec5( 0, 1, 0, 0, 0 ), idVec5( 0, 0, 1, 0, 0 ), idVec5( 0, 0, 0, 1, 0 ), idVec5( 0, 0, 0, 0, 1 ) ); /* ============ idMat5::Transpose ============ */ idMat5 idMat5::Transpose( void ) const { idMat5 transpose; int i, j; for( i = 0; i < 5; i++ ) { for( j = 0; j < 5; j++ ) { transpose[ i ][ j ] = mat[ j ][ i ]; } } return transpose; } /* ============ idMat5::TransposeSelf ============ */ idMat5 &idMat5::TransposeSelf( void ) { float temp; int i, j; for( i = 0; i < 5; i++ ) { for( j = i + 1; j < 5; j++ ) { temp = mat[ i ][ j ]; mat[ i ][ j ] = mat[ j ][ i ]; mat[ j ][ i ] = temp; } } return *this; } /* ============ idMat5::Determinant ============ */ float idMat5::Determinant( void ) const { // 2x2 sub-determinants required to calculate 5x5 determinant float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0]; float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0]; float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0]; float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0]; float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1]; float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1]; float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1]; float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2]; float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2]; float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3]; // 3x3 sub-determinants required to calculate 5x5 determinant float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01; float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01; float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01; float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02; float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02; float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03; float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12; float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12; float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13; float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23; // 4x4 sub-determinants required to calculate 5x5 determinant float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012; float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012; float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013; float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023; float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123; // determinant of 5x5 matrix return mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123; } /* ============ idMat5::InverseSelf ============ */ bool idMat5::InverseSelf( void ) { // 280+5+25 = 310 multiplications // 1 division double det, invDet; // 2x2 sub-determinants required to calculate 5x5 determinant float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0]; float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0]; float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0]; float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0]; float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1]; float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1]; float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1]; float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2]; float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2]; float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3]; // 3x3 sub-determinants required to calculate 5x5 determinant float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01; float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01; float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01; float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02; float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02; float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03; float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12; float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12; float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13; float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23; // 4x4 sub-determinants required to calculate 5x5 determinant float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012; float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012; float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013; float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023; float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123; // determinant of 5x5 matrix det = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123; if( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; // remaining 2x2 sub-determinants float det2_23_01 = mat[2][0] * mat[3][1] - mat[2][1] * mat[3][0]; float det2_23_02 = mat[2][0] * mat[3][2] - mat[2][2] * mat[3][0]; float det2_23_03 = mat[2][0] * mat[3][3] - mat[2][3] * mat[3][0]; float det2_23_04 = mat[2][0] * mat[3][4] - mat[2][4] * mat[3][0]; float det2_23_12 = mat[2][1] * mat[3][2] - mat[2][2] * mat[3][1]; float det2_23_13 = mat[2][1] * mat[3][3] - mat[2][3] * mat[3][1]; float det2_23_14 = mat[2][1] * mat[3][4] - mat[2][4] * mat[3][1]; float det2_23_23 = mat[2][2] * mat[3][3] - mat[2][3] * mat[3][2]; float det2_23_24 = mat[2][2] * mat[3][4] - mat[2][4] * mat[3][2]; float det2_23_34 = mat[2][3] * mat[3][4] - mat[2][4] * mat[3][3]; float det2_24_01 = mat[2][0] * mat[4][1] - mat[2][1] * mat[4][0]; float det2_24_02 = mat[2][0] * mat[4][2] - mat[2][2] * mat[4][0]; float det2_24_03 = mat[2][0] * mat[4][3] - mat[2][3] * mat[4][0]; float det2_24_04 = mat[2][0] * mat[4][4] - mat[2][4] * mat[4][0]; float det2_24_12 = mat[2][1] * mat[4][2] - mat[2][2] * mat[4][1]; float det2_24_13 = mat[2][1] * mat[4][3] - mat[2][3] * mat[4][1]; float det2_24_14 = mat[2][1] * mat[4][4] - mat[2][4] * mat[4][1]; float det2_24_23 = mat[2][2] * mat[4][3] - mat[2][3] * mat[4][2]; float det2_24_24 = mat[2][2] * mat[4][4] - mat[2][4] * mat[4][2]; float det2_24_34 = mat[2][3] * mat[4][4] - mat[2][4] * mat[4][3]; // remaining 3x3 sub-determinants float det3_123_012 = mat[1][0] * det2_23_12 - mat[1][1] * det2_23_02 + mat[1][2] * det2_23_01; float det3_123_013 = mat[1][0] * det2_23_13 - mat[1][1] * det2_23_03 + mat[1][3] * det2_23_01; float det3_123_014 = mat[1][0] * det2_23_14 - mat[1][1] * det2_23_04 + mat[1][4] * det2_23_01; float det3_123_023 = mat[1][0] * det2_23_23 - mat[1][2] * det2_23_03 + mat[1][3] * det2_23_02; float det3_123_024 = mat[1][0] * det2_23_24 - mat[1][2] * det2_23_04 + mat[1][4] * det2_23_02; float det3_123_034 = mat[1][0] * det2_23_34 - mat[1][3] * det2_23_04 + mat[1][4] * det2_23_03; float det3_123_123 = mat[1][1] * det2_23_23 - mat[1][2] * det2_23_13 + mat[1][3] * det2_23_12; float det3_123_124 = mat[1][1] * det2_23_24 - mat[1][2] * det2_23_14 + mat[1][4] * det2_23_12; float det3_123_134 = mat[1][1] * det2_23_34 - mat[1][3] * det2_23_14 + mat[1][4] * det2_23_13; float det3_123_234 = mat[1][2] * det2_23_34 - mat[1][3] * det2_23_24 + mat[1][4] * det2_23_23; float det3_124_012 = mat[1][0] * det2_24_12 - mat[1][1] * det2_24_02 + mat[1][2] * det2_24_01; float det3_124_013 = mat[1][0] * det2_24_13 - mat[1][1] * det2_24_03 + mat[1][3] * det2_24_01; float det3_124_014 = mat[1][0] * det2_24_14 - mat[1][1] * det2_24_04 + mat[1][4] * det2_24_01; float det3_124_023 = mat[1][0] * det2_24_23 - mat[1][2] * det2_24_03 + mat[1][3] * det2_24_02; float det3_124_024 = mat[1][0] * det2_24_24 - mat[1][2] * det2_24_04 + mat[1][4] * det2_24_02; float det3_124_034 = mat[1][0] * det2_24_34 - mat[1][3] * det2_24_04 + mat[1][4] * det2_24_03; float det3_124_123 = mat[1][1] * det2_24_23 - mat[1][2] * det2_24_13 + mat[1][3] * det2_24_12; float det3_124_124 = mat[1][1] * det2_24_24 - mat[1][2] * det2_24_14 + mat[1][4] * det2_24_12; float det3_124_134 = mat[1][1] * det2_24_34 - mat[1][3] * det2_24_14 + mat[1][4] * det2_24_13; float det3_124_234 = mat[1][2] * det2_24_34 - mat[1][3] * det2_24_24 + mat[1][4] * det2_24_23; float det3_134_012 = mat[1][0] * det2_34_12 - mat[1][1] * det2_34_02 + mat[1][2] * det2_34_01; float det3_134_013 = mat[1][0] * det2_34_13 - mat[1][1] * det2_34_03 + mat[1][3] * det2_34_01; float det3_134_014 = mat[1][0] * det2_34_14 - mat[1][1] * det2_34_04 + mat[1][4] * det2_34_01; float det3_134_023 = mat[1][0] * det2_34_23 - mat[1][2] * det2_34_03 + mat[1][3] * det2_34_02; float det3_134_024 = mat[1][0] * det2_34_24 - mat[1][2] * det2_34_04 + mat[1][4] * det2_34_02; float det3_134_034 = mat[1][0] * det2_34_34 - mat[1][3] * det2_34_04 + mat[1][4] * det2_34_03; float det3_134_123 = mat[1][1] * det2_34_23 - mat[1][2] * det2_34_13 + mat[1][3] * det2_34_12; float det3_134_124 = mat[1][1] * det2_34_24 - mat[1][2] * det2_34_14 + mat[1][4] * det2_34_12; float det3_134_134 = mat[1][1] * det2_34_34 - mat[1][3] * det2_34_14 + mat[1][4] * det2_34_13; float det3_134_234 = mat[1][2] * det2_34_34 - mat[1][3] * det2_34_24 + mat[1][4] * det2_34_23; // remaining 4x4 sub-determinants float det4_0123_0123 = mat[0][0] * det3_123_123 - mat[0][1] * det3_123_023 + mat[0][2] * det3_123_013 - mat[0][3] * det3_123_012; float det4_0123_0124 = mat[0][0] * det3_123_124 - mat[0][1] * det3_123_024 + mat[0][2] * det3_123_014 - mat[0][4] * det3_123_012; float det4_0123_0134 = mat[0][0] * det3_123_134 - mat[0][1] * det3_123_034 + mat[0][3] * det3_123_014 - mat[0][4] * det3_123_013; float det4_0123_0234 = mat[0][0] * det3_123_234 - mat[0][2] * det3_123_034 + mat[0][3] * det3_123_024 - mat[0][4] * det3_123_023; float det4_0123_1234 = mat[0][1] * det3_123_234 - mat[0][2] * det3_123_134 + mat[0][3] * det3_123_124 - mat[0][4] * det3_123_123; float det4_0124_0123 = mat[0][0] * det3_124_123 - mat[0][1] * det3_124_023 + mat[0][2] * det3_124_013 - mat[0][3] * det3_124_012; float det4_0124_0124 = mat[0][0] * det3_124_124 - mat[0][1] * det3_124_024 + mat[0][2] * det3_124_014 - mat[0][4] * det3_124_012; float det4_0124_0134 = mat[0][0] * det3_124_134 - mat[0][1] * det3_124_034 + mat[0][3] * det3_124_014 - mat[0][4] * det3_124_013; float det4_0124_0234 = mat[0][0] * det3_124_234 - mat[0][2] * det3_124_034 + mat[0][3] * det3_124_024 - mat[0][4] * det3_124_023; float det4_0124_1234 = mat[0][1] * det3_124_234 - mat[0][2] * det3_124_134 + mat[0][3] * det3_124_124 - mat[0][4] * det3_124_123; float det4_0134_0123 = mat[0][0] * det3_134_123 - mat[0][1] * det3_134_023 + mat[0][2] * det3_134_013 - mat[0][3] * det3_134_012; float det4_0134_0124 = mat[0][0] * det3_134_124 - mat[0][1] * det3_134_024 + mat[0][2] * det3_134_014 - mat[0][4] * det3_134_012; float det4_0134_0134 = mat[0][0] * det3_134_134 - mat[0][1] * det3_134_034 + mat[0][3] * det3_134_014 - mat[0][4] * det3_134_013; float det4_0134_0234 = mat[0][0] * det3_134_234 - mat[0][2] * det3_134_034 + mat[0][3] * det3_134_024 - mat[0][4] * det3_134_023; float det4_0134_1234 = mat[0][1] * det3_134_234 - mat[0][2] * det3_134_134 + mat[0][3] * det3_134_124 - mat[0][4] * det3_134_123; float det4_0234_0123 = mat[0][0] * det3_234_123 - mat[0][1] * det3_234_023 + mat[0][2] * det3_234_013 - mat[0][3] * det3_234_012; float det4_0234_0124 = mat[0][0] * det3_234_124 - mat[0][1] * det3_234_024 + mat[0][2] * det3_234_014 - mat[0][4] * det3_234_012; float det4_0234_0134 = mat[0][0] * det3_234_134 - mat[0][1] * det3_234_034 + mat[0][3] * det3_234_014 - mat[0][4] * det3_234_013; float det4_0234_0234 = mat[0][0] * det3_234_234 - mat[0][2] * det3_234_034 + mat[0][3] * det3_234_024 - mat[0][4] * det3_234_023; float det4_0234_1234 = mat[0][1] * det3_234_234 - mat[0][2] * det3_234_134 + mat[0][3] * det3_234_124 - mat[0][4] * det3_234_123; mat[0][0] = det4_1234_1234 * invDet; mat[0][1] = -det4_0234_1234 * invDet; mat[0][2] = det4_0134_1234 * invDet; mat[0][3] = -det4_0124_1234 * invDet; mat[0][4] = det4_0123_1234 * invDet; mat[1][0] = -det4_1234_0234 * invDet; mat[1][1] = det4_0234_0234 * invDet; mat[1][2] = -det4_0134_0234 * invDet; mat[1][3] = det4_0124_0234 * invDet; mat[1][4] = -det4_0123_0234 * invDet; mat[2][0] = det4_1234_0134 * invDet; mat[2][1] = -det4_0234_0134 * invDet; mat[2][2] = det4_0134_0134 * invDet; mat[2][3] = -det4_0124_0134 * invDet; mat[2][4] = det4_0123_0134 * invDet; mat[3][0] = -det4_1234_0124 * invDet; mat[3][1] = det4_0234_0124 * invDet; mat[3][2] = -det4_0134_0124 * invDet; mat[3][3] = det4_0124_0124 * invDet; mat[3][4] = -det4_0123_0124 * invDet; mat[4][0] = det4_1234_0123 * invDet; mat[4][1] = -det4_0234_0123 * invDet; mat[4][2] = det4_0134_0123 * invDet; mat[4][3] = -det4_0124_0123 * invDet; mat[4][4] = det4_0123_0123 * invDet; return true; } /* ============ idMat5::InverseFastSelf ============ */ bool idMat5::InverseFastSelf( void ) { #if 0 // 280+5+25 = 310 multiplications // 1 division double det, invDet; // 2x2 sub-determinants required to calculate 5x5 determinant float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0]; float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0]; float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0]; float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0]; float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1]; float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1]; float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1]; float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2]; float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2]; float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3]; // 3x3 sub-determinants required to calculate 5x5 determinant float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01; float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01; float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01; float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02; float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02; float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03; float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12; float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12; float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13; float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23; // 4x4 sub-determinants required to calculate 5x5 determinant float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012; float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012; float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013; float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023; float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123; // determinant of 5x5 matrix det = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123; if( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; // remaining 2x2 sub-determinants float det2_23_01 = mat[2][0] * mat[3][1] - mat[2][1] * mat[3][0]; float det2_23_02 = mat[2][0] * mat[3][2] - mat[2][2] * mat[3][0]; float det2_23_03 = mat[2][0] * mat[3][3] - mat[2][3] * mat[3][0]; float det2_23_04 = mat[2][0] * mat[3][4] - mat[2][4] * mat[3][0]; float det2_23_12 = mat[2][1] * mat[3][2] - mat[2][2] * mat[3][1]; float det2_23_13 = mat[2][1] * mat[3][3] - mat[2][3] * mat[3][1]; float det2_23_14 = mat[2][1] * mat[3][4] - mat[2][4] * mat[3][1]; float det2_23_23 = mat[2][2] * mat[3][3] - mat[2][3] * mat[3][2]; float det2_23_24 = mat[2][2] * mat[3][4] - mat[2][4] * mat[3][2]; float det2_23_34 = mat[2][3] * mat[3][4] - mat[2][4] * mat[3][3]; float det2_24_01 = mat[2][0] * mat[4][1] - mat[2][1] * mat[4][0]; float det2_24_02 = mat[2][0] * mat[4][2] - mat[2][2] * mat[4][0]; float det2_24_03 = mat[2][0] * mat[4][3] - mat[2][3] * mat[4][0]; float det2_24_04 = mat[2][0] * mat[4][4] - mat[2][4] * mat[4][0]; float det2_24_12 = mat[2][1] * mat[4][2] - mat[2][2] * mat[4][1]; float det2_24_13 = mat[2][1] * mat[4][3] - mat[2][3] * mat[4][1]; float det2_24_14 = mat[2][1] * mat[4][4] - mat[2][4] * mat[4][1]; float det2_24_23 = mat[2][2] * mat[4][3] - mat[2][3] * mat[4][2]; float det2_24_24 = mat[2][2] * mat[4][4] - mat[2][4] * mat[4][2]; float det2_24_34 = mat[2][3] * mat[4][4] - mat[2][4] * mat[4][3]; // remaining 3x3 sub-determinants float det3_123_012 = mat[1][0] * det2_23_12 - mat[1][1] * det2_23_02 + mat[1][2] * det2_23_01; float det3_123_013 = mat[1][0] * det2_23_13 - mat[1][1] * det2_23_03 + mat[1][3] * det2_23_01; float det3_123_014 = mat[1][0] * det2_23_14 - mat[1][1] * det2_23_04 + mat[1][4] * det2_23_01; float det3_123_023 = mat[1][0] * det2_23_23 - mat[1][2] * det2_23_03 + mat[1][3] * det2_23_02; float det3_123_024 = mat[1][0] * det2_23_24 - mat[1][2] * det2_23_04 + mat[1][4] * det2_23_02; float det3_123_034 = mat[1][0] * det2_23_34 - mat[1][3] * det2_23_04 + mat[1][4] * det2_23_03; float det3_123_123 = mat[1][1] * det2_23_23 - mat[1][2] * det2_23_13 + mat[1][3] * det2_23_12; float det3_123_124 = mat[1][1] * det2_23_24 - mat[1][2] * det2_23_14 + mat[1][4] * det2_23_12; float det3_123_134 = mat[1][1] * det2_23_34 - mat[1][3] * det2_23_14 + mat[1][4] * det2_23_13; float det3_123_234 = mat[1][2] * det2_23_34 - mat[1][3] * det2_23_24 + mat[1][4] * det2_23_23; float det3_124_012 = mat[1][0] * det2_24_12 - mat[1][1] * det2_24_02 + mat[1][2] * det2_24_01; float det3_124_013 = mat[1][0] * det2_24_13 - mat[1][1] * det2_24_03 + mat[1][3] * det2_24_01; float det3_124_014 = mat[1][0] * det2_24_14 - mat[1][1] * det2_24_04 + mat[1][4] * det2_24_01; float det3_124_023 = mat[1][0] * det2_24_23 - mat[1][2] * det2_24_03 + mat[1][3] * det2_24_02; float det3_124_024 = mat[1][0] * det2_24_24 - mat[1][2] * det2_24_04 + mat[1][4] * det2_24_02; float det3_124_034 = mat[1][0] * det2_24_34 - mat[1][3] * det2_24_04 + mat[1][4] * det2_24_03; float det3_124_123 = mat[1][1] * det2_24_23 - mat[1][2] * det2_24_13 + mat[1][3] * det2_24_12; float det3_124_124 = mat[1][1] * det2_24_24 - mat[1][2] * det2_24_14 + mat[1][4] * det2_24_12; float det3_124_134 = mat[1][1] * det2_24_34 - mat[1][3] * det2_24_14 + mat[1][4] * det2_24_13; float det3_124_234 = mat[1][2] * det2_24_34 - mat[1][3] * det2_24_24 + mat[1][4] * det2_24_23; float det3_134_012 = mat[1][0] * det2_34_12 - mat[1][1] * det2_34_02 + mat[1][2] * det2_34_01; float det3_134_013 = mat[1][0] * det2_34_13 - mat[1][1] * det2_34_03 + mat[1][3] * det2_34_01; float det3_134_014 = mat[1][0] * det2_34_14 - mat[1][1] * det2_34_04 + mat[1][4] * det2_34_01; float det3_134_023 = mat[1][0] * det2_34_23 - mat[1][2] * det2_34_03 + mat[1][3] * det2_34_02; float det3_134_024 = mat[1][0] * det2_34_24 - mat[1][2] * det2_34_04 + mat[1][4] * det2_34_02; float det3_134_034 = mat[1][0] * det2_34_34 - mat[1][3] * det2_34_04 + mat[1][4] * det2_34_03; float det3_134_123 = mat[1][1] * det2_34_23 - mat[1][2] * det2_34_13 + mat[1][3] * det2_34_12; float det3_134_124 = mat[1][1] * det2_34_24 - mat[1][2] * det2_34_14 + mat[1][4] * det2_34_12; float det3_134_134 = mat[1][1] * det2_34_34 - mat[1][3] * det2_34_14 + mat[1][4] * det2_34_13; float det3_134_234 = mat[1][2] * det2_34_34 - mat[1][3] * det2_34_24 + mat[1][4] * det2_34_23; // remaining 4x4 sub-determinants float det4_0123_0123 = mat[0][0] * det3_123_123 - mat[0][1] * det3_123_023 + mat[0][2] * det3_123_013 - mat[0][3] * det3_123_012; float det4_0123_0124 = mat[0][0] * det3_123_124 - mat[0][1] * det3_123_024 + mat[0][2] * det3_123_014 - mat[0][4] * det3_123_012; float det4_0123_0134 = mat[0][0] * det3_123_134 - mat[0][1] * det3_123_034 + mat[0][3] * det3_123_014 - mat[0][4] * det3_123_013; float det4_0123_0234 = mat[0][0] * det3_123_234 - mat[0][2] * det3_123_034 + mat[0][3] * det3_123_024 - mat[0][4] * det3_123_023; float det4_0123_1234 = mat[0][1] * det3_123_234 - mat[0][2] * det3_123_134 + mat[0][3] * det3_123_124 - mat[0][4] * det3_123_123; float det4_0124_0123 = mat[0][0] * det3_124_123 - mat[0][1] * det3_124_023 + mat[0][2] * det3_124_013 - mat[0][3] * det3_124_012; float det4_0124_0124 = mat[0][0] * det3_124_124 - mat[0][1] * det3_124_024 + mat[0][2] * det3_124_014 - mat[0][4] * det3_124_012; float det4_0124_0134 = mat[0][0] * det3_124_134 - mat[0][1] * det3_124_034 + mat[0][3] * det3_124_014 - mat[0][4] * det3_124_013; float det4_0124_0234 = mat[0][0] * det3_124_234 - mat[0][2] * det3_124_034 + mat[0][3] * det3_124_024 - mat[0][4] * det3_124_023; float det4_0124_1234 = mat[0][1] * det3_124_234 - mat[0][2] * det3_124_134 + mat[0][3] * det3_124_124 - mat[0][4] * det3_124_123; float det4_0134_0123 = mat[0][0] * det3_134_123 - mat[0][1] * det3_134_023 + mat[0][2] * det3_134_013 - mat[0][3] * det3_134_012; float det4_0134_0124 = mat[0][0] * det3_134_124 - mat[0][1] * det3_134_024 + mat[0][2] * det3_134_014 - mat[0][4] * det3_134_012; float det4_0134_0134 = mat[0][0] * det3_134_134 - mat[0][1] * det3_134_034 + mat[0][3] * det3_134_014 - mat[0][4] * det3_134_013; float det4_0134_0234 = mat[0][0] * det3_134_234 - mat[0][2] * det3_134_034 + mat[0][3] * det3_134_024 - mat[0][4] * det3_134_023; float det4_0134_1234 = mat[0][1] * det3_134_234 - mat[0][2] * det3_134_134 + mat[0][3] * det3_134_124 - mat[0][4] * det3_134_123; float det4_0234_0123 = mat[0][0] * det3_234_123 - mat[0][1] * det3_234_023 + mat[0][2] * det3_234_013 - mat[0][3] * det3_234_012; float det4_0234_0124 = mat[0][0] * det3_234_124 - mat[0][1] * det3_234_024 + mat[0][2] * det3_234_014 - mat[0][4] * det3_234_012; float det4_0234_0134 = mat[0][0] * det3_234_134 - mat[0][1] * det3_234_034 + mat[0][3] * det3_234_014 - mat[0][4] * det3_234_013; float det4_0234_0234 = mat[0][0] * det3_234_234 - mat[0][2] * det3_234_034 + mat[0][3] * det3_234_024 - mat[0][4] * det3_234_023; float det4_0234_1234 = mat[0][1] * det3_234_234 - mat[0][2] * det3_234_134 + mat[0][3] * det3_234_124 - mat[0][4] * det3_234_123; mat[0][0] = det4_1234_1234 * invDet; mat[0][1] = -det4_0234_1234 * invDet; mat[0][2] = det4_0134_1234 * invDet; mat[0][3] = -det4_0124_1234 * invDet; mat[0][4] = det4_0123_1234 * invDet; mat[1][0] = -det4_1234_0234 * invDet; mat[1][1] = det4_0234_0234 * invDet; mat[1][2] = -det4_0134_0234 * invDet; mat[1][3] = det4_0124_0234 * invDet; mat[1][4] = -det4_0123_0234 * invDet; mat[2][0] = det4_1234_0134 * invDet; mat[2][1] = -det4_0234_0134 * invDet; mat[2][2] = det4_0134_0134 * invDet; mat[2][3] = -det4_0124_0134 * invDet; mat[2][4] = det4_0123_0134 * invDet; mat[3][0] = -det4_1234_0124 * invDet; mat[3][1] = det4_0234_0124 * invDet; mat[3][2] = -det4_0134_0124 * invDet; mat[3][3] = det4_0124_0124 * invDet; mat[3][4] = -det4_0123_0124 * invDet; mat[4][0] = det4_1234_0123 * invDet; mat[4][1] = -det4_0234_0123 * invDet; mat[4][2] = det4_0134_0123 * invDet; mat[4][3] = -det4_0124_0123 * invDet; mat[4][4] = det4_0123_0123 * invDet; return true; #elif 0 // 5*28 = 140 multiplications // 5 divisions float *mat = reinterpret_cast(this); float s; double d, di; di = mat[0]; s = di; mat[0] = d = 1.0f / di; mat[1] *= d; mat[2] *= d; mat[3] *= d; mat[4] *= d; d = -d; mat[5] *= d; mat[10] *= d; mat[15] *= d; mat[20] *= d; d = mat[5] * di; mat[6] += mat[1] * d; mat[7] += mat[2] * d; mat[8] += mat[3] * d; mat[9] += mat[4] * d; d = mat[10] * di; mat[11] += mat[1] * d; mat[12] += mat[2] * d; mat[13] += mat[3] * d; mat[14] += mat[4] * d; d = mat[15] * di; mat[16] += mat[1] * d; mat[17] += mat[2] * d; mat[18] += mat[3] * d; mat[19] += mat[4] * d; d = mat[20] * di; mat[21] += mat[1] * d; mat[22] += mat[2] * d; mat[23] += mat[3] * d; mat[24] += mat[4] * d; di = mat[6]; s *= di; mat[6] = d = 1.0f / di; mat[5] *= d; mat[7] *= d; mat[8] *= d; mat[9] *= d; d = -d; mat[1] *= d; mat[11] *= d; mat[16] *= d; mat[21] *= d; d = mat[1] * di; mat[0] += mat[5] * d; mat[2] += mat[7] * d; mat[3] += mat[8] * d; mat[4] += mat[9] * d; d = mat[11] * di; mat[10] += mat[5] * d; mat[12] += mat[7] * d; mat[13] += mat[8] * d; mat[14] += mat[9] * d; d = mat[16] * di; mat[15] += mat[5] * d; mat[17] += mat[7] * d; mat[18] += mat[8] * d; mat[19] += mat[9] * d; d = mat[21] * di; mat[20] += mat[5] * d; mat[22] += mat[7] * d; mat[23] += mat[8] * d; mat[24] += mat[9] * d; di = mat[12]; s *= di; mat[12] = d = 1.0f / di; mat[10] *= d; mat[11] *= d; mat[13] *= d; mat[14] *= d; d = -d; mat[2] *= d; mat[7] *= d; mat[17] *= d; mat[22] *= d; d = mat[2] * di; mat[0] += mat[10] * d; mat[1] += mat[11] * d; mat[3] += mat[13] * d; mat[4] += mat[14] * d; d = mat[7] * di; mat[5] += mat[10] * d; mat[6] += mat[11] * d; mat[8] += mat[13] * d; mat[9] += mat[14] * d; d = mat[17] * di; mat[15] += mat[10] * d; mat[16] += mat[11] * d; mat[18] += mat[13] * d; mat[19] += mat[14] * d; d = mat[22] * di; mat[20] += mat[10] * d; mat[21] += mat[11] * d; mat[23] += mat[13] * d; mat[24] += mat[14] * d; di = mat[18]; s *= di; mat[18] = d = 1.0f / di; mat[15] *= d; mat[16] *= d; mat[17] *= d; mat[19] *= d; d = -d; mat[3] *= d; mat[8] *= d; mat[13] *= d; mat[23] *= d; d = mat[3] * di; mat[0] += mat[15] * d; mat[1] += mat[16] * d; mat[2] += mat[17] * d; mat[4] += mat[19] * d; d = mat[8] * di; mat[5] += mat[15] * d; mat[6] += mat[16] * d; mat[7] += mat[17] * d; mat[9] += mat[19] * d; d = mat[13] * di; mat[10] += mat[15] * d; mat[11] += mat[16] * d; mat[12] += mat[17] * d; mat[14] += mat[19] * d; d = mat[23] * di; mat[20] += mat[15] * d; mat[21] += mat[16] * d; mat[22] += mat[17] * d; mat[24] += mat[19] * d; di = mat[24]; s *= di; mat[24] = d = 1.0f / di; mat[20] *= d; mat[21] *= d; mat[22] *= d; mat[23] *= d; d = -d; mat[4] *= d; mat[9] *= d; mat[14] *= d; mat[19] *= d; d = mat[4] * di; mat[0] += mat[20] * d; mat[1] += mat[21] * d; mat[2] += mat[22] * d; mat[3] += mat[23] * d; d = mat[9] * di; mat[5] += mat[20] * d; mat[6] += mat[21] * d; mat[7] += mat[22] * d; mat[8] += mat[23] * d; d = mat[14] * di; mat[10] += mat[20] * d; mat[11] += mat[21] * d; mat[12] += mat[22] * d; mat[13] += mat[23] * d; d = mat[19] * di; mat[15] += mat[20] * d; mat[16] += mat[21] * d; mat[17] += mat[22] * d; mat[18] += mat[23] * d; return ( s != 0.0f && !FLOAT_IS_NAN( s ) ); #else // 86+30+6 = 122 multiplications // 2*1 = 2 divisions idMat3 r0, r1, r2, r3; float c0, c1, c2, det, invDet; float *mat = reinterpret_cast(this); // r0 = m0.Inverse(); // 3x3 c0 = mat[1*5+1] * mat[2*5+2] - mat[1*5+2] * mat[2*5+1]; c1 = mat[1*5+2] * mat[2*5+0] - mat[1*5+0] * mat[2*5+2]; c2 = mat[1*5+0] * mat[2*5+1] - mat[1*5+1] * mat[2*5+0]; det = mat[0*5+0] * c0 + mat[0*5+1] * c1 + mat[0*5+2] * c2; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; r0[0][0] = c0 * invDet; r0[0][1] = ( mat[0*5+2] * mat[2*5+1] - mat[0*5+1] * mat[2*5+2] ) * invDet; r0[0][2] = ( mat[0*5+1] * mat[1*5+2] - mat[0*5+2] * mat[1*5+1] ) * invDet; r0[1][0] = c1 * invDet; r0[1][1] = ( mat[0*5+0] * mat[2*5+2] - mat[0*5+2] * mat[2*5+0] ) * invDet; r0[1][2] = ( mat[0*5+2] * mat[1*5+0] - mat[0*5+0] * mat[1*5+2] ) * invDet; r0[2][0] = c2 * invDet; r0[2][1] = ( mat[0*5+1] * mat[2*5+0] - mat[0*5+0] * mat[2*5+1] ) * invDet; r0[2][2] = ( mat[0*5+0] * mat[1*5+1] - mat[0*5+1] * mat[1*5+0] ) * invDet; // r1 = r0 * m1; // 3x2 = 3x3 * 3x2 r1[0][0] = r0[0][0] * mat[0*5+3] + r0[0][1] * mat[1*5+3] + r0[0][2] * mat[2*5+3]; r1[0][1] = r0[0][0] * mat[0*5+4] + r0[0][1] * mat[1*5+4] + r0[0][2] * mat[2*5+4]; r1[1][0] = r0[1][0] * mat[0*5+3] + r0[1][1] * mat[1*5+3] + r0[1][2] * mat[2*5+3]; r1[1][1] = r0[1][0] * mat[0*5+4] + r0[1][1] * mat[1*5+4] + r0[1][2] * mat[2*5+4]; r1[2][0] = r0[2][0] * mat[0*5+3] + r0[2][1] * mat[1*5+3] + r0[2][2] * mat[2*5+3]; r1[2][1] = r0[2][0] * mat[0*5+4] + r0[2][1] * mat[1*5+4] + r0[2][2] * mat[2*5+4]; // r2 = m2 * r1; // 2x2 = 2x3 * 3x2 r2[0][0] = mat[3*5+0] * r1[0][0] + mat[3*5+1] * r1[1][0] + mat[3*5+2] * r1[2][0]; r2[0][1] = mat[3*5+0] * r1[0][1] + mat[3*5+1] * r1[1][1] + mat[3*5+2] * r1[2][1]; r2[1][0] = mat[4*5+0] * r1[0][0] + mat[4*5+1] * r1[1][0] + mat[4*5+2] * r1[2][0]; r2[1][1] = mat[4*5+0] * r1[0][1] + mat[4*5+1] * r1[1][1] + mat[4*5+2] * r1[2][1]; // r3 = r2 - m3; // 2x2 = 2x2 - 2x2 r3[0][0] = r2[0][0] - mat[3*5+3]; r3[0][1] = r2[0][1] - mat[3*5+4]; r3[1][0] = r2[1][0] - mat[4*5+3]; r3[1][1] = r2[1][1] - mat[4*5+4]; // r3.InverseSelf(); // 2x2 det = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; c0 = r3[0][0]; r3[0][0] = r3[1][1] * invDet; r3[0][1] = - r3[0][1] * invDet; r3[1][0] = - r3[1][0] * invDet; r3[1][1] = c0 * invDet; // r2 = m2 * r0; // 2x3 = 2x3 * 3x3 r2[0][0] = mat[3*5+0] * r0[0][0] + mat[3*5+1] * r0[1][0] + mat[3*5+2] * r0[2][0]; r2[0][1] = mat[3*5+0] * r0[0][1] + mat[3*5+1] * r0[1][1] + mat[3*5+2] * r0[2][1]; r2[0][2] = mat[3*5+0] * r0[0][2] + mat[3*5+1] * r0[1][2] + mat[3*5+2] * r0[2][2]; r2[1][0] = mat[4*5+0] * r0[0][0] + mat[4*5+1] * r0[1][0] + mat[4*5+2] * r0[2][0]; r2[1][1] = mat[4*5+0] * r0[0][1] + mat[4*5+1] * r0[1][1] + mat[4*5+2] * r0[2][1]; r2[1][2] = mat[4*5+0] * r0[0][2] + mat[4*5+1] * r0[1][2] + mat[4*5+2] * r0[2][2]; // m2 = r3 * r2; // 2x3 = 2x2 * 2x3 mat[3*5+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0]; mat[3*5+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1]; mat[3*5+2] = r3[0][0] * r2[0][2] + r3[0][1] * r2[1][2]; mat[4*5+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0]; mat[4*5+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1]; mat[4*5+2] = r3[1][0] * r2[0][2] + r3[1][1] * r2[1][2]; // m0 = r0 - r1 * m2; // 3x3 = 3x3 - 3x2 * 2x3 mat[0*5+0] = r0[0][0] - r1[0][0] * mat[3*5+0] - r1[0][1] * mat[4*5+0]; mat[0*5+1] = r0[0][1] - r1[0][0] * mat[3*5+1] - r1[0][1] * mat[4*5+1]; mat[0*5+2] = r0[0][2] - r1[0][0] * mat[3*5+2] - r1[0][1] * mat[4*5+2]; mat[1*5+0] = r0[1][0] - r1[1][0] * mat[3*5+0] - r1[1][1] * mat[4*5+0]; mat[1*5+1] = r0[1][1] - r1[1][0] * mat[3*5+1] - r1[1][1] * mat[4*5+1]; mat[1*5+2] = r0[1][2] - r1[1][0] * mat[3*5+2] - r1[1][1] * mat[4*5+2]; mat[2*5+0] = r0[2][0] - r1[2][0] * mat[3*5+0] - r1[2][1] * mat[4*5+0]; mat[2*5+1] = r0[2][1] - r1[2][0] * mat[3*5+1] - r1[2][1] * mat[4*5+1]; mat[2*5+2] = r0[2][2] - r1[2][0] * mat[3*5+2] - r1[2][1] * mat[4*5+2]; // m1 = r1 * r3; // 3x2 = 3x2 * 2x2 mat[0*5+3] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0]; mat[0*5+4] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1]; mat[1*5+3] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0]; mat[1*5+4] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1]; mat[2*5+3] = r1[2][0] * r3[0][0] + r1[2][1] * r3[1][0]; mat[2*5+4] = r1[2][0] * r3[0][1] + r1[2][1] * r3[1][1]; // m3 = -r3; // 2x2 = - 2x2 mat[3*5+3] = -r3[0][0]; mat[3*5+4] = -r3[0][1]; mat[4*5+3] = -r3[1][0]; mat[4*5+4] = -r3[1][1]; return true; #endif } /* ============= idMat5::ToString ============= */ const char *idMat5::ToString( int precision ) const { return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision ); } //=============================================================== // // idMat6 // //=============================================================== idMat6 mat6_zero( idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ), idVec6( 0, 0, 0, 0, 0, 0 ) ); idMat6 mat6_identity( idVec6( 1, 0, 0, 0, 0, 0 ), idVec6( 0, 1, 0, 0, 0, 0 ), idVec6( 0, 0, 1, 0, 0, 0 ), idVec6( 0, 0, 0, 1, 0, 0 ), idVec6( 0, 0, 0, 0, 1, 0 ), idVec6( 0, 0, 0, 0, 0, 1 ) ); /* ============ idMat6::Transpose ============ */ idMat6 idMat6::Transpose( void ) const { idMat6 transpose; int i, j; for( i = 0; i < 6; i++ ) { for( j = 0; j < 6; j++ ) { transpose[ i ][ j ] = mat[ j ][ i ]; } } return transpose; } /* ============ idMat6::TransposeSelf ============ */ idMat6 &idMat6::TransposeSelf( void ) { float temp; int i, j; for( i = 0; i < 6; i++ ) { for( j = i + 1; j < 6; j++ ) { temp = mat[ i ][ j ]; mat[ i ][ j ] = mat[ j ][ i ]; mat[ j ][ i ] = temp; } } return *this; } /* ============ idMat6::Determinant ============ */ float idMat6::Determinant( void ) const { // 2x2 sub-determinants required to calculate 6x6 determinant float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0]; float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0]; float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0]; float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0]; float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0]; float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1]; float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1]; float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1]; float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1]; float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2]; float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2]; float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2]; float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3]; float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3]; float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4]; // 3x3 sub-determinants required to calculate 6x6 determinant float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01; float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01; float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01; float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01; float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02; float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02; float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02; float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03; float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03; float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04; float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12; float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12; float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12; float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13; float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13; float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14; float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23; float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23; float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24; float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34; // 4x4 sub-determinants required to calculate 6x6 determinant float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012; float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012; float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012; float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013; float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013; float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014; float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023; float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023; float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024; float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034; float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123; float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123; float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124; float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134; float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234; // 5x5 sub-determinants required to calculate 6x6 determinant float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123; float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123; float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124; float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134; float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234; float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234; // determinant of 6x6 matrix return mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 - mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234; } /* ============ idMat6::InverseSelf ============ */ bool idMat6::InverseSelf( void ) { // 810+6+36 = 852 multiplications // 1 division double det, invDet; // 2x2 sub-determinants required to calculate 6x6 determinant float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0]; float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0]; float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0]; float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0]; float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0]; float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1]; float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1]; float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1]; float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1]; float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2]; float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2]; float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2]; float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3]; float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3]; float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4]; // 3x3 sub-determinants required to calculate 6x6 determinant float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01; float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01; float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01; float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01; float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02; float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02; float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02; float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03; float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03; float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04; float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12; float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12; float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12; float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13; float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13; float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14; float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23; float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23; float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24; float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34; // 4x4 sub-determinants required to calculate 6x6 determinant float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012; float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012; float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012; float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013; float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013; float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014; float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023; float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023; float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024; float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034; float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123; float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123; float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124; float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134; float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234; // 5x5 sub-determinants required to calculate 6x6 determinant float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123; float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123; float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124; float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134; float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234; float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234; // determinant of 6x6 matrix det = mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 - mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; // remaining 2x2 sub-determinants float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0]; float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0]; float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0]; float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0]; float det2_34_05 = mat[3][0] * mat[4][5] - mat[3][5] * mat[4][0]; float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1]; float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1]; float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1]; float det2_34_15 = mat[3][1] * mat[4][5] - mat[3][5] * mat[4][1]; float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2]; float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2]; float det2_34_25 = mat[3][2] * mat[4][5] - mat[3][5] * mat[4][2]; float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3]; float det2_34_35 = mat[3][3] * mat[4][5] - mat[3][5] * mat[4][3]; float det2_34_45 = mat[3][4] * mat[4][5] - mat[3][5] * mat[4][4]; float det2_35_01 = mat[3][0] * mat[5][1] - mat[3][1] * mat[5][0]; float det2_35_02 = mat[3][0] * mat[5][2] - mat[3][2] * mat[5][0]; float det2_35_03 = mat[3][0] * mat[5][3] - mat[3][3] * mat[5][0]; float det2_35_04 = mat[3][0] * mat[5][4] - mat[3][4] * mat[5][0]; float det2_35_05 = mat[3][0] * mat[5][5] - mat[3][5] * mat[5][0]; float det2_35_12 = mat[3][1] * mat[5][2] - mat[3][2] * mat[5][1]; float det2_35_13 = mat[3][1] * mat[5][3] - mat[3][3] * mat[5][1]; float det2_35_14 = mat[3][1] * mat[5][4] - mat[3][4] * mat[5][1]; float det2_35_15 = mat[3][1] * mat[5][5] - mat[3][5] * mat[5][1]; float det2_35_23 = mat[3][2] * mat[5][3] - mat[3][3] * mat[5][2]; float det2_35_24 = mat[3][2] * mat[5][4] - mat[3][4] * mat[5][2]; float det2_35_25 = mat[3][2] * mat[5][5] - mat[3][5] * mat[5][2]; float det2_35_34 = mat[3][3] * mat[5][4] - mat[3][4] * mat[5][3]; float det2_35_35 = mat[3][3] * mat[5][5] - mat[3][5] * mat[5][3]; float det2_35_45 = mat[3][4] * mat[5][5] - mat[3][5] * mat[5][4]; // remaining 3x3 sub-determinants float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01; float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01; float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01; float det3_234_015 = mat[2][0] * det2_34_15 - mat[2][1] * det2_34_05 + mat[2][5] * det2_34_01; float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02; float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02; float det3_234_025 = mat[2][0] * det2_34_25 - mat[2][2] * det2_34_05 + mat[2][5] * det2_34_02; float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03; float det3_234_035 = mat[2][0] * det2_34_35 - mat[2][3] * det2_34_05 + mat[2][5] * det2_34_03; float det3_234_045 = mat[2][0] * det2_34_45 - mat[2][4] * det2_34_05 + mat[2][5] * det2_34_04; float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12; float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12; float det3_234_125 = mat[2][1] * det2_34_25 - mat[2][2] * det2_34_15 + mat[2][5] * det2_34_12; float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13; float det3_234_135 = mat[2][1] * det2_34_35 - mat[2][3] * det2_34_15 + mat[2][5] * det2_34_13; float det3_234_145 = mat[2][1] * det2_34_45 - mat[2][4] * det2_34_15 + mat[2][5] * det2_34_14; float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23; float det3_234_235 = mat[2][2] * det2_34_35 - mat[2][3] * det2_34_25 + mat[2][5] * det2_34_23; float det3_234_245 = mat[2][2] * det2_34_45 - mat[2][4] * det2_34_25 + mat[2][5] * det2_34_24; float det3_234_345 = mat[2][3] * det2_34_45 - mat[2][4] * det2_34_35 + mat[2][5] * det2_34_34; float det3_235_012 = mat[2][0] * det2_35_12 - mat[2][1] * det2_35_02 + mat[2][2] * det2_35_01; float det3_235_013 = mat[2][0] * det2_35_13 - mat[2][1] * det2_35_03 + mat[2][3] * det2_35_01; float det3_235_014 = mat[2][0] * det2_35_14 - mat[2][1] * det2_35_04 + mat[2][4] * det2_35_01; float det3_235_015 = mat[2][0] * det2_35_15 - mat[2][1] * det2_35_05 + mat[2][5] * det2_35_01; float det3_235_023 = mat[2][0] * det2_35_23 - mat[2][2] * det2_35_03 + mat[2][3] * det2_35_02; float det3_235_024 = mat[2][0] * det2_35_24 - mat[2][2] * det2_35_04 + mat[2][4] * det2_35_02; float det3_235_025 = mat[2][0] * det2_35_25 - mat[2][2] * det2_35_05 + mat[2][5] * det2_35_02; float det3_235_034 = mat[2][0] * det2_35_34 - mat[2][3] * det2_35_04 + mat[2][4] * det2_35_03; float det3_235_035 = mat[2][0] * det2_35_35 - mat[2][3] * det2_35_05 + mat[2][5] * det2_35_03; float det3_235_045 = mat[2][0] * det2_35_45 - mat[2][4] * det2_35_05 + mat[2][5] * det2_35_04; float det3_235_123 = mat[2][1] * det2_35_23 - mat[2][2] * det2_35_13 + mat[2][3] * det2_35_12; float det3_235_124 = mat[2][1] * det2_35_24 - mat[2][2] * det2_35_14 + mat[2][4] * det2_35_12; float det3_235_125 = mat[2][1] * det2_35_25 - mat[2][2] * det2_35_15 + mat[2][5] * det2_35_12; float det3_235_134 = mat[2][1] * det2_35_34 - mat[2][3] * det2_35_14 + mat[2][4] * det2_35_13; float det3_235_135 = mat[2][1] * det2_35_35 - mat[2][3] * det2_35_15 + mat[2][5] * det2_35_13; float det3_235_145 = mat[2][1] * det2_35_45 - mat[2][4] * det2_35_15 + mat[2][5] * det2_35_14; float det3_235_234 = mat[2][2] * det2_35_34 - mat[2][3] * det2_35_24 + mat[2][4] * det2_35_23; float det3_235_235 = mat[2][2] * det2_35_35 - mat[2][3] * det2_35_25 + mat[2][5] * det2_35_23; float det3_235_245 = mat[2][2] * det2_35_45 - mat[2][4] * det2_35_25 + mat[2][5] * det2_35_24; float det3_235_345 = mat[2][3] * det2_35_45 - mat[2][4] * det2_35_35 + mat[2][5] * det2_35_34; float det3_245_012 = mat[2][0] * det2_45_12 - mat[2][1] * det2_45_02 + mat[2][2] * det2_45_01; float det3_245_013 = mat[2][0] * det2_45_13 - mat[2][1] * det2_45_03 + mat[2][3] * det2_45_01; float det3_245_014 = mat[2][0] * det2_45_14 - mat[2][1] * det2_45_04 + mat[2][4] * det2_45_01; float det3_245_015 = mat[2][0] * det2_45_15 - mat[2][1] * det2_45_05 + mat[2][5] * det2_45_01; float det3_245_023 = mat[2][0] * det2_45_23 - mat[2][2] * det2_45_03 + mat[2][3] * det2_45_02; float det3_245_024 = mat[2][0] * det2_45_24 - mat[2][2] * det2_45_04 + mat[2][4] * det2_45_02; float det3_245_025 = mat[2][0] * det2_45_25 - mat[2][2] * det2_45_05 + mat[2][5] * det2_45_02; float det3_245_034 = mat[2][0] * det2_45_34 - mat[2][3] * det2_45_04 + mat[2][4] * det2_45_03; float det3_245_035 = mat[2][0] * det2_45_35 - mat[2][3] * det2_45_05 + mat[2][5] * det2_45_03; float det3_245_045 = mat[2][0] * det2_45_45 - mat[2][4] * det2_45_05 + mat[2][5] * det2_45_04; float det3_245_123 = mat[2][1] * det2_45_23 - mat[2][2] * det2_45_13 + mat[2][3] * det2_45_12; float det3_245_124 = mat[2][1] * det2_45_24 - mat[2][2] * det2_45_14 + mat[2][4] * det2_45_12; float det3_245_125 = mat[2][1] * det2_45_25 - mat[2][2] * det2_45_15 + mat[2][5] * det2_45_12; float det3_245_134 = mat[2][1] * det2_45_34 - mat[2][3] * det2_45_14 + mat[2][4] * det2_45_13; float det3_245_135 = mat[2][1] * det2_45_35 - mat[2][3] * det2_45_15 + mat[2][5] * det2_45_13; float det3_245_145 = mat[2][1] * det2_45_45 - mat[2][4] * det2_45_15 + mat[2][5] * det2_45_14; float det3_245_234 = mat[2][2] * det2_45_34 - mat[2][3] * det2_45_24 + mat[2][4] * det2_45_23; float det3_245_235 = mat[2][2] * det2_45_35 - mat[2][3] * det2_45_25 + mat[2][5] * det2_45_23; float det3_245_245 = mat[2][2] * det2_45_45 - mat[2][4] * det2_45_25 + mat[2][5] * det2_45_24; float det3_245_345 = mat[2][3] * det2_45_45 - mat[2][4] * det2_45_35 + mat[2][5] * det2_45_34; // remaining 4x4 sub-determinants float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012; float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012; float det4_1234_0125 = mat[1][0] * det3_234_125 - mat[1][1] * det3_234_025 + mat[1][2] * det3_234_015 - mat[1][5] * det3_234_012; float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013; float det4_1234_0135 = mat[1][0] * det3_234_135 - mat[1][1] * det3_234_035 + mat[1][3] * det3_234_015 - mat[1][5] * det3_234_013; float det4_1234_0145 = mat[1][0] * det3_234_145 - mat[1][1] * det3_234_045 + mat[1][4] * det3_234_015 - mat[1][5] * det3_234_014; float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023; float det4_1234_0235 = mat[1][0] * det3_234_235 - mat[1][2] * det3_234_035 + mat[1][3] * det3_234_025 - mat[1][5] * det3_234_023; float det4_1234_0245 = mat[1][0] * det3_234_245 - mat[1][2] * det3_234_045 + mat[1][4] * det3_234_025 - mat[1][5] * det3_234_024; float det4_1234_0345 = mat[1][0] * det3_234_345 - mat[1][3] * det3_234_045 + mat[1][4] * det3_234_035 - mat[1][5] * det3_234_034; float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123; float det4_1234_1235 = mat[1][1] * det3_234_235 - mat[1][2] * det3_234_135 + mat[1][3] * det3_234_125 - mat[1][5] * det3_234_123; float det4_1234_1245 = mat[1][1] * det3_234_245 - mat[1][2] * det3_234_145 + mat[1][4] * det3_234_125 - mat[1][5] * det3_234_124; float det4_1234_1345 = mat[1][1] * det3_234_345 - mat[1][3] * det3_234_145 + mat[1][4] * det3_234_135 - mat[1][5] * det3_234_134; float det4_1234_2345 = mat[1][2] * det3_234_345 - mat[1][3] * det3_234_245 + mat[1][4] * det3_234_235 - mat[1][5] * det3_234_234; float det4_1235_0123 = mat[1][0] * det3_235_123 - mat[1][1] * det3_235_023 + mat[1][2] * det3_235_013 - mat[1][3] * det3_235_012; float det4_1235_0124 = mat[1][0] * det3_235_124 - mat[1][1] * det3_235_024 + mat[1][2] * det3_235_014 - mat[1][4] * det3_235_012; float det4_1235_0125 = mat[1][0] * det3_235_125 - mat[1][1] * det3_235_025 + mat[1][2] * det3_235_015 - mat[1][5] * det3_235_012; float det4_1235_0134 = mat[1][0] * det3_235_134 - mat[1][1] * det3_235_034 + mat[1][3] * det3_235_014 - mat[1][4] * det3_235_013; float det4_1235_0135 = mat[1][0] * det3_235_135 - mat[1][1] * det3_235_035 + mat[1][3] * det3_235_015 - mat[1][5] * det3_235_013; float det4_1235_0145 = mat[1][0] * det3_235_145 - mat[1][1] * det3_235_045 + mat[1][4] * det3_235_015 - mat[1][5] * det3_235_014; float det4_1235_0234 = mat[1][0] * det3_235_234 - mat[1][2] * det3_235_034 + mat[1][3] * det3_235_024 - mat[1][4] * det3_235_023; float det4_1235_0235 = mat[1][0] * det3_235_235 - mat[1][2] * det3_235_035 + mat[1][3] * det3_235_025 - mat[1][5] * det3_235_023; float det4_1235_0245 = mat[1][0] * det3_235_245 - mat[1][2] * det3_235_045 + mat[1][4] * det3_235_025 - mat[1][5] * det3_235_024; float det4_1235_0345 = mat[1][0] * det3_235_345 - mat[1][3] * det3_235_045 + mat[1][4] * det3_235_035 - mat[1][5] * det3_235_034; float det4_1235_1234 = mat[1][1] * det3_235_234 - mat[1][2] * det3_235_134 + mat[1][3] * det3_235_124 - mat[1][4] * det3_235_123; float det4_1235_1235 = mat[1][1] * det3_235_235 - mat[1][2] * det3_235_135 + mat[1][3] * det3_235_125 - mat[1][5] * det3_235_123; float det4_1235_1245 = mat[1][1] * det3_235_245 - mat[1][2] * det3_235_145 + mat[1][4] * det3_235_125 - mat[1][5] * det3_235_124; float det4_1235_1345 = mat[1][1] * det3_235_345 - mat[1][3] * det3_235_145 + mat[1][4] * det3_235_135 - mat[1][5] * det3_235_134; float det4_1235_2345 = mat[1][2] * det3_235_345 - mat[1][3] * det3_235_245 + mat[1][4] * det3_235_235 - mat[1][5] * det3_235_234; float det4_1245_0123 = mat[1][0] * det3_245_123 - mat[1][1] * det3_245_023 + mat[1][2] * det3_245_013 - mat[1][3] * det3_245_012; float det4_1245_0124 = mat[1][0] * det3_245_124 - mat[1][1] * det3_245_024 + mat[1][2] * det3_245_014 - mat[1][4] * det3_245_012; float det4_1245_0125 = mat[1][0] * det3_245_125 - mat[1][1] * det3_245_025 + mat[1][2] * det3_245_015 - mat[1][5] * det3_245_012; float det4_1245_0134 = mat[1][0] * det3_245_134 - mat[1][1] * det3_245_034 + mat[1][3] * det3_245_014 - mat[1][4] * det3_245_013; float det4_1245_0135 = mat[1][0] * det3_245_135 - mat[1][1] * det3_245_035 + mat[1][3] * det3_245_015 - mat[1][5] * det3_245_013; float det4_1245_0145 = mat[1][0] * det3_245_145 - mat[1][1] * det3_245_045 + mat[1][4] * det3_245_015 - mat[1][5] * det3_245_014; float det4_1245_0234 = mat[1][0] * det3_245_234 - mat[1][2] * det3_245_034 + mat[1][3] * det3_245_024 - mat[1][4] * det3_245_023; float det4_1245_0235 = mat[1][0] * det3_245_235 - mat[1][2] * det3_245_035 + mat[1][3] * det3_245_025 - mat[1][5] * det3_245_023; float det4_1245_0245 = mat[1][0] * det3_245_245 - mat[1][2] * det3_245_045 + mat[1][4] * det3_245_025 - mat[1][5] * det3_245_024; float det4_1245_0345 = mat[1][0] * det3_245_345 - mat[1][3] * det3_245_045 + mat[1][4] * det3_245_035 - mat[1][5] * det3_245_034; float det4_1245_1234 = mat[1][1] * det3_245_234 - mat[1][2] * det3_245_134 + mat[1][3] * det3_245_124 - mat[1][4] * det3_245_123; float det4_1245_1235 = mat[1][1] * det3_245_235 - mat[1][2] * det3_245_135 + mat[1][3] * det3_245_125 - mat[1][5] * det3_245_123; float det4_1245_1245 = mat[1][1] * det3_245_245 - mat[1][2] * det3_245_145 + mat[1][4] * det3_245_125 - mat[1][5] * det3_245_124; float det4_1245_1345 = mat[1][1] * det3_245_345 - mat[1][3] * det3_245_145 + mat[1][4] * det3_245_135 - mat[1][5] * det3_245_134; float det4_1245_2345 = mat[1][2] * det3_245_345 - mat[1][3] * det3_245_245 + mat[1][4] * det3_245_235 - mat[1][5] * det3_245_234; float det4_1345_0123 = mat[1][0] * det3_345_123 - mat[1][1] * det3_345_023 + mat[1][2] * det3_345_013 - mat[1][3] * det3_345_012; float det4_1345_0124 = mat[1][0] * det3_345_124 - mat[1][1] * det3_345_024 + mat[1][2] * det3_345_014 - mat[1][4] * det3_345_012; float det4_1345_0125 = mat[1][0] * det3_345_125 - mat[1][1] * det3_345_025 + mat[1][2] * det3_345_015 - mat[1][5] * det3_345_012; float det4_1345_0134 = mat[1][0] * det3_345_134 - mat[1][1] * det3_345_034 + mat[1][3] * det3_345_014 - mat[1][4] * det3_345_013; float det4_1345_0135 = mat[1][0] * det3_345_135 - mat[1][1] * det3_345_035 + mat[1][3] * det3_345_015 - mat[1][5] * det3_345_013; float det4_1345_0145 = mat[1][0] * det3_345_145 - mat[1][1] * det3_345_045 + mat[1][4] * det3_345_015 - mat[1][5] * det3_345_014; float det4_1345_0234 = mat[1][0] * det3_345_234 - mat[1][2] * det3_345_034 + mat[1][3] * det3_345_024 - mat[1][4] * det3_345_023; float det4_1345_0235 = mat[1][0] * det3_345_235 - mat[1][2] * det3_345_035 + mat[1][3] * det3_345_025 - mat[1][5] * det3_345_023; float det4_1345_0245 = mat[1][0] * det3_345_245 - mat[1][2] * det3_345_045 + mat[1][4] * det3_345_025 - mat[1][5] * det3_345_024; float det4_1345_0345 = mat[1][0] * det3_345_345 - mat[1][3] * det3_345_045 + mat[1][4] * det3_345_035 - mat[1][5] * det3_345_034; float det4_1345_1234 = mat[1][1] * det3_345_234 - mat[1][2] * det3_345_134 + mat[1][3] * det3_345_124 - mat[1][4] * det3_345_123; float det4_1345_1235 = mat[1][1] * det3_345_235 - mat[1][2] * det3_345_135 + mat[1][3] * det3_345_125 - mat[1][5] * det3_345_123; float det4_1345_1245 = mat[1][1] * det3_345_245 - mat[1][2] * det3_345_145 + mat[1][4] * det3_345_125 - mat[1][5] * det3_345_124; float det4_1345_1345 = mat[1][1] * det3_345_345 - mat[1][3] * det3_345_145 + mat[1][4] * det3_345_135 - mat[1][5] * det3_345_134; float det4_1345_2345 = mat[1][2] * det3_345_345 - mat[1][3] * det3_345_245 + mat[1][4] * det3_345_235 - mat[1][5] * det3_345_234; // remaining 5x5 sub-determinants float det5_01234_01234 = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123; float det5_01234_01235 = mat[0][0] * det4_1234_1235 - mat[0][1] * det4_1234_0235 + mat[0][2] * det4_1234_0135 - mat[0][3] * det4_1234_0125 + mat[0][5] * det4_1234_0123; float det5_01234_01245 = mat[0][0] * det4_1234_1245 - mat[0][1] * det4_1234_0245 + mat[0][2] * det4_1234_0145 - mat[0][4] * det4_1234_0125 + mat[0][5] * det4_1234_0124; float det5_01234_01345 = mat[0][0] * det4_1234_1345 - mat[0][1] * det4_1234_0345 + mat[0][3] * det4_1234_0145 - mat[0][4] * det4_1234_0135 + mat[0][5] * det4_1234_0134; float det5_01234_02345 = mat[0][0] * det4_1234_2345 - mat[0][2] * det4_1234_0345 + mat[0][3] * det4_1234_0245 - mat[0][4] * det4_1234_0235 + mat[0][5] * det4_1234_0234; float det5_01234_12345 = mat[0][1] * det4_1234_2345 - mat[0][2] * det4_1234_1345 + mat[0][3] * det4_1234_1245 - mat[0][4] * det4_1234_1235 + mat[0][5] * det4_1234_1234; float det5_01235_01234 = mat[0][0] * det4_1235_1234 - mat[0][1] * det4_1235_0234 + mat[0][2] * det4_1235_0134 - mat[0][3] * det4_1235_0124 + mat[0][4] * det4_1235_0123; float det5_01235_01235 = mat[0][0] * det4_1235_1235 - mat[0][1] * det4_1235_0235 + mat[0][2] * det4_1235_0135 - mat[0][3] * det4_1235_0125 + mat[0][5] * det4_1235_0123; float det5_01235_01245 = mat[0][0] * det4_1235_1245 - mat[0][1] * det4_1235_0245 + mat[0][2] * det4_1235_0145 - mat[0][4] * det4_1235_0125 + mat[0][5] * det4_1235_0124; float det5_01235_01345 = mat[0][0] * det4_1235_1345 - mat[0][1] * det4_1235_0345 + mat[0][3] * det4_1235_0145 - mat[0][4] * det4_1235_0135 + mat[0][5] * det4_1235_0134; float det5_01235_02345 = mat[0][0] * det4_1235_2345 - mat[0][2] * det4_1235_0345 + mat[0][3] * det4_1235_0245 - mat[0][4] * det4_1235_0235 + mat[0][5] * det4_1235_0234; float det5_01235_12345 = mat[0][1] * det4_1235_2345 - mat[0][2] * det4_1235_1345 + mat[0][3] * det4_1235_1245 - mat[0][4] * det4_1235_1235 + mat[0][5] * det4_1235_1234; float det5_01245_01234 = mat[0][0] * det4_1245_1234 - mat[0][1] * det4_1245_0234 + mat[0][2] * det4_1245_0134 - mat[0][3] * det4_1245_0124 + mat[0][4] * det4_1245_0123; float det5_01245_01235 = mat[0][0] * det4_1245_1235 - mat[0][1] * det4_1245_0235 + mat[0][2] * det4_1245_0135 - mat[0][3] * det4_1245_0125 + mat[0][5] * det4_1245_0123; float det5_01245_01245 = mat[0][0] * det4_1245_1245 - mat[0][1] * det4_1245_0245 + mat[0][2] * det4_1245_0145 - mat[0][4] * det4_1245_0125 + mat[0][5] * det4_1245_0124; float det5_01245_01345 = mat[0][0] * det4_1245_1345 - mat[0][1] * det4_1245_0345 + mat[0][3] * det4_1245_0145 - mat[0][4] * det4_1245_0135 + mat[0][5] * det4_1245_0134; float det5_01245_02345 = mat[0][0] * det4_1245_2345 - mat[0][2] * det4_1245_0345 + mat[0][3] * det4_1245_0245 - mat[0][4] * det4_1245_0235 + mat[0][5] * det4_1245_0234; float det5_01245_12345 = mat[0][1] * det4_1245_2345 - mat[0][2] * det4_1245_1345 + mat[0][3] * det4_1245_1245 - mat[0][4] * det4_1245_1235 + mat[0][5] * det4_1245_1234; float det5_01345_01234 = mat[0][0] * det4_1345_1234 - mat[0][1] * det4_1345_0234 + mat[0][2] * det4_1345_0134 - mat[0][3] * det4_1345_0124 + mat[0][4] * det4_1345_0123; float det5_01345_01235 = mat[0][0] * det4_1345_1235 - mat[0][1] * det4_1345_0235 + mat[0][2] * det4_1345_0135 - mat[0][3] * det4_1345_0125 + mat[0][5] * det4_1345_0123; float det5_01345_01245 = mat[0][0] * det4_1345_1245 - mat[0][1] * det4_1345_0245 + mat[0][2] * det4_1345_0145 - mat[0][4] * det4_1345_0125 + mat[0][5] * det4_1345_0124; float det5_01345_01345 = mat[0][0] * det4_1345_1345 - mat[0][1] * det4_1345_0345 + mat[0][3] * det4_1345_0145 - mat[0][4] * det4_1345_0135 + mat[0][5] * det4_1345_0134; float det5_01345_02345 = mat[0][0] * det4_1345_2345 - mat[0][2] * det4_1345_0345 + mat[0][3] * det4_1345_0245 - mat[0][4] * det4_1345_0235 + mat[0][5] * det4_1345_0234; float det5_01345_12345 = mat[0][1] * det4_1345_2345 - mat[0][2] * det4_1345_1345 + mat[0][3] * det4_1345_1245 - mat[0][4] * det4_1345_1235 + mat[0][5] * det4_1345_1234; float det5_02345_01234 = mat[0][0] * det4_2345_1234 - mat[0][1] * det4_2345_0234 + mat[0][2] * det4_2345_0134 - mat[0][3] * det4_2345_0124 + mat[0][4] * det4_2345_0123; float det5_02345_01235 = mat[0][0] * det4_2345_1235 - mat[0][1] * det4_2345_0235 + mat[0][2] * det4_2345_0135 - mat[0][3] * det4_2345_0125 + mat[0][5] * det4_2345_0123; float det5_02345_01245 = mat[0][0] * det4_2345_1245 - mat[0][1] * det4_2345_0245 + mat[0][2] * det4_2345_0145 - mat[0][4] * det4_2345_0125 + mat[0][5] * det4_2345_0124; float det5_02345_01345 = mat[0][0] * det4_2345_1345 - mat[0][1] * det4_2345_0345 + mat[0][3] * det4_2345_0145 - mat[0][4] * det4_2345_0135 + mat[0][5] * det4_2345_0134; float det5_02345_02345 = mat[0][0] * det4_2345_2345 - mat[0][2] * det4_2345_0345 + mat[0][3] * det4_2345_0245 - mat[0][4] * det4_2345_0235 + mat[0][5] * det4_2345_0234; float det5_02345_12345 = mat[0][1] * det4_2345_2345 - mat[0][2] * det4_2345_1345 + mat[0][3] * det4_2345_1245 - mat[0][4] * det4_2345_1235 + mat[0][5] * det4_2345_1234; mat[0][0] = det5_12345_12345 * invDet; mat[0][1] = -det5_02345_12345 * invDet; mat[0][2] = det5_01345_12345 * invDet; mat[0][3] = -det5_01245_12345 * invDet; mat[0][4] = det5_01235_12345 * invDet; mat[0][5] = -det5_01234_12345 * invDet; mat[1][0] = -det5_12345_02345 * invDet; mat[1][1] = det5_02345_02345 * invDet; mat[1][2] = -det5_01345_02345 * invDet; mat[1][3] = det5_01245_02345 * invDet; mat[1][4] = -det5_01235_02345 * invDet; mat[1][5] = det5_01234_02345 * invDet; mat[2][0] = det5_12345_01345 * invDet; mat[2][1] = -det5_02345_01345 * invDet; mat[2][2] = det5_01345_01345 * invDet; mat[2][3] = -det5_01245_01345 * invDet; mat[2][4] = det5_01235_01345 * invDet; mat[2][5] = -det5_01234_01345 * invDet; mat[3][0] = -det5_12345_01245 * invDet; mat[3][1] = det5_02345_01245 * invDet; mat[3][2] = -det5_01345_01245 * invDet; mat[3][3] = det5_01245_01245 * invDet; mat[3][4] = -det5_01235_01245 * invDet; mat[3][5] = det5_01234_01245 * invDet; mat[4][0] = det5_12345_01235 * invDet; mat[4][1] = -det5_02345_01235 * invDet; mat[4][2] = det5_01345_01235 * invDet; mat[4][3] = -det5_01245_01235 * invDet; mat[4][4] = det5_01235_01235 * invDet; mat[4][5] = -det5_01234_01235 * invDet; mat[5][0] = -det5_12345_01234 * invDet; mat[5][1] = det5_02345_01234 * invDet; mat[5][2] = -det5_01345_01234 * invDet; mat[5][3] = det5_01245_01234 * invDet; mat[5][4] = -det5_01235_01234 * invDet; mat[5][5] = det5_01234_01234 * invDet; return true; } /* ============ idMat6::InverseFastSelf ============ */ bool idMat6::InverseFastSelf( void ) { #if 0 // 810+6+36 = 852 multiplications // 1 division double det, invDet; // 2x2 sub-determinants required to calculate 6x6 determinant float det2_45_01 = mat[4][0] * mat[5][1] - mat[4][1] * mat[5][0]; float det2_45_02 = mat[4][0] * mat[5][2] - mat[4][2] * mat[5][0]; float det2_45_03 = mat[4][0] * mat[5][3] - mat[4][3] * mat[5][0]; float det2_45_04 = mat[4][0] * mat[5][4] - mat[4][4] * mat[5][0]; float det2_45_05 = mat[4][0] * mat[5][5] - mat[4][5] * mat[5][0]; float det2_45_12 = mat[4][1] * mat[5][2] - mat[4][2] * mat[5][1]; float det2_45_13 = mat[4][1] * mat[5][3] - mat[4][3] * mat[5][1]; float det2_45_14 = mat[4][1] * mat[5][4] - mat[4][4] * mat[5][1]; float det2_45_15 = mat[4][1] * mat[5][5] - mat[4][5] * mat[5][1]; float det2_45_23 = mat[4][2] * mat[5][3] - mat[4][3] * mat[5][2]; float det2_45_24 = mat[4][2] * mat[5][4] - mat[4][4] * mat[5][2]; float det2_45_25 = mat[4][2] * mat[5][5] - mat[4][5] * mat[5][2]; float det2_45_34 = mat[4][3] * mat[5][4] - mat[4][4] * mat[5][3]; float det2_45_35 = mat[4][3] * mat[5][5] - mat[4][5] * mat[5][3]; float det2_45_45 = mat[4][4] * mat[5][5] - mat[4][5] * mat[5][4]; // 3x3 sub-determinants required to calculate 6x6 determinant float det3_345_012 = mat[3][0] * det2_45_12 - mat[3][1] * det2_45_02 + mat[3][2] * det2_45_01; float det3_345_013 = mat[3][0] * det2_45_13 - mat[3][1] * det2_45_03 + mat[3][3] * det2_45_01; float det3_345_014 = mat[3][0] * det2_45_14 - mat[3][1] * det2_45_04 + mat[3][4] * det2_45_01; float det3_345_015 = mat[3][0] * det2_45_15 - mat[3][1] * det2_45_05 + mat[3][5] * det2_45_01; float det3_345_023 = mat[3][0] * det2_45_23 - mat[3][2] * det2_45_03 + mat[3][3] * det2_45_02; float det3_345_024 = mat[3][0] * det2_45_24 - mat[3][2] * det2_45_04 + mat[3][4] * det2_45_02; float det3_345_025 = mat[3][0] * det2_45_25 - mat[3][2] * det2_45_05 + mat[3][5] * det2_45_02; float det3_345_034 = mat[3][0] * det2_45_34 - mat[3][3] * det2_45_04 + mat[3][4] * det2_45_03; float det3_345_035 = mat[3][0] * det2_45_35 - mat[3][3] * det2_45_05 + mat[3][5] * det2_45_03; float det3_345_045 = mat[3][0] * det2_45_45 - mat[3][4] * det2_45_05 + mat[3][5] * det2_45_04; float det3_345_123 = mat[3][1] * det2_45_23 - mat[3][2] * det2_45_13 + mat[3][3] * det2_45_12; float det3_345_124 = mat[3][1] * det2_45_24 - mat[3][2] * det2_45_14 + mat[3][4] * det2_45_12; float det3_345_125 = mat[3][1] * det2_45_25 - mat[3][2] * det2_45_15 + mat[3][5] * det2_45_12; float det3_345_134 = mat[3][1] * det2_45_34 - mat[3][3] * det2_45_14 + mat[3][4] * det2_45_13; float det3_345_135 = mat[3][1] * det2_45_35 - mat[3][3] * det2_45_15 + mat[3][5] * det2_45_13; float det3_345_145 = mat[3][1] * det2_45_45 - mat[3][4] * det2_45_15 + mat[3][5] * det2_45_14; float det3_345_234 = mat[3][2] * det2_45_34 - mat[3][3] * det2_45_24 + mat[3][4] * det2_45_23; float det3_345_235 = mat[3][2] * det2_45_35 - mat[3][3] * det2_45_25 + mat[3][5] * det2_45_23; float det3_345_245 = mat[3][2] * det2_45_45 - mat[3][4] * det2_45_25 + mat[3][5] * det2_45_24; float det3_345_345 = mat[3][3] * det2_45_45 - mat[3][4] * det2_45_35 + mat[3][5] * det2_45_34; // 4x4 sub-determinants required to calculate 6x6 determinant float det4_2345_0123 = mat[2][0] * det3_345_123 - mat[2][1] * det3_345_023 + mat[2][2] * det3_345_013 - mat[2][3] * det3_345_012; float det4_2345_0124 = mat[2][0] * det3_345_124 - mat[2][1] * det3_345_024 + mat[2][2] * det3_345_014 - mat[2][4] * det3_345_012; float det4_2345_0125 = mat[2][0] * det3_345_125 - mat[2][1] * det3_345_025 + mat[2][2] * det3_345_015 - mat[2][5] * det3_345_012; float det4_2345_0134 = mat[2][0] * det3_345_134 - mat[2][1] * det3_345_034 + mat[2][3] * det3_345_014 - mat[2][4] * det3_345_013; float det4_2345_0135 = mat[2][0] * det3_345_135 - mat[2][1] * det3_345_035 + mat[2][3] * det3_345_015 - mat[2][5] * det3_345_013; float det4_2345_0145 = mat[2][0] * det3_345_145 - mat[2][1] * det3_345_045 + mat[2][4] * det3_345_015 - mat[2][5] * det3_345_014; float det4_2345_0234 = mat[2][0] * det3_345_234 - mat[2][2] * det3_345_034 + mat[2][3] * det3_345_024 - mat[2][4] * det3_345_023; float det4_2345_0235 = mat[2][0] * det3_345_235 - mat[2][2] * det3_345_035 + mat[2][3] * det3_345_025 - mat[2][5] * det3_345_023; float det4_2345_0245 = mat[2][0] * det3_345_245 - mat[2][2] * det3_345_045 + mat[2][4] * det3_345_025 - mat[2][5] * det3_345_024; float det4_2345_0345 = mat[2][0] * det3_345_345 - mat[2][3] * det3_345_045 + mat[2][4] * det3_345_035 - mat[2][5] * det3_345_034; float det4_2345_1234 = mat[2][1] * det3_345_234 - mat[2][2] * det3_345_134 + mat[2][3] * det3_345_124 - mat[2][4] * det3_345_123; float det4_2345_1235 = mat[2][1] * det3_345_235 - mat[2][2] * det3_345_135 + mat[2][3] * det3_345_125 - mat[2][5] * det3_345_123; float det4_2345_1245 = mat[2][1] * det3_345_245 - mat[2][2] * det3_345_145 + mat[2][4] * det3_345_125 - mat[2][5] * det3_345_124; float det4_2345_1345 = mat[2][1] * det3_345_345 - mat[2][3] * det3_345_145 + mat[2][4] * det3_345_135 - mat[2][5] * det3_345_134; float det4_2345_2345 = mat[2][2] * det3_345_345 - mat[2][3] * det3_345_245 + mat[2][4] * det3_345_235 - mat[2][5] * det3_345_234; // 5x5 sub-determinants required to calculate 6x6 determinant float det5_12345_01234 = mat[1][0] * det4_2345_1234 - mat[1][1] * det4_2345_0234 + mat[1][2] * det4_2345_0134 - mat[1][3] * det4_2345_0124 + mat[1][4] * det4_2345_0123; float det5_12345_01235 = mat[1][0] * det4_2345_1235 - mat[1][1] * det4_2345_0235 + mat[1][2] * det4_2345_0135 - mat[1][3] * det4_2345_0125 + mat[1][5] * det4_2345_0123; float det5_12345_01245 = mat[1][0] * det4_2345_1245 - mat[1][1] * det4_2345_0245 + mat[1][2] * det4_2345_0145 - mat[1][4] * det4_2345_0125 + mat[1][5] * det4_2345_0124; float det5_12345_01345 = mat[1][0] * det4_2345_1345 - mat[1][1] * det4_2345_0345 + mat[1][3] * det4_2345_0145 - mat[1][4] * det4_2345_0135 + mat[1][5] * det4_2345_0134; float det5_12345_02345 = mat[1][0] * det4_2345_2345 - mat[1][2] * det4_2345_0345 + mat[1][3] * det4_2345_0245 - mat[1][4] * det4_2345_0235 + mat[1][5] * det4_2345_0234; float det5_12345_12345 = mat[1][1] * det4_2345_2345 - mat[1][2] * det4_2345_1345 + mat[1][3] * det4_2345_1245 - mat[1][4] * det4_2345_1235 + mat[1][5] * det4_2345_1234; // determinant of 6x6 matrix det = mat[0][0] * det5_12345_12345 - mat[0][1] * det5_12345_02345 + mat[0][2] * det5_12345_01345 - mat[0][3] * det5_12345_01245 + mat[0][4] * det5_12345_01235 - mat[0][5] * det5_12345_01234; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; // remaining 2x2 sub-determinants float det2_34_01 = mat[3][0] * mat[4][1] - mat[3][1] * mat[4][0]; float det2_34_02 = mat[3][0] * mat[4][2] - mat[3][2] * mat[4][0]; float det2_34_03 = mat[3][0] * mat[4][3] - mat[3][3] * mat[4][0]; float det2_34_04 = mat[3][0] * mat[4][4] - mat[3][4] * mat[4][0]; float det2_34_05 = mat[3][0] * mat[4][5] - mat[3][5] * mat[4][0]; float det2_34_12 = mat[3][1] * mat[4][2] - mat[3][2] * mat[4][1]; float det2_34_13 = mat[3][1] * mat[4][3] - mat[3][3] * mat[4][1]; float det2_34_14 = mat[3][1] * mat[4][4] - mat[3][4] * mat[4][1]; float det2_34_15 = mat[3][1] * mat[4][5] - mat[3][5] * mat[4][1]; float det2_34_23 = mat[3][2] * mat[4][3] - mat[3][3] * mat[4][2]; float det2_34_24 = mat[3][2] * mat[4][4] - mat[3][4] * mat[4][2]; float det2_34_25 = mat[3][2] * mat[4][5] - mat[3][5] * mat[4][2]; float det2_34_34 = mat[3][3] * mat[4][4] - mat[3][4] * mat[4][3]; float det2_34_35 = mat[3][3] * mat[4][5] - mat[3][5] * mat[4][3]; float det2_34_45 = mat[3][4] * mat[4][5] - mat[3][5] * mat[4][4]; float det2_35_01 = mat[3][0] * mat[5][1] - mat[3][1] * mat[5][0]; float det2_35_02 = mat[3][0] * mat[5][2] - mat[3][2] * mat[5][0]; float det2_35_03 = mat[3][0] * mat[5][3] - mat[3][3] * mat[5][0]; float det2_35_04 = mat[3][0] * mat[5][4] - mat[3][4] * mat[5][0]; float det2_35_05 = mat[3][0] * mat[5][5] - mat[3][5] * mat[5][0]; float det2_35_12 = mat[3][1] * mat[5][2] - mat[3][2] * mat[5][1]; float det2_35_13 = mat[3][1] * mat[5][3] - mat[3][3] * mat[5][1]; float det2_35_14 = mat[3][1] * mat[5][4] - mat[3][4] * mat[5][1]; float det2_35_15 = mat[3][1] * mat[5][5] - mat[3][5] * mat[5][1]; float det2_35_23 = mat[3][2] * mat[5][3] - mat[3][3] * mat[5][2]; float det2_35_24 = mat[3][2] * mat[5][4] - mat[3][4] * mat[5][2]; float det2_35_25 = mat[3][2] * mat[5][5] - mat[3][5] * mat[5][2]; float det2_35_34 = mat[3][3] * mat[5][4] - mat[3][4] * mat[5][3]; float det2_35_35 = mat[3][3] * mat[5][5] - mat[3][5] * mat[5][3]; float det2_35_45 = mat[3][4] * mat[5][5] - mat[3][5] * mat[5][4]; // remaining 3x3 sub-determinants float det3_234_012 = mat[2][0] * det2_34_12 - mat[2][1] * det2_34_02 + mat[2][2] * det2_34_01; float det3_234_013 = mat[2][0] * det2_34_13 - mat[2][1] * det2_34_03 + mat[2][3] * det2_34_01; float det3_234_014 = mat[2][0] * det2_34_14 - mat[2][1] * det2_34_04 + mat[2][4] * det2_34_01; float det3_234_015 = mat[2][0] * det2_34_15 - mat[2][1] * det2_34_05 + mat[2][5] * det2_34_01; float det3_234_023 = mat[2][0] * det2_34_23 - mat[2][2] * det2_34_03 + mat[2][3] * det2_34_02; float det3_234_024 = mat[2][0] * det2_34_24 - mat[2][2] * det2_34_04 + mat[2][4] * det2_34_02; float det3_234_025 = mat[2][0] * det2_34_25 - mat[2][2] * det2_34_05 + mat[2][5] * det2_34_02; float det3_234_034 = mat[2][0] * det2_34_34 - mat[2][3] * det2_34_04 + mat[2][4] * det2_34_03; float det3_234_035 = mat[2][0] * det2_34_35 - mat[2][3] * det2_34_05 + mat[2][5] * det2_34_03; float det3_234_045 = mat[2][0] * det2_34_45 - mat[2][4] * det2_34_05 + mat[2][5] * det2_34_04; float det3_234_123 = mat[2][1] * det2_34_23 - mat[2][2] * det2_34_13 + mat[2][3] * det2_34_12; float det3_234_124 = mat[2][1] * det2_34_24 - mat[2][2] * det2_34_14 + mat[2][4] * det2_34_12; float det3_234_125 = mat[2][1] * det2_34_25 - mat[2][2] * det2_34_15 + mat[2][5] * det2_34_12; float det3_234_134 = mat[2][1] * det2_34_34 - mat[2][3] * det2_34_14 + mat[2][4] * det2_34_13; float det3_234_135 = mat[2][1] * det2_34_35 - mat[2][3] * det2_34_15 + mat[2][5] * det2_34_13; float det3_234_145 = mat[2][1] * det2_34_45 - mat[2][4] * det2_34_15 + mat[2][5] * det2_34_14; float det3_234_234 = mat[2][2] * det2_34_34 - mat[2][3] * det2_34_24 + mat[2][4] * det2_34_23; float det3_234_235 = mat[2][2] * det2_34_35 - mat[2][3] * det2_34_25 + mat[2][5] * det2_34_23; float det3_234_245 = mat[2][2] * det2_34_45 - mat[2][4] * det2_34_25 + mat[2][5] * det2_34_24; float det3_234_345 = mat[2][3] * det2_34_45 - mat[2][4] * det2_34_35 + mat[2][5] * det2_34_34; float det3_235_012 = mat[2][0] * det2_35_12 - mat[2][1] * det2_35_02 + mat[2][2] * det2_35_01; float det3_235_013 = mat[2][0] * det2_35_13 - mat[2][1] * det2_35_03 + mat[2][3] * det2_35_01; float det3_235_014 = mat[2][0] * det2_35_14 - mat[2][1] * det2_35_04 + mat[2][4] * det2_35_01; float det3_235_015 = mat[2][0] * det2_35_15 - mat[2][1] * det2_35_05 + mat[2][5] * det2_35_01; float det3_235_023 = mat[2][0] * det2_35_23 - mat[2][2] * det2_35_03 + mat[2][3] * det2_35_02; float det3_235_024 = mat[2][0] * det2_35_24 - mat[2][2] * det2_35_04 + mat[2][4] * det2_35_02; float det3_235_025 = mat[2][0] * det2_35_25 - mat[2][2] * det2_35_05 + mat[2][5] * det2_35_02; float det3_235_034 = mat[2][0] * det2_35_34 - mat[2][3] * det2_35_04 + mat[2][4] * det2_35_03; float det3_235_035 = mat[2][0] * det2_35_35 - mat[2][3] * det2_35_05 + mat[2][5] * det2_35_03; float det3_235_045 = mat[2][0] * det2_35_45 - mat[2][4] * det2_35_05 + mat[2][5] * det2_35_04; float det3_235_123 = mat[2][1] * det2_35_23 - mat[2][2] * det2_35_13 + mat[2][3] * det2_35_12; float det3_235_124 = mat[2][1] * det2_35_24 - mat[2][2] * det2_35_14 + mat[2][4] * det2_35_12; float det3_235_125 = mat[2][1] * det2_35_25 - mat[2][2] * det2_35_15 + mat[2][5] * det2_35_12; float det3_235_134 = mat[2][1] * det2_35_34 - mat[2][3] * det2_35_14 + mat[2][4] * det2_35_13; float det3_235_135 = mat[2][1] * det2_35_35 - mat[2][3] * det2_35_15 + mat[2][5] * det2_35_13; float det3_235_145 = mat[2][1] * det2_35_45 - mat[2][4] * det2_35_15 + mat[2][5] * det2_35_14; float det3_235_234 = mat[2][2] * det2_35_34 - mat[2][3] * det2_35_24 + mat[2][4] * det2_35_23; float det3_235_235 = mat[2][2] * det2_35_35 - mat[2][3] * det2_35_25 + mat[2][5] * det2_35_23; float det3_235_245 = mat[2][2] * det2_35_45 - mat[2][4] * det2_35_25 + mat[2][5] * det2_35_24; float det3_235_345 = mat[2][3] * det2_35_45 - mat[2][4] * det2_35_35 + mat[2][5] * det2_35_34; float det3_245_012 = mat[2][0] * det2_45_12 - mat[2][1] * det2_45_02 + mat[2][2] * det2_45_01; float det3_245_013 = mat[2][0] * det2_45_13 - mat[2][1] * det2_45_03 + mat[2][3] * det2_45_01; float det3_245_014 = mat[2][0] * det2_45_14 - mat[2][1] * det2_45_04 + mat[2][4] * det2_45_01; float det3_245_015 = mat[2][0] * det2_45_15 - mat[2][1] * det2_45_05 + mat[2][5] * det2_45_01; float det3_245_023 = mat[2][0] * det2_45_23 - mat[2][2] * det2_45_03 + mat[2][3] * det2_45_02; float det3_245_024 = mat[2][0] * det2_45_24 - mat[2][2] * det2_45_04 + mat[2][4] * det2_45_02; float det3_245_025 = mat[2][0] * det2_45_25 - mat[2][2] * det2_45_05 + mat[2][5] * det2_45_02; float det3_245_034 = mat[2][0] * det2_45_34 - mat[2][3] * det2_45_04 + mat[2][4] * det2_45_03; float det3_245_035 = mat[2][0] * det2_45_35 - mat[2][3] * det2_45_05 + mat[2][5] * det2_45_03; float det3_245_045 = mat[2][0] * det2_45_45 - mat[2][4] * det2_45_05 + mat[2][5] * det2_45_04; float det3_245_123 = mat[2][1] * det2_45_23 - mat[2][2] * det2_45_13 + mat[2][3] * det2_45_12; float det3_245_124 = mat[2][1] * det2_45_24 - mat[2][2] * det2_45_14 + mat[2][4] * det2_45_12; float det3_245_125 = mat[2][1] * det2_45_25 - mat[2][2] * det2_45_15 + mat[2][5] * det2_45_12; float det3_245_134 = mat[2][1] * det2_45_34 - mat[2][3] * det2_45_14 + mat[2][4] * det2_45_13; float det3_245_135 = mat[2][1] * det2_45_35 - mat[2][3] * det2_45_15 + mat[2][5] * det2_45_13; float det3_245_145 = mat[2][1] * det2_45_45 - mat[2][4] * det2_45_15 + mat[2][5] * det2_45_14; float det3_245_234 = mat[2][2] * det2_45_34 - mat[2][3] * det2_45_24 + mat[2][4] * det2_45_23; float det3_245_235 = mat[2][2] * det2_45_35 - mat[2][3] * det2_45_25 + mat[2][5] * det2_45_23; float det3_245_245 = mat[2][2] * det2_45_45 - mat[2][4] * det2_45_25 + mat[2][5] * det2_45_24; float det3_245_345 = mat[2][3] * det2_45_45 - mat[2][4] * det2_45_35 + mat[2][5] * det2_45_34; // remaining 4x4 sub-determinants float det4_1234_0123 = mat[1][0] * det3_234_123 - mat[1][1] * det3_234_023 + mat[1][2] * det3_234_013 - mat[1][3] * det3_234_012; float det4_1234_0124 = mat[1][0] * det3_234_124 - mat[1][1] * det3_234_024 + mat[1][2] * det3_234_014 - mat[1][4] * det3_234_012; float det4_1234_0125 = mat[1][0] * det3_234_125 - mat[1][1] * det3_234_025 + mat[1][2] * det3_234_015 - mat[1][5] * det3_234_012; float det4_1234_0134 = mat[1][0] * det3_234_134 - mat[1][1] * det3_234_034 + mat[1][3] * det3_234_014 - mat[1][4] * det3_234_013; float det4_1234_0135 = mat[1][0] * det3_234_135 - mat[1][1] * det3_234_035 + mat[1][3] * det3_234_015 - mat[1][5] * det3_234_013; float det4_1234_0145 = mat[1][0] * det3_234_145 - mat[1][1] * det3_234_045 + mat[1][4] * det3_234_015 - mat[1][5] * det3_234_014; float det4_1234_0234 = mat[1][0] * det3_234_234 - mat[1][2] * det3_234_034 + mat[1][3] * det3_234_024 - mat[1][4] * det3_234_023; float det4_1234_0235 = mat[1][0] * det3_234_235 - mat[1][2] * det3_234_035 + mat[1][3] * det3_234_025 - mat[1][5] * det3_234_023; float det4_1234_0245 = mat[1][0] * det3_234_245 - mat[1][2] * det3_234_045 + mat[1][4] * det3_234_025 - mat[1][5] * det3_234_024; float det4_1234_0345 = mat[1][0] * det3_234_345 - mat[1][3] * det3_234_045 + mat[1][4] * det3_234_035 - mat[1][5] * det3_234_034; float det4_1234_1234 = mat[1][1] * det3_234_234 - mat[1][2] * det3_234_134 + mat[1][3] * det3_234_124 - mat[1][4] * det3_234_123; float det4_1234_1235 = mat[1][1] * det3_234_235 - mat[1][2] * det3_234_135 + mat[1][3] * det3_234_125 - mat[1][5] * det3_234_123; float det4_1234_1245 = mat[1][1] * det3_234_245 - mat[1][2] * det3_234_145 + mat[1][4] * det3_234_125 - mat[1][5] * det3_234_124; float det4_1234_1345 = mat[1][1] * det3_234_345 - mat[1][3] * det3_234_145 + mat[1][4] * det3_234_135 - mat[1][5] * det3_234_134; float det4_1234_2345 = mat[1][2] * det3_234_345 - mat[1][3] * det3_234_245 + mat[1][4] * det3_234_235 - mat[1][5] * det3_234_234; float det4_1235_0123 = mat[1][0] * det3_235_123 - mat[1][1] * det3_235_023 + mat[1][2] * det3_235_013 - mat[1][3] * det3_235_012; float det4_1235_0124 = mat[1][0] * det3_235_124 - mat[1][1] * det3_235_024 + mat[1][2] * det3_235_014 - mat[1][4] * det3_235_012; float det4_1235_0125 = mat[1][0] * det3_235_125 - mat[1][1] * det3_235_025 + mat[1][2] * det3_235_015 - mat[1][5] * det3_235_012; float det4_1235_0134 = mat[1][0] * det3_235_134 - mat[1][1] * det3_235_034 + mat[1][3] * det3_235_014 - mat[1][4] * det3_235_013; float det4_1235_0135 = mat[1][0] * det3_235_135 - mat[1][1] * det3_235_035 + mat[1][3] * det3_235_015 - mat[1][5] * det3_235_013; float det4_1235_0145 = mat[1][0] * det3_235_145 - mat[1][1] * det3_235_045 + mat[1][4] * det3_235_015 - mat[1][5] * det3_235_014; float det4_1235_0234 = mat[1][0] * det3_235_234 - mat[1][2] * det3_235_034 + mat[1][3] * det3_235_024 - mat[1][4] * det3_235_023; float det4_1235_0235 = mat[1][0] * det3_235_235 - mat[1][2] * det3_235_035 + mat[1][3] * det3_235_025 - mat[1][5] * det3_235_023; float det4_1235_0245 = mat[1][0] * det3_235_245 - mat[1][2] * det3_235_045 + mat[1][4] * det3_235_025 - mat[1][5] * det3_235_024; float det4_1235_0345 = mat[1][0] * det3_235_345 - mat[1][3] * det3_235_045 + mat[1][4] * det3_235_035 - mat[1][5] * det3_235_034; float det4_1235_1234 = mat[1][1] * det3_235_234 - mat[1][2] * det3_235_134 + mat[1][3] * det3_235_124 - mat[1][4] * det3_235_123; float det4_1235_1235 = mat[1][1] * det3_235_235 - mat[1][2] * det3_235_135 + mat[1][3] * det3_235_125 - mat[1][5] * det3_235_123; float det4_1235_1245 = mat[1][1] * det3_235_245 - mat[1][2] * det3_235_145 + mat[1][4] * det3_235_125 - mat[1][5] * det3_235_124; float det4_1235_1345 = mat[1][1] * det3_235_345 - mat[1][3] * det3_235_145 + mat[1][4] * det3_235_135 - mat[1][5] * det3_235_134; float det4_1235_2345 = mat[1][2] * det3_235_345 - mat[1][3] * det3_235_245 + mat[1][4] * det3_235_235 - mat[1][5] * det3_235_234; float det4_1245_0123 = mat[1][0] * det3_245_123 - mat[1][1] * det3_245_023 + mat[1][2] * det3_245_013 - mat[1][3] * det3_245_012; float det4_1245_0124 = mat[1][0] * det3_245_124 - mat[1][1] * det3_245_024 + mat[1][2] * det3_245_014 - mat[1][4] * det3_245_012; float det4_1245_0125 = mat[1][0] * det3_245_125 - mat[1][1] * det3_245_025 + mat[1][2] * det3_245_015 - mat[1][5] * det3_245_012; float det4_1245_0134 = mat[1][0] * det3_245_134 - mat[1][1] * det3_245_034 + mat[1][3] * det3_245_014 - mat[1][4] * det3_245_013; float det4_1245_0135 = mat[1][0] * det3_245_135 - mat[1][1] * det3_245_035 + mat[1][3] * det3_245_015 - mat[1][5] * det3_245_013; float det4_1245_0145 = mat[1][0] * det3_245_145 - mat[1][1] * det3_245_045 + mat[1][4] * det3_245_015 - mat[1][5] * det3_245_014; float det4_1245_0234 = mat[1][0] * det3_245_234 - mat[1][2] * det3_245_034 + mat[1][3] * det3_245_024 - mat[1][4] * det3_245_023; float det4_1245_0235 = mat[1][0] * det3_245_235 - mat[1][2] * det3_245_035 + mat[1][3] * det3_245_025 - mat[1][5] * det3_245_023; float det4_1245_0245 = mat[1][0] * det3_245_245 - mat[1][2] * det3_245_045 + mat[1][4] * det3_245_025 - mat[1][5] * det3_245_024; float det4_1245_0345 = mat[1][0] * det3_245_345 - mat[1][3] * det3_245_045 + mat[1][4] * det3_245_035 - mat[1][5] * det3_245_034; float det4_1245_1234 = mat[1][1] * det3_245_234 - mat[1][2] * det3_245_134 + mat[1][3] * det3_245_124 - mat[1][4] * det3_245_123; float det4_1245_1235 = mat[1][1] * det3_245_235 - mat[1][2] * det3_245_135 + mat[1][3] * det3_245_125 - mat[1][5] * det3_245_123; float det4_1245_1245 = mat[1][1] * det3_245_245 - mat[1][2] * det3_245_145 + mat[1][4] * det3_245_125 - mat[1][5] * det3_245_124; float det4_1245_1345 = mat[1][1] * det3_245_345 - mat[1][3] * det3_245_145 + mat[1][4] * det3_245_135 - mat[1][5] * det3_245_134; float det4_1245_2345 = mat[1][2] * det3_245_345 - mat[1][3] * det3_245_245 + mat[1][4] * det3_245_235 - mat[1][5] * det3_245_234; float det4_1345_0123 = mat[1][0] * det3_345_123 - mat[1][1] * det3_345_023 + mat[1][2] * det3_345_013 - mat[1][3] * det3_345_012; float det4_1345_0124 = mat[1][0] * det3_345_124 - mat[1][1] * det3_345_024 + mat[1][2] * det3_345_014 - mat[1][4] * det3_345_012; float det4_1345_0125 = mat[1][0] * det3_345_125 - mat[1][1] * det3_345_025 + mat[1][2] * det3_345_015 - mat[1][5] * det3_345_012; float det4_1345_0134 = mat[1][0] * det3_345_134 - mat[1][1] * det3_345_034 + mat[1][3] * det3_345_014 - mat[1][4] * det3_345_013; float det4_1345_0135 = mat[1][0] * det3_345_135 - mat[1][1] * det3_345_035 + mat[1][3] * det3_345_015 - mat[1][5] * det3_345_013; float det4_1345_0145 = mat[1][0] * det3_345_145 - mat[1][1] * det3_345_045 + mat[1][4] * det3_345_015 - mat[1][5] * det3_345_014; float det4_1345_0234 = mat[1][0] * det3_345_234 - mat[1][2] * det3_345_034 + mat[1][3] * det3_345_024 - mat[1][4] * det3_345_023; float det4_1345_0235 = mat[1][0] * det3_345_235 - mat[1][2] * det3_345_035 + mat[1][3] * det3_345_025 - mat[1][5] * det3_345_023; float det4_1345_0245 = mat[1][0] * det3_345_245 - mat[1][2] * det3_345_045 + mat[1][4] * det3_345_025 - mat[1][5] * det3_345_024; float det4_1345_0345 = mat[1][0] * det3_345_345 - mat[1][3] * det3_345_045 + mat[1][4] * det3_345_035 - mat[1][5] * det3_345_034; float det4_1345_1234 = mat[1][1] * det3_345_234 - mat[1][2] * det3_345_134 + mat[1][3] * det3_345_124 - mat[1][4] * det3_345_123; float det4_1345_1235 = mat[1][1] * det3_345_235 - mat[1][2] * det3_345_135 + mat[1][3] * det3_345_125 - mat[1][5] * det3_345_123; float det4_1345_1245 = mat[1][1] * det3_345_245 - mat[1][2] * det3_345_145 + mat[1][4] * det3_345_125 - mat[1][5] * det3_345_124; float det4_1345_1345 = mat[1][1] * det3_345_345 - mat[1][3] * det3_345_145 + mat[1][4] * det3_345_135 - mat[1][5] * det3_345_134; float det4_1345_2345 = mat[1][2] * det3_345_345 - mat[1][3] * det3_345_245 + mat[1][4] * det3_345_235 - mat[1][5] * det3_345_234; // remaining 5x5 sub-determinants float det5_01234_01234 = mat[0][0] * det4_1234_1234 - mat[0][1] * det4_1234_0234 + mat[0][2] * det4_1234_0134 - mat[0][3] * det4_1234_0124 + mat[0][4] * det4_1234_0123; float det5_01234_01235 = mat[0][0] * det4_1234_1235 - mat[0][1] * det4_1234_0235 + mat[0][2] * det4_1234_0135 - mat[0][3] * det4_1234_0125 + mat[0][5] * det4_1234_0123; float det5_01234_01245 = mat[0][0] * det4_1234_1245 - mat[0][1] * det4_1234_0245 + mat[0][2] * det4_1234_0145 - mat[0][4] * det4_1234_0125 + mat[0][5] * det4_1234_0124; float det5_01234_01345 = mat[0][0] * det4_1234_1345 - mat[0][1] * det4_1234_0345 + mat[0][3] * det4_1234_0145 - mat[0][4] * det4_1234_0135 + mat[0][5] * det4_1234_0134; float det5_01234_02345 = mat[0][0] * det4_1234_2345 - mat[0][2] * det4_1234_0345 + mat[0][3] * det4_1234_0245 - mat[0][4] * det4_1234_0235 + mat[0][5] * det4_1234_0234; float det5_01234_12345 = mat[0][1] * det4_1234_2345 - mat[0][2] * det4_1234_1345 + mat[0][3] * det4_1234_1245 - mat[0][4] * det4_1234_1235 + mat[0][5] * det4_1234_1234; float det5_01235_01234 = mat[0][0] * det4_1235_1234 - mat[0][1] * det4_1235_0234 + mat[0][2] * det4_1235_0134 - mat[0][3] * det4_1235_0124 + mat[0][4] * det4_1235_0123; float det5_01235_01235 = mat[0][0] * det4_1235_1235 - mat[0][1] * det4_1235_0235 + mat[0][2] * det4_1235_0135 - mat[0][3] * det4_1235_0125 + mat[0][5] * det4_1235_0123; float det5_01235_01245 = mat[0][0] * det4_1235_1245 - mat[0][1] * det4_1235_0245 + mat[0][2] * det4_1235_0145 - mat[0][4] * det4_1235_0125 + mat[0][5] * det4_1235_0124; float det5_01235_01345 = mat[0][0] * det4_1235_1345 - mat[0][1] * det4_1235_0345 + mat[0][3] * det4_1235_0145 - mat[0][4] * det4_1235_0135 + mat[0][5] * det4_1235_0134; float det5_01235_02345 = mat[0][0] * det4_1235_2345 - mat[0][2] * det4_1235_0345 + mat[0][3] * det4_1235_0245 - mat[0][4] * det4_1235_0235 + mat[0][5] * det4_1235_0234; float det5_01235_12345 = mat[0][1] * det4_1235_2345 - mat[0][2] * det4_1235_1345 + mat[0][3] * det4_1235_1245 - mat[0][4] * det4_1235_1235 + mat[0][5] * det4_1235_1234; float det5_01245_01234 = mat[0][0] * det4_1245_1234 - mat[0][1] * det4_1245_0234 + mat[0][2] * det4_1245_0134 - mat[0][3] * det4_1245_0124 + mat[0][4] * det4_1245_0123; float det5_01245_01235 = mat[0][0] * det4_1245_1235 - mat[0][1] * det4_1245_0235 + mat[0][2] * det4_1245_0135 - mat[0][3] * det4_1245_0125 + mat[0][5] * det4_1245_0123; float det5_01245_01245 = mat[0][0] * det4_1245_1245 - mat[0][1] * det4_1245_0245 + mat[0][2] * det4_1245_0145 - mat[0][4] * det4_1245_0125 + mat[0][5] * det4_1245_0124; float det5_01245_01345 = mat[0][0] * det4_1245_1345 - mat[0][1] * det4_1245_0345 + mat[0][3] * det4_1245_0145 - mat[0][4] * det4_1245_0135 + mat[0][5] * det4_1245_0134; float det5_01245_02345 = mat[0][0] * det4_1245_2345 - mat[0][2] * det4_1245_0345 + mat[0][3] * det4_1245_0245 - mat[0][4] * det4_1245_0235 + mat[0][5] * det4_1245_0234; float det5_01245_12345 = mat[0][1] * det4_1245_2345 - mat[0][2] * det4_1245_1345 + mat[0][3] * det4_1245_1245 - mat[0][4] * det4_1245_1235 + mat[0][5] * det4_1245_1234; float det5_01345_01234 = mat[0][0] * det4_1345_1234 - mat[0][1] * det4_1345_0234 + mat[0][2] * det4_1345_0134 - mat[0][3] * det4_1345_0124 + mat[0][4] * det4_1345_0123; float det5_01345_01235 = mat[0][0] * det4_1345_1235 - mat[0][1] * det4_1345_0235 + mat[0][2] * det4_1345_0135 - mat[0][3] * det4_1345_0125 + mat[0][5] * det4_1345_0123; float det5_01345_01245 = mat[0][0] * det4_1345_1245 - mat[0][1] * det4_1345_0245 + mat[0][2] * det4_1345_0145 - mat[0][4] * det4_1345_0125 + mat[0][5] * det4_1345_0124; float det5_01345_01345 = mat[0][0] * det4_1345_1345 - mat[0][1] * det4_1345_0345 + mat[0][3] * det4_1345_0145 - mat[0][4] * det4_1345_0135 + mat[0][5] * det4_1345_0134; float det5_01345_02345 = mat[0][0] * det4_1345_2345 - mat[0][2] * det4_1345_0345 + mat[0][3] * det4_1345_0245 - mat[0][4] * det4_1345_0235 + mat[0][5] * det4_1345_0234; float det5_01345_12345 = mat[0][1] * det4_1345_2345 - mat[0][2] * det4_1345_1345 + mat[0][3] * det4_1345_1245 - mat[0][4] * det4_1345_1235 + mat[0][5] * det4_1345_1234; float det5_02345_01234 = mat[0][0] * det4_2345_1234 - mat[0][1] * det4_2345_0234 + mat[0][2] * det4_2345_0134 - mat[0][3] * det4_2345_0124 + mat[0][4] * det4_2345_0123; float det5_02345_01235 = mat[0][0] * det4_2345_1235 - mat[0][1] * det4_2345_0235 + mat[0][2] * det4_2345_0135 - mat[0][3] * det4_2345_0125 + mat[0][5] * det4_2345_0123; float det5_02345_01245 = mat[0][0] * det4_2345_1245 - mat[0][1] * det4_2345_0245 + mat[0][2] * det4_2345_0145 - mat[0][4] * det4_2345_0125 + mat[0][5] * det4_2345_0124; float det5_02345_01345 = mat[0][0] * det4_2345_1345 - mat[0][1] * det4_2345_0345 + mat[0][3] * det4_2345_0145 - mat[0][4] * det4_2345_0135 + mat[0][5] * det4_2345_0134; float det5_02345_02345 = mat[0][0] * det4_2345_2345 - mat[0][2] * det4_2345_0345 + mat[0][3] * det4_2345_0245 - mat[0][4] * det4_2345_0235 + mat[0][5] * det4_2345_0234; float det5_02345_12345 = mat[0][1] * det4_2345_2345 - mat[0][2] * det4_2345_1345 + mat[0][3] * det4_2345_1245 - mat[0][4] * det4_2345_1235 + mat[0][5] * det4_2345_1234; mat[0][0] = det5_12345_12345 * invDet; mat[0][1] = -det5_02345_12345 * invDet; mat[0][2] = det5_01345_12345 * invDet; mat[0][3] = -det5_01245_12345 * invDet; mat[0][4] = det5_01235_12345 * invDet; mat[0][5] = -det5_01234_12345 * invDet; mat[1][0] = -det5_12345_02345 * invDet; mat[1][1] = det5_02345_02345 * invDet; mat[1][2] = -det5_01345_02345 * invDet; mat[1][3] = det5_01245_02345 * invDet; mat[1][4] = -det5_01235_02345 * invDet; mat[1][5] = det5_01234_02345 * invDet; mat[2][0] = det5_12345_01345 * invDet; mat[2][1] = -det5_02345_01345 * invDet; mat[2][2] = det5_01345_01345 * invDet; mat[2][3] = -det5_01245_01345 * invDet; mat[2][4] = det5_01235_01345 * invDet; mat[2][5] = -det5_01234_01345 * invDet; mat[3][0] = -det5_12345_01245 * invDet; mat[3][1] = det5_02345_01245 * invDet; mat[3][2] = -det5_01345_01245 * invDet; mat[3][3] = det5_01245_01245 * invDet; mat[3][4] = -det5_01235_01245 * invDet; mat[3][5] = det5_01234_01245 * invDet; mat[4][0] = det5_12345_01235 * invDet; mat[4][1] = -det5_02345_01235 * invDet; mat[4][2] = det5_01345_01235 * invDet; mat[4][3] = -det5_01245_01235 * invDet; mat[4][4] = det5_01235_01235 * invDet; mat[4][5] = -det5_01234_01235 * invDet; mat[5][0] = -det5_12345_01234 * invDet; mat[5][1] = det5_02345_01234 * invDet; mat[5][2] = -det5_01345_01234 * invDet; mat[5][3] = det5_01245_01234 * invDet; mat[5][4] = -det5_01235_01234 * invDet; mat[5][5] = det5_01234_01234 * invDet; return true; #elif 0 // 6*40 = 240 multiplications // 6 divisions float *mat = reinterpret_cast(this); float s; double d, di; di = mat[0]; s = di; mat[0] = d = 1.0f / di; mat[1] *= d; mat[2] *= d; mat[3] *= d; mat[4] *= d; mat[5] *= d; d = -d; mat[6] *= d; mat[12] *= d; mat[18] *= d; mat[24] *= d; mat[30] *= d; d = mat[6] * di; mat[7] += mat[1] * d; mat[8] += mat[2] * d; mat[9] += mat[3] * d; mat[10] += mat[4] * d; mat[11] += mat[5] * d; d = mat[12] * di; mat[13] += mat[1] * d; mat[14] += mat[2] * d; mat[15] += mat[3] * d; mat[16] += mat[4] * d; mat[17] += mat[5] * d; d = mat[18] * di; mat[19] += mat[1] * d; mat[20] += mat[2] * d; mat[21] += mat[3] * d; mat[22] += mat[4] * d; mat[23] += mat[5] * d; d = mat[24] * di; mat[25] += mat[1] * d; mat[26] += mat[2] * d; mat[27] += mat[3] * d; mat[28] += mat[4] * d; mat[29] += mat[5] * d; d = mat[30] * di; mat[31] += mat[1] * d; mat[32] += mat[2] * d; mat[33] += mat[3] * d; mat[34] += mat[4] * d; mat[35] += mat[5] * d; di = mat[7]; s *= di; mat[7] = d = 1.0f / di; mat[6] *= d; mat[8] *= d; mat[9] *= d; mat[10] *= d; mat[11] *= d; d = -d; mat[1] *= d; mat[13] *= d; mat[19] *= d; mat[25] *= d; mat[31] *= d; d = mat[1] * di; mat[0] += mat[6] * d; mat[2] += mat[8] * d; mat[3] += mat[9] * d; mat[4] += mat[10] * d; mat[5] += mat[11] * d; d = mat[13] * di; mat[12] += mat[6] * d; mat[14] += mat[8] * d; mat[15] += mat[9] * d; mat[16] += mat[10] * d; mat[17] += mat[11] * d; d = mat[19] * di; mat[18] += mat[6] * d; mat[20] += mat[8] * d; mat[21] += mat[9] * d; mat[22] += mat[10] * d; mat[23] += mat[11] * d; d = mat[25] * di; mat[24] += mat[6] * d; mat[26] += mat[8] * d; mat[27] += mat[9] * d; mat[28] += mat[10] * d; mat[29] += mat[11] * d; d = mat[31] * di; mat[30] += mat[6] * d; mat[32] += mat[8] * d; mat[33] += mat[9] * d; mat[34] += mat[10] * d; mat[35] += mat[11] * d; di = mat[14]; s *= di; mat[14] = d = 1.0f / di; mat[12] *= d; mat[13] *= d; mat[15] *= d; mat[16] *= d; mat[17] *= d; d = -d; mat[2] *= d; mat[8] *= d; mat[20] *= d; mat[26] *= d; mat[32] *= d; d = mat[2] * di; mat[0] += mat[12] * d; mat[1] += mat[13] * d; mat[3] += mat[15] * d; mat[4] += mat[16] * d; mat[5] += mat[17] * d; d = mat[8] * di; mat[6] += mat[12] * d; mat[7] += mat[13] * d; mat[9] += mat[15] * d; mat[10] += mat[16] * d; mat[11] += mat[17] * d; d = mat[20] * di; mat[18] += mat[12] * d; mat[19] += mat[13] * d; mat[21] += mat[15] * d; mat[22] += mat[16] * d; mat[23] += mat[17] * d; d = mat[26] * di; mat[24] += mat[12] * d; mat[25] += mat[13] * d; mat[27] += mat[15] * d; mat[28] += mat[16] * d; mat[29] += mat[17] * d; d = mat[32] * di; mat[30] += mat[12] * d; mat[31] += mat[13] * d; mat[33] += mat[15] * d; mat[34] += mat[16] * d; mat[35] += mat[17] * d; di = mat[21]; s *= di; mat[21] = d = 1.0f / di; mat[18] *= d; mat[19] *= d; mat[20] *= d; mat[22] *= d; mat[23] *= d; d = -d; mat[3] *= d; mat[9] *= d; mat[15] *= d; mat[27] *= d; mat[33] *= d; d = mat[3] * di; mat[0] += mat[18] * d; mat[1] += mat[19] * d; mat[2] += mat[20] * d; mat[4] += mat[22] * d; mat[5] += mat[23] * d; d = mat[9] * di; mat[6] += mat[18] * d; mat[7] += mat[19] * d; mat[8] += mat[20] * d; mat[10] += mat[22] * d; mat[11] += mat[23] * d; d = mat[15] * di; mat[12] += mat[18] * d; mat[13] += mat[19] * d; mat[14] += mat[20] * d; mat[16] += mat[22] * d; mat[17] += mat[23] * d; d = mat[27] * di; mat[24] += mat[18] * d; mat[25] += mat[19] * d; mat[26] += mat[20] * d; mat[28] += mat[22] * d; mat[29] += mat[23] * d; d = mat[33] * di; mat[30] += mat[18] * d; mat[31] += mat[19] * d; mat[32] += mat[20] * d; mat[34] += mat[22] * d; mat[35] += mat[23] * d; di = mat[28]; s *= di; mat[28] = d = 1.0f / di; mat[24] *= d; mat[25] *= d; mat[26] *= d; mat[27] *= d; mat[29] *= d; d = -d; mat[4] *= d; mat[10] *= d; mat[16] *= d; mat[22] *= d; mat[34] *= d; d = mat[4] * di; mat[0] += mat[24] * d; mat[1] += mat[25] * d; mat[2] += mat[26] * d; mat[3] += mat[27] * d; mat[5] += mat[29] * d; d = mat[10] * di; mat[6] += mat[24] * d; mat[7] += mat[25] * d; mat[8] += mat[26] * d; mat[9] += mat[27] * d; mat[11] += mat[29] * d; d = mat[16] * di; mat[12] += mat[24] * d; mat[13] += mat[25] * d; mat[14] += mat[26] * d; mat[15] += mat[27] * d; mat[17] += mat[29] * d; d = mat[22] * di; mat[18] += mat[24] * d; mat[19] += mat[25] * d; mat[20] += mat[26] * d; mat[21] += mat[27] * d; mat[23] += mat[29] * d; d = mat[34] * di; mat[30] += mat[24] * d; mat[31] += mat[25] * d; mat[32] += mat[26] * d; mat[33] += mat[27] * d; mat[35] += mat[29] * d; di = mat[35]; s *= di; mat[35] = d = 1.0f / di; mat[30] *= d; mat[31] *= d; mat[32] *= d; mat[33] *= d; mat[34] *= d; d = -d; mat[5] *= d; mat[11] *= d; mat[17] *= d; mat[23] *= d; mat[29] *= d; d = mat[5] * di; mat[0] += mat[30] * d; mat[1] += mat[31] * d; mat[2] += mat[32] * d; mat[3] += mat[33] * d; mat[4] += mat[34] * d; d = mat[11] * di; mat[6] += mat[30] * d; mat[7] += mat[31] * d; mat[8] += mat[32] * d; mat[9] += mat[33] * d; mat[10] += mat[34] * d; d = mat[17] * di; mat[12] += mat[30] * d; mat[13] += mat[31] * d; mat[14] += mat[32] * d; mat[15] += mat[33] * d; mat[16] += mat[34] * d; d = mat[23] * di; mat[18] += mat[30] * d; mat[19] += mat[31] * d; mat[20] += mat[32] * d; mat[21] += mat[33] * d; mat[22] += mat[34] * d; d = mat[29] * di; mat[24] += mat[30] * d; mat[25] += mat[31] * d; mat[26] += mat[32] * d; mat[27] += mat[33] * d; mat[28] += mat[34] * d; return ( s != 0.0f && !FLOAT_IS_NAN( s ) ); #else // 6*27+2*30 = 222 multiplications // 2*1 = 2 divisions idMat3 r0, r1, r2, r3; float c0, c1, c2, det, invDet; float *mat = reinterpret_cast(this); // r0 = m0.Inverse(); c0 = mat[1*6+1] * mat[2*6+2] - mat[1*6+2] * mat[2*6+1]; c1 = mat[1*6+2] * mat[2*6+0] - mat[1*6+0] * mat[2*6+2]; c2 = mat[1*6+0] * mat[2*6+1] - mat[1*6+1] * mat[2*6+0]; det = mat[0*6+0] * c0 + mat[0*6+1] * c1 + mat[0*6+2] * c2; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; r0[0][0] = c0 * invDet; r0[0][1] = ( mat[0*6+2] * mat[2*6+1] - mat[0*6+1] * mat[2*6+2] ) * invDet; r0[0][2] = ( mat[0*6+1] * mat[1*6+2] - mat[0*6+2] * mat[1*6+1] ) * invDet; r0[1][0] = c1 * invDet; r0[1][1] = ( mat[0*6+0] * mat[2*6+2] - mat[0*6+2] * mat[2*6+0] ) * invDet; r0[1][2] = ( mat[0*6+2] * mat[1*6+0] - mat[0*6+0] * mat[1*6+2] ) * invDet; r0[2][0] = c2 * invDet; r0[2][1] = ( mat[0*6+1] * mat[2*6+0] - mat[0*6+0] * mat[2*6+1] ) * invDet; r0[2][2] = ( mat[0*6+0] * mat[1*6+1] - mat[0*6+1] * mat[1*6+0] ) * invDet; // r1 = r0 * m1; r1[0][0] = r0[0][0] * mat[0*6+3] + r0[0][1] * mat[1*6+3] + r0[0][2] * mat[2*6+3]; r1[0][1] = r0[0][0] * mat[0*6+4] + r0[0][1] * mat[1*6+4] + r0[0][2] * mat[2*6+4]; r1[0][2] = r0[0][0] * mat[0*6+5] + r0[0][1] * mat[1*6+5] + r0[0][2] * mat[2*6+5]; r1[1][0] = r0[1][0] * mat[0*6+3] + r0[1][1] * mat[1*6+3] + r0[1][2] * mat[2*6+3]; r1[1][1] = r0[1][0] * mat[0*6+4] + r0[1][1] * mat[1*6+4] + r0[1][2] * mat[2*6+4]; r1[1][2] = r0[1][0] * mat[0*6+5] + r0[1][1] * mat[1*6+5] + r0[1][2] * mat[2*6+5]; r1[2][0] = r0[2][0] * mat[0*6+3] + r0[2][1] * mat[1*6+3] + r0[2][2] * mat[2*6+3]; r1[2][1] = r0[2][0] * mat[0*6+4] + r0[2][1] * mat[1*6+4] + r0[2][2] * mat[2*6+4]; r1[2][2] = r0[2][0] * mat[0*6+5] + r0[2][1] * mat[1*6+5] + r0[2][2] * mat[2*6+5]; // r2 = m2 * r1; r2[0][0] = mat[3*6+0] * r1[0][0] + mat[3*6+1] * r1[1][0] + mat[3*6+2] * r1[2][0]; r2[0][1] = mat[3*6+0] * r1[0][1] + mat[3*6+1] * r1[1][1] + mat[3*6+2] * r1[2][1]; r2[0][2] = mat[3*6+0] * r1[0][2] + mat[3*6+1] * r1[1][2] + mat[3*6+2] * r1[2][2]; r2[1][0] = mat[4*6+0] * r1[0][0] + mat[4*6+1] * r1[1][0] + mat[4*6+2] * r1[2][0]; r2[1][1] = mat[4*6+0] * r1[0][1] + mat[4*6+1] * r1[1][1] + mat[4*6+2] * r1[2][1]; r2[1][2] = mat[4*6+0] * r1[0][2] + mat[4*6+1] * r1[1][2] + mat[4*6+2] * r1[2][2]; r2[2][0] = mat[5*6+0] * r1[0][0] + mat[5*6+1] * r1[1][0] + mat[5*6+2] * r1[2][0]; r2[2][1] = mat[5*6+0] * r1[0][1] + mat[5*6+1] * r1[1][1] + mat[5*6+2] * r1[2][1]; r2[2][2] = mat[5*6+0] * r1[0][2] + mat[5*6+1] * r1[1][2] + mat[5*6+2] * r1[2][2]; // r3 = r2 - m3; r3[0][0] = r2[0][0] - mat[3*6+3]; r3[0][1] = r2[0][1] - mat[3*6+4]; r3[0][2] = r2[0][2] - mat[3*6+5]; r3[1][0] = r2[1][0] - mat[4*6+3]; r3[1][1] = r2[1][1] - mat[4*6+4]; r3[1][2] = r2[1][2] - mat[4*6+5]; r3[2][0] = r2[2][0] - mat[5*6+3]; r3[2][1] = r2[2][1] - mat[5*6+4]; r3[2][2] = r2[2][2] - mat[5*6+5]; // r3.InverseSelf(); r2[0][0] = r3[1][1] * r3[2][2] - r3[1][2] * r3[2][1]; r2[1][0] = r3[1][2] * r3[2][0] - r3[1][0] * r3[2][2]; r2[2][0] = r3[1][0] * r3[2][1] - r3[1][1] * r3[2][0]; det = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0] + r3[0][2] * r2[2][0]; if ( idMath::Fabs( det ) < MATRIX_INVERSE_EPSILON ) { return false; } invDet = 1.0f / det; r2[0][1] = r3[0][2] * r3[2][1] - r3[0][1] * r3[2][2]; r2[0][2] = r3[0][1] * r3[1][2] - r3[0][2] * r3[1][1]; r2[1][1] = r3[0][0] * r3[2][2] - r3[0][2] * r3[2][0]; r2[1][2] = r3[0][2] * r3[1][0] - r3[0][0] * r3[1][2]; r2[2][1] = r3[0][1] * r3[2][0] - r3[0][0] * r3[2][1]; r2[2][2] = r3[0][0] * r3[1][1] - r3[0][1] * r3[1][0]; r3[0][0] = r2[0][0] * invDet; r3[0][1] = r2[0][1] * invDet; r3[0][2] = r2[0][2] * invDet; r3[1][0] = r2[1][0] * invDet; r3[1][1] = r2[1][1] * invDet; r3[1][2] = r2[1][2] * invDet; r3[2][0] = r2[2][0] * invDet; r3[2][1] = r2[2][1] * invDet; r3[2][2] = r2[2][2] * invDet; // r2 = m2 * r0; r2[0][0] = mat[3*6+0] * r0[0][0] + mat[3*6+1] * r0[1][0] + mat[3*6+2] * r0[2][0]; r2[0][1] = mat[3*6+0] * r0[0][1] + mat[3*6+1] * r0[1][1] + mat[3*6+2] * r0[2][1]; r2[0][2] = mat[3*6+0] * r0[0][2] + mat[3*6+1] * r0[1][2] + mat[3*6+2] * r0[2][2]; r2[1][0] = mat[4*6+0] * r0[0][0] + mat[4*6+1] * r0[1][0] + mat[4*6+2] * r0[2][0]; r2[1][1] = mat[4*6+0] * r0[0][1] + mat[4*6+1] * r0[1][1] + mat[4*6+2] * r0[2][1]; r2[1][2] = mat[4*6+0] * r0[0][2] + mat[4*6+1] * r0[1][2] + mat[4*6+2] * r0[2][2]; r2[2][0] = mat[5*6+0] * r0[0][0] + mat[5*6+1] * r0[1][0] + mat[5*6+2] * r0[2][0]; r2[2][1] = mat[5*6+0] * r0[0][1] + mat[5*6+1] * r0[1][1] + mat[5*6+2] * r0[2][1]; r2[2][2] = mat[5*6+0] * r0[0][2] + mat[5*6+1] * r0[1][2] + mat[5*6+2] * r0[2][2]; // m2 = r3 * r2; mat[3*6+0] = r3[0][0] * r2[0][0] + r3[0][1] * r2[1][0] + r3[0][2] * r2[2][0]; mat[3*6+1] = r3[0][0] * r2[0][1] + r3[0][1] * r2[1][1] + r3[0][2] * r2[2][1]; mat[3*6+2] = r3[0][0] * r2[0][2] + r3[0][1] * r2[1][2] + r3[0][2] * r2[2][2]; mat[4*6+0] = r3[1][0] * r2[0][0] + r3[1][1] * r2[1][0] + r3[1][2] * r2[2][0]; mat[4*6+1] = r3[1][0] * r2[0][1] + r3[1][1] * r2[1][1] + r3[1][2] * r2[2][1]; mat[4*6+2] = r3[1][0] * r2[0][2] + r3[1][1] * r2[1][2] + r3[1][2] * r2[2][2]; mat[5*6+0] = r3[2][0] * r2[0][0] + r3[2][1] * r2[1][0] + r3[2][2] * r2[2][0]; mat[5*6+1] = r3[2][0] * r2[0][1] + r3[2][1] * r2[1][1] + r3[2][2] * r2[2][1]; mat[5*6+2] = r3[2][0] * r2[0][2] + r3[2][1] * r2[1][2] + r3[2][2] * r2[2][2]; // m0 = r0 - r1 * m2; mat[0*6+0] = r0[0][0] - r1[0][0] * mat[3*6+0] - r1[0][1] * mat[4*6+0] - r1[0][2] * mat[5*6+0]; mat[0*6+1] = r0[0][1] - r1[0][0] * mat[3*6+1] - r1[0][1] * mat[4*6+1] - r1[0][2] * mat[5*6+1]; mat[0*6+2] = r0[0][2] - r1[0][0] * mat[3*6+2] - r1[0][1] * mat[4*6+2] - r1[0][2] * mat[5*6+2]; mat[1*6+0] = r0[1][0] - r1[1][0] * mat[3*6+0] - r1[1][1] * mat[4*6+0] - r1[1][2] * mat[5*6+0]; mat[1*6+1] = r0[1][1] - r1[1][0] * mat[3*6+1] - r1[1][1] * mat[4*6+1] - r1[1][2] * mat[5*6+1]; mat[1*6+2] = r0[1][2] - r1[1][0] * mat[3*6+2] - r1[1][1] * mat[4*6+2] - r1[1][2] * mat[5*6+2]; mat[2*6+0] = r0[2][0] - r1[2][0] * mat[3*6+0] - r1[2][1] * mat[4*6+0] - r1[2][2] * mat[5*6+0]; mat[2*6+1] = r0[2][1] - r1[2][0] * mat[3*6+1] - r1[2][1] * mat[4*6+1] - r1[2][2] * mat[5*6+1]; mat[2*6+2] = r0[2][2] - r1[2][0] * mat[3*6+2] - r1[2][1] * mat[4*6+2] - r1[2][2] * mat[5*6+2]; // m1 = r1 * r3; mat[0*6+3] = r1[0][0] * r3[0][0] + r1[0][1] * r3[1][0] + r1[0][2] * r3[2][0]; mat[0*6+4] = r1[0][0] * r3[0][1] + r1[0][1] * r3[1][1] + r1[0][2] * r3[2][1]; mat[0*6+5] = r1[0][0] * r3[0][2] + r1[0][1] * r3[1][2] + r1[0][2] * r3[2][2]; mat[1*6+3] = r1[1][0] * r3[0][0] + r1[1][1] * r3[1][0] + r1[1][2] * r3[2][0]; mat[1*6+4] = r1[1][0] * r3[0][1] + r1[1][1] * r3[1][1] + r1[1][2] * r3[2][1]; mat[1*6+5] = r1[1][0] * r3[0][2] + r1[1][1] * r3[1][2] + r1[1][2] * r3[2][2]; mat[2*6+3] = r1[2][0] * r3[0][0] + r1[2][1] * r3[1][0] + r1[2][2] * r3[2][0]; mat[2*6+4] = r1[2][0] * r3[0][1] + r1[2][1] * r3[1][1] + r1[2][2] * r3[2][1]; mat[2*6+5] = r1[2][0] * r3[0][2] + r1[2][1] * r3[1][2] + r1[2][2] * r3[2][2]; // m3 = -r3; mat[3*6+3] = -r3[0][0]; mat[3*6+4] = -r3[0][1]; mat[3*6+5] = -r3[0][2]; mat[4*6+3] = -r3[1][0]; mat[4*6+4] = -r3[1][1]; mat[4*6+5] = -r3[1][2]; mat[5*6+3] = -r3[2][0]; mat[5*6+4] = -r3[2][1]; mat[5*6+5] = -r3[2][2]; return true; #endif } /* ============= idMat6::ToString ============= */ const char *idMat6::ToString( int precision ) const { return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision ); } //=============================================================== // // idMatX // //=============================================================== float idMatX::temp[MATX_MAX_TEMP+4]; float * idMatX::tempPtr = (float *) ( ( (int) idMatX::temp + 15 ) & ~15 ); int idMatX::tempIndex = 0; /* ============ idMatX::ChangeSize ============ */ void idMatX::ChangeSize( int rows, int columns, bool makeZero ) { int alloc = ( rows * columns + 3 ) & ~3; if ( alloc > alloced && alloced != -1 ) { float *oldMat = mat; mat = (float *) Mem_Alloc16( alloc * sizeof( float ) ); if ( makeZero ) { memset( mat, 0, alloc * sizeof( float ) ); } alloced = alloc; if ( oldMat ) { int minRow = Min( numRows, rows ); int minColumn = Min( numColumns, columns ); for ( int i = 0; i < minRow; i++ ) { for ( int j = 0; j < minColumn; j++ ) { mat[ i * columns + j ] = oldMat[ i * numColumns + j ]; } } Mem_Free16( oldMat ); } } else { if ( columns < numColumns ) { int minRow = Min( numRows, rows ); for ( int i = 0; i < minRow; i++ ) { for ( int j = 0; j < columns; j++ ) { mat[ i * columns + j ] = mat[ i * numColumns + j ]; } } } else if ( columns > numColumns ) { for ( int i = Min( numRows, rows ) - 1; i >= 0; i-- ) { if ( makeZero ) { for ( int j = columns - 1; j >= numColumns; j-- ) { mat[ i * columns + j ] = 0.0f; } } for ( int j = numColumns - 1; j >= 0; j-- ) { mat[ i * columns + j ] = mat[ i * numColumns + j ]; } } } if ( makeZero && rows > numRows ) { memset( mat + numRows * columns, 0, ( rows - numRows ) * columns * sizeof( float ) ); } } numRows = rows; numColumns = columns; MATX_CLEAREND(); } /* ============ idMatX::RemoveRow ============ */ idMatX &idMatX::RemoveRow( int r ) { int i; assert( r < numRows ); numRows--; for ( i = r; i < numRows; i++ ) { memcpy( &mat[i * numColumns], &mat[( i + 1 ) * numColumns], numColumns * sizeof( float ) ); } return *this; } /* ============ idMatX::RemoveColumn ============ */ idMatX &idMatX::RemoveColumn( int r ) { int i; assert( r < numColumns ); numColumns--; for ( i = 0; i < numRows - 1; i++ ) { memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) ); } memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) ); return *this; } /* ============ idMatX::RemoveRowColumn ============ */ idMatX &idMatX::RemoveRowColumn( int r ) { int i; assert( r < numRows && r < numColumns ); numRows--; numColumns--; if ( r > 0 ) { for ( i = 0; i < r - 1; i++ ) { memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) ); } memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) ); } memcpy( &mat[r * numColumns], &mat[( r + 1 ) * ( numColumns + 1 )], r * sizeof( float ) ); for ( i = r; i < numRows - 1; i++ ) { memcpy( &mat[i * numColumns + r], &mat[( i + 1 ) * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) ); } memcpy( &mat[i * numColumns + r], &mat[( i + 1 ) * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) ); return *this; } /* ============ idMatX::IsOrthogonal returns true if (*this) * this->Transpose() == Identity ============ */ bool idMatX::IsOrthogonal( const float epsilon ) const { float *ptr1, *ptr2, sum; if ( !IsSquare() ) { return false; } ptr1 = mat; for ( int i = 0; i < numRows; i++ ) { for ( int j = 0; j < numColumns; j++ ) { ptr2 = mat + j; sum = ptr1[0] * ptr2[0] - (float) ( i == j ); for ( int n = 1; n < numColumns; n++ ) { ptr2 += numColumns; sum += ptr1[n] * ptr2[0]; } if ( idMath::Fabs( sum ) > epsilon ) { return false; } } ptr1 += numColumns; } return true; } /* ============ idMatX::IsOrthonormal returns true if (*this) * this->Transpose() == Identity and the length of each column vector is 1 ============ */ bool idMatX::IsOrthonormal( const float epsilon ) const { float *ptr1, *ptr2, sum; if ( !IsSquare() ) { return false; } ptr1 = mat; for ( int i = 0; i < numRows; i++ ) { for ( int j = 0; j < numColumns; j++ ) { ptr2 = mat + j; sum = ptr1[0] * ptr2[0] - (float) ( i == j ); for ( int n = 1; n < numColumns; n++ ) { ptr2 += numColumns; sum += ptr1[n] * ptr2[0]; } if ( idMath::Fabs( sum ) > epsilon ) { return false; } } ptr1 += numColumns; ptr2 = mat + i; sum = ptr2[0] * ptr2[0] - 1.0f; for ( i = 1; i < numRows; i++ ) { ptr2 += numColumns; sum += ptr2[i] * ptr2[i]; } if ( idMath::Fabs( sum ) > epsilon ) { return false; } } return true; } /* ============ idMatX::IsPMatrix returns true if the matrix is a P-matrix A square matrix is a P-matrix if all its principal minors are positive. ============ */ bool idMatX::IsPMatrix( const float epsilon ) const { int i, j; float d; idMatX m; if ( !IsSquare() ) { return false; } if ( numRows <= 0 ) { return true; } if ( (*this)[0][0] <= epsilon ) { return false; } if ( numRows <= 1 ) { return true; } m.SetData( numRows - 1, numColumns - 1, MATX_ALLOCA( ( numRows - 1 ) * ( numColumns - 1 ) ) ); for ( i = 1; i < numRows; i++ ) { for ( j = 1; j < numColumns; j++ ) { m[i-1][j-1] = (*this)[i][j]; } } if ( !m.IsPMatrix( epsilon ) ) { return false; } for ( i = 1; i < numRows; i++ ) { d = (*this)[i][0] / (*this)[0][0]; for ( j = 1; j < numColumns; j++ ) { m[i-1][j-1] = (*this)[i][j] - d * (*this)[0][j]; } } if ( !m.IsPMatrix( epsilon ) ) { return false; } return true; } /* ============ idMatX::IsZMatrix returns true if the matrix is a Z-matrix A square matrix M is a Z-matrix if M[i][j] <= 0 for all i != j. ============ */ bool idMatX::IsZMatrix( const float epsilon ) const { int i, j; if ( !IsSquare() ) { return false; } for ( i = 0; i < numRows; i++ ) { for ( j = 0; j < numColumns; j++ ) { if ( (*this)[i][j] > epsilon && i != j ) { return false; } } } return true; } /* ============ idMatX::IsPositiveDefinite returns true if the matrix is Positive Definite (PD) A square matrix M of order n is said to be PD if y'My > 0 for all vectors y of dimension n, y != 0. ============ */ bool idMatX::IsPositiveDefinite( const float epsilon ) const { int i, j, k; float d, s; idMatX m; // the matrix must be square if ( !IsSquare() ) { return false; } // copy matrix m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); m = *this; // add transpose for ( i = 0; i < numRows; i++ ) { for ( j = 0; j < numColumns; j++ ) { m[i][j] += (*this)[j][i]; } } // test Positive Definiteness with Gaussian pivot steps for ( i = 0; i < numRows; i++ ) { for ( j = i; j < numColumns; j++ ) { if ( m[j][j] <= epsilon ) { return false; } } d = 1.0f / m[i][i]; for ( j = i + 1; j < numColumns; j++ ) { s = d * m[j][i]; m[j][i] = 0.0f; for ( k = i + 1; k < numRows; k++ ) { m[j][k] -= s * m[i][k]; } } } return true; } /* ============ idMatX::IsSymmetricPositiveDefinite returns true if the matrix is Symmetric Positive Definite (PD) ============ */ bool idMatX::IsSymmetricPositiveDefinite( const float epsilon ) const { idMatX m; // the matrix must be symmetric if ( !IsSymmetric( epsilon ) ) { return false; } // copy matrix m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); m = *this; // being able to obtain Cholesky factors is both a necessary and sufficient condition for positive definiteness return m.Cholesky_Factor(); } /* ============ idMatX::IsPositiveSemiDefinite returns true if the matrix is Positive Semi Definite (PSD) A square matrix M of order n is said to be PSD if y'My >= 0 for all vectors y of dimension n, y != 0. ============ */ bool idMatX::IsPositiveSemiDefinite( const float epsilon ) const { int i, j, k; float d, s; idMatX m; // the matrix must be square if ( !IsSquare() ) { return false; } // copy original matrix m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); m = *this; // add transpose for ( i = 0; i < numRows; i++ ) { for ( j = 0; j < numColumns; j++ ) { m[i][j] += (*this)[j][i]; } } // test Positive Semi Definiteness with Gaussian pivot steps for ( i = 0; i < numRows; i++ ) { for ( j = i; j < numColumns; j++ ) { if ( m[j][j] < -epsilon ) { return false; } if ( m[j][j] > epsilon ) { continue; } for ( k = 0; k < numRows; k++ ) { if ( idMath::Fabs( m[k][j] ) > epsilon ) { return false; } if ( idMath::Fabs( m[j][k] ) > epsilon ) { return false; } } } if ( m[i][i] <= epsilon ) { continue; } d = 1.0f / m[i][i]; for ( j = i + 1; j < numColumns; j++ ) { s = d * m[j][i]; m[j][i] = 0.0f; for ( k = i + 1; k < numRows; k++ ) { m[j][k] -= s * m[i][k]; } } } return true; } /* ============ idMatX::IsSymmetricPositiveSemiDefinite returns true if the matrix is Symmetric Positive Semi Definite (PSD) ============ */ bool idMatX::IsSymmetricPositiveSemiDefinite( const float epsilon ) const { // the matrix must be symmetric if ( !IsSymmetric( epsilon ) ) { return false; } return IsPositiveSemiDefinite( epsilon ); } /* ============ idMatX::LowerTriangularInverse in-place inversion of the lower triangular matrix ============ */ bool idMatX::LowerTriangularInverse( void ) { int i, j, k; double d, sum; for ( i = 0; i < numRows; i++ ) { d = (*this)[i][i]; if ( d == 0.0f ) { return false; } (*this)[i][i] = d = 1.0f / d; for ( j = 0; j < i; j++ ) { sum = 0.0f; for ( k = j; k < i; k++ ) { sum -= (*this)[i][k] * (*this)[k][j]; } (*this)[i][j] = sum * d; } } return true; } /* ============ idMatX::UpperTriangularInverse in-place inversion of the upper triangular matrix ============ */ bool idMatX::UpperTriangularInverse( void ) { int i, j, k; double d, sum; for ( i = numRows-1; i >= 0; i-- ) { d = (*this)[i][i]; if ( d == 0.0f ) { return false; } (*this)[i][i] = d = 1.0f / d; for ( j = numRows-1; j > i; j-- ) { sum = 0.0f; for ( k = j; k > i; k-- ) { sum -= (*this)[i][k] * (*this)[k][j]; } (*this)[i][j] = sum * d; } } return true; } /* ============= idMatX::ToString ============= */ const char *idMatX::ToString( int precision ) const { return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision ); } /* ============ idMatX::Update_RankOne Updates the matrix to obtain the matrix: A + alpha * v * w' ============ */ void idMatX::Update_RankOne( const idVecX &v, const idVecX &w, float alpha ) { int i, j; float s; assert( v.GetSize() >= numRows ); assert( w.GetSize() >= numColumns ); for ( i = 0; i < numRows; i++ ) { s = alpha * v[i]; for ( j = 0; j < numColumns; j++ ) { (*this)[i][j] += s * w[j]; } } } /* ============ idMatX::Update_RankOneSymmetric Updates the matrix to obtain the matrix: A + alpha * v * v' ============ */ void idMatX::Update_RankOneSymmetric( const idVecX &v, float alpha ) { int i, j; float s; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); for ( i = 0; i < numRows; i++ ) { s = alpha * v[i]; for ( j = 0; j < numColumns; j++ ) { (*this)[i][j] += s * v[j]; } } } /* ============ idMatX::Update_RowColumn Updates the matrix to obtain the matrix: [ 0 a 0 ] A + [ d b e ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1] ============ */ void idMatX::Update_RowColumn( const idVecX &v, const idVecX &w, int r ) { int i; assert( w[r] == 0.0f ); assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); for ( i = 0; i < numRows; i++ ) { (*this)[i][r] += v[i]; } for ( i = 0; i < numColumns; i++ ) { (*this)[r][i] += w[i]; } } /* ============ idMatX::Update_RowColumnSymmetric Updates the matrix to obtain the matrix: [ 0 a 0 ] A + [ a b c ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1] ============ */ void idMatX::Update_RowColumnSymmetric( const idVecX &v, int r ) { int i; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); for ( i = 0; i < r; i++ ) { (*this)[i][r] += v[i]; (*this)[r][i] += v[i]; } (*this)[r][r] += v[r]; for ( i = r+1; i < numRows; i++ ) { (*this)[i][r] += v[i]; (*this)[r][i] += v[i]; } } /* ============ idMatX::Update_Increment Updates the matrix to obtain the matrix: [ A a ] [ c b ] where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1]], w[numColumns] = 0 ============ */ void idMatX::Update_Increment( const idVecX &v, const idVecX &w ) { int i; assert( numRows == numColumns ); assert( v.GetSize() >= numRows+1 ); assert( w.GetSize() >= numColumns+1 ); ChangeSize( numRows+1, numColumns+1, false ); for ( i = 0; i < numRows; i++ ) { (*this)[i][numColumns-1] = v[i]; } for ( i = 0; i < numColumns-1; i++ ) { (*this)[numRows-1][i] = w[i]; } } /* ============ idMatX::Update_IncrementSymmetric Updates the matrix to obtain the matrix: [ A a ] [ a b ] where: a = v[0,numRows-1], b = v[numRows] ============ */ void idMatX::Update_IncrementSymmetric( const idVecX &v ) { int i; assert( numRows == numColumns ); assert( v.GetSize() >= numRows+1 ); ChangeSize( numRows+1, numColumns+1, false ); for ( i = 0; i < numRows-1; i++ ) { (*this)[i][numColumns-1] = v[i]; } for ( i = 0; i < numColumns; i++ ) { (*this)[numRows-1][i] = v[i]; } } /* ============ idMatX::Update_Decrement Updates the matrix to obtain a matrix with row r and column r removed. ============ */ void idMatX::Update_Decrement( int r ) { RemoveRowColumn( r ); } /* ============ idMatX::Inverse_GaussJordan in-place inversion using Gauss-Jordan elimination ============ */ bool idMatX::Inverse_GaussJordan( void ) { int i, j, k, r, c; float d, max; assert( numRows == numColumns ); int *columnIndex = (int *) _alloca16( numRows * sizeof( int ) ); int *rowIndex = (int *) _alloca16( numRows * sizeof( int ) ); bool *pivot = (bool *) _alloca16( numRows * sizeof( bool ) ); memset( pivot, 0, numRows * sizeof( bool ) ); // elimination with full pivoting for ( i = 0; i < numRows; i++ ) { // search the whole matrix except for pivoted rows for the maximum absolute value max = 0.0f; r = c = 0; for ( j = 0; j < numRows; j++ ) { if ( !pivot[j] ) { for ( k = 0; k < numRows; k++ ) { if ( !pivot[k] ) { d = idMath::Fabs( (*this)[j][k] ); if ( d > max ) { max = d; r = j; c = k; } } } } } if ( max == 0.0f ) { // matrix is not invertible return false; } pivot[c] = true; // swap rows such that entry (c,c) has the pivot entry if ( r != c ) { SwapRows( r, c ); } // keep track of the row permutation rowIndex[i] = r; columnIndex[i] = c; // scale the row to make the pivot entry equal to 1 d = 1.0f / (*this)[c][c]; (*this)[c][c] = 1.0f; for ( k = 0; k < numRows; k++ ) { (*this)[c][k] *= d; } // zero out the pivot column entries in the other rows for ( j = 0; j < numRows; j++ ) { if ( j != c ) { d = (*this)[j][c]; (*this)[j][c] = 0.0f; for ( k = 0; k < numRows; k++ ) { (*this)[j][k] -= (*this)[c][k] * d; } } } } // reorder rows to store the inverse of the original matrix for ( j = numRows - 1; j >= 0; j-- ) { if ( rowIndex[j] != columnIndex[j] ) { for ( k = 0; k < numRows; k++ ) { d = (*this)[k][rowIndex[j]]; (*this)[k][rowIndex[j]] = (*this)[k][columnIndex[j]]; (*this)[k][columnIndex[j]] = d; } } } return true; } /* ============ idMatX::Inverse_UpdateRankOne Updates the in-place inverse using the Sherman-Morrison formula to obtain the inverse for the matrix: A + alpha * v * w' ============ */ bool idMatX::Inverse_UpdateRankOne( const idVecX &v, const idVecX &w, float alpha ) { int i, j; float beta, s; idVecX y, z; assert( numRows == numColumns ); assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); y.SetData( numRows, VECX_ALLOCA( numRows ) ); z.SetData( numRows, VECX_ALLOCA( numRows ) ); Multiply( y, v ); TransposeMultiply( z, w ); beta = 1.0f + ( w * y ); if ( beta == 0.0f ) { return false; } alpha /= beta; for ( i = 0; i < numRows; i++ ) { s = y[i] * alpha; for ( j = 0; j < numColumns; j++ ) { (*this)[i][j] -= s * z[j]; } } return true; } /* ============ idMatX::Inverse_UpdateRowColumn Updates the in-place inverse to obtain the inverse for the matrix: [ 0 a 0 ] A + [ d b e ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1] ============ */ bool idMatX::Inverse_UpdateRowColumn( const idVecX &v, const idVecX &w, int r ) { idVecX s; assert( numRows == numColumns ); assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numRows && r < numColumns ); assert( w[r] == 0.0f ); s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) ); s.Zero(); s[r] = 1.0f; if ( !Inverse_UpdateRankOne( v, s, 1.0f ) ) { return false; } if ( !Inverse_UpdateRankOne( s, w, 1.0f ) ) { return false; } return true; } /* ============ idMatX::Inverse_UpdateIncrement Updates the in-place inverse to obtain the inverse for the matrix: [ A a ] [ c b ] where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0 ============ */ bool idMatX::Inverse_UpdateIncrement( const idVecX &v, const idVecX &w ) { idVecX v2; assert( numRows == numColumns ); assert( v.GetSize() >= numRows+1 ); assert( w.GetSize() >= numColumns+1 ); ChangeSize( numRows+1, numColumns+1, true ); (*this)[numRows-1][numRows-1] = 1.0f; v2.SetData( numRows, VECX_ALLOCA( numRows ) ); v2 = v; v2[numRows-1] -= 1.0f; return Inverse_UpdateRowColumn( v2, w, numRows-1 ); } /* ============ idMatX::Inverse_UpdateDecrement Updates the in-place inverse to obtain the inverse of the matrix with row r and column r removed. v and w should store the column and row of the original matrix respectively. ============ */ bool idMatX::Inverse_UpdateDecrement( const idVecX &v, const idVecX &w, int r ) { idVecX v1, w1; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( w.GetSize() >= numColumns ); assert( r >= 0 && r < numRows && r < numColumns ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); w1.SetData( numRows, VECX_ALLOCA( numRows ) ); // update the row and column to identity v1 = -v; w1 = -w; v1[r] += 1.0f; w1[r] = 0.0f; if ( !Inverse_UpdateRowColumn( v1, w1, r ) ) { return false; } // physically remove the row and column Update_Decrement( r ); return true; } /* ============ idMatX::Inverse_Solve Solve Ax = b with A inverted ============ */ void idMatX::Inverse_Solve( idVecX &x, const idVecX &b ) const { Multiply( x, b ); } /* ============ idMatX::LU_Factor in-place factorization: LU L is a triangular matrix stored in the lower triangle. L has ones on the diagonal that are not stored. U is a triangular matrix stored in the upper triangle. If index != NULL partial pivoting is used for numerical stability. If index != NULL it must point to an array of numRow integers and is used to keep track of the row permutation. If det != NULL the determinant of the matrix is calculated and stored. ============ */ bool idMatX::LU_Factor( int *index, float *det ) { int i, j, k, newi, min; double s, t, d, w; // if partial pivoting should be used if ( index ) { for ( i = 0; i < numRows; i++ ) { index[i] = i; } } w = 1.0f; min = Min( numRows, numColumns ); for ( i = 0; i < min; i++ ) { newi = i; s = idMath::Fabs( (*this)[i][i] ); if ( index ) { // find the largest absolute pivot for ( j = i + 1; j < numRows; j++ ) { t = idMath::Fabs( (*this)[j][i] ); if ( t > s ) { newi = j; s = t; } } } if ( s == 0.0f ) { return false; } if ( newi != i ) { w = -w; // swap index elements k = index[i]; index[i] = index[newi]; index[newi] = k; // swap rows for ( j = 0; j < numColumns; j++ ) { t = (*this)[newi][j]; (*this)[newi][j] = (*this)[i][j]; (*this)[i][j] = t; } } if ( i < numRows ) { d = 1.0f / (*this)[i][i]; for ( j = i + 1; j < numRows; j++ ) { (*this)[j][i] *= d; } } if ( i < min-1 ) { for ( j = i + 1; j < numRows; j++ ) { d = (*this)[j][i]; for ( k = i + 1; k < numColumns; k++ ) { (*this)[j][k] -= d * (*this)[i][k]; } } } } if ( det ) { for ( i = 0; i < numRows; i++ ) { w *= (*this)[i][i]; } *det = w; } return true; } /* ============ idMatX::LU_UpdateRankOne Updates the in-place LU factorization to obtain the factors for the matrix: LU + alpha * v * w' ============ */ bool idMatX::LU_UpdateRankOne( const idVecX &v, const idVecX &w, float alpha, int *index ) { int i, j, max; float *y, *z; double diag, beta, p0, p1, d; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); y = (float *) _alloca16( v.GetSize() * sizeof( float ) ); z = (float *) _alloca16( w.GetSize() * sizeof( float ) ); if ( index != NULL ) { for ( i = 0; i < numRows; i++ ) { y[i] = alpha * v[index[i]]; } } else { for ( i = 0; i < numRows; i++ ) { y[i] = alpha * v[i]; } } memcpy( z, w.ToFloatPtr(), w.GetSize() * sizeof( float ) ); max = Min( numRows, numColumns ); for ( i = 0; i < max; i++ ) { diag = (*this)[i][i]; p0 = y[i]; p1 = z[i]; diag += p0 * p1; if ( diag == 0.0f ) { return false; } beta = p1 / diag; (*this)[i][i] = diag; for ( j = i+1; j < numColumns; j++ ) { d = (*this)[i][j]; d += p0 * z[j]; z[j] -= beta * d; (*this)[i][j] = d; } for ( j = i+1; j < numRows; j++ ) { d = (*this)[j][i]; y[j] -= p0 * d; d += beta * y[j]; (*this)[j][i] = d; } } return true; } /* ============ idMatX::LU_UpdateRowColumn Updates the in-place LU factorization to obtain the factors for the matrix: [ 0 a 0 ] LU + [ d b e ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1] ============ */ bool idMatX::LU_UpdateRowColumn( const idVecX &v, const idVecX &w, int r, int *index ) { #if 0 idVecX s; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numRows && r < numColumns ); assert( w[r] == 0.0f ); s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) ); s.Zero(); s[r] = 1.0f; if ( !LU_UpdateRankOne( v, s, 1.0f, index ) ) { return false; } if ( !LU_UpdateRankOne( s, w, 1.0f, index ) ) { return false; } return true; #else int i, j, min, max, rp; float *y0, *y1, *z0, *z1; double diag, beta0, beta1, p0, p1, q0, q1, d; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numColumns && r < numRows ); assert( w[r] == 0.0f ); y0 = (float *) _alloca16( v.GetSize() * sizeof( float ) ); z0 = (float *) _alloca16( w.GetSize() * sizeof( float ) ); y1 = (float *) _alloca16( v.GetSize() * sizeof( float ) ); z1 = (float *) _alloca16( w.GetSize() * sizeof( float ) ); if ( index != NULL ) { for ( i = 0; i < numRows; i++ ) { y0[i] = v[index[i]]; } rp = r; for ( i = 0; i < numRows; i++ ) { if ( index[i] == r ) { rp = i; break; } } } else { memcpy( y0, v.ToFloatPtr(), v.GetSize() * sizeof( float ) ); rp = r; } memset( y1, 0, v.GetSize() * sizeof( float ) ); y1[rp] = 1.0f; memset( z0, 0, w.GetSize() * sizeof( float ) ); z0[r] = 1.0f; memcpy( z1, w.ToFloatPtr(), w.GetSize() * sizeof( float ) ); // update the beginning of the to be updated row and column min = Min( r, rp ); for ( i = 0; i < min; i++ ) { p0 = y0[i]; beta1 = z1[i] / (*this)[i][i]; (*this)[i][r] += p0; for ( j = i+1; j < numColumns; j++ ) { z1[j] -= beta1 * (*this)[i][j]; } for ( j = i+1; j < numRows; j++ ) { y0[j] -= p0 * (*this)[j][i]; } (*this)[rp][i] += beta1; } // update the lower right corner starting at r,r max = Min( numRows, numColumns ); for ( i = min; i < max; i++ ) { diag = (*this)[i][i]; p0 = y0[i]; p1 = z0[i]; diag += p0 * p1; if ( diag == 0.0f ) { return false; } beta0 = p1 / diag; q0 = y1[i]; q1 = z1[i]; diag += q0 * q1; if ( diag == 0.0f ) { return false; } beta1 = q1 / diag; (*this)[i][i] = diag; for ( j = i+1; j < numColumns; j++ ) { d = (*this)[i][j]; d += p0 * z0[j]; z0[j] -= beta0 * d; d += q0 * z1[j]; z1[j] -= beta1 * d; (*this)[i][j] = d; } for ( j = i+1; j < numRows; j++ ) { d = (*this)[j][i]; y0[j] -= p0 * d; d += beta0 * y0[j]; y1[j] -= q0 * d; d += beta1 * y1[j]; (*this)[j][i] = d; } } return true; #endif } /* ============ idMatX::LU_UpdateIncrement Updates the in-place LU factorization to obtain the factors for the matrix: [ A a ] [ c b ] where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0 ============ */ bool idMatX::LU_UpdateIncrement( const idVecX &v, const idVecX &w, int *index ) { int i, j; float sum; assert( numRows == numColumns ); assert( v.GetSize() >= numRows+1 ); assert( w.GetSize() >= numColumns+1 ); ChangeSize( numRows+1, numColumns+1, true ); // add row to L for ( i = 0; i < numRows - 1; i++ ) { sum = w[i]; for ( j = 0; j < i; j++ ) { sum -= (*this)[numRows - 1][j] * (*this)[j][i]; } (*this)[numRows - 1 ][i] = sum / (*this)[i][i]; } // add row to the permutation index if ( index != NULL ) { index[numRows - 1] = numRows - 1; } // add column to U for ( i = 0; i < numRows; i++ ) { if ( index != NULL ) { sum = v[index[i]]; } else { sum = v[i]; } for ( j = 0; j < i; j++ ) { sum -= (*this)[i][j] * (*this)[j][numRows - 1]; } (*this)[i][numRows - 1] = sum; } return true; } /* ============ idMatX::LU_UpdateDecrement Updates the in-place LU factorization to obtain the factors for the matrix with row r and column r removed. v and w should store the column and row of the original matrix respectively. If index != NULL then u should store row index[r] of the original matrix. If index == NULL then u = w. ============ */ bool idMatX::LU_UpdateDecrement( const idVecX &v, const idVecX &w, const idVecX &u, int r, int *index ) { int i, p; idVecX v1, w1; assert( numRows == numColumns ); assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numRows && r < numColumns ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); w1.SetData( numRows, VECX_ALLOCA( numRows ) ); if ( index != NULL ) { // find the pivot row for ( p = i = 0; i < numRows; i++ ) { if ( index[i] == r ) { p = i; break; } } // update the row and column to identity v1 = -v; w1 = -u; if ( p != r ) { idSwap( v1[index[r]], v1[index[p]] ); idSwap( index[r], index[p] ); } v1[r] += 1.0f; w1[r] = 0.0f; if ( !LU_UpdateRowColumn( v1, w1, r, index ) ) { return false; } if ( p != r ) { if ( idMath::Fabs( u[p] ) < 1e-4f ) { // NOTE: an additional row interchange is required for numerical stability } // move row index[r] of the original matrix to row index[p] of the original matrix v1.Zero(); v1[index[p]] = 1.0f; w1 = u - w; if ( !LU_UpdateRankOne( v1, w1, 1.0f, index ) ) { return false; } } // remove the row from the permutation index for ( i = r; i < numRows - 1; i++ ) { index[i] = index[i+1]; } for ( i = 0; i < numRows - 1; i++ ) { if ( index[i] > r ) { index[i]--; } } } else { v1 = -v; w1 = -w; v1[r] += 1.0f; w1[r] = 0.0f; if ( !LU_UpdateRowColumn( v1, w1, r, index ) ) { return false; } } // physically remove the row and column Update_Decrement( r ); return true; } /* ============ idMatX::LU_Solve Solve Ax = b with A factored in-place as: LU ============ */ void idMatX::LU_Solve( idVecX &x, const idVecX &b, const int *index ) const { int i, j; double sum; assert( x.GetSize() == numColumns && b.GetSize() == numRows ); // solve L for ( i = 0; i < numRows; i++ ) { if ( index != NULL ) { sum = b[index[i]]; } else { sum = b[i]; } for ( j = 0; j < i; j++ ) { sum -= (*this)[i][j] * x[j]; } x[i] = sum; } // solve U for ( i = numRows - 1; i >= 0; i-- ) { sum = x[i]; for ( j = i + 1; j < numRows; j++ ) { sum -= (*this)[i][j] * x[j]; } x[i] = sum / (*this)[i][i]; } } /* ============ idMatX::LU_Inverse Calculates the inverse of the matrix which is factored in-place as LU ============ */ void idMatX::LU_Inverse( idMatX &inv, const int *index ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for ( i = 0; i < numRows; i++ ) { b[i] = 1.0f; LU_Solve( x, b, index ); for ( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::LU_UnpackFactors Unpacks the in-place LU factorization. ============ */ void idMatX::LU_UnpackFactors( idMatX &L, idMatX &U ) const { int i, j; L.Zero( numRows, numColumns ); U.Zero( numRows, numColumns ); for ( i = 0; i < numRows; i++ ) { for ( j = 0; j < i; j++ ) { L[i][j] = (*this)[i][j]; } L[i][i] = 1.0f; for ( j = i; j < numColumns; j++ ) { U[i][j] = (*this)[i][j]; } } } /* ============ idMatX::LU_MultiplyFactors Multiplies the factors of the in-place LU factorization to form the original matrix. ============ */ void idMatX::LU_MultiplyFactors( idMatX &m, const int *index ) const { int r, rp, i, j; double sum; m.SetSize( numRows, numColumns ); for ( r = 0; r < numRows; r++ ) { if ( index != NULL ) { rp = index[r]; } else { rp = r; } // calculate row of matrix for ( i = 0; i < numColumns; i++ ) { if ( i >= r ) { sum = (*this)[r][i]; } else { sum = 0.0f; } for ( j = 0; j <= i && j < r; j++ ) { sum += (*this)[r][j] * (*this)[j][i]; } m[rp][i] = sum; } } } /* ============ idMatX::QR_Factor in-place factorization: QR Q is an orthogonal matrix represented as a product of Householder matrices stored in the lower triangle and c. R is a triangular matrix stored in the upper triangle except for the diagonal elements which are stored in d. The initial matrix has to be square. ============ */ bool idMatX::QR_Factor( idVecX &c, idVecX &d ) { int i, j, k; double scale, s, t, sum; bool singular = false; assert( numRows == numColumns ); assert( c.GetSize() >= numRows && d.GetSize() >= numRows ); for ( k = 0; k < numRows-1; k++ ) { scale = 0.0f; for ( i = k; i < numRows; i++ ) { s = idMath::Fabs( (*this)[i][k] ); if ( s > scale ) { scale = s; } } if ( scale == 0.0f ) { singular = true; c[k] = d[k] = 0.0f; } else { s = 1.0f / scale; for ( i = k; i < numRows; i++ ) { (*this)[i][k] *= s; } sum = 0.0f; for ( i = k; i < numRows; i++ ) { s = (*this)[i][k]; sum += s * s; } s = idMath::Sqrt( sum ); if ( (*this)[k][k] < 0.0f ) { s = -s; } (*this)[k][k] += s; c[k] = s * (*this)[k][k]; d[k] = -scale * s; for ( j = k+1; j < numRows; j++ ) { sum = 0.0f; for ( i = k; i < numRows; i++ ) { sum += (*this)[i][k] * (*this)[i][j]; } t = sum / c[k]; for ( i = k; i < numRows; i++ ) { (*this)[i][j] -= t * (*this)[i][k]; } } } } d[numRows-1] = (*this)[ (numRows-1) ][ (numRows-1) ]; if ( d[numRows-1] == 0.0f ) { singular = true; } return !singular; } /* ============ idMatX::QR_Rotate Performs a Jacobi rotation on the rows i and i+1 of the unpacked QR factors. ============ */ void idMatX::QR_Rotate( idMatX &R, int i, float a, float b ) { int j; float f, c, s, w, y; if ( a == 0.0f ) { c = 0.0f; s = ( b >= 0.0f ) ? 1.0f : -1.0f; } else if ( idMath::Fabs( a ) > idMath::Fabs( b ) ) { f = b / a; c = idMath::Fabs( 1.0f / idMath::Sqrt( 1.0f + f * f ) ); if ( a < 0.0f ) { c = -c; } s = f * c; } else { f = a / b; s = idMath::Fabs( 1.0f / idMath::Sqrt( 1.0f + f * f ) ); if ( b < 0.0f ) { s = -s; } c = f * s; } for ( j = i; j < numRows; j++ ) { y = R[i][j]; w = R[i+1][j]; R[i][j] = c * y - s * w; R[i+1][j] = s * y + c * w; } for ( j = 0; j < numRows; j++ ) { y = (*this)[j][i]; w = (*this)[j][i+1]; (*this)[j][i] = c * y - s * w; (*this)[j][i+1] = s * y + c * w; } } /* ============ idMatX::QR_UpdateRankOne Updates the unpacked QR factorization to obtain the factors for the matrix: QR + alpha * v * w' ============ */ bool idMatX::QR_UpdateRankOne( idMatX &R, const idVecX &v, const idVecX &w, float alpha ) { int i, k; float f; idVecX u; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); u.SetData( v.GetSize(), VECX_ALLOCA( v.GetSize() ) ); TransposeMultiply( u, v ); u *= alpha; for ( k = v.GetSize()-1; k > 0; k-- ) { if ( u[k] != 0.0f ) { break; } } for ( i = k-1; i >= 0; i-- ) { QR_Rotate( R, i, u[i], -u[i+1] ); if ( u[i] == 0.0f ) { u[i] = idMath::Fabs( u[i+1] ); } else if ( idMath::Fabs( u[i] ) > idMath::Fabs( u[i+1] ) ) { f = u[i+1] / u[i]; u[i] = idMath::Fabs( u[i] ) * idMath::Sqrt( 1.0f + f * f ); } else { f = u[i] / u[i+1]; u[i] = idMath::Fabs( u[i+1] ) * idMath::Sqrt( 1.0f + f * f ); } } for ( i = 0; i < v.GetSize(); i++ ) { R[0][i] += u[0] * w[i]; } for ( i = 0; i < k; i++ ) { QR_Rotate( R, i, -R[i][i], R[i+1][i] ); } return true; } /* ============ idMatX::QR_UpdateRowColumn Updates the unpacked QR factorization to obtain the factors for the matrix: [ 0 a 0 ] QR + [ d b e ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1] ============ */ bool idMatX::QR_UpdateRowColumn( idMatX &R, const idVecX &v, const idVecX &w, int r ) { idVecX s; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numRows && r < numColumns ); assert( w[r] == 0.0f ); s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) ); s.Zero(); s[r] = 1.0f; if ( !QR_UpdateRankOne( R, v, s, 1.0f ) ) { return false; } if ( !QR_UpdateRankOne( R, s, w, 1.0f ) ) { return false; } return true; } /* ============ idMatX::QR_UpdateIncrement Updates the unpacked QR factorization to obtain the factors for the matrix: [ A a ] [ c b ] where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0 ============ */ bool idMatX::QR_UpdateIncrement( idMatX &R, const idVecX &v, const idVecX &w ) { idVecX v2; assert( numRows == numColumns ); assert( v.GetSize() >= numRows+1 ); assert( w.GetSize() >= numColumns+1 ); ChangeSize( numRows+1, numColumns+1, true ); (*this)[numRows-1][numRows-1] = 1.0f; R.ChangeSize( R.numRows+1, R.numColumns+1, true ); R[R.numRows-1][R.numRows-1] = 1.0f; v2.SetData( numRows, VECX_ALLOCA( numRows ) ); v2 = v; v2[numRows-1] -= 1.0f; return QR_UpdateRowColumn( R, v2, w, numRows-1 ); } /* ============ idMatX::QR_UpdateDecrement Updates the unpacked QR factorization to obtain the factors for the matrix with row r and column r removed. v and w should store the column and row of the original matrix respectively. ============ */ bool idMatX::QR_UpdateDecrement( idMatX &R, const idVecX &v, const idVecX &w, int r ) { idVecX v1, w1; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( w.GetSize() >= numColumns ); assert( r >= 0 && r < numRows && r < numColumns ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); w1.SetData( numRows, VECX_ALLOCA( numRows ) ); // update the row and column to identity v1 = -v; w1 = -w; v1[r] += 1.0f; w1[r] = 0.0f; if ( !QR_UpdateRowColumn( R, v1, w1, r ) ) { return false; } // physically remove the row and column Update_Decrement( r ); R.Update_Decrement( r ); return true; } /* ============ idMatX::QR_Solve Solve Ax = b with A factored in-place as: QR ============ */ void idMatX::QR_Solve( idVecX &x, const idVecX &b, const idVecX &c, const idVecX &d ) const { int i, j; double sum, t; assert( numRows == numColumns ); assert( x.GetSize() >= numRows && b.GetSize() >= numRows ); assert( c.GetSize() >= numRows && d.GetSize() >= numRows ); for ( i = 0; i < numRows; i++ ) { x[i] = b[i]; } // multiply b with transpose of Q for ( i = 0; i < numRows-1; i++ ) { sum = 0.0f; for ( j = i; j < numRows; j++ ) { sum += (*this)[j][i] * x[j]; } t = sum / c[i]; for ( j = i; j < numRows; j++ ) { x[j] -= t * (*this)[j][i]; } } // backsubstitution with R for ( i = numRows-1; i >= 0; i-- ) { sum = x[i]; for ( j = i + 1; j < numRows; j++ ) { sum -= (*this)[i][j] * x[j]; } x[i] = sum / d[i]; } } /* ============ idMatX::QR_Solve Solve Ax = b with A factored as: QR ============ */ void idMatX::QR_Solve( idVecX &x, const idVecX &b, const idMatX &R ) const { int i, j; double sum; assert( numRows == numColumns ); // multiply b with transpose of Q TransposeMultiply( x, b ); // backsubstitution with R for ( i = numRows-1; i >= 0; i-- ) { sum = x[i]; for ( j = i + 1; j < numRows; j++ ) { sum -= R[i][j] * x[j]; } x[i] = sum / R[i][i]; } } /* ============ idMatX::QR_Inverse Calculates the inverse of the matrix which is factored in-place as: QR ============ */ void idMatX::QR_Inverse( idMatX &inv, const idVecX &c, const idVecX &d ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for ( i = 0; i < numRows; i++ ) { b[i] = 1.0f; QR_Solve( x, b, c, d ); for ( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::QR_UnpackFactors Unpacks the in-place QR factorization. ============ */ void idMatX::QR_UnpackFactors( idMatX &Q, idMatX &R, const idVecX &c, const idVecX &d ) const { int i, j, k; double sum; Q.Identity( numRows, numColumns ); for ( i = 0; i < numColumns-1; i++ ) { if ( c[i] == 0.0f ) { continue; } for ( j = 0; j < numRows; j++ ) { sum = 0.0f; for ( k = i; k < numColumns; k++ ) { sum += (*this)[k][i] * Q[j][k]; } sum /= c[i]; for ( k = i; k < numColumns; k++ ) { Q[j][k] -= sum * (*this)[k][i]; } } } R.Zero( numRows, numColumns ); for ( i = 0; i < numRows; i++ ) { R[i][i] = d[i]; for ( j = i+1; j < numColumns; j++ ) { R[i][j] = (*this)[i][j]; } } } /* ============ idMatX::QR_MultiplyFactors Multiplies the factors of the in-place QR factorization to form the original matrix. ============ */ void idMatX::QR_MultiplyFactors( idMatX &m, const idVecX &c, const idVecX &d ) const { int i, j, k; double sum; idMatX Q; Q.Identity( numRows, numColumns ); for ( i = 0; i < numColumns-1; i++ ) { if ( c[i] == 0.0f ) { continue; } for ( j = 0; j < numRows; j++ ) { sum = 0.0f; for ( k = i; k < numColumns; k++ ) { sum += (*this)[k][i] * Q[j][k]; } sum /= c[i]; for ( k = i; k < numColumns; k++ ) { Q[j][k] -= sum * (*this)[k][i]; } } } for ( i = 0; i < numRows; i++ ) { for ( j = 0; j < numColumns; j++ ) { sum = Q[i][j] * d[i]; for ( k = 0; k < i; k++ ) { sum += Q[i][k] * (*this)[j][k]; } m[i][j] = sum; } } } /* ============ idMatX::Pythag Computes (a^2 + b^2)^1/2 without underflow or overflow. ============ */ float idMatX::Pythag( float a, float b ) const { double at, bt, ct; at = idMath::Fabs( a ); bt = idMath::Fabs( b ); if ( at > bt ) { ct = bt / at; return at * idMath::Sqrt( 1.0f + ct * ct ); } else { if ( bt ) { ct = at / bt; return bt * idMath::Sqrt( 1.0f + ct * ct ); } else { return 0.0f; } } } /* ============ idMatX::SVD_BiDiag ============ */ void idMatX::SVD_BiDiag( idVecX &w, idVecX &rv1, float &anorm ) { int i, j, k, l; double f, h, r, g, s, scale; anorm = 0.0f; g = s = scale = 0.0f; for ( i = 0; i < numColumns; i++ ) { l = i + 1; rv1[i] = scale * g; g = s = scale = 0.0f; if ( i < numRows ) { for ( k = i; k < numRows; k++ ) { scale += idMath::Fabs( (*this)[k][i] ); } if ( scale ) { for ( k = i; k < numRows; k++ ) { (*this)[k][i] /= scale; s += (*this)[k][i] * (*this)[k][i]; } f = (*this)[i][i]; g = idMath::Sqrt( s ); if ( f >= 0.0f ) { g = -g; } h = f * g - s; (*this)[i][i] = f - g; if ( i != (numColumns-1) ) { for ( j = l; j < numColumns; j++ ) { for ( s = 0.0f, k = i; k < numRows; k++ ) { s += (*this)[k][i] * (*this)[k][j]; } f = s / h; for ( k = i; k < numRows; k++ ) { (*this)[k][j] += f * (*this)[k][i]; } } } for ( k = i; k < numRows; k++ ) { (*this)[k][i] *= scale; } } } w[i] = scale * g; g = s = scale = 0.0f; if ( i < numRows && i != (numColumns-1) ) { for ( k = l; k < numColumns; k++ ) { scale += idMath::Fabs( (*this)[i][k] ); } if ( scale ) { for ( k = l; k < numColumns; k++ ) { (*this)[i][k] /= scale; s += (*this)[i][k] * (*this)[i][k]; } f = (*this)[i][l]; g = idMath::Sqrt( s ); if ( f >= 0.0f ) { g = -g; } h = 1.0f / ( f * g - s ); (*this)[i][l] = f - g; for ( k = l; k < numColumns; k++ ) { rv1[k] = (*this)[i][k] * h; } if ( i != (numRows-1) ) { for ( j = l; j < numRows; j++ ) { for ( s = 0.0f, k = l; k < numColumns; k++ ) { s += (*this)[j][k] * (*this)[i][k]; } for ( k = l; k < numColumns; k++ ) { (*this)[j][k] += s * rv1[k]; } } } for ( k = l; k < numColumns; k++ ) { (*this)[i][k] *= scale; } } } r = idMath::Fabs( w[i] ) + idMath::Fabs( rv1[i] ); if ( r > anorm ) { anorm = r; } } } /* ============ idMatX::SVD_InitialWV ============ */ void idMatX::SVD_InitialWV( idVecX &w, idMatX &V, idVecX &rv1 ) { int i, j, k, l; double f, g, s; g = 0.0f; for ( i = (numColumns-1); i >= 0; i-- ) { l = i + 1; if ( i < ( numColumns - 1 ) ) { if ( g ) { for ( j = l; j < numColumns; j++ ) { V[j][i] = ((*this)[i][j] / (*this)[i][l]) / g; } // double division to reduce underflow for ( j = l; j < numColumns; j++ ) { for ( s = 0.0f, k = l; k < numColumns; k++ ) { s += (*this)[i][k] * V[k][j]; } for ( k = l; k < numColumns; k++ ) { V[k][j] += s * V[k][i]; } } } for ( j = l; j < numColumns; j++ ) { V[i][j] = V[j][i] = 0.0f; } } V[i][i] = 1.0f; g = rv1[i]; } for ( i = numColumns - 1 ; i >= 0; i-- ) { l = i + 1; g = w[i]; if ( i < (numColumns-1) ) { for ( j = l; j < numColumns; j++ ) { (*this)[i][j] = 0.0f; } } if ( g ) { g = 1.0f / g; if ( i != (numColumns-1) ) { for ( j = l; j < numColumns; j++ ) { for ( s = 0.0f, k = l; k < numRows; k++ ) { s += (*this)[k][i] * (*this)[k][j]; } f = (s / (*this)[i][i]) * g; for ( k = i; k < numRows; k++ ) { (*this)[k][j] += f * (*this)[k][i]; } } } for ( j = i; j < numRows; j++ ) { (*this)[j][i] *= g; } } else { for ( j = i; j < numRows; j++ ) { (*this)[j][i] = 0.0f; } } (*this)[i][i] += 1.0f; } } /* ============ idMatX::SVD_Factor in-place factorization: U * Diag(w) * V.Transpose() known as the Singular Value Decomposition. U is a column-orthogonal matrix which overwrites the original matrix. w is a diagonal matrix with all elements >= 0 which are the singular values. V is the transpose of an orthogonal matrix. ============ */ bool idMatX::SVD_Factor( idVecX &w, idMatX &V ) { int flag, i, its, j, jj, k, l, nm; double c, f, h, s, x, y, z, r, g = 0.0f; float anorm = 0.0f; idVecX rv1; if ( numRows < numColumns ) { return false; } rv1.SetData( numColumns, VECX_ALLOCA( numColumns ) ); rv1.Zero(); w.Zero( numColumns ); V.Zero( numColumns, numColumns ); SVD_BiDiag( w, rv1, anorm ); SVD_InitialWV( w, V, rv1 ); for ( k = numColumns - 1; k >= 0; k-- ) { for ( its = 1; its <= 30; its++ ) { flag = 1; nm = 0; for ( l = k; l >= 0; l-- ) { nm = l - 1; if ( ( idMath::Fabs( rv1[l] ) + anorm ) == anorm /* idMath::Fabs( rv1[l] ) < idMath::FLT_EPSILON */ ) { flag = 0; break; } if ( ( idMath::Fabs( w[nm] ) + anorm ) == anorm /* idMath::Fabs( w[nm] ) < idMath::FLT_EPSILON */ ) { break; } } if ( flag ) { c = 0.0f; s = 1.0f; for ( i = l; i <= k; i++ ) { f = s * rv1[i]; if ( ( idMath::Fabs( f ) + anorm ) != anorm /* idMath::Fabs( f ) > idMath::FLT_EPSILON */ ) { g = w[i]; h = Pythag( f, g ); w[i] = h; h = 1.0f / h; c = g * h; s = -f * h; for ( j = 0; j < numRows; j++ ) { y = (*this)[j][nm]; z = (*this)[j][i]; (*this)[j][nm] = y * c + z * s; (*this)[j][i] = z * c - y * s; } } } } z = w[k]; if ( l == k ) { if ( z < 0.0f ) { w[k] = -z; for ( j = 0; j < numColumns; j++ ) { V[j][k] = -V[j][k]; } } break; } if ( its == 30 ) { return false; // no convergence } x = w[l]; nm = k - 1; y = w[nm]; g = rv1[nm]; h = rv1[k]; f = ( ( y - z ) * ( y + z ) + ( g - h ) * ( g + h ) ) / ( 2.0f * h * y ); g = Pythag( f, 1.0f ); r = ( f >= 0.0f ? g : - g ); f= ( ( x - z ) * ( x + z ) + h * ( ( y / ( f + r ) ) - h ) ) / x; c = s = 1.0f; for ( j = l; j <= nm; j++ ) { i = j + 1; g = rv1[i]; y = w[i]; h = s * g; g = c * g; z = Pythag( f, h ); rv1[j] = z; c = f / z; s = h / z; f = x * c + g * s; g = g * c - x * s; h = y * s; y = y * c; for ( jj = 0; jj < numColumns; jj++ ) { x = V[jj][j]; z = V[jj][i]; V[jj][j] = x * c + z * s; V[jj][i] = z * c - x * s; } z = Pythag( f, h ); w[j] = z; if ( z ) { z = 1.0f / z; c = f * z; s = h * z; } f = ( c * g ) + ( s * y ); x = ( c * y ) - ( s * g ); for ( jj = 0; jj < numRows; jj++ ) { y = (*this)[jj][j]; z = (*this)[jj][i]; (*this)[jj][j] = y * c + z * s; (*this)[jj][i] = z * c - y * s; } } rv1[l] = 0.0f; rv1[k] = f; w[k] = x; } } return true; } /* ============ idMatX::SVD_Solve Solve Ax = b with A factored as: U * Diag(w) * V.Transpose() ============ */ void idMatX::SVD_Solve( idVecX &x, const idVecX &b, const idVecX &w, const idMatX &V ) const { int i, j; double sum; idVecX tmp; assert( x.GetSize() >= numColumns ); assert( b.GetSize() >= numColumns ); assert( w.GetSize() == numColumns ); assert( V.GetNumRows() == numColumns && V.GetNumColumns() == numColumns ); tmp.SetData( numColumns, VECX_ALLOCA( numColumns ) ); for ( i = 0; i < numColumns; i++ ) { sum = 0.0f; if ( w[i] >= idMath::FLT_EPSILON ) { for ( j = 0; j < numRows; j++ ) { sum += (*this)[j][i] * b[j]; } sum /= w[i]; } tmp[i] = sum; } for ( i = 0; i < numColumns; i++ ) { sum = 0.0f; for ( j = 0; j < numColumns; j++ ) { sum += V[i][j] * tmp[j]; } x[i] = sum; } } /* ============ idMatX::SVD_Inverse Calculates the inverse of the matrix which is factored in-place as: U * Diag(w) * V.Transpose() ============ */ void idMatX::SVD_Inverse( idMatX &inv, const idVecX &w, const idMatX &V ) const { int i, j, k; double wi, sum; idMatX V2; assert( numRows == numColumns ); V2 = V; // V * [diag(1/w[i])] for ( i = 0; i < numRows; i++ ) { wi = w[i]; wi = ( wi < idMath::FLT_EPSILON ) ? 0.0f : 1.0f / wi; for ( j = 0; j < numColumns; j++ ) { V2[j][i] *= wi; } } // V * [diag(1/w[i])] * Ut for ( i = 0; i < numRows; i++ ) { for ( j = 0; j < numColumns; j++ ) { sum = V2[i][0] * (*this)[j][0]; for ( k = 1; k < numColumns; k++ ) { sum += V2[i][k] * (*this)[j][k]; } inv[i][j] = sum; } } } /* ============ idMatX::SVD_MultiplyFactors Multiplies the factors of the in-place SVD factorization to form the original matrix. ============ */ void idMatX::SVD_MultiplyFactors( idMatX &m, const idVecX &w, const idMatX &V ) const { int r, i, j; double sum; m.SetSize( numRows, V.GetNumRows() ); for ( r = 0; r < numRows; r++ ) { // calculate row of matrix if ( w[r] >= idMath::FLT_EPSILON ) { for ( i = 0; i < V.GetNumRows(); i++ ) { sum = 0.0f; for ( j = 0; j < numColumns; j++ ) { sum += (*this)[r][j] * V[i][j]; } m[r][i] = sum * w[r]; } } else { for ( i = 0; i < V.GetNumRows(); i++ ) { m[r][i] = 0.0f; } } } } /* ============ idMatX::Cholesky_Factor in-place Cholesky factorization: LL' L is a triangular matrix stored in the lower triangle. The upper triangle is not cleared. The initial matrix has to be symmetric positive definite. ============ */ bool idMatX::Cholesky_Factor( void ) { int i, j, k; float *invSqrt; double sum; assert( numRows == numColumns ); invSqrt = (float *) _alloca16( numRows * sizeof( float ) ); for ( i = 0; i < numRows; i++ ) { for ( j = 0; j < i; j++ ) { sum = (*this)[i][j]; for ( k = 0; k < j; k++ ) { sum -= (*this)[i][k] * (*this)[j][k]; } (*this)[i][j] = sum * invSqrt[j]; } sum = (*this)[i][i]; for ( k = 0; k < i; k++ ) { sum -= (*this)[i][k] * (*this)[i][k]; } if ( sum <= 0.0f ) { return false; } invSqrt[i] = idMath::InvSqrt( sum ); (*this)[i][i] = invSqrt[i] * sum; } return true; } /* ============ idMatX::Cholesky_UpdateRankOne Updates the in-place Cholesky factorization to obtain the factors for the matrix: LL' + alpha * v * v' If offset > 0 only the lower right corner starting at (offset, offset) is updated. ============ */ bool idMatX::Cholesky_UpdateRankOne( const idVecX &v, float alpha, int offset ) { int i, j; float *y; double diag, invDiag, diagSqr, newDiag, newDiagSqr, beta, p, d; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( offset >= 0 && offset < numRows ); y = (float *) _alloca16( v.GetSize() * sizeof( float ) ); memcpy( y, v.ToFloatPtr(), v.GetSize() * sizeof( float ) ); for ( i = offset; i < numColumns; i++ ) { p = y[i]; diag = (*this)[i][i]; invDiag = 1.0f / diag; diagSqr = diag * diag; newDiagSqr = diagSqr + alpha * p * p; if ( newDiagSqr <= 0.0f ) { return false; } (*this)[i][i] = newDiag = idMath::Sqrt( newDiagSqr ); alpha /= newDiagSqr; beta = p * alpha; alpha *= diagSqr; for ( j = i+1; j < numRows; j++ ) { d = (*this)[j][i] * invDiag; y[j] -= p * d; d += beta * y[j]; (*this)[j][i] = d * newDiag; } } return true; } /* ============ idMatX::Cholesky_UpdateRowColumn Updates the in-place Cholesky factorization to obtain the factors for the matrix: [ 0 a 0 ] LL' + [ a b c ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1] ============ */ bool idMatX::Cholesky_UpdateRowColumn( const idVecX &v, int r ) { int i, j; double sum; float *original; idVecX addSub; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( r >= 0 && r < numRows ); addSub.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) ); if ( r == 0 ) { if ( numColumns == 1 ) { double v0 = v[0]; sum = (*this)[0][0]; sum = sum * sum; sum = sum + v0; if ( sum <= 0.0f ) { return false; } (*this)[0][0] = idMath::Sqrt( sum ); return true; } for ( i = 0; i < numColumns; i++ ) { addSub[i] = v[i]; } } else { original = (float *) _alloca16( numColumns * sizeof( float ) ); // calculate original row/column of matrix for ( i = 0; i < numRows; i++ ) { sum = 0.0f; for ( j = 0; j <= i; j++ ) { sum += (*this)[r][j] * (*this)[i][j]; } original[i] = sum; } // solve for y in L * y = original + v for ( i = 0; i < r; i++ ) { sum = original[i] + v[i]; for ( j = 0; j < i; j++ ) { sum -= (*this)[r][j] * (*this)[i][j]; } (*this)[r][i] = sum / (*this)[i][i]; } // if the last row/column of the matrix is updated if ( r == numColumns - 1 ) { // only calculate new diagonal sum = original[r] + v[r]; for ( j = 0; j < r; j++) { sum -= (*this)[r][j] * (*this)[r][j]; } if ( sum <= 0.0f ) { return false; } (*this)[r][r] = idMath::Sqrt( sum ); return true; } // calculate the row/column to be added to the lower right sub matrix starting at (r, r) for ( i = r; i < numColumns; i++ ) { sum = 0.0f; for ( j = 0; j <= r; j++ ) { sum += (*this)[r][j] * (*this)[i][j]; } addSub[i] = v[i] - ( sum - original[i] ); } } // add row/column to the lower right sub matrix starting at (r, r) #if 0 idVecX v1, v2; double d; v1.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) ); v2.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) ); d = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d; for ( i = r+1; i < numColumns; i++ ) { v1[i] = v2[i] = addSub[i] * d; } // update if ( !Cholesky_UpdateRankOne( v1, 1.0f, r ) ) { return false; } // downdate if ( !Cholesky_UpdateRankOne( v2, -1.0f, r ) ) { return false; } #else float *v1, *v2; double diag, invDiag, diagSqr, newDiag, newDiagSqr; double alpha1, alpha2, beta1, beta2, p1, p2, d; v1 = (float *) _alloca16( numColumns * sizeof( float ) ); v2 = (float *) _alloca16( numColumns * sizeof( float ) ); d = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d; for ( i = r+1; i < numColumns; i++ ) { v1[i] = v2[i] = addSub[i] * d; } alpha1 = 1.0f; alpha2 = -1.0f; // simultaneous update/downdate of the sub matrix starting at (r, r) for ( i = r; i < numColumns; i++ ) { p1 = v1[i]; diag = (*this)[i][i]; invDiag = 1.0f / diag; diagSqr = diag * diag; newDiagSqr = diagSqr + alpha1 * p1 * p1; if ( newDiagSqr <= 0.0f ) { return false; } alpha1 /= newDiagSqr; beta1 = p1 * alpha1; alpha1 *= diagSqr; p2 = v2[i]; diagSqr = newDiagSqr; newDiagSqr = diagSqr + alpha2 * p2 * p2; if ( newDiagSqr <= 0.0f ) { return false; } (*this)[i][i] = newDiag = idMath::Sqrt( newDiagSqr ); alpha2 /= newDiagSqr; beta2 = p2 * alpha2; alpha2 *= diagSqr; for ( j = i+1; j < numRows; j++ ) { d = (*this)[j][i] * invDiag; v1[j] -= p1 * d; d += beta1 * v1[j]; v2[j] -= p2 * d; d += beta2 * v2[j]; (*this)[j][i] = d * newDiag; } } #endif return true; } /* ============ idMatX::Cholesky_UpdateIncrement Updates the in-place Cholesky factorization to obtain the factors for the matrix: [ A a ] [ a b ] where: a = v[0,numRows-1], b = v[numRows] ============ */ bool idMatX::Cholesky_UpdateIncrement( const idVecX &v ) { int i, j; float *x; double sum; assert( numRows == numColumns ); assert( v.GetSize() >= numRows+1 ); ChangeSize( numRows+1, numColumns+1, false ); x = (float *) _alloca16( numRows * sizeof( float ) ); // solve for x in L * x = v for ( i = 0; i < numRows - 1; i++ ) { sum = v[i]; for ( j = 0; j < i; j++ ) { sum -= (*this)[i][j] * x[j]; } x[i] = sum / (*this)[i][i]; } // calculate new row of L and calculate the square of the diagonal entry sum = v[numRows - 1]; for ( i = 0; i < numRows - 1; i++ ) { (*this)[numRows - 1][i] = x[i]; sum -= x[i] * x[i]; } if ( sum <= 0.0f ) { return false; } // store the diagonal entry (*this)[numRows - 1][numRows - 1] = idMath::Sqrt( sum ); return true; } /* ============ idMatX::Cholesky_UpdateDecrement Updates the in-place Cholesky factorization to obtain the factors for the matrix with row r and column r removed. v should store the row of the original matrix. ============ */ bool idMatX::Cholesky_UpdateDecrement( const idVecX &v, int r ) { idVecX v1; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( r >= 0 && r < numRows ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); // update the row and column to identity v1 = -v; v1[r] += 1.0f; // NOTE: msvc compiler bug: the this pointer stored in edi is expected to stay // untouched when calling Cholesky_UpdateRowColumn in the if statement #if 0 if ( !Cholesky_UpdateRowColumn( v1, r ) ) { #else bool ret = Cholesky_UpdateRowColumn( v1, r ); if ( !ret ) { #endif return false; } // physically remove the row and column Update_Decrement( r ); return true; } /* ============ idMatX::Cholesky_Solve Solve Ax = b with A factored in-place as: LL' ============ */ void idMatX::Cholesky_Solve( idVecX &x, const idVecX &b ) const { int i, j; double sum; assert( numRows == numColumns ); assert( x.GetSize() >= numRows && b.GetSize() >= numRows ); // solve L for ( i = 0; i < numRows; i++ ) { sum = b[i]; for ( j = 0; j < i; j++ ) { sum -= (*this)[i][j] * x[j]; } x[i] = sum / (*this)[i][i]; } // solve Lt for ( i = numRows - 1; i >= 0; i-- ) { sum = x[i]; for ( j = i + 1; j < numRows; j++ ) { sum -= (*this)[j][i] * x[j]; } x[i] = sum / (*this)[i][i]; } } /* ============ idMatX::Cholesky_Inverse Calculates the inverse of the matrix which is factored in-place as: LL' ============ */ void idMatX::Cholesky_Inverse( idMatX &inv ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for ( i = 0; i < numRows; i++ ) { b[i] = 1.0f; Cholesky_Solve( x, b ); for ( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::Cholesky_MultiplyFactors Multiplies the factors of the in-place Cholesky factorization to form the original matrix. ============ */ void idMatX::Cholesky_MultiplyFactors( idMatX &m ) const { int r, i, j; double sum; m.SetSize( numRows, numColumns ); for ( r = 0; r < numRows; r++ ) { // calculate row of matrix for ( i = 0; i < numRows; i++ ) { sum = 0.0f; for ( j = 0; j <= i && j <= r; j++ ) { sum += (*this)[r][j] * (*this)[i][j]; } m[r][i] = sum; } } } /* ============ idMatX::LDLT_Factor in-place factorization: LDL' L is a triangular matrix stored in the lower triangle. L has ones on the diagonal that are not stored. D is a diagonal matrix stored on the diagonal. The upper triangle is not cleared. The initial matrix has to be symmetric. ============ */ bool idMatX::LDLT_Factor( void ) { int i, j, k; float *v; double d, sum; assert( numRows == numColumns ); v = (float *) _alloca16( numRows * sizeof( float ) ); for ( i = 0; i < numRows; i++ ) { sum = (*this)[i][i]; for ( j = 0; j < i; j++ ) { d = (*this)[i][j]; v[j] = (*this)[j][j] * d; sum -= v[j] * d; } if ( sum == 0.0f ) { return false; } (*this)[i][i] = sum; d = 1.0f / sum; for ( j = i + 1; j < numRows; j++ ) { sum = (*this)[j][i]; for ( k = 0; k < i; k++ ) { sum -= (*this)[j][k] * v[k]; } (*this)[j][i] = sum * d; } } return true; } /* ============ idMatX::LDLT_UpdateRankOne Updates the in-place LDL' factorization to obtain the factors for the matrix: LDL' + alpha * v * v' If offset > 0 only the lower right corner starting at (offset, offset) is updated. ============ */ bool idMatX::LDLT_UpdateRankOne( const idVecX &v, float alpha, int offset ) { int i, j; float *y; double diag, newDiag, beta, p, d; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( offset >= 0 && offset < numRows ); y = (float *) _alloca16( v.GetSize() * sizeof( float ) ); memcpy( y, v.ToFloatPtr(), v.GetSize() * sizeof( float ) ); for ( i = offset; i < numColumns; i++ ) { p = y[i]; diag = (*this)[i][i]; (*this)[i][i] = newDiag = diag + alpha * p * p; if ( newDiag == 0.0f ) { return false; } alpha /= newDiag; beta = p * alpha; alpha *= diag; for ( j = i+1; j < numRows; j++ ) { d = (*this)[j][i]; y[j] -= p * d; d += beta * y[j]; (*this)[j][i] = d; } } return true; } /* ============ idMatX::LDLT_UpdateRowColumn Updates the in-place LDL' factorization to obtain the factors for the matrix: [ 0 a 0 ] LDL' + [ a b c ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1] ============ */ bool idMatX::LDLT_UpdateRowColumn( const idVecX &v, int r ) { int i, j; double sum; float *original, *y; idVecX addSub; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( r >= 0 && r < numRows ); addSub.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) ); if ( r == 0 ) { if ( numColumns == 1 ) { (*this)[0][0] += v[0]; return true; } for ( i = 0; i < numColumns; i++ ) { addSub[i] = v[i]; } } else { original = (float *) _alloca16( numColumns * sizeof( float ) ); y = (float *) _alloca16( numColumns * sizeof( float ) ); // calculate original row/column of matrix for ( i = 0; i < r; i++ ) { y[i] = (*this)[r][i] * (*this)[i][i]; } for ( i = 0; i < numColumns; i++ ) { if ( i < r ) { sum = (*this)[i][i] * (*this)[r][i]; } else if ( i == r ) { sum = (*this)[r][r]; } else { sum = (*this)[r][r] * (*this)[i][r]; } for ( j = 0; j < i && j < r; j++ ) { sum += (*this)[i][j] * y[j]; } original[i] = sum; } // solve for y in L * y = original + v for ( i = 0; i < r; i++ ) { sum = original[i] + v[i]; for ( j = 0; j < i; j++ ) { sum -= (*this)[i][j] * y[j]; } y[i] = sum; } // calculate new row of L for ( i = 0; i < r; i++ ) { (*this)[r][i] = y[i] / (*this)[i][i]; } // if the last row/column of the matrix is updated if ( r == numColumns - 1 ) { // only calculate new diagonal sum = original[r] + v[r]; for ( j = 0; j < r; j++ ) { sum -= (*this)[r][j] * y[j]; } if ( sum == 0.0f ) { return false; } (*this)[r][r] = sum; return true; } // calculate the row/column to be added to the lower right sub matrix starting at (r, r) for ( i = 0; i < r; i++ ) { y[i] = (*this)[r][i] * (*this)[i][i]; } for ( i = r; i < numColumns; i++ ) { if ( i == r ) { sum = (*this)[r][r]; } else { sum = (*this)[r][r] * (*this)[i][r]; } for ( j = 0; j < r; j++ ) { sum += (*this)[i][j] * y[j]; } addSub[i] = v[i] - ( sum - original[i] ); } } // add row/column to the lower right sub matrix starting at (r, r) #if 0 idVecX v1, v2; double d; v1.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) ); v2.SetData( numColumns, (float *) _alloca16( numColumns * sizeof( float ) ) ); d = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d; for ( i = r+1; i < numColumns; i++ ) { v1[i] = v2[i] = addSub[i] * d; } // update if ( !LDLT_UpdateRankOne( v1, 1.0f, r ) ) { return false; } // downdate if ( !LDLT_UpdateRankOne( v2, -1.0f, r ) ) { return false; } #else float *v1, *v2; double d, diag, newDiag, p1, p2, alpha1, alpha2, beta1, beta2; v1 = (float *) _alloca16( numColumns * sizeof( float ) ); v2 = (float *) _alloca16( numColumns * sizeof( float ) ); d = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d; for ( i = r+1; i < numColumns; i++ ) { v1[i] = v2[i] = addSub[i] * d; } alpha1 = 1.0f; alpha2 = -1.0f; // simultaneous update/downdate of the sub matrix starting at (r, r) for ( i = r; i < numColumns; i++ ) { diag = (*this)[i][i]; p1 = v1[i]; newDiag = diag + alpha1 * p1 * p1; if ( newDiag == 0.0f ) { return false; } alpha1 /= newDiag; beta1 = p1 * alpha1; alpha1 *= diag; diag = newDiag; p2 = v2[i]; newDiag = diag + alpha2 * p2 * p2; if ( newDiag == 0.0f ) { return false; } alpha2 /= newDiag; beta2 = p2 * alpha2; alpha2 *= diag; (*this)[i][i] = newDiag; for ( j = i+1; j < numRows; j++ ) { d = (*this)[j][i]; v1[j] -= p1 * d; d += beta1 * v1[j]; v2[j] -= p2 * d; d += beta2 * v2[j]; (*this)[j][i] = d; } } #endif return true; } /* ============ idMatX::LDLT_UpdateIncrement Updates the in-place LDL' factorization to obtain the factors for the matrix: [ A a ] [ a b ] where: a = v[0,numRows-1], b = v[numRows] ============ */ bool idMatX::LDLT_UpdateIncrement( const idVecX &v ) { int i, j; float *x; double sum, d; assert( numRows == numColumns ); assert( v.GetSize() >= numRows+1 ); ChangeSize( numRows+1, numColumns+1, false ); x = (float *) _alloca16( numRows * sizeof( float ) ); // solve for x in L * x = v for ( i = 0; i < numRows - 1; i++ ) { sum = v[i]; for ( j = 0; j < i; j++ ) { sum -= (*this)[i][j] * x[j]; } x[i] = sum; } // calculate new row of L and calculate the diagonal entry sum = v[numRows - 1]; for ( i = 0; i < numRows - 1; i++ ) { (*this)[numRows - 1][i] = d = x[i] / (*this)[i][i]; sum -= d * x[i]; } if ( sum == 0.0f ) { return false; } // store the diagonal entry (*this)[numRows - 1][numRows - 1] = sum; return true; } /* ============ idMatX::LDLT_UpdateDecrement Updates the in-place LDL' factorization to obtain the factors for the matrix with row r and column r removed. v should store the row of the original matrix. ============ */ bool idMatX::LDLT_UpdateDecrement( const idVecX &v, int r ) { idVecX v1; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( r >= 0 && r < numRows ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); // update the row and column to identity v1 = -v; v1[r] += 1.0f; // NOTE: msvc compiler bug: the this pointer stored in edi is expected to stay // untouched when calling LDLT_UpdateRowColumn in the if statement #if 0 if ( !LDLT_UpdateRowColumn( v1, r ) ) { #else bool ret = LDLT_UpdateRowColumn( v1, r ); if ( !ret ) { #endif return false; } // physically remove the row and column Update_Decrement( r ); return true; } /* ============ idMatX::LDLT_Solve Solve Ax = b with A factored in-place as: LDL' ============ */ void idMatX::LDLT_Solve( idVecX &x, const idVecX &b ) const { int i, j; double sum; assert( numRows == numColumns ); assert( x.GetSize() >= numRows && b.GetSize() >= numRows ); // solve L for ( i = 0; i < numRows; i++ ) { sum = b[i]; for ( j = 0; j < i; j++ ) { sum -= (*this)[i][j] * x[j]; } x[i] = sum; } // solve D for ( i = 0; i < numRows; i++ ) { x[i] /= (*this)[i][i]; } // solve Lt for ( i = numRows - 2; i >= 0; i-- ) { sum = x[i]; for ( j = i + 1; j < numRows; j++ ) { sum -= (*this)[j][i] * x[j]; } x[i] = sum; } } /* ============ idMatX::LDLT_Inverse Calculates the inverse of the matrix which is factored in-place as: LDL' ============ */ void idMatX::LDLT_Inverse( idMatX &inv ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for ( i = 0; i < numRows; i++ ) { b[i] = 1.0f; LDLT_Solve( x, b ); for ( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::LDLT_UnpackFactors Unpacks the in-place LDL' factorization. ============ */ void idMatX::LDLT_UnpackFactors( idMatX &L, idMatX &D ) const { int i, j; L.Zero( numRows, numColumns ); D.Zero( numRows, numColumns ); for ( i = 0; i < numRows; i++ ) { for ( j = 0; j < i; j++ ) { L[i][j] = (*this)[i][j]; } L[i][i] = 1.0f; D[i][i] = (*this)[i][i]; } } /* ============ idMatX::LDLT_MultiplyFactors Multiplies the factors of the in-place LDL' factorization to form the original matrix. ============ */ void idMatX::LDLT_MultiplyFactors( idMatX &m ) const { int r, i, j; float *v; double sum; v = (float *) _alloca16( numRows * sizeof( float ) ); m.SetSize( numRows, numColumns ); for ( r = 0; r < numRows; r++ ) { // calculate row of matrix for ( i = 0; i < r; i++ ) { v[i] = (*this)[r][i] * (*this)[i][i]; } for ( i = 0; i < numColumns; i++ ) { if ( i < r ) { sum = (*this)[i][i] * (*this)[r][i]; } else if ( i == r ) { sum = (*this)[r][r]; } else { sum = (*this)[r][r] * (*this)[i][r]; } for ( j = 0; j < i && j < r; j++ ) { sum += (*this)[i][j] * v[j]; } m[r][i] = sum; } } } /* ============ idMatX::TriDiagonal_ClearTriangles ============ */ void idMatX::TriDiagonal_ClearTriangles( void ) { int i, j; assert( numRows == numColumns ); for ( i = 0; i < numRows-2; i++ ) { for ( j = i+2; j < numColumns; j++ ) { (*this)[i][j] = 0.0f; (*this)[j][i] = 0.0f; } } } /* ============ idMatX::TriDiagonal_Solve Solve Ax = b with A being tridiagonal. ============ */ bool idMatX::TriDiagonal_Solve( idVecX &x, const idVecX &b ) const { int i; float d; idVecX tmp; assert( numRows == numColumns ); assert( x.GetSize() >= numRows && b.GetSize() >= numRows ); tmp.SetData( numRows, VECX_ALLOCA( numRows ) ); d = (*this)[0][0]; if ( d == 0.0f ) { return false; } d = 1.0f / d; x[0] = b[0] * d; for ( i = 1; i < numRows; i++ ) { tmp[i] = (*this)[i-1][i] * d; d = (*this)[i][i] - (*this)[i][i-1] * tmp[i]; if ( d == 0.0f ) { return false; } d = 1.0f / d; x[i] = ( b[i] - (*this)[i][i-1] * x[i-1] ) * d; } for ( i = numRows - 2; i >= 0; i-- ) { x[i] -= tmp[i+1] * x[i+1]; } return true; } /* ============ idMatX::TriDiagonal_Inverse Calculates the inverse of a tri-diagonal matrix. ============ */ void idMatX::TriDiagonal_Inverse( idMatX &inv ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for ( i = 0; i < numRows; i++ ) { b[i] = 1.0f; TriDiagonal_Solve( x, b ); for ( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::HouseholderReduction Householder reduction to symmetric tri-diagonal form. The original matrix is replaced by an orthogonal matrix effecting the accumulated householder transformations. The diagonal elements of the diagonal matrix are stored in diag. The off-diagonal elements of the diagonal matrix are stored in subd. The initial matrix has to be symmetric. ============ */ void idMatX::HouseholderReduction( idVecX &diag, idVecX &subd ) { int i0, i1, i2, i3; float h, f, g, invH, halfFdivH, scale, invScale, sum; assert( numRows == numColumns ); diag.SetSize( numRows ); subd.SetSize( numRows ); for ( i0 = numRows-1, i3 = numRows-2; i0 >= 1; i0--, i3-- ) { h = 0.0f; scale = 0.0f; if ( i3 > 0 ) { for ( i2 = 0; i2 <= i3; i2++ ) { scale += idMath::Fabs( (*this)[i0][i2] ); } if ( scale == 0 ) { subd[i0] = (*this)[i0][i3]; } else { invScale = 1.0f / scale; for (i2 = 0; i2 <= i3; i2++) { (*this)[i0][i2] *= invScale; h += (*this)[i0][i2] * (*this)[i0][i2]; } f = (*this)[i0][i3]; g = idMath::Sqrt( h ); if ( f > 0.0f ) { g = -g; } subd[i0] = scale * g; h -= f * g; (*this)[i0][i3] = f - g; f = 0.0f; invH = 1.0f / h; for (i1 = 0; i1 <= i3; i1++) { (*this)[i1][i0] = (*this)[i0][i1] * invH; g = 0.0f; for (i2 = 0; i2 <= i1; i2++) { g += (*this)[i1][i2] * (*this)[i0][i2]; } for (i2 = i1+1; i2 <= i3; i2++) { g += (*this)[i2][i1] * (*this)[i0][i2]; } subd[i1] = g * invH; f += subd[i1] * (*this)[i0][i1]; } halfFdivH = 0.5f * f * invH; for ( i1 = 0; i1 <= i3; i1++ ) { f = (*this)[i0][i1]; g = subd[i1] - halfFdivH * f; subd[i1] = g; for ( i2 = 0; i2 <= i1; i2++ ) { (*this)[i1][i2] -= f * subd[i2] + g * (*this)[i0][i2]; } } } } else { subd[i0] = (*this)[i0][i3]; } diag[i0] = h; } diag[0] = 0.0f; subd[0] = 0.0f; for ( i0 = 0, i3 = -1; i0 <= numRows-1; i0++, i3++ ) { if ( diag[i0] ) { for ( i1 = 0; i1 <= i3; i1++ ) { sum = 0.0f; for (i2 = 0; i2 <= i3; i2++) { sum += (*this)[i0][i2] * (*this)[i2][i1]; } for ( i2 = 0; i2 <= i3; i2++ ) { (*this)[i2][i1] -= sum * (*this)[i2][i0]; } } } diag[i0] = (*this)[i0][i0]; (*this)[i0][i0] = 1.0f; for ( i1 = 0; i1 <= i3; i1++ ) { (*this)[i1][i0] = 0.0f; (*this)[i0][i1] = 0.0f; } } // re-order for ( i0 = 1, i3 = 0; i0 < numRows; i0++, i3++ ) { subd[i3] = subd[i0]; } subd[numRows-1] = 0.0f; } /* ============ idMatX::QL QL algorithm with implicit shifts to determine the eigenvalues and eigenvectors of a symmetric tri-diagonal matrix. diag contains the diagonal elements of the symmetric tri-diagonal matrix on input and is overwritten with the eigenvalues. subd contains the off-diagonal elements of the symmetric tri-diagonal matrix and is destroyed. This matrix has to be either the identity matrix to determine the eigenvectors for a symmetric tri-diagonal matrix, or the matrix returned by the Householder reduction to determine the eigenvalues for the original symmetric matrix. ============ */ bool idMatX::QL( idVecX &diag, idVecX &subd ) { const int maxIter = 32; int i0, i1, i2, i3; float a, b, f, g, r, p, s, c; assert( numRows == numColumns ); for ( i0 = 0; i0 < numRows; i0++ ) { for ( i1 = 0; i1 < maxIter; i1++ ) { for ( i2 = i0; i2 <= numRows - 2; i2++ ) { a = idMath::Fabs( diag[i2] ) + idMath::Fabs( diag[i2+1] ); if ( idMath::Fabs( subd[i2] ) + a == a ) { break; } } if ( i2 == i0 ) { break; } g = ( diag[i0+1] - diag[i0] ) / ( 2.0f * subd[i0] ); r = idMath::Sqrt( g * g + 1.0f ); if ( g < 0.0f ) { g = diag[i2] - diag[i0] + subd[i0] / ( g - r ); } else { g = diag[i2] - diag[i0] + subd[i0] / ( g + r ); } s = 1.0f; c = 1.0f; p = 0.0f; for ( i3 = i2 - 1; i3 >= i0; i3-- ) { f = s * subd[i3]; b = c * subd[i3]; if ( idMath::Fabs( f ) >= idMath::Fabs( g ) ) { c = g / f; r = idMath::Sqrt( c * c + 1.0f ); subd[i3+1] = f * r; s = 1.0f / r; c *= s; } else { s = f / g; r = idMath::Sqrt( s * s + 1.0f ); subd[i3+1] = g * r; c = 1.0f / r; s *= c; } g = diag[i3+1] - p; r = ( diag[i3] - g ) * s + 2.0f * b * c; p = s * r; diag[i3+1] = g + p; g = c * r - b; for ( int i4 = 0; i4 < numRows; i4++ ) { f = (*this)[i4][i3+1]; (*this)[i4][i3+1] = s * (*this)[i4][i3] + c * f; (*this)[i4][i3] = c * (*this)[i4][i3] - s * f; } } diag[i0] -= p; subd[i0] = g; subd[i2] = 0.0f; } if ( i1 == maxIter ) { return false; } } return true; } /* ============ idMatX::Eigen_SolveSymmetricTriDiagonal Determine eigen values and eigen vectors for a symmetric tri-diagonal matrix. The eigen values are stored in 'eigenValues'. Column i of the original matrix will store the eigen vector corresponding to the eigenValues[i]. The initial matrix has to be symmetric tri-diagonal. ============ */ bool idMatX::Eigen_SolveSymmetricTriDiagonal( idVecX &eigenValues ) { int i; idVecX subd; assert( numRows == numColumns ); subd.SetData( numRows, VECX_ALLOCA( numRows ) ); eigenValues.SetSize( numRows ); for ( i = 0; i < numRows-1; i++ ) { eigenValues[i] = (*this)[i][i]; subd[i] = (*this)[i+1][i]; } eigenValues[numRows-1] = (*this)[numRows-1][numRows-1]; Identity(); return QL( eigenValues, subd ); } /* ============ idMatX::Eigen_SolveSymmetric Determine eigen values and eigen vectors for a symmetric matrix. The eigen values are stored in 'eigenValues'. Column i of the original matrix will store the eigen vector corresponding to the eigenValues[i]. The initial matrix has to be symmetric. ============ */ bool idMatX::Eigen_SolveSymmetric( idVecX &eigenValues ) { idVecX subd; assert( numRows == numColumns ); subd.SetData( numRows, VECX_ALLOCA( numRows ) ); eigenValues.SetSize( numRows ); HouseholderReduction( eigenValues, subd ); return QL( eigenValues, subd ); } /* ============ idMatX::HessenbergReduction Reduction to Hessenberg form. ============ */ void idMatX::HessenbergReduction( idMatX &H ) { int i, j, m; int low = 0; int high = numRows - 1; float scale, f, g, h; idVecX v; v.SetData( numRows, VECX_ALLOCA( numRows ) ); for ( m = low + 1; m <= high - 1; m++ ) { scale = 0.0f; for ( i = m; i <= high; i++ ) { scale = scale + idMath::Fabs( H[i][m-1] ); } if ( scale != 0.0f ) { // compute Householder transformation. h = 0.0f; for ( i = high; i >= m; i-- ) { v[i] = H[i][m-1] / scale; h += v[i] * v[i]; } g = idMath::Sqrt( h ); if ( v[m] > 0.0f ) { g = -g; } h = h - v[m] * g; v[m] = v[m] - g; // apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for ( j = m; j < numRows; j++) { f = 0.0f; for ( i = high; i >= m; i-- ) { f += v[i] * H[i][j]; } f = f / h; for ( i = m; i <= high; i++ ) { H[i][j] -= f * v[i]; } } for ( i = 0; i <= high; i++ ) { f = 0.0f; for ( j = high; j >= m; j-- ) { f += v[j] * H[i][j]; } f = f / h; for ( j = m; j <= high; j++ ) { H[i][j] -= f * v[j]; } } v[m] = scale * v[m]; H[m][m-1] = scale * g; } } // accumulate transformations Identity(); for ( int m = high - 1; m >= low + 1; m-- ) { if ( H[m][m-1] != 0.0f ) { for ( i = m + 1; i <= high; i++ ) { v[i] = H[i][m-1]; } for ( j = m; j <= high; j++ ) { g = 0.0f; for ( i = m; i <= high; i++ ) { g += v[i] * (*this)[i][j]; } // float division to avoid possible underflow g = ( g / v[m] ) / H[m][m-1]; for ( i = m; i <= high; i++ ) { (*this)[i][j] += g * v[i]; } } } } } /* ============ idMatX::ComplexDivision Complex scalar division. ============ */ void idMatX::ComplexDivision( float xr, float xi, float yr, float yi, float &cdivr, float &cdivi ) { float r, d; if ( idMath::Fabs( yr ) > idMath::Fabs( yi ) ) { r = yi / yr; d = yr + r * yi; cdivr = ( xr + r * xi ) / d; cdivi = ( xi - r * xr ) / d; } else { r = yr / yi; d = yi + r * yr; cdivr = ( r * xr + xi ) / d; cdivi = ( r * xi - xr ) / d; } } /* ============ idMatX::HessenbergToRealSchur Reduction from Hessenberg to real Schur form. ============ */ bool idMatX::HessenbergToRealSchur( idMatX &H, idVecX &realEigenValues, idVecX &imaginaryEigenValues ) { int i, j, k; int n = numRows - 1; int low = 0; int high = numRows - 1; float eps = 2e-16f, exshift = 0.0f; float p = 0.0f, q = 0.0f, r = 0.0f, s = 0.0f, z = 0.0f, t, w, x, y; // store roots isolated by balanc and compute matrix norm float norm = 0.0f; for ( i = 0; i < numRows; i++ ) { if ( i < low || i > high ) { realEigenValues[i] = H[i][i]; imaginaryEigenValues[i] = 0.0f; } for ( j = Max( i - 1, 0 ); j < numRows; j++ ) { norm = norm + idMath::Fabs( H[i][j] ); } } int iter = 0; while( n >= low ) { // look for single small sub-diagonal element int l = n; while ( l > low ) { s = idMath::Fabs( H[l-1][l-1] ) + idMath::Fabs( H[l][l] ); if ( s == 0.0f ) { s = norm; } if ( idMath::Fabs( H[l][l-1] ) < eps * s ) { break; } l--; } // check for convergence if ( l == n ) { // one root found H[n][n] = H[n][n] + exshift; realEigenValues[n] = H[n][n]; imaginaryEigenValues[n] = 0.0f; n--; iter = 0; } else if ( l == n-1 ) { // two roots found w = H[n][n-1] * H[n-1][n]; p = ( H[n-1][n-1] - H[n][n] ) / 2.0f; q = p * p + w; z = idMath::Sqrt( idMath::Fabs( q ) ); H[n][n] = H[n][n] + exshift; H[n-1][n-1] = H[n-1][n-1] + exshift; x = H[n][n]; if ( q >= 0.0f ) { // real pair if ( p >= 0.0f ) { z = p + z; } else { z = p - z; } realEigenValues[n-1] = x + z; realEigenValues[n] = realEigenValues[n-1]; if ( z != 0.0f ) { realEigenValues[n] = x - w / z; } imaginaryEigenValues[n-1] = 0.0f; imaginaryEigenValues[n] = 0.0f; x = H[n][n-1]; s = idMath::Fabs( x ) + idMath::Fabs( z ); p = x / s; q = z / s; r = idMath::Sqrt( p * p + q * q ); p = p / r; q = q / r; // modify row for ( j = n-1; j < numRows; j++ ) { z = H[n-1][j]; H[n-1][j] = q * z + p * H[n][j]; H[n][j] = q * H[n][j] - p * z; } // modify column for ( i = 0; i <= n; i++ ) { z = H[i][n-1]; H[i][n-1] = q * z + p * H[i][n]; H[i][n] = q * H[i][n] - p * z; } // accumulate transformations for ( i = low; i <= high; i++ ) { z = (*this)[i][n-1]; (*this)[i][n-1] = q * z + p * (*this)[i][n]; (*this)[i][n] = q * (*this)[i][n] - p * z; } } else { // complex pair realEigenValues[n-1] = x + p; realEigenValues[n] = x + p; imaginaryEigenValues[n-1] = z; imaginaryEigenValues[n] = -z; } n = n - 2; iter = 0; } else { // no convergence yet // form shift x = H[n][n]; y = 0.0f; w = 0.0f; if ( l < n ) { y = H[n-1][n-1]; w = H[n][n-1] * H[n-1][n]; } // Wilkinson's original ad hoc shift if ( iter == 10 ) { exshift += x; for ( i = low; i <= n; i++ ) { H[i][i] -= x; } s = idMath::Fabs( H[n][n-1] ) + idMath::Fabs( H[n-1][n-2] ); x = y = 0.75f * s; w = -0.4375f * s * s; } // new ad hoc shift if ( iter == 30 ) { s = ( y - x ) / 2.0f; s = s * s + w; if ( s > 0 ) { s = idMath::Sqrt( s ); if ( y < x ) { s = -s; } s = x - w / ( ( y - x ) / 2.0f + s ); for ( i = low; i <= n; i++ ) { H[i][i] -= s; } exshift += s; x = y = w = 0.964f; } } iter = iter + 1; // look for two consecutive small sub-diagonal elements int m; for( m = n-2; m >= l; m-- ) { z = H[m][m]; r = x - z; s = y - z; p = ( r * s - w ) / H[m+1][m] + H[m][m+1]; q = H[m+1][m+1] - z - r - s; r = H[m+2][m+1]; s = idMath::Fabs( p ) + idMath::Fabs( q ) + idMath::Fabs( r ); p = p / s; q = q / s; r = r / s; if ( m == l ) { break; } if ( idMath::Fabs( H[m][m-1] ) * ( idMath::Fabs( q ) + idMath::Fabs( r ) ) < eps * ( idMath::Fabs( p ) * ( idMath::Fabs( H[m-1][m-1] ) + idMath::Fabs( z ) + idMath::Fabs( H[m+1][m+1] ) ) ) ) { break; } } for ( i = m+2; i <= n; i++ ) { H[i][i-2] = 0.0f; if ( i > m+2 ) { H[i][i-3] = 0.0f; } } // double QR step involving rows l:n and columns m:n for ( k = m; k <= n-1; k++ ) { bool notlast = ( k != n-1 ); if ( k != m ) { p = H[k][k-1]; q = H[k+1][k-1]; r = ( notlast ? H[k+2][k-1] : 0.0f ); x = idMath::Fabs( p ) + idMath::Fabs( q ) + idMath::Fabs( r ); if ( x != 0.0f ) { p = p / x; q = q / x; r = r / x; } } if ( x == 0.0f ) { break; } s = idMath::Sqrt( p * p + q * q + r * r ); if ( p < 0.0f ) { s = -s; } if ( s != 0.0f ) { if ( k != m ) { H[k][k-1] = -s * x; } else if ( l != m ) { H[k][k-1] = -H[k][k-1]; } p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; // modify row for ( j = k; j < numRows; j++ ) { p = H[k][j] + q * H[k+1][j]; if ( notlast ) { p = p + r * H[k+2][j]; H[k+2][j] = H[k+2][j] - p * z; } H[k][j] = H[k][j] - p * x; H[k+1][j] = H[k+1][j] - p * y; } // modify column for ( i = 0; i <= Min( n, k + 3 ); i++ ) { p = x * H[i][k] + y * H[i][k+1]; if ( notlast ) { p = p + z * H[i][k+2]; H[i][k+2] = H[i][k+2] - p * r; } H[i][k] = H[i][k] - p; H[i][k+1] = H[i][k+1] - p * q; } // accumulate transformations for ( i = low; i <= high; i++ ) { p = x * (*this)[i][k] + y * (*this)[i][k+1]; if ( notlast ) { p = p + z * (*this)[i][k+2]; (*this)[i][k+2] = (*this)[i][k+2] - p * r; } (*this)[i][k] = (*this)[i][k] - p; (*this)[i][k+1] = (*this)[i][k+1] - p * q; } } } } } // backsubstitute to find vectors of upper triangular form if ( norm == 0.0f ) { return false; } for ( n = numRows-1; n >= 0; n-- ) { p = realEigenValues[n]; q = imaginaryEigenValues[n]; if ( q == 0.0f ) { // real vector int l = n; H[n][n] = 1.0f; for ( i = n-1; i >= 0; i-- ) { w = H[i][i] - p; r = 0.0f; for ( j = l; j <= n; j++ ) { r = r + H[i][j] * H[j][n]; } if ( imaginaryEigenValues[i] < 0.0f ) { z = w; s = r; } else { l = i; if ( imaginaryEigenValues[i] == 0.0f ) { if ( w != 0.0f ) { H[i][n] = -r / w; } else { H[i][n] = -r / ( eps * norm ); } } else { // solve real equations x = H[i][i+1]; y = H[i+1][i]; q = ( realEigenValues[i] - p ) * ( realEigenValues[i] - p ) + imaginaryEigenValues[i] * imaginaryEigenValues[i]; t = ( x * s - z * r ) / q; H[i][n] = t; if ( idMath::Fabs(x) > idMath::Fabs( z ) ) { H[i+1][n] = ( -r - w * t ) / x; } else { H[i+1][n] = ( -s - y * t ) / z; } } // overflow control t = idMath::Fabs(H[i][n]); if ( ( eps * t ) * t > 1 ) { for ( j = i; j <= n; j++ ) { H[j][n] = H[j][n] / t; } } } } } else if ( q < 0.0f ) { // complex vector int l = n-1; // last vector component imaginary so matrix is triangular if ( idMath::Fabs( H[n][n-1] ) > idMath::Fabs( H[n-1][n] ) ) { H[n-1][n-1] = q / H[n][n-1]; H[n-1][n] = -( H[n][n] - p ) / H[n][n-1]; } else { ComplexDivision( 0.0f, -H[n-1][n], H[n-1][n-1]-p, q, H[n-1][n-1], H[n-1][n] ); } H[n][n-1] = 0.0f; H[n][n] = 1.0f; for ( i = n-2; i >= 0; i-- ) { float ra, sa, vr, vi; ra = 0.0f; sa = 0.0f; for ( j = l; j <= n; j++ ) { ra = ra + H[i][j] * H[j][n-1]; sa = sa + H[i][j] * H[j][n]; } w = H[i][i] - p; if ( imaginaryEigenValues[i] < 0.0f ) { z = w; r = ra; s = sa; } else { l = i; if ( imaginaryEigenValues[i] == 0.0f ) { ComplexDivision( -ra, -sa, w, q, H[i][n-1], H[i][n] ); } else { // solve complex equations x = H[i][i+1]; y = H[i+1][i]; vr = ( realEigenValues[i] - p ) * ( realEigenValues[i] - p ) + imaginaryEigenValues[i] * imaginaryEigenValues[i] - q * q; vi = ( realEigenValues[i] - p ) * 2.0f * q; if ( vr == 0.0f && vi == 0.0f ) { vr = eps * norm * ( idMath::Fabs( w ) + idMath::Fabs( q ) + idMath::Fabs( x ) + idMath::Fabs( y ) + idMath::Fabs( z ) ); } ComplexDivision( x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi, H[i][n-1], H[i][n] ); if ( idMath::Fabs( x ) > ( idMath::Fabs( z ) + idMath::Fabs( q ) ) ) { H[i+1][n-1] = ( -ra - w * H[i][n-1] + q * H[i][n] ) / x; H[i+1][n] = ( -sa - w * H[i][n] - q * H[i][n-1] ) / x; } else { ComplexDivision( -r - y * H[i][n-1], -s - y * H[i][n], z, q, H[i+1][n-1], H[i+1][n] ); } } // overflow control t = Max( idMath::Fabs( H[i][n-1] ), idMath::Fabs( H[i][n] ) ); if ( ( eps * t ) * t > 1 ) { for ( j = i; j <= n; j++ ) { H[j][n-1] = H[j][n-1] / t; H[j][n] = H[j][n] / t; } } } } } } // vectors of isolated roots for ( i = 0; i < numRows; i++ ) { if ( i < low || i > high ) { for ( j = i; j < numRows; j++ ) { (*this)[i][j] = H[i][j]; } } } // back transformation to get eigenvectors of original matrix for ( j = numRows - 1; j >= low; j-- ) { for ( i = low; i <= high; i++ ) { z = 0.0f; for ( k = low; k <= Min( j, high ); k++ ) { z = z + (*this)[i][k] * H[k][j]; } (*this)[i][j] = z; } } return true; } /* ============ idMatX::Eigen_Solve Determine eigen values and eigen vectors for a square matrix. The eigen values are stored in 'realEigenValues' and 'imaginaryEigenValues'. Column i of the original matrix will store the eigen vector corresponding to the realEigenValues[i] and imaginaryEigenValues[i]. ============ */ bool idMatX::Eigen_Solve( idVecX &realEigenValues, idVecX &imaginaryEigenValues ) { idMatX H; assert( numRows == numColumns ); realEigenValues.SetSize( numRows ); imaginaryEigenValues.SetSize( numRows ); H = *this; // reduce to Hessenberg form HessenbergReduction( H ); // reduce Hessenberg to real Schur form return HessenbergToRealSchur( H, realEigenValues, imaginaryEigenValues ); } /* ============ idMatX::Eigen_SortIncreasing ============ */ void idMatX::Eigen_SortIncreasing( idVecX &eigenValues ) { int i, j, k; float min; for ( i = 0; i <= numRows - 2; i++ ) { j = i; min = eigenValues[j]; for ( k = i + 1; k < numRows; k++ ) { if ( eigenValues[k] < min ) { j = k; min = eigenValues[j]; } } if ( j != i ) { eigenValues.SwapElements( i, j ); SwapColumns( i, j ); } } } /* ============ idMatX::Eigen_SortDecreasing ============ */ void idMatX::Eigen_SortDecreasing( idVecX &eigenValues ) { int i, j, k; float max; for ( i = 0; i <= numRows - 2; i++ ) { j = i; max = eigenValues[j]; for ( k = i + 1; k < numRows; k++ ) { if ( eigenValues[k] > max ) { j = k; max = eigenValues[j]; } } if ( j != i ) { eigenValues.SwapElements( i, j ); SwapColumns( i, j ); } } } /* ============ idMatX::DeterminantGeneric ============ */ float idMatX::DeterminantGeneric( void ) const { int *index; float det; idMatX tmp; index = (int *) _alloca16( numRows * sizeof( int ) ); tmp.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); tmp = *this; if ( !tmp.LU_Factor( index, &det ) ) { return 0.0f; } return det; } /* ============ idMatX::InverseSelfGeneric ============ */ bool idMatX::InverseSelfGeneric( void ) { int i, j, *index; idMatX tmp; idVecX x, b; index = (int *) _alloca16( numRows * sizeof( int ) ); tmp.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); tmp = *this; if ( !tmp.LU_Factor( index ) ) { return false; } x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); for ( i = 0; i < numRows; i++ ) { b[i] = 1.0f; tmp.LU_Solve( x, b, index ); for ( j = 0; j < numRows; j++ ) { (*this)[j][i] = x[j]; } b[i] = 0.0f; } return true; } /* ============ idMatX::Test ============ */ void idMatX::Test( void ) { idMatX original, m1, m2, m3, q1, q2, r1, r2; idVecX v, w, u, c, d; int offset, size, *index1, *index2; size = 6; original.Random( size, size, 0 ); original = original * original.Transpose(); index1 = (int *) _alloca16( ( size + 1 ) * sizeof( index1[0] ) ); index2 = (int *) _alloca16( ( size + 1 ) * sizeof( index2[0] ) ); /* idMatX::LowerTriangularInverse */ m1 = original; m1.ClearUpperTriangle(); m2 = m1; m2.InverseSelf(); m1.LowerTriangularInverse(); if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LowerTriangularInverse failed" ); } /* idMatX::UpperTriangularInverse */ m1 = original; m1.ClearLowerTriangle(); m2 = m1; m2.InverseSelf(); m1.UpperTriangularInverse(); if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::UpperTriangularInverse failed" ); } /* idMatX::Inverse_GaussJordan */ m1 = original; m1.Inverse_GaussJordan(); m1 *= original; if ( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::Inverse_GaussJordan failed" ); } /* idMatX::Inverse_UpdateRankOne */ m1 = original; m2 = original; w.Random( size, 1 ); v.Random( size, 2 ); // invert m1 m1.Inverse_GaussJordan(); // modify and invert m2 m2.Update_RankOne( v, w, 1.0f ); if ( !m2.Inverse_GaussJordan() ) { assert( 0 ); } // update inverse of m1 m1.Inverse_UpdateRankOne( v, w, 1.0f ); if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Inverse_UpdateRankOne failed" ); } /* idMatX::Inverse_UpdateRowColumn */ for ( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.Random( size, 1 ); w.Random( size, 2 ); w[offset] = 0.0f; // invert m1 m1.Inverse_GaussJordan(); // modify and invert m2 m2.Update_RowColumn( v, w, offset ); if ( !m2.Inverse_GaussJordan() ) { assert( 0 ); } // update inverse of m1 m1.Inverse_UpdateRowColumn( v, w, offset ); if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::Inverse_UpdateRowColumn failed" ); } } /* idMatX::Inverse_UpdateIncrement */ m1 = original; m2 = original; v.Random( size + 1, 1 ); w.Random( size + 1, 2 ); w[size] = 0.0f; // invert m1 m1.Inverse_GaussJordan(); // modify and invert m2 m2.Update_Increment( v, w ); if ( !m2.Inverse_GaussJordan() ) { assert( 0 ); } // update inverse of m1 m1.Inverse_UpdateIncrement( v, w ); if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Inverse_UpdateIncrement failed" ); } /* idMatX::Inverse_UpdateDecrement */ for ( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.SetSize( 6 ); w.SetSize( 6 ); for ( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; w[i] = original[offset][i]; } // invert m1 m1.Inverse_GaussJordan(); // modify and invert m2 m2.Update_Decrement( offset ); if ( !m2.Inverse_GaussJordan() ) { assert( 0 ); } // update inverse of m1 m1.Inverse_UpdateDecrement( v, w, offset ); if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::Inverse_UpdateDecrement failed" ); } } /* idMatX::LU_Factor */ m1 = original; m1.LU_Factor( NULL ); // no pivoting m1.LU_UnpackFactors( m2, m3 ); m1 = m2 * m3; if ( !original.Compare( m1, 1e-4f ) ) { idLib::common->Warning( "idMatX::LU_Factor failed" ); } /* idMatX::LU_UpdateRankOne */ m1 = original; m2 = original; w.Random( size, 1 ); v.Random( size, 2 ); // factor m1 m1.LU_Factor( index1 ); // modify and factor m2 m2.Update_RankOne( v, w, 1.0f ); if ( !m2.LU_Factor( index2 ) ) { assert( 0 ); } m2.LU_MultiplyFactors( m3, index2 ); m2 = m3; // update factored m1 m1.LU_UpdateRankOne( v, w, 1.0f, index1 ); m1.LU_MultiplyFactors( m3, index1 ); m1 = m3; if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LU_UpdateRankOne failed" ); } /* idMatX::LU_UpdateRowColumn */ for ( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.Random( size, 1 ); w.Random( size, 2 ); w[offset] = 0.0f; // factor m1 m1.LU_Factor( index1 ); // modify and factor m2 m2.Update_RowColumn( v, w, offset ); if ( !m2.LU_Factor( index2 ) ) { assert( 0 ); } m2.LU_MultiplyFactors( m3, index2 ); m2 = m3; // update m1 m1.LU_UpdateRowColumn( v, w, offset, index1 ); m1.LU_MultiplyFactors( m3, index1 ); m1 = m3; if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::LU_UpdateRowColumn failed" ); } } /* idMatX::LU_UpdateIncrement */ m1 = original; m2 = original; v.Random( size + 1, 1 ); w.Random( size + 1, 2 ); w[size] = 0.0f; // factor m1 m1.LU_Factor( index1 ); // modify and factor m2 m2.Update_Increment( v, w ); if ( !m2.LU_Factor( index2 ) ) { assert( 0 ); } m2.LU_MultiplyFactors( m3, index2 ); m2 = m3; // update factored m1 m1.LU_UpdateIncrement( v, w, index1 ); m1.LU_MultiplyFactors( m3, index1 ); m1 = m3; if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LU_UpdateIncrement failed" ); } /* idMatX::LU_UpdateDecrement */ for ( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.SetSize( 6 ); w.SetSize( 6 ); for ( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; w[i] = original[offset][i]; } // factor m1 m1.LU_Factor( index1 ); // modify and factor m2 m2.Update_Decrement( offset ); if ( !m2.LU_Factor( index2 ) ) { assert( 0 ); } m2.LU_MultiplyFactors( m3, index2 ); m2 = m3; u.SetSize( 6 ); for ( int i = 0; i < size; i++ ) { u[i] = original[index1[offset]][i]; } // update factors of m1 m1.LU_UpdateDecrement( v, w, u, offset, index1 ); m1.LU_MultiplyFactors( m3, index1 ); m1 = m3; if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::LU_UpdateDecrement failed" ); } } /* idMatX::LU_Inverse */ m2 = original; m2.LU_Factor( NULL ); m2.LU_Inverse( m1, NULL ); m1 *= original; if ( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::LU_Inverse failed" ); } /* idMatX::QR_Factor */ c.SetSize( size ); d.SetSize( size ); m1 = original; m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); m1 = q1 * r1; if ( !original.Compare( m1, 1e-4f ) ) { idLib::common->Warning( "idMatX::QR_Factor failed" ); } /* idMatX::QR_UpdateRankOne */ c.SetSize( size ); d.SetSize( size ); m1 = original; m2 = original; w.Random( size, 0 ); v = w; // factor m1 m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); // modify and factor m2 m2.Update_RankOne( v, w, 1.0f ); if ( !m2.QR_Factor( c, d ) ) { assert( 0 ); } m2.QR_UnpackFactors( q2, r2, c, d ); m2 = q2 * r2; // update factored m1 q1.QR_UpdateRankOne( r1, v, w, 1.0f ); m1 = q1 * r1; if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::QR_UpdateRankOne failed" ); } /* idMatX::QR_UpdateRowColumn */ for ( offset = 0; offset < size; offset++ ) { c.SetSize( size ); d.SetSize( size ); m1 = original; m2 = original; v.Random( size, 1 ); w.Random( size, 2 ); w[offset] = 0.0f; // factor m1 m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); // modify and factor m2 m2.Update_RowColumn( v, w, offset ); if ( !m2.QR_Factor( c, d ) ) { assert( 0 ); } m2.QR_UnpackFactors( q2, r2, c, d ); m2 = q2 * r2; // update m1 q1.QR_UpdateRowColumn( r1, v, w, offset ); m1 = q1 * r1; if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::QR_UpdateRowColumn failed" ); } } /* idMatX::QR_UpdateIncrement */ c.SetSize( size+1 ); d.SetSize( size+1 ); m1 = original; m2 = original; v.Random( size + 1, 1 ); w.Random( size + 1, 2 ); w[size] = 0.0f; // factor m1 m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); // modify and factor m2 m2.Update_Increment( v, w ); if ( !m2.QR_Factor( c, d ) ) { assert( 0 ); } m2.QR_UnpackFactors( q2, r2, c, d ); m2 = q2 * r2; // update factored m1 q1.QR_UpdateIncrement( r1, v, w ); m1 = q1 * r1; if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::QR_UpdateIncrement failed" ); } /* idMatX::QR_UpdateDecrement */ for ( offset = 0; offset < size; offset++ ) { c.SetSize( size+1 ); d.SetSize( size+1 ); m1 = original; m2 = original; v.SetSize( 6 ); w.SetSize( 6 ); for ( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; w[i] = original[offset][i]; } // factor m1 m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); // modify and factor m2 m2.Update_Decrement( offset ); if ( !m2.QR_Factor( c, d ) ) { assert( 0 ); } m2.QR_UnpackFactors( q2, r2, c, d ); m2 = q2 * r2; // update factors of m1 q1.QR_UpdateDecrement( r1, v, w, offset ); m1 = q1 * r1; if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::QR_UpdateDecrement failed" ); } } /* idMatX::QR_Inverse */ m2 = original; m2.QR_Factor( c, d ); m2.QR_Inverse( m1, c, d ); m1 *= original; if ( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::QR_Inverse failed" ); } /* idMatX::SVD_Factor */ m1 = original; m3.Zero( size, size ); w.Zero( size ); m1.SVD_Factor( w, m3 ); m2.Diag( w ); m3.TransposeSelf(); m1 = m1 * m2 * m3; if ( !original.Compare( m1, 1e-4f ) ) { idLib::common->Warning( "idMatX::SVD_Factor failed" ); } /* idMatX::SVD_Inverse */ m2 = original; m2.SVD_Factor( w, m3 ); m2.SVD_Inverse( m1, w, m3 ); m1 *= original; if ( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::SVD_Inverse failed" ); } /* idMatX::Cholesky_Factor */ m1 = original; m1.Cholesky_Factor(); m1.Cholesky_MultiplyFactors( m2 ); if ( !original.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Cholesky_Factor failed" ); } /* idMatX::Cholesky_UpdateRankOne */ m1 = original; m2 = original; w.Random( size, 0 ); // factor m1 m1.Cholesky_Factor(); m1.ClearUpperTriangle(); // modify and factor m2 m2.Update_RankOneSymmetric( w, 1.0f ); if ( !m2.Cholesky_Factor() ) { assert( 0 ); } m2.ClearUpperTriangle(); // update factored m1 m1.Cholesky_UpdateRankOne( w, 1.0f, 0 ); if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Cholesky_UpdateRankOne failed" ); } /* idMatX::Cholesky_UpdateRowColumn */ for ( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; // factor m1 m1.Cholesky_Factor(); m1.ClearUpperTriangle(); int pdtable[] = { 1, 0, 1, 0, 0, 0 }; w.Random( size, pdtable[offset] ); w *= 0.1f; // modify and factor m2 m2.Update_RowColumnSymmetric( w, offset ); if ( !m2.Cholesky_Factor() ) { assert( 0 ); } m2.ClearUpperTriangle(); // update m1 m1.Cholesky_UpdateRowColumn( w, offset ); if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::Cholesky_UpdateRowColumn failed" ); } } /* idMatX::Cholesky_UpdateIncrement */ m1.Random( size + 1, size + 1, 0 ); m3 = m1 * m1.Transpose(); m1.SquareSubMatrix( m3, size ); m2 = m1; w.SetSize( size + 1 ); for ( int i = 0; i < size + 1; i++ ) { w[i] = m3[size][i]; } // factor m1 m1.Cholesky_Factor(); // modify and factor m2 m2.Update_IncrementSymmetric( w ); if ( !m2.Cholesky_Factor() ) { assert( 0 ); } // update factored m1 m1.Cholesky_UpdateIncrement( w ); m1.ClearUpperTriangle(); m2.ClearUpperTriangle(); if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Cholesky_UpdateIncrement failed" ); } /* idMatX::Cholesky_UpdateDecrement */ for ( offset = 0; offset < size; offset += size - 1 ) { m1 = original; m2 = original; v.SetSize( 6 ); for ( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; } // factor m1 m1.Cholesky_Factor(); // modify and factor m2 m2.Update_Decrement( offset ); if ( !m2.Cholesky_Factor() ) { assert( 0 ); } // update factors of m1 m1.Cholesky_UpdateDecrement( v, offset ); if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::Cholesky_UpdateDecrement failed" ); } } /* idMatX::Cholesky_Inverse */ m2 = original; m2.Cholesky_Factor(); m2.Cholesky_Inverse( m1 ); m1 *= original; if ( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::Cholesky_Inverse failed" ); } /* idMatX::LDLT_Factor */ m1 = original; m1.LDLT_Factor(); m1.LDLT_MultiplyFactors( m2 ); if ( !original.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_Factor failed" ); } m1.LDLT_UnpackFactors( m2, m3 ); m2 = m2 * m3 * m2.Transpose(); if ( !original.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_Factor failed" ); } /* idMatX::LDLT_UpdateRankOne */ m1 = original; m2 = original; w.Random( size, 0 ); // factor m1 m1.LDLT_Factor(); m1.ClearUpperTriangle(); // modify and factor m2 m2.Update_RankOneSymmetric( w, 1.0f ); if ( !m2.LDLT_Factor() ) { assert( 0 ); } m2.ClearUpperTriangle(); // update factored m1 m1.LDLT_UpdateRankOne( w, 1.0f, 0 ); if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_UpdateRankOne failed" ); } /* idMatX::LDLT_UpdateRowColumn */ for ( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; w.Random( size, 0 ); // factor m1 m1.LDLT_Factor(); m1.ClearUpperTriangle(); // modify and factor m2 m2.Update_RowColumnSymmetric( w, offset ); if ( !m2.LDLT_Factor() ) { assert( 0 ); } m2.ClearUpperTriangle(); // update m1 m1.LDLT_UpdateRowColumn( w, offset ); if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::LDLT_UpdateRowColumn failed" ); } } /* idMatX::LDLT_UpdateIncrement */ m1.Random( size + 1, size + 1, 0 ); m3 = m1 * m1.Transpose(); m1.SquareSubMatrix( m3, size ); m2 = m1; w.SetSize( size + 1 ); for ( int i = 0; i < size + 1; i++ ) { w[i] = m3[size][i]; } // factor m1 m1.LDLT_Factor(); // modify and factor m2 m2.Update_IncrementSymmetric( w ); if ( !m2.LDLT_Factor() ) { assert( 0 ); } // update factored m1 m1.LDLT_UpdateIncrement( w ); m1.ClearUpperTriangle(); m2.ClearUpperTriangle(); if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_UpdateIncrement failed" ); } /* idMatX::LDLT_UpdateDecrement */ for ( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.SetSize( 6 ); for ( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; } // factor m1 m1.LDLT_Factor(); // modify and factor m2 m2.Update_Decrement( offset ); if ( !m2.LDLT_Factor() ) { assert( 0 ); } // update factors of m1 m1.LDLT_UpdateDecrement( v, offset ); if ( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::LDLT_UpdateDecrement failed" ); } } /* idMatX::LDLT_Inverse */ m2 = original; m2.LDLT_Factor(); m2.LDLT_Inverse( m1 ); m1 *= original; if ( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_Inverse failed" ); } /* idMatX::Eigen_SolveSymmetricTriDiagonal */ m3 = original; m3.TriDiagonal_ClearTriangles(); m1 = m3; v.SetSize( size ); m1.Eigen_SolveSymmetricTriDiagonal( v ); m3.TransposeMultiply( m2, m1 ); for ( int i = 0; i < size; i++ ) { for ( int j = 0; j < size; j++ ) { m1[i][j] *= v[j]; } } if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Eigen_SolveSymmetricTriDiagonal failed" ); } /* idMatX::Eigen_SolveSymmetric */ m3 = original; m1 = m3; v.SetSize( size ); m1.Eigen_SolveSymmetric( v ); m3.TransposeMultiply( m2, m1 ); for ( int i = 0; i < size; i++ ) { for ( int j = 0; j < size; j++ ) { m1[i][j] *= v[j]; } } if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Eigen_SolveSymmetric failed" ); } /* idMatX::Eigen_Solve */ m3 = original; m1 = m3; v.SetSize( size ); w.SetSize( size ); m1.Eigen_Solve( v, w ); m3.TransposeMultiply( m2, m1 ); for ( int i = 0; i < size; i++ ) { for ( int j = 0; j < size; j++ ) { m1[i][j] *= v[j]; } } if ( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Eigen_Solve failed" ); } }